1
|
Banushi B, Collova J, Milroy H. Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations. Int J Mol Sci 2025; 26:3075. [PMID: 40243774 PMCID: PMC11989090 DOI: 10.3390/ijms26073075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Trauma can impact individuals within a generation (intragenerational) and future generations (transgenerational) through a complex interplay of biological and environmental factors. This review explores the epigenetic mechanisms that have been correlated with the effects of trauma across generations, including DNA methylation, histone modifications, and non-coding RNAs. These mechanisms can regulate the expression of stress-related genes (such as the glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) gene), linking trauma to biological pathways that may affect long-term stress regulation and health outcomes. Although research using model organisms has elucidated potential epigenetic mechanisms underlying the intergenerational effects of trauma, applying these findings to human populations remains challenging due to confounding variables, methodological limitations, and ethical considerations. This complexity is compounded by difficulties in establishing causality and in disentangling epigenetic influences from shared environmental factors. Emerging therapies, such as psychedelic-assisted treatments and mind-body interventions, offer promising avenues to address both the psychological and potential epigenetic aspects of trauma. However, translating these findings into effective interventions will require interdisciplinary methods and culturally sensitive approaches. Enriched environments, cultural reconnection, and psychosocial interventions have shown the potential to mitigate trauma's impacts within and across generations. By integrating biological, social, and cultural perspectives, this review highlights the critical importance of interdisciplinary frameworks in breaking cycles of trauma, fostering resilience, and advancing comprehensive healing across generations.
Collapse
Affiliation(s)
- Blerida Banushi
- School of Indigenous Studies, The University of Western Australia, Crawley, WA 6009, Australia; (J.C.); (H.M.)
| | | | | |
Collapse
|
2
|
Hill CM, Indeglia A, Picone F, Murphy ME, Cipriano C, Maki RG, Gardini A. NAB2-STAT6 drives an EGR1-dependent neuroendocrine program in Solitary Fibrous Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589533. [PMID: 38659891 PMCID: PMC11042251 DOI: 10.1101/2024.04.15.589533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The pathogenesis of many rare tumor types is poorly understood, preventing the design of effective treatments. Solitary fibrous tumors (SFTs) are neoplasms of mesenchymal origin that affect 1/1,000,000 individuals every year and are clinically assimilated to soft tissue sarcomas. SFTs can arise throughout the body and are usually managed surgically. However, 30-40% of SFTs will relapse local-regionally or metastasize. There are no systemic therapies with durable activity for malignant SFTs to date. The molecular hallmark of SFTs is a gene fusion between the NAB2 and STAT6 loci on chromosome 12, resulting in a chimeric protein of poorly characterized function called NAB2-STAT6. We use primary samples and an inducible cell model to discover that NAB2-STAT6 operates as a transcriptional coactivator for a specific set of enhancers and promoters that are normally targeted by the EGR1 transcription factor. In physiological conditions, NAB2 is primarily localized to the cytoplasm and only a small nuclear fraction is available to operate as a co-activator of EGR1 targets. NAB2-STAT6 redirects NAB1, NAB2, and additional EGR1 to the nucleus and bolster the expression of neuronal EGR1 targets. The STAT6 moiety of the fusion protein is a major driver of its nuclear localization and further contributes to NAB2's co-activating abilities. In primary tumors, NAB2-STAT6 activates a neuroendocrine gene signature that sets it apart from most sarcomas. These discoveries provide new insight into the pathogenesis of SFTs and reveal new targets with therapeutic potential.
Collapse
Affiliation(s)
- Connor M Hill
- The Wistar Institute, Philadelphia, PA, US
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | - Alexandra Indeglia
- The Wistar Institute, Philadelphia, PA, US
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S
| | | | | | - Cara Cipriano
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S
| | - Robert G Maki
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, U.S
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S. Present address: Department of Medicine, Memorial Sloan-Kettering Cancer Center, and Weill Cornell Medical College, Cornell University, New York, NY, U.S
| | | |
Collapse
|
3
|
de Nooij L, Wirz L, Heling E, Pais M, Hendriks GJ, Verkes RJ, Roozendaal B, Hermans EJ. Exogenous glucocorticoids to improve extinction learning for post-traumatic stress disorder patients with hypothalamic-pituitary-adrenal-axis dysregulation: a study protocol description. Eur J Psychotraumatol 2024; 15:2364441. [PMID: 38973398 PMCID: PMC11232644 DOI: 10.1080/20008066.2024.2364441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Background: Trauma-focused treatments for post-traumatic stress disorder (PTSD) are effective for many patients. However, relapse may occur when acquired extinction memories fail to generalize beyond treatment contexts. A subgroup of PTSD patients - potentially with substantial exposure to early-life adversity (ELA) - show dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which results in lower cortisol levels. Glucocorticoids, including cortisol, appear to facilitate strength and generalization of emotional memories.Objective: We describe the protocol of an integrated PTSD study. We investigate (A) associations between HPA-axis dysregulation, ELA, epigenetic markers, and PTSD treatment outcome (observational study); and (B) effects of exogenous glucocorticoids on strength and generalization of extinction memories and associated neural mechanisms [pharmacological intervention study with functional magnetic resonance imaging (fMRI)]. The objective is to provide proof of concept that PTSD patients with HPA-axis dysregulation often experienced ELA and may show improved strength and generalization of extinction learning after glucocorticoid administration.Method: The observational study (n = 160 PTSD group, n = 30 control group) assesses ELA, follow-up PTSD symptoms, epigenetic markers, and HPA-axis characteristics (salivary cortisol levels during low-dose dexamethasone suppression test and socially evaluated cold-pressor test). The pharmacological intervention study (n = 80 PTSD group, with and without HPA-axis dysregulation) is a placebo-controlled fMRI study with a crossover design. To investigate strength and generalization of extinction memories, we use a differential fear acquisition, extinction, and extinction recall task with spatial contexts within a virtual environment. Prior to extinction learning, 20 mg hydrocortisone or placebo is administered. During next-day recall, strength of the extinction memory is determined by recovery of skin conductance and pupil dilation differential responding, whereas generalization is assessed by comparing responses between different spatial contexts.Conclusion: The integrated study described in the current protocol paper could inform a personalized treatment approach in which these PTSD patients may receive glucocorticoids as a treatment enhancer in trauma-focused therapies.Trial registration: The research project is registered in the European Union Drug Regulating Authorities Clinical Trials (EudraCT) database, https://eudract.ema.europa.eu/, EudraCT number 2020-000712-30.
Collapse
Affiliation(s)
- Laura de Nooij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lisa Wirz
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Cognitive Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Emma Heling
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mariana Pais
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Gert-Jan Hendriks
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
- ‘Overwaal’ Center of Expertise for Anxiety, Obsessive Compulsive and Posttraumatic Stress Disorders, Institution for Integrated Mental Health Care “Pro Persona”, Nijmegen, The Netherlands
| | - Robbert-Jan Verkes
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Kairos Forensic Care, Pompestichting, Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Erno J. Hermans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Zenk F, Fleck JS, Jansen SMJ, Kashanian B, Eisinger B, Santel M, Dupré JS, Camp JG, Treutlein B. Single-cell epigenomic reconstruction of developmental trajectories from pluripotency in human neural organoid systems. Nat Neurosci 2024; 27:1376-1386. [PMID: 38914828 PMCID: PMC11239525 DOI: 10.1038/s41593-024-01652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/17/2024] [Indexed: 06/26/2024]
Abstract
Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been difficult. In this study, we use human brain and retina organoid models and present single-cell profiling of H3K27ac, H3K27me3 and H3K4me3 histone modifications from progenitor to differentiated neural fates to reconstruct the epigenomic trajectories regulating cell identity acquisition. We capture transitions from pluripotency through neuroepithelium to retinal and brain region and cell type specification. Switching of repressive and activating epigenetic modifications can precede and predict cell fate decisions at each stage, providing a temporal census of gene regulatory elements and transcription factors. Removing H3K27me3 at the neuroectoderm stage disrupts fate restriction, resulting in aberrant cell identity acquisition. Our single-cell epigenome-wide map of human neural organoid development serves as a blueprint to explore human cell fate determination.
Collapse
Affiliation(s)
- Fides Zenk
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Brain Mind Institute, School of Life Sciences EPFL, Lausanne, Switzerland.
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Bijan Kashanian
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Benedikt Eisinger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Małgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jean-Samuel Dupré
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
5
|
Lin A, Mertens AN, Rahman MZ, Tan ST, Il'yasova D, Spasojevic I, Ali S, Stewart CP, Fernald LCH, Kim L, Yan L, Meyer A, Karim MR, Shahriar S, Shuman G, Arnold BF, Hubbard AE, Famida SL, Akther S, Hossen MS, Mutsuddi P, Shoab AK, Shalev I, Rahman M, Unicomb L, Heaney CD, Kariger P, Colford JM, Luby SP, Granger DA. A cluster-randomized trial of water, sanitation, handwashing and nutritional interventions on stress and epigenetic programming. Nat Commun 2024; 15:3572. [PMID: 38670986 PMCID: PMC11053067 DOI: 10.1038/s41467-024-47896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
A regulated stress response is essential for healthy child growth and development trajectories. We conducted a cluster-randomized trial in rural Bangladesh (funded by the Bill & Melinda Gates Foundation, ClinicalTrials.gov NCT01590095) to assess the effects of an integrated nutritional, water, sanitation, and handwashing intervention on child health. We previously reported on the primary outcomes of the trial, linear growth and caregiver-reported diarrhea. Here, we assessed additional prespecified outcomes: physiological stress response, oxidative stress, and DNA methylation (N = 759, ages 1-2 years). Eight neighboring pregnant women were grouped into a study cluster. Eight geographically adjacent clusters were block-randomized into the control or the combined nutrition, water, sanitation, and handwashing (N + WSH) intervention group (receiving nutritional counseling and lipid-based nutrient supplements, chlorinated drinking water, upgraded sanitation, and handwashing with soap). Participants and data collectors were not masked, but analyses were masked. There were 358 children (68 clusters) in the control group and 401 children (63 clusters) in the intervention group. We measured four F2-isoprostanes isomers (iPF(2α)-III; 2,3-dinor-iPF(2α)-III; iPF(2α)-VI; 8,12-iso-iPF(2α)-VI), salivary alpha-amylase and cortisol, and methylation of the glucocorticoid receptor (NR3C1) exon 1F promoter including the NGFI-A binding site. Compared with control, the N + WSH group had lower concentrations of F2-isoprostanes isomers (differences ranging from -0.16 to -0.19 log ng/mg of creatinine, P < 0.01), elevated post-stressor cortisol (0.24 log µg/dl; P < 0.01), higher cortisol residualized gain scores (0.06 µg/dl; P = 0.023), and decreased methylation of the NGFI-A binding site (-0.04; P = 0.037). The N + WSH intervention enhanced adaptive responses of the physiological stress system in early childhood.
Collapse
Affiliation(s)
- Audrie Lin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| | - Andrew N Mertens
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Md Ziaur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Sophia T Tan
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Dora Il'yasova
- Department of Medicine, Duke University, Durham, NC, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University, Durham, NC, USA
- PK/PD Core Laboratory, Duke Cancer Institute, Durham, NC, USA
| | - Shahjahan Ali
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Christine P Stewart
- Institute for Global Nutrition, University of California Davis, Davis, CA, USA
| | - Lia C H Fernald
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Lisa Kim
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Md Rabiul Karim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Sunny Shahriar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Gabrielle Shuman
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Benjamin F Arnold
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
| | - Alan E Hubbard
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Syeda L Famida
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Salma Akther
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Saheen Hossen
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Palash Mutsuddi
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Abul K Shoab
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Idan Shalev
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Mahbubur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Leanne Unicomb
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patricia Kariger
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - John M Colford
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, Irvine, CA, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Arzate-Mejia RG, Carullo NVN, Mansuy IM. The epigenome under pressure: On regulatory adaptation to chronic stress in the brain. Curr Opin Neurobiol 2024; 84:102832. [PMID: 38141414 DOI: 10.1016/j.conb.2023.102832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Chronic stress (CS) can have long-lasting consequences on behavior and cognition, that are associated with stable changes in gene expression in the brain. Recent work has examined the role of the epigenome in the effects of CS on the brain. This review summarizes experimental evidence in rodents showing that CS can alter the epigenome and the expression of epigenetic modifiers in brain cells, and critically assesses their functional effect on genome function. It discusses the influence of the developmental time of stress exposure on the type of epigenetic changes, and proposes new lines of research that can help clarify these changes and their causal involvement in the impact of CS.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejia
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland. https://twitter.com/RodrigoArzt
| | - Nancy V N Carullo
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland. https://twitter.com/DrNancyCarullo
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland.
| |
Collapse
|
7
|
Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:638-655. [PMID: 37055898 DOI: 10.2174/1871527322666230412105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/15/2023]
Abstract
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
Collapse
Affiliation(s)
- Ravikant Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| |
Collapse
|
8
|
Fernández-Teruel A, Cañete T, Sampedro-Viana D, Oliveras I, Torrubia R, Tobeña A. Contribution of the Roman rat lines/strains to personality neuroscience: neurobehavioral modeling of internalizing/externalizing psychopathologies. PERSONALITY NEUROSCIENCE 2023; 6:e8. [PMID: 38107777 PMCID: PMC10725777 DOI: 10.1017/pen.2023.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 12/19/2023]
Abstract
The Roman high-avoidance (RHA) and low-avoidance (RLA) rat lines/strains were established in Rome through bidirectional selection of Wistar rats for rapid (RHA) or extremely poor (RLA) acquisition of a two-way active avoidance task. Relative to RHAs, RLA rats exhibit enhanced threat sensitivity, anxiety, fear and vulnerability to stress, a passive coping style and increased sensitivity to frustration. Thus, RLA rats' phenotypic profile falls well within the "internalizing" behavior spectrum. Compared with RLAs and other rat strains/stocks, RHAs present increased impulsivity and reward sensitivity, deficits in social behavior and attentional/cognitive processes, novelty-induced hyper-locomotion and vulnerability to psychostimulant sensitization and drug addiction. Thus, RHA rats' phenotypes are consistent with a "disinhibiting externalizing" profile. Many neurobiological/molecular traits differentiate both rat lines/strains. For example, relative to RLA rats, RHAs exhibit decreased function of the prefrontal cortex (PFC), hippocampus and amygdala, increased functional tone of the mesolimbic dopamine system, a deficit of central metabotropic glutamate-2 (mGlu2) receptors, increased density of serotonin 5-HT2A receptors in the PFC, impairment of GABAergic transmission in the PFC, alterations of several synaptic markers and increased density of pyramidal immature dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. We review evidence supporting RLA rats as a valid model of anxiety/fear, stress and frustration vulnerability, whereas RHA rats represent a promising translational model of neurodevelopmental alterations related to impulsivity, schizophrenia-relevant features and comorbidity with drug addiction vulnerability.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Faculty of Medicine & Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Faculty of Medicine & Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Faculty of Medicine & Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Faculty of Medicine & Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Rafael Torrubia
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Faculty of Medicine & Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Faculty of Medicine & Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Carmi L, Zohar J, Juven-Wetzler A, Desarnaud F, Makotkine L, Bierer LM, Cohen H, Yehuda R. Promoter methylation of the glucocorticoid receptor following trauma may be associated with subsequent development of PTSD. World J Biol Psychiatry 2023; 24:578-586. [PMID: 36748398 PMCID: PMC10440098 DOI: 10.1080/15622975.2023.2177342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The ability to identify persons at elevated risk for post-traumatic stress disorder (PTSD) soon after exposure to trauma, could aid clinical decision-making and treatment. In this study, we explored whether cytosine methylation of the 1 F promoter of the NR3C1 (glucocorticoid receptor [GR]) gene obtained immediately following a trauma could predict PTSD. METHODS Our sample comprised 52 trauma survivors (28 women, 24 men), presenting to the Emergency Department (ED) within six hours of a traumatic event and followed for 13 months. Blood samples were taken at intake (n = 42) and again at the end of the study (13 months later, n = 27) to determine NR3C1-1F promoter methylation as well as plasma levels of cortisol, adrenocorticotropic-hormone (ACTH), and neuropeptide-Y (NPY). RESULTS At the 13-month follow-up, participants who met the PTSD criteria (n = 4) showed significantly lower NR3C1-1F promoter sum percent methylation compared to the non-PTSD group (n = 38). Further, NR3C1-1F methylation at ED intake was inversely correlated with PTSD severity 13 months later, indicating that lower NR3C1-1F promoter methylation in the immediate aftermath of trauma was associated with the development of PTSD. CONCLUSION To the extent that reduced promoter methylation is associated with greater GR expression and responsivity, this finding is consistent with the hypothalamic-pituitary-adrenal dysregulation previously described for PTSD.
Collapse
Affiliation(s)
- Lior Carmi
- Post Trauma Center, Chaim Sheba Medical Center, Ramat Gan, Israel
- The Data Science Institution, Reichman University, Herzliya, Israel
| | - Joseph Zohar
- Post Trauma Center, Chaim Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University, Tel Aviv, Israel
| | | | - Frank Desarnaud
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Louri Makotkine
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Linda M Bierer
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Hagit Cohen
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Rachel Yehuda
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
10
|
van Oers K, van den Heuvel K, Sepers B. The Epigenetics of Animal Personality. Neurosci Biobehav Rev 2023; 150:105194. [PMID: 37094740 DOI: 10.1016/j.neubiorev.2023.105194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Animal personality, consistent individual differences in behaviour, is an important concept for understanding how individuals vary in how they cope with environmental challenges. In order to understand the evolutionary significance of animal personality, it is crucial to understand the underlying regulatory mechanisms. Epigenetic marks such as DNA methylation are hypothesised to play a major role in explaining variation in phenotypic changes in response to environmental alterations. Several characteristics of DNA methylation also align well with the concept of animal personality. In this review paper, we summarise the current literature on the role that molecular epigenetic mechanisms may have in explaining personality variation. We elaborate on the potential for epigenetic mechanisms to explain behavioural variation, behavioural development and temporal consistency in behaviour. We then suggest future routes for this emerging field and point to potential pitfalls that may be encountered. We conclude that a more inclusive approach is needed for studying the epigenetics of animal personality and that epigenetic mechanisms cannot be studied without considering the genetic background.
Collapse
Affiliation(s)
- Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands.
| | - Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
11
|
Vetrovoy O, Stratilov V, Lomert E, Tyulkova E. Prenatal Hypoxia-Induced Adverse Reaction to Mild Stress is Associated with Depressive-Like Changes in the Glucocorticoid System of Rats. Neurochem Res 2022; 48:1455-1467. [PMID: 36495386 DOI: 10.1007/s11064-022-03837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
The effects of prenatal hypoxia on neurodevelopment are predominantly associated with impaired maternal glucocorticoid stimulation of the fetus, which is "imprinted" in altered sensitivity of glucocorticoid reception in brain structures of offspring and can affect brain plasticity during lifespan. This study aimed to investigate response of the brain glucocorticoid system to mild stress (MS) in adult rats that survived prenatal severe hypoxia (PSH) on embryonic days 14-16. In response to MS the control (but not PSH) rats demonstrate increased corticosterone levels, a decrease in exploratory activity and increased anxiety. In the raphe nuclei of adult PSH rats the expression of glucocorticoid receptors (GR) is increased without changes in serotonin levels in comparison with the control. MS induces a decrease in GR expression accompanied by up-regulation of tryptophan hydroxylase 2 (tph2) and down-regulation of monoamine oxidase A (maoa) transcription in the raphe nuclei of both control and PSH groups. PSH also causes significant deviations in GR expression and GR-dependent transcription in the hippocampus, the medial prefrontal cortex, but not in the amygdala of rats. However, in response to MS, PSH rats demonstrate mild changes in their activity, while in control animals the MS-induced activity of the glucocorticoid system in these brain structures is similar to intact PSH animals. Impaired activity of the glucocorticoid system in the extrahypothalamic brain structures of PSH rats is accompanied by increase in the hypothalamic corticotropin-releasing hormone (CRH) levels in comparison with the control regardless of MS. Synthesis of proopiomelanocortin (POMC) and release of adrenocorticotropic hormone (ACTH) into the blood are decreased in response to MS in the pituitary of control rats, which demonstrates a negative glucocorticoid feedback mechanism. Meanwhile, in the pituitary of PSH rats reduced POMC levels were found regardless of MS. Thus, prenatal hypoxia causes depression-like patterns in the brain glucocorticoid system with adverse reaction to mild stressors.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia.
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Emb. 7-9, 199034, Saint- Petersburg, Russia.
| | - Viktor Stratilov
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia
| | - Ekaterina Lomert
- Group of Molecular Genetics of Tumor Cells, Institute of Cytology, Russian Academy of Sciences, Tihoretsky Pr. 4, 194064, Saint-Petersburg, Russia
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia
| |
Collapse
|
12
|
Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry 2022; 12:306. [PMID: 35915071 PMCID: PMC9343623 DOI: 10.1038/s41398-022-02092-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.
Collapse
|
13
|
Xin N, Wang DT, Zhang L, Zhou Y, Cheng Y. Early developmental stage glucocorticoid exposure causes DNA methylation and behavioral defects in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109301. [PMID: 35182718 DOI: 10.1016/j.cbpc.2022.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/21/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by genetic and environmental factors. It is closely related to a dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, in which the epigenetic modification of the nr3c1 plays an important role. It is well known that nr3c1 methylation in offspring is reportedly related to early adverse life experiences, prenatal stress response, and early nursing conditions; however, the methylation location and extent of the nr3c1 are not sufficiently elucidated. In order to study the internal mechanism of PTSD caused by early adverse life experience, we used zebrafish to construct a psychopathological model. We found that early developmental stage prednisolone exposure caused HPA axis negative feedback dysfunction and hormone secretion disorder in adult male zebrafish. By analyzing nr3c1 promoter, we found that cytosine-guanine island (CpGI) 2 was highly methylated in adult male zebrafish, which affected the expression of glucocorticoid receptor, resulting in abnormal behavior and anxiety like phenotype of adult male zebrafish. Therefore, we believed that an early exposure of zebrafish larvae to prednisolone may be recorded through a change of CpGI 2 methylation in the nr3c1 promoter region, causing abnormal adult male zebrafish behavior. Moreover, the establishment of the zebrafish psychopathological model may facilitate the study of the clinical management of patients with PTSD.
Collapse
Affiliation(s)
- Ning Xin
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Da-Tong Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Li Zhang
- Department of Geriatrics, Jinan Laigang Hospital, No.68 Xinxing Road, Jinan, Shandong 271100, China
| | - Yanlong Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yanbo Cheng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
14
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
15
|
Verwoolde MB, Arts J, Jansen CA, Parmentier HK, Lammers A. Transgenerational Effects of Maternal Immune Activation on Specific Antibody Responses in Layer Chickens. Front Vet Sci 2022; 9:832130. [PMID: 35252424 PMCID: PMC8891521 DOI: 10.3389/fvets.2022.832130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Activation of the maternal immune system may affect innate and adaptive immune responses in the next generation and may therefore have implications for vaccine efficacy and dietary immune modulation by feed additives. However, transgenerational effects on immune responses in chickens have been investigated to a limited extend. The present study investigated effects of intratracheal (i.t) specific and aspecific immune activation of laying hens on specific antibody production in the next generation. In two experiments laying hens received intratracheally an immune stimulus with human serum albumin (HuSA) or lipopolysaccharide (LPS). In experiment 1, hatchlings of the immune activated hens were at 4 weeks i.t. immunized with HuSA or HuSA+LPS. Maternal immune activation with LPS increased HuSA specific IgY and IgM responses in offspring. These results suggest a transgenerational effect of the maternal immune system on the specific antibody response in the next generation. In experiment 2 hatchlings received either β-glucan-enriched feed or control feed and were i.t. immunized with HuSA. Maternal immune activation with LPS decreased IgY anti-HuSA responses after HuSA immunization within hatchlings that received β-glucan enriched feed. The results of Experiment 2 suggest a transgenerational link between the innate immune system of mother and specific antibody responses in offspring. Despite variabilities in the outcomes of the two experiments, the observations of both suggest a link between the maternal innate immune system and the immune system of the offspring. Furthermore, our results may imply that maternal activation of the innate immune system can influence immune modulating dietary interventions and vaccine strategies in the next generation.
Collapse
Affiliation(s)
- Michel B. Verwoolde
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Joop Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Aart Lammers
| |
Collapse
|
16
|
Espina JEC, Bagamasbad PD. Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. VITAMINS AND HORMONES 2021; 118:35-81. [PMID: 35180933 DOI: 10.1016/bs.vh.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
Collapse
Affiliation(s)
- Jose Ezekiel C Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
17
|
Fernandez-Teruel A. The power of "touch" and early enriched stimulation: neuroplasticity effects in rodents and preterm infants. Neural Regen Res 2021; 17:1248-1250. [PMID: 34782558 PMCID: PMC8643065 DOI: 10.4103/1673-5374.327336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alberto Fernandez-Teruel
- Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
18
|
Layfield SD, Duffy LA, Phillips KA, Lardenoije R, Klengel T, Ressler KJ. Multiomic biological approaches to the study of child abuse and neglect. Pharmacol Biochem Behav 2021; 210:173271. [PMID: 34508786 PMCID: PMC8501413 DOI: 10.1016/j.pbb.2021.173271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Childhood maltreatment, occurring in up to 20-30% of the population, remains far too common, and incorporates a range of active and passive factors, from abuse, to neglect, to the impacts of broader structural and systemic adversity. Despite the effects of childhood maltreatment and adversity on a wide range of adult physical and psychological negative outcomes, not all individuals respond similarly. Understanding the differential biological mechanisms contributing to risk vs. resilience in the face of developmental adversity is critical to improving preventions, treatments, and policy recommendations. This review begins by providing an overview of childhood abuse, neglect, maltreatment, threat, and toxic stress, and the effects of these forms of adversity on the developing body, brain, and behavior. It then examines examples from the current literature of genomic, epigenomic, transcriptomic, and proteomic discoveries and biomarkers that may help to understand risk and resilience in the aftermath of trauma, predictors of traumatic exposure risk, and potential targets for intervention and prevention. While the majority of genetic, epigenetic, and gene expression analyses to date have focused on targeted genes and hypotheses, large-scale consortia are now well-positioned to better understand interactions of environment and biology with much more statistical power. Ongoing and future work aimed at understanding the biology of childhood adversity and its effects will help to provide targets for intervention and prevention, as well as identify paths for how science, health care, and policy can combine efforts to protect and promote the psychological and physiological wellbeing of future generations.
Collapse
Affiliation(s)
- Savannah Dee Layfield
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America
| | - Lucie Anne Duffy
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America
| | - Karlye Allison Phillips
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America
| | - Roy Lardenoije
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Klengel
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany; Department of Psychiatry, Harvard Medical School, United States of America
| | - Kerry J Ressler
- Depression & Anxiety Division, McLean Hospital, Mass General Brigham, Belmont, MA, United States of America; Department of Psychiatry, Harvard Medical School, United States of America.
| |
Collapse
|
19
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
20
|
Abstract
Animal and humans exposed to stress early in life are more likely to suffer from long-term behavioral, mental health, metabolic, immune, and cardiovascular health consequences. The hypothalamus plays a nodal role in programming, controlling, and regulating stress responses throughout the life course. Epigenetic reprogramming in the hippocampus and the hypothalamus play an important role in adapting genome function to experiences and exposures during the perinatal and early life periods and setting up stable phenotypic outcomes. Epigenetic programming during development enables one genome to express multiple cell type identities. The most proximal epigenetic mark to DNA is a covalent modification of the DNA itself by enzymatic addition of methyl moieties. Cell-type-specific DNA methylation profiles are generated during gestational development and define cell and tissue specific phenotypes. Programming of neuronal phenotypes and sex differences in the hypothalamus is achieved by developmentally timed rearrangement of DNA methylation profiles. Similarly, other stations in the life trajectory such as puberty and aging involve predictable and scheduled reorganization of DNA methylation profiles. DNA methylation and other epigenetic marks are critical for maintaining cell-type identity in the brain, across the body, and throughout life. Data that have emerged in the last 15 years suggest that like its role in defining cell-specific phenotype during development, DNA methylation might be involved in defining experiential identities, programming similar genes to perform differently in response to diverse experiential histories. Early life stress impact on lifelong phenotypes is proposed to be mediated by DNA methylation and other epigenetic marks. Epigenetic marks, as opposed to genetic mutations, are reversible by either pharmacological or behavioral strategies and therefore offer the potential for reversing or preventing disease including behavioral and mental health disorders. This chapter discusses data testing the hypothesis that DNA methylation modulations of the HPA axis mediate the impact of early life stress on lifelong behavioral and physical phenotypes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Girard-Buttoz C, Tkaczynski PJ, Samuni L, Fedurek P, Gomes C, Löhrich T, Manin V, Preis A, Valé PF, Deschner T, Wittig RM, Crockford C. Early maternal loss leads to short- but not long-term effects on diurnal cortisol slopes in wild chimpanzees. eLife 2021; 10:e64134. [PMID: 34133269 PMCID: PMC8208813 DOI: 10.7554/elife.64134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
The biological embedding model (BEM) suggests that fitness costs of maternal loss arise when early-life experience embeds long-term alterations to hypothalamic-pituitary-adrenal (HPA) axis activity. Alternatively, the adaptive calibration model (ACM) regards physiological changes during ontogeny as short-term adaptations. Both models have been tested in humans but rarely in wild, long-lived animals. We assessed whether, as in humans, maternal loss had short- and long-term impacts on orphan wild chimpanzee urinary cortisol levels and diurnal urinary cortisol slopes, both indicative of HPA axis functioning. Immature chimpanzees recently orphaned and/or orphaned early in life had diurnal cortisol slopes reflecting heightened activation of the HPA axis. However, these effects appeared short-term, with no consistent differences between orphan and non-orphan cortisol profiles in mature males, suggesting stronger support for the ACM than the BEM in wild chimpanzees. Compensatory mechanisms, such as adoption, may buffer against certain physiological effects of maternal loss in this species.
Collapse
Affiliation(s)
- Cédric Girard-Buttoz
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Patrick J Tkaczynski
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Liran Samuni
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Pawel Fedurek
- Division of Psychology, University of StirlingStirlingUnited Kingdom
| | - Cristina Gomes
- Tropical Conservation Institute, Florida International UniversityMiamiUnited States
| | - Therese Löhrich
- World Wide Fund for Nature, Dzanga Sangha Protected AreasBanguiCentral African Republic
- Robert Koch Institute, Epidemiology of Highly Pathogenic MicroorganismsBerlinGermany
| | - Virgile Manin
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Anna Preis
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Prince F Valé
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Department of Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Centre Suisse de Recherches Scientifiques en Côte d'IvoireAbidjanCôte d'Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët BoignyAbidjanCôte d'Ivoire
| | - Tobias Deschner
- Interim Group Primatology, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Roman M Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Taï Chimpanzee Project, Centre Suisse de Recherches ScientifiquesAbidjanCôte d'Ivoire
- Institut des Sciences Cognitives, CNRSLyonFrance
| |
Collapse
|
22
|
Dick A, Chen A. The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiol Stress 2021; 15:100352. [PMID: 34189192 PMCID: PMC8220100 DOI: 10.1016/j.ynstr.2021.100352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Such changes may therefore perpetuate stable and dynamic transcriptional patterns within neuronal populations required for neuroplasticity and behavioural adaptation. In this review, we will highlight recent evidence supporting a role of TET protein function and active demethylation in stress-induced neuroepigenetic and behavioural adaptations. We further explore potential mechanisms by which TET proteins may mediate both the basal and pathological embedding of stressful life experiences within the brain of relevance to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Alec Dick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Corresponding author.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- The Ruhman Family Laboratory for Research on the Neurobiology of Stress, Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
23
|
Ke X, Fu Q, Sterrett J, Hillard CJ, Lane RH, Majnik A. Adverse maternal environment and western diet impairs cognitive function and alters hippocampal glucocorticoid receptor promoter methylation in male mice. Physiol Rep 2021; 8:e14407. [PMID: 32333646 PMCID: PMC7183239 DOI: 10.14814/phy2.14407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Adverse maternal environment (AME) and high‐fat diet in early childhood increase the risk of cognitive impairment and depression later in life. Cognitive impairment associates with hippocampal dysfunction. A key regulator of hippocampal function is the glucocorticoid receptor. Increased hippocampal GR expression associates with cognitive impairment and depression. Transcriptional control of GR relies in part upon the DNA methylation status at multiple alternative initiation sites that are tissue specific, with exon 1.7 being hippocampal specific. Increased exon 1.7 expression associates with upregulated hippocampal GR expression in early life stress animal models. However, the effects of AME combined with postweaning western diet (WD) on offspring behaviors and the expression of GR exon 1 variants in the hippocampus are unknown. We hypothesized that AME and postweaning WD would impair cognitive function and cause depression‐like behavior in offspring in conjunction with dysregulated hippocampal expression of total GR and exon 1.7 variant in mice. We found that AME‐WD impaired learning and memory in male adult offspring concurrently with increased hippocampal expression of total GR and GR 1.7. We also found that increased GR 1.7 expression was associated with decreased DNA methylation at the GR 1.7 promoter. We speculate that decreased DNA methylation at the GR 1.7 promoter plays a role in AME‐WD induced increase of GR in the hippocampus. This increased GR expression may subsequently contribute to hippocampus dysfunction and lead to the cognitive impairment seen in this model.
Collapse
Affiliation(s)
- Xingrao Ke
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qi Fu
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer Sterrett
- Neuroscience Research Center Rodent Behavior Core, Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cecilia J Hillard
- Neuroscience Research Center Rodent Behavior Core, Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert H Lane
- Children's Mercy Research Institute, Kansas City, MO, USA
| | - Amber Majnik
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Lauby SC, Fleming AS, McGowan PO. Beyond maternal care: The effects of extra-maternal influences within the maternal environment on offspring neurodevelopment and later-life behavior. Neurosci Biobehav Rev 2021; 127:492-501. [PMID: 33905789 DOI: 10.1016/j.neubiorev.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 01/26/2023]
Abstract
The early-life maternal environment has a profound and persistent effect on offspring neuroendocrine function, neurotransmitter systems, and behavior. Studies using rodent models suggest that early-life maternal care can influence the 'developmental programming' of offspring in part through altered epigenetic regulation of specific genes. The exploration of epigenetic regulation of these genes as a biological mechanism has been important to our understanding of how animals adapt to their environments and how these developmental trajectories may be altered. However, other non-maternal factors have been shown to act directly, or to interact with maternal care, to influence later-life phenotype. Based on accumulating evidence, including our research, we discuss other important influences on the developmental programming of offspring. We highlight early-life variations in temperature exposure and offspring genotype x environment interactions as prominent examples. We conclude with recommendations for future investigations on how early-life maternal care and extra-maternal influences lead to persistent changes in the brain and behavior of the offspring throughout development.
Collapse
Affiliation(s)
- Samantha C Lauby
- Department of Biological Sciences, University of Toronto Scarborough Campus, Scarborough, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alison S Fleming
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Patrick O McGowan
- Department of Biological Sciences, University of Toronto Scarborough Campus, Scarborough, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Wikenius E. Can Early Life Stress Engender Biological Resilience?: Commentary. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2021; 14:161-163. [PMID: 33708290 PMCID: PMC7900373 DOI: 10.1007/s40653-020-00303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early life is a sensitive period in which social experience provides essential information for normal development (Johnson and Blasco Pediatrics in Review, 18(7), 224-242, 1997). Studies have shown that having a loving, primary caregiver early in life acts as a protective factor against social and emotional maladjustments later in life (Egeland and Hiester Child Development, 66(2), 474-485, 1995), while the exposure to childhood adversities, such as child abuse and neglect, have been associated with increased risk of developing diseases later in life (Felitti et al. American Journal of Preventive Medicine, 14(4), 245-258, 1998). Data based on reports by American child protective service agencies estimated that with little change over the last four years, more than 700,000 children were victims of child abuse and neglect in the US alone every year (Child Trends Data Bank 2019). The biological mechanisms involved in the associations between childhood adversities and disease development are not known, but it is likely that child abuse and neglect do influence fundamental biological processes (Mehta et al. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8302-8307, 2013) and epigenetic alteration has been suggested as one such biological mechanism regulating these interactions (Tammen et al. Molecular Aspects of Medicine, 34(4), 753-764, 2013).
Collapse
Affiliation(s)
- Ellen Wikenius
- The Medical Faculty, University of Oslo, Problemveien 7, 0315 Oslo, Norway
| |
Collapse
|
26
|
Cediel Ulloa A, Gliga A, Love TM, Pineda D, Mruzek DW, Watson GE, Davidson PW, Shamlaye CF, Strain JJ, Myers GJ, van Wijngaarden E, Ruegg J, Broberg K. Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study. ENVIRONMENT INTERNATIONAL 2021; 147:106321. [PMID: 33340986 PMCID: PMC11849698 DOI: 10.1016/j.envint.2020.106321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Methylmercury (MeHg) is present in fish and is a neurotoxicant at sufficiently high levels. One potential mechanism of MeHg toxicity early in life is epigenetic dysregulation that may affect long-term neurodevelopment. Altered DNA methylation of nervous system-related genes has been associated with adult mental health outcomes. OBJECTIVE To assess associations between prenatal MeHg exposure and DNA methylation (at the cytosine of CG dinucleotides, CpGs) in three nervous system-related genes, encoding brain-derived neurotropic factor (BDNF), glutamate receptor subunit NR2B (GRIN2B), and the glucocorticoid receptor (NR3C1), in children who were exposed to MeHg in utero. METHODS We tested 406 seven-year-old Seychellois children participating in the Seychelles Child Development Study (Nutrition Cohort 2), who were prenatally exposed to MeHg from maternal fish consumption. Total mercury in maternal hair (prenatal MeHg exposure measure) collected during pregnancy was measured using atomic absorption spectroscopy. Methylation in DNA from the children's saliva was measured by pyrosequencing. To assess associations between prenatal MeHg exposure and CpG methylation at seven years of age, we used multivariable linear regression models adjusted for covariates. RESULTS We identified associations with prenatal MeHg exposure for DNA methylation of one GRIN2B CpG and two NR3C1 CpGs out of 12 total CpG sites. Higher prenatal MeHg was associated with higher methylation for each CpG site. For example, NR3C1 CpG3 had an expected increase of 0.03-fold for each additional 1 ppm of prenatal MeHg (B = 0.030, 95% CI 0.001, 0.059; p = 0.047). Several CpG sites associated with MeHg are located in transcription factor binding sites and the observed methylation changes are predicted to lead to lower gene expression. CONCLUSIONS In a population of people who consume large amounts of fish, we showed that higher prenatal MeHg exposure was associated with differential DNA methylation at seven years of age at specific CpG sites that may influence neurodevelopment and mental health.
Collapse
Affiliation(s)
- Andrea Cediel Ulloa
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Anda Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Tanzy M Love
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Daniela Pineda
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Scheelevägen 8, 22185 Lund, Sweden
| | - Daniel W Mruzek
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Gene E Watson
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Philip W Davidson
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland Bt52 1SA, UK
| | - Gary J Myers
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Edwin van Wijngaarden
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Joelle Ruegg
- Department of Organism Biology, Uppsala University, Kåbovägen 4, 752 36 Uppsala, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Scheelevägen 8, 22185 Lund, Sweden.
| |
Collapse
|
27
|
Roy B, Dwivedi Y. Modeling endophenotypes of suicidal behavior in animals. Neurosci Biobehav Rev 2021; 128:819-827. [PMID: 33421543 DOI: 10.1016/j.neubiorev.2020.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/25/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
Suicide is a major public health concern. One of the common contributors to the increased risk for suicide is the genetic constitution of individuals, which determines certain endophenotypic traits used as quantifiable measure of neurobiological functions. Therefore, a logical deconstruction of the originating endophenotypes associated with suicidal risk could provide a better understanding of this complex disorder. In this regard, non-human animals can be a useful resource to test endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. In this review, we have focused on the neurobiological abnormalities, primarily genetic and epigenetic abnormalities, associated with suicidal behavior and the scope of their modeling in animals. This can substantially advance the current understanding of suicidal behavior manifested with certain trait-based endophenotypes and may provide an opportunity to test novel hypotheses as well as aid in the development of treatment opportunities and risk assessment.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, 1720 7(th) Avenue South, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, 1720 7(th) Avenue South, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
28
|
Stratilov VA, Tyulkova EI, Vetrovoy OV. Prenatal Stress as a Factor of the
Development of Addictive States. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020060010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Lauby SC, McGowan PO. Early life variations in temperature exposure affect the epigenetic regulation of the paraventricular nucleus in female rat pups. Proc Biol Sci 2020; 287:20201991. [PMID: 33109014 PMCID: PMC7661289 DOI: 10.1098/rspb.2020.1991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/06/2020] [Indexed: 11/12/2022] Open
Abstract
Early life maternal care received has a profound effect on later-life behaviour in adult offspring, and previous studies have suggested epigenetic mechanisms are involved. Changes in thyroid hormone receptor signalling may be related to differences in maternal care received and DNA methylation modifications. We investigated the effects of variations in temperature exposure (a proxy of maternal contact) and licking-like tactile stimulation on these processes in week-old female rat pups. We assessed thyroid hormone receptor signalling by measuring circulating triiodothyronine and transcript abundance of thyroid hormone receptors and the thyroid hormone-responsive genes DNA methyltransferase 3a and oxytocin in the paraventricular nucleus of the hypothalamus. DNA methylation of the oxytocin promoter was assessed in relation to changes in thyroid hormone receptor binding. Repeated room temperature exposure was associated with a decrease in thyroid hormone receptor signalling measures relative to nest temperature exposure, while acute room temperature exposure was associated with an increase. Repeated room temperature exposure also increased thyroid hormone receptor binding and DNA methylation at the oxytocin promoter. These findings suggest that repeated room temperature exposure may affect DNA methylation levels as a consequence of alterations in thyroid hormone receptor signalling.
Collapse
Affiliation(s)
- Samantha C. Lauby
- Department of Biological Sciences, University of Toronto, Scarborough Campus, SW548, 1265 Military Trail, Scarborough, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick O. McGowan
- Department of Biological Sciences, University of Toronto, Scarborough Campus, SW548, 1265 Military Trail, Scarborough, Toronto, Ontario, Canada M1C 1A4
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Norepinephrine and glucocorticoid effects on the brain mechanisms underlying memory accuracy and generalization. Mol Cell Neurosci 2020; 108:103537. [DOI: 10.1016/j.mcn.2020.103537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
|
31
|
Khodamoradi K, Khosravizadeh Z, Amini-Khoei H, Hosseini SR, Dehpour AR, Hassanzadeh G. The effects of maternal separation stress experienced by parents on male reproductive potential in the next generation. Heliyon 2020; 6:e04807. [PMID: 33024852 PMCID: PMC7527646 DOI: 10.1016/j.heliyon.2020.e04807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
There is little information available about the effects of early-life parental stress on the reproductive potential of the next generation. The aim of this study is to examine the reproductive potential of male mice whose parents experienced maternal separation stress. In the present study, male first-generation offspring from parents were undergone of maternal separation (MS) were examined. Sperm characteristics, histological changes in testis, reactive oxygen species (ROS) production, expression of apoptotic and inflammatory genes and proteins were assessed. Findings showed that MS experienced by parents significantly decreased the morphology and viability of spermatozoa. Furthermore, significant changes in testicular tissue histology were observed. Increased production of ROS, decreased glutathione peroxidase (GPX) and adenosine triphosphate (ATP) concentrations, and affected the expression of genes and cytokines involved in inflammation. Finally, the mean percentage of caspase-1 and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) positive cells was significantly higher in first-generation group. MS experienced by parents may negatively affect the reproduction of first generation offspring.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Reza Hosseini
- Departent of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Nöthling J, Malan-Müller S, Abrahams N, Hemmings SMJ, Seedat S. Epigenetic alterations associated with childhood trauma and adult mental health outcomes: A systematic review. World J Biol Psychiatry 2020; 21:493-512. [PMID: 30806160 DOI: 10.1080/15622975.2019.1583369] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: Multiple, chronic and repeated trauma exposure in childhood is associated with adverse mental health outcomes in adulthood. In this paper we synthesise the literature on epigenetic modifications in childhood trauma (CT) and the mediating effects of differential epigenetic mechanisms on the association between CT and the later onset of psychiatric disorders.Methods: We reviewed the literature up to March 2018 in four databases: PubMed, Web of Science, EBSCOhost and SCOPUS. Non-human studies were excluded. All studies investigating CT exposure both in healthy adults (18 years and older) and adults with psychiatric disorders were included.Results: Thirty-six publications were included. For mood disorders, methylation of the glucocorticoid receptor NR3C1 gene, specifically at the NGFI-A binding site in exon 1F, and correlation with CT was a robust finding. Several studies documented differential methylation of SLC6A4, BDNF, OXTR and FKBP5 in association with CT. Common pathways identified include neuronal functioning and maintenance, immune and inflammatory processes, chromatin and histone modification, and transcription factor binding.Conclusions: A variety of epigenetic mediators that lie on a common pathway between CT and psychiatric disorders have been identified, although longitudinal studies and consistency in methodological approach are needed to disentangle cause and effect associations.
Collapse
Affiliation(s)
- Jani Nöthling
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Naeemah Abrahams
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa; Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
33
|
Effects of Early Life Stress on Epigenetic Changes of the Glucocorticoid Receptor 1 7 Promoter during Adulthood. Int J Mol Sci 2020; 21:ijms21176331. [PMID: 32878311 PMCID: PMC7503815 DOI: 10.3390/ijms21176331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
Growing evidence suggests that early life stress (ELS) has long-lasting effects on glucocorticoid receptor (GR) expression and behavior via epigenetic changes of the GR exon 17 promoter. However, it remains unclear whether ELS regulates histone modifications of the GR exon 17 promoter across the life span. We investigated the effects of maternal separation (MS) on histone acetylation and methylation of GR exon 17 promoter in the hippocampus, according to the age of adults. Depression-like behavior and epigenetic regulation of GR expression were examined at young and middle adulthood in mice subjected to MS from postnatal day 1 to 21. In the forced swimming test, young adult MS mice showed no effect on immobility time, but middle-aged MS mice significantly increased immobility time. Young adult and middle-aged MS mice showed decreased GR expression. Their two ages showed decreased histone acetylation with increased histone deacetylases (HDAC5) levels, decreased permissive methylation, and increased repressive methylation at the GR exon 17 promoter. The extent of changes in gene expression and histone modification in middle adulthood was greater than in young adulthood. These results indicate that MS in early life causes long-term negative effects on behavior via histone modification of the GR gene across the life span.
Collapse
|
34
|
NTRK2 methylation is related to reduced PTSD risk in two African cohorts of trauma survivors. Proc Natl Acad Sci U S A 2020; 117:21667-21672. [PMID: 32817534 DOI: 10.1073/pnas.2008415117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extensive pharmacologic, genetic, and epigenetic research has linked the glucocorticoid receptor (GR) to memory processes, and to risk and symptoms of posttraumatic stress disorder (PTSD). In the present study we investigated the epigenetic pattern of 12 genes involved in the regulation of GR signaling in two African populations of heavily traumatized individuals: Survivors of the rebel war in northern Uganda (n = 463) and survivors of the Rwandan genocide (n = 350). The strongest link between regional methylation and PTSD risk and symptoms was observed for NTRK2, which encodes the transmembrane receptor tropomyosin-related kinase B, binds the brain-derived neurotrophic factor, and has been shown to play an important role in memory formation. NTRK2 methylation was not related to trauma load, suggesting that methylation differences preexisted the trauma. Because NTRK2 methylation differences were predominantly associated with memory-related PTSD symptoms, and because they seem to precede traumatic events, we next investigated the relationship between NTRK2 methylation and memory in a sample of nontraumatized individuals (n = 568). We found that NTRK2 methylation was negatively associated with recognition memory performance. Furthermore, fMRI analyses revealed NTRK2 methylation-dependent differences in brain network activity related to recognition memory. The present study demonstrates that NTRK2 is epigenetically linked to memory functions in nontraumatized subjects and to PTSD risk and symptoms in traumatized populations.
Collapse
|
35
|
Keverne J, Binder EB. A Review of epigenetics in psychiatry: focus on environmental risk factors. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Epigenetic modifications play a key role in development and cell type specificity. These modifications seem to be particularly critical for brain development, where mutations in epigenetic enzymes have been associated with neurodevelopmental disorders as well as with the function of post-mitotic neurons. Epigenetic modifications can be influenced by genetic and environmental factors, both known major risk factors for psychiatric disorders. Epigenetic modifications may thus be an important mediator of the effects of genetic and environmental risk factors on cell function.
This review summarizes the different types of epigenetic regulation and then focuses on the mechanisms transducing environmental signals, especially adverse life events that are major risk factors for psychiatric disorders, into lasting epigenetic changes. This is followed by examples of how the environment can induce epigenetic changes that relate to the risk of psychiatric disorders.
Collapse
Affiliation(s)
| | - Elisabeth B. Binder
- Dept. of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstr. 2-10 , Munich , Germany
| |
Collapse
|
36
|
Glendining KA, Higgins MBA, Fisher LC, Jasoni CL. Maternal obesity modulates sexually dimorphic epigenetic regulation and expression of leptin receptor in offspring hippocampus. Brain Behav Immun 2020; 88:151-160. [PMID: 32173454 DOI: 10.1016/j.bbi.2020.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity during pregnancy is associated with a greater risk for obesity and neurodevelopmental deficits in offspring. This developmental programming of disease is proposed to involve neuroendocrine, inflammatory, and epigenetic factors during gestation that disrupt normal fetal brain development. The hormones leptin and insulin are each intrinsically linked to metabolism, inflammation, and neurodevelopment, which led us to hypothesise that maternal obesity may disrupt leptin or insulin receptor signalling in the developing brain of offspring. Using a C57BL/6 mouse model of high fat diet-induced maternal obesity (mHFD), we performed qPCR to examine leptin receptor (Lepr) and insulin receptor (Insr) gene expression in gestational day (GD) 17.5 fetal brain. We found a significant effect of maternal diet and offspring sex on Lepr regulation in the developing hippocampus, with increased Lepr expression in female mHFD offspring (p < 0.05) compared to controls. Maternal diet did not alter hippocampal Insr in the fetal brain, or Lepr or Insr in prefrontal cortex, amygdala, or hypothalamus of female or male offspring. Chromatin immunoprecipitation revealed decreased binding of histones possessing the repressive histone mark H3K9me3 at the Lepr promoter (p < 0.05) in hippocampus of female mHFD offspring compared to controls, but not in males. Sex-specific deregulation of Lepr could be reproduced in vitro by exposing female hippocampal neurons to the obesity related proinflammatory cytokine IL-6, but not IL-17a or IFNG. Our findings indicate that the obesity-related proinflammatory cytokine IL-6 during pregnancy leads to sexually dimorphic changes in the modifications of histones binding at the Lepr gene promoter, and concomitant changes to Lepr transcription in the developing hippocampus. This suggests that exposure of the fetus to metabolic inflammatory molecules can impact epigenetic regulation of gene expression in the developing hippocampus.
Collapse
Affiliation(s)
- K A Glendining
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - M B A Higgins
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - L C Fisher
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - C L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
37
|
The circadian phase of antenatal glucocorticoid treatment affects the risk of behavioral disorders. Nat Commun 2020; 11:3593. [PMID: 32681096 PMCID: PMC7367845 DOI: 10.1038/s41467-020-17429-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
During pregnancy, maternal endocrine signals drive fetal development and program the offspring's physiology. A disruption of maternal glucocorticoid (GC) homeostasis increases the child's risk of developing psychiatric disorders later in life. We here show in mice, that the time of day of antenatal GC exposure predicts the behavioral phenotype of the adult offspring. Offspring of mothers receiving GCs out-of-phase compared to their endogenous circadian GC rhythm show elevated anxiety, impaired stress coping, and dysfunctional stress-axis regulation. The fetal circadian clock determines the vulnerability of the stress axis to GC treatment by controlling GC receptor (GR) availability in the hypothalamus. Similarly, a retrospective observational study indicates poorer stress compensatory capacity in 5-year old preterm infants whose mothers received antenatal GCs towards the evening. Our findings offer insights into the circadian physiology of feto-maternal crosstalk and assign a role to the fetal clock as a temporal gatekeeper of GC sensitivity.
Collapse
|
38
|
Abstract
Early life adversity is associated with long-term effects on physical and mental
health later in life, but the mechanisms are yet unclear. Epigenetic mechanisms program
cell-type-specific gene expression during development, enabling one genome to be
programmed in many ways, resulting in diverse stable profiles of gene expression in
different cells and organs in the body. DNA methylation, an enzymatic covalent
modification of DNA, has been one of the principal epigenetic mechanisms investigated.
Emerging evidence is consistent with the idea that epigenetic processes are involved in
embedding the impact of early-life experience in the genome and mediating between social
environments and later behavioral phenotypes. Whereas there is evidence supporting this
hypothesis in animal studies, human studies have been less conclusive. A major problem
is the fact that the brain is inaccessible to epigenetic studies in humans and the
relevance of DNA methylation in peripheral tissues to behavioral phenotypes has been
questioned. In addition, human studies are usually confounded with genetic and
environmental heterogeneity and it is very difficult to derive causality. The idea that
epigenetic mechanisms mediate the life-long effects of perinatal adversity has
attractive potential implications for early detection, prevention, and intervention in
mental health disorders will be discussed.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
39
|
Bridges JP, Sudha P, Lipps D, Wagner A, Guo M, Du Y, Brown K, Filuta A, Kitzmiller J, Stockman C, Chen X, Weirauch MT, Jobe AH, Whitsett JA, Xu Y. Glucocorticoid regulates mesenchymal cell differentiation required for perinatal lung morphogenesis and function. Am J Physiol Lung Cell Mol Physiol 2020; 319:L239-L255. [PMID: 32460513 DOI: 10.1152/ajplung.00459.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While antenatal glucocorticoids are widely used to enhance lung function in preterm infants, cellular and molecular mechanisms by which glucocorticoid receptor (GR) signaling influences lung maturation remain poorly understood. Deletion of the glucocorticoid receptor gene (Nr3c1) from fetal pulmonary mesenchymal cells phenocopied defects caused by global Nr3c1 deletion, while lung epithelial- or endothelial-specific Nr3c1 deletion did not impair lung function at birth. We integrated genome-wide gene expression profiling, ATAC-seq, and single cell RNA-seq data in mice in which GR was deleted or activated to identify the cellular and molecular mechanisms by which glucocorticoids control prenatal lung maturation. GR enhanced differentiation of a newly defined proliferative mesenchymal progenitor cell (PMP) into matrix fibroblasts (MFBs), in part by directly activating extracellular matrix-associated target genes, including Fn1, Col16a4, and Eln and by modulating VEGF, JAK-STAT, and WNT signaling. Loss of mesenchymal GR signaling blocked fibroblast progenitor differentiation into mature MFBs, which in turn increased proliferation of SOX9+ alveolar epithelial progenitor cells and inhibited differentiation of mature alveolar type II (AT2) and AT1 cells. GR signaling controls genes required for differentiation of a subset of proliferative mesenchymal progenitors into matrix fibroblasts, in turn, regulating signals controlling AT2/AT1 progenitor cell proliferation and differentiation and identifying cells and processes by which glucocorticoid signaling regulates fetal lung maturation.
Collapse
Affiliation(s)
- James P Bridges
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Parvathi Sudha
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dakota Lipps
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Andrew Wagner
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Minzhe Guo
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yina Du
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kari Brown
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alyssa Filuta
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joseph Kitzmiller
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Courtney Stockman
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alan H Jobe
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Jeffrey A Whitsett
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
40
|
Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2020; 396:115002. [PMID: 32277946 DOI: 10.1016/j.taap.2020.115002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
The ability of environmental pollutants to alter the epigenome with resultant development of behavioral alterations has received more attention in recent years. These alterations can be transmitted and affect later generations that have not been directly in contact with the contaminant. Arsenic (As) is a neurotoxicant and potent epigenetic disruptor that is widespread in the environment; however, the precise potential of As to produce transgenerational effects is unknown. Our study focused on the possible transgenerational effects on behavior by ancestral exposure to doses relevant to the environment of As, and the epigenetic mechanisms that could be involved. Embryos of F0 (ancestral generation) were directly exposed to 50 or 500 ppb of As for 150 days. F0 adults were raised to produce the F1 generation (intergeneration) and subsequently the F2 generation (transgeneration). We evaluated motor and cognitive behavior, neurodevelopment-related genes, and epigenetic markers on the F0 and F2 generation. As proposed in our hypothesis, ancestral arsenic exposure altered motor activity through the development and increased anxiety-like behaviors which were transmitted to the F2 generation. Additionally, we found a reduction in brain-derived neurotrophic factor expression between the F0 and F2 generation, and an increase in methylation on histone H3K4me3 in the nervous system.
Collapse
|
41
|
Koshi-Mano K, Mano T, Morishima M, Murayama S, Tamaoka A, Tsuji S, Toda T, Iwata A. Neuron-specific analysis of histone modifications with post-mortem brains. Sci Rep 2020; 10:3767. [PMID: 32111906 PMCID: PMC7048733 DOI: 10.1038/s41598-020-60775-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 01/25/2023] Open
Abstract
Histone modifications govern chromatin structures and regulate gene expression to orchestrate cellular functions in the central nervous system, where neuronal cells are postmitotic and developmentally inactive, the functional and age-dependent changes also accumulate in the epigenetic states. Because the brain is composed of several types of cells, such as the neurons, glial cells, and vascular cells, the analysis of histone modifications using bulk brain tissue might obscure alterations specific to neuronal cells. Furthermore, among the various epigenetic traits, analysis of the genome-wide distribution of DNA methylation in the bulk brain is predominantly a reflection of DNA methylation of the non-neuronal cells, which may be a potential caveat of previous studies on neurodegenerative diseases using bulk brains. In this study, we established a method of neuron-specific ChIP-seq assay, which allows for the analysis of genome-wide distribution of histone modifications specifically in the neuronal cells derived from post-mortem brains. We successfully enriched neuronal information with high reproducibility and high signal-to-noise ratio. Our method will further facilitate the understanding of neurodegeneration.
Collapse
Affiliation(s)
- Kagari Koshi-Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Maho Morishima
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo, 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo, 173-0015, Japan
| | - Akira Tamaoka
- Department of Neurology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
42
|
Abstract
Epigenetic mechanisms govern the transcription of the genome. Research with model systems reveals that environmental conditions can directly influence epigenetic mechanisms that are associated with interindividual differences in gene expression in brain and neural function. In this review, we provide a brief overview of epigenetic mechanisms and research with relevant rodent models. We emphasize more recent translational research programs in epigenetics as well as the challenges inherent in the integration of epigenetics into developmental and clinical psychology. Our objectives are to present an update with respect to the translational relevance of epigenetics for the study of psychopathology and to consider the state of current research with respect to its potential importance for clinical research and practice in mental health.
Collapse
Affiliation(s)
- Kieran J O'Donnell
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3H 1R4, Canada.,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec H4H 1R3, Canada; .,Child and Brain Development Program, CIFAR, Toronto, Ontario M5G 1M1, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 117609 Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| |
Collapse
|
43
|
Schiele MA, Gottschalk MG, Domschke K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin Psychol Rev 2020; 77:101830. [PMID: 32163803 DOI: 10.1016/j.cpr.2020.101830] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Mental disorders are highly complex and multifactorial in origin, comprising an elaborate interplay of genetic and environmental factors. Epigenetic mechanisms such as DNA modifications (e.g. CpG methylation), histone modifications (e.g. acetylation) and microRNAs function as a translator between genes and the environment. Indeed, environmental influences such as exposure to stress shape epigenetic patterns, and lifetime experiences continue to alter the function of the genome throughout the lifespan. Here, we summarize the recently burgeoning body of research regarding the involvement of aberrant epigenetic signatures in mediating an increased vulnerability to a wide range of mental disorders. We review the current knowledge of epigenetic changes to constitute useful markers predicting the clinical response to psychotherapeutic interventions, and of psychotherapy to alter - and potentially reverse - epigenetic risk patterns. Given first evidence pointing to a transgenerational transmission of epigenetic information, epigenetic alterations arising from successful psychotherapy might be transferred to future generations and thus contribute to the prevention of mental disorders. Findings are integrated into a multi-level framework highlighting challenges pertaining to the mechanisms of action and clinical implications of epigenetic research. Promising future directions regarding the prediction, prevention, and personalized treatment of mental disorders in line with a 'precision medicine' approach are discussed.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, D-79106 Freiburg, Germany.
| |
Collapse
|
44
|
Aghagoli G, Conradt E, Padbury JF, Sheinkopf SJ, Tokadjian H, Dansereau LM, Tronick EZ, Marsit CJ, Lester BM. Social Stress-Related Epigenetic Changes Associated With Increased Heart Rate Variability in Infants. Front Behav Neurosci 2020; 13:294. [PMID: 32009914 PMCID: PMC6974792 DOI: 10.3389/fnbeh.2019.00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Early life stress can result in persistent alterations of an individual’s stress regulation through epigenetic modifications. Epigenetic alteration of the NR3C1 gene is associated with changes in the stress response system during infancy as measured by cortisol reactivity. Although autonomic nervous system (ANS) reactivity is a key component of the stress response, we have a limited understanding of the effects of NR3C1 DNA methylation on ANS reactivity. To examine this relation, ANS stress responses of term, 4–5-month-old healthy infants were elicited using the face-to-face still-face paradigm, which involved five, 2-min episodes. Two of these episodes were the “still-face” in which the mother was non-responsive to her infant. EKG was acquired continuously and analyzed in 30 s-intervals. Cheek swabs were collected, and DNA was extracted from buccal cells. Respiratory sinus arrhythmia (RSA) was measured as heart rate variability (HRV). Mean HRV was calculated for each 30-s “face to face” episode. DNA methylation of NR3C1 was calculated using bisulfite pyrosequencing. Percent DNA methylation was computed for each of the 13 NR3C1 CpG sites. The relations between mean HRV for each “face to face” episode and percent DNA methylation was examined averaged over CpG sites 1–6 and 7–13 and at each individual CpG site. Higher HRV at baseline, first reunion, and second still-face was related to greater methylation of NR3C1 CpG sites 1–6. Higher HRV at the second reunion was related to greater methylation of NR3C1 CpG sites 12 and 13. These data provide evidence that increased methylation of NR3C1 at CpG sites 12 and 13 are associated with increased activation of parasympathetic pathways as represented by increased HRV.
Collapse
Affiliation(s)
- Ghazal Aghagoli
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Department of Neuroscience, Brown University, Providence, RI, United States
| | - Elisabeth Conradt
- Departments of Psychology, Pediatrics, and Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, United States
| | - James F Padbury
- Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Stephen J Sheinkopf
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Hasmik Tokadjian
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Lynne M Dansereau
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Edward Z Tronick
- Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Carmen J Marsit
- Department of Environmental Health, Emory University, Atlanta, GA, United States
| | - Barry M Lester
- Brown Center for the Study of Children at Risk, Brown University, Providence, RI, United States.,Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| |
Collapse
|
45
|
Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic Mechanisms of Opioid Addiction. Biol Psychiatry 2020; 87:22-33. [PMID: 31477236 PMCID: PMC6898774 DOI: 10.1016/j.biopsych.2019.06.027] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Opioid use kills tens of thousands of Americans each year, devastates families and entire communities, and cripples the health care system. Exposure to opioids causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug seeking and drug taking that can remain a lifelong struggle. The persistence of these neuroadaptations is mediated in part by epigenetic remodeling of gene expression programs in discrete brain regions. Although the majority of work examining how epigenetic modifications contribute to addiction has focused on psychostimulants such as cocaine, research into opioid-induced changes to the epigenetic landscape is emerging. This review summarizes our knowledge of opioid-induced epigenetic modifications and their consequential changes to gene expression. Current evidence points toward opioids promoting higher levels of permissive histone acetylation and lower levels of repressive histone methylation as well as alterations to DNA methylation patterns and noncoding RNA expression throughout the brain's reward circuitry. Additionally, studies manipulating epigenetic enzymes in specific brain regions are beginning to build causal links between these epigenetic modifications and changes in addiction-related behavior. Moving forward, studies must leverage advanced chromatin analysis and next-generation sequencing approaches combined with bioinformatics pipelines to identify novel gene networks regulated by particular epigenetic modifications. Improved translational relevance also requires increased focus on volitional drug-intake models and standardization of opioid exposure paradigms. Such work will significantly advance our understanding of how opioids cause persistent changes to brain function and will provide a platform on which to develop interventions for treating opioid addiction.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Arthur Godino
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
46
|
Lin E, Tsai SJ. Gene-Environment Interactions and Role of Epigenetics in Anxiety Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:93-102. [PMID: 32002924 DOI: 10.1007/978-981-32-9705-0_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several environmental risk factors such as early adverse childhood experiences, stress, and stressful life events are associated with anxiety disorders. Current approaches such as epigenetics and gene-environment interactions were used to identify candidate biomarkers for anxiety disorders to assess determinants of disease. In this chapter, in relation to gene-environment interactions, a variety of association studies regarding anxiety disorders were surveyed. We then showed supporting results from recent association studies such as human studies and animal models in terms of the epigenetic contribution to disease susceptibility to anxiety disorders. At last, future directions and limitations are highlighted. With the advances in multi-omics technologies, innovative ideas regarding disease prevention and drug responsiveness in anxiety disorders require further research in epigenetics and gene-environment interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA, USA.,Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan. .,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
47
|
Nyman C, Hebert FO, Bessert‐Nettelbeck M, Aubin‐Horth N, Taborsky B. Transcriptomic signatures of social experience during early development in a highly social cichlid fish. Mol Ecol 2019; 29:610-623. [DOI: 10.1111/mec.15335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Cecilia Nyman
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Francois Olivier Hebert
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes Université Laval Laval QC Canada
| | | | - Nadia Aubin‐Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes Université Laval Laval QC Canada
| | - Barbara Taborsky
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|
48
|
Kumar A, Kumar P, Pareek V, Faiq MA, Narayan RK, Raza K, Prasoon P, Sharma VK. Neurotrophin mediated HPA axis dysregulation in stress induced genesis of psychiatric disorders: Orchestration by epigenetic modifications. J Chem Neuroanat 2019; 102:101688. [PMID: 31568825 DOI: 10.1016/j.jchemneu.2019.101688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Apart from their established role in embryonic development, neurotrophins (NTs) have diverse functions in the nervous system. Their role in the integration of physiological and biochemical aspects of the nervous system is currently attracting much attention. Based on a systematic analysis of the literature, we here propose a new paradigm that, by exploiting a novel role of NTs, may help explain the genesis of stress-related psychiatric disorders, opening new avenues for better management of the same. We hypothesize that NTs as an integrated network play a crucial role in maintaining an indivdual's psychological wellbeing. Given the evidence that stress can induce chronic disruption of the hypothalamic-pituitary-adrenal (HPA) axis which, in turn, is causally linked to several psychiatric disorders, this function may be mediated through the homeostatic mechanisms governing regulation of this axis. In fact, NTs, such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are known to participate in neuroendocrine regulation. Recent studies suggest epigenetic modification of NT-HPA axis interplay in the precipitation of psychiatric disorders. Our article highlights why this new knowledge regarding NTs should be considered in the etiogenesis and treatment of stress-induced psychopathology.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India; Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India; Etiologically Elusive Disorders Research Network (EEDRN), India.
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India; Developmental Neurogenetics Lab, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Etiologically Elusive Disorders Research Network (EEDRN), India
| | - Vikas Pareek
- Computational Neuroscience and Neuroimaging Division, National Brain Research Centre (NBRC), Manesar, Haryana, India; Etiologically Elusive Disorders Research Network (EEDRN), India
| | - Muneeb A Faiq
- Neuroimaging and Visual Science Laboratory, New York University (NYU) Langone Health, NYU School of Medicine, New York, NY 10016, USA; Etiologically Elusive Disorders Research Network (EEDRN), India
| | - Ravi K Narayan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India; Etiologically Elusive Disorders Research Network (EEDRN), India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India; Etiologically Elusive Disorders Research Network (EEDRN), India
| | - Pranav Prasoon
- Pittsburgh Centre for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Etiologically Elusive Disorders Research Network (EEDRN), India
| | - Vivek K Sharma
- Department of Physiology, Government Institute of Medical Sciences (GIMS), Greater Noida, Kasna, Uttar Pradesh, India; Etiologically Elusive Disorders Research Network (EEDRN), India
| |
Collapse
|
49
|
Torres-Berrío A, Issler O, Parise EM, Nestler EJ. Unraveling the epigenetic landscape of depression: focus on early life stress
. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:341-357. [PMID: 31949402 PMCID: PMC6952747 DOI: 10.31887/dcns.2019.21.4/enestler] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Depression is a devastating psychiatric disorder caused by a combination of genetic predisposition and life events, mainly exposure to stress. Early life stress (ELS) in particular is known to "scar" the brain, leading to an increased susceptibility to developing depression later in life via epigenetic mechanisms. Epigenetic processes lead to changes in gene expression that are not due to changes in DNA sequence, but achieved via modulation of chromatin modifications, DNA methylation, and noncoding RNAs. Here we review common epigenetic mechanisms including the enzymes that take part in reading, writing, and erasing specific epigenetic marks. We then describe recent developments in understanding how ELS leads to changes in the epigenome that are manifested in increased susceptibility to depression-like abnormalities in animal models. We conclude with highlighting the need for future studies that will potentially enable the utilisation of the understanding of epigenetic changes linked to ELS for the development of much-needed novel therapeutic strategies and biomarker discovery.
.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Orna Issler
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Eric M Parise
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Eric J Nestler
- Author affiliations: Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, US
| |
Collapse
|
50
|
Maltese PE, Michelini S, Baronio M, Bertelli M. Molecular foundations of chiropractic therapy. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:93-102. [PMID: 31577263 PMCID: PMC7233649 DOI: 10.23750/abm.v90i10-s.8768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022]
Abstract
Background and aim: Alternative medicine is a broad term used to encompass different therapies, including chiropractic. Chiropractic was called “a science of healing without drugs” by its founder, David Daniel Palmer. It is based on the idea that the body has a powerful self-healing ability and that there is a relationship between body structure and function that affects health. In particular, chiropractic assumes that the nervous system controls the human body through nerves branching from the vertebral column and spinal cord. Researchers do not fully understand how chiropractic therapies affect pain, but chiropractic is widely used today to treat chronic pain, such as back pain. Different studies with animal models have demonstrated that chiropractic therapies mediate neuroplasticity, specifically through modulation of neurotrophins. No studies have yet been published on interaction between neurotrophin gene polymorphisms and chiropractic treatment. Methods: We searched PubMed with the following keywords: chiropractic, neuroplasticity, neurotrophin gene polymorphism for a panorama of on the molecular mechanisms of chiropractic therapy. Results: From the material collected, we identified a set of genes and some functional polymorphisms that could be correlated with better response to chiropractic therapy. Conclusions: Further association studies will be necessary to confirm hypotheses of a correlation between single nucleotide polymorphisms in specific genes and better response to chiropractic therapy. (www.actabiomedica.it)
Collapse
|