1
|
Martín‐Belmonte A, Aguado C, Alfaro‐Ruiz R, Kulik A, de la Ossa L, Moreno‐Martínez AE, Alberquilla S, García‐Carracedo L, Fernández M, Fajardo‐Serrano A, Aso E, Shigemoto R, Martín ED, Fukazawa Y, Ciruela F, Luján R. Nanoarchitecture of Ca V2.1 channels and GABA B receptors in the mouse hippocampus: Impact of APP/PS1 pathology. Brain Pathol 2025; 35:e13279. [PMID: 38887180 PMCID: PMC11835447 DOI: 10.1111/bpa.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels play a crucial role in regulating neurotransmitter release, thus contributing to synaptic plasticity and to processes such as learning and memory. Despite their recognized importance in neural function, there is limited information on their potential involvement in neurodegenerative conditions such as Alzheimer's disease (AD). Here, we aimed to explore the impact of AD pathology on the density and nanoscale compartmentalization of CaV2.1 channels in the hippocampus in association with GABAB receptors. Histoblotting experiments showed that the density of CaV2.1 channel was significantly reduced in the hippocampus of APP/PS1 mice in a laminar-dependent manner. CaV2.1 channel was enriched in the active zone of the axon terminals and was present at a very low density over the surface of dendritic tree of the CA1 pyramidal cells, as shown by quantitative SDS-digested freeze-fracture replica labelling (SDS-FRL). In APP/PS1 mice, the density of CaV2.1 channel in the active zone was significantly reduced in the strata radiatum and lacunosum-moleculare, while it remained unaltered in the stratum oriens. The decline in Cav2.1 channel density was found to be associated with a corresponding impairment in the GABAergic synaptic function, as evidenced by electrophysiological experiments carried out in the hippocampus of APP/PS1 mice. Remarkably, double SDS-FRL showed a co-clustering of CaV2.1 channel and GABAB1 receptor in nanodomains (~40-50 nm) in wild type mice, while in APP/PS1 mice this nanoarchitecture was absent. Together, these findings suggest that the AD pathology-induced reduction in CaV2.1 channel density and CaV2.1-GABAB1 de-clustering may play a role in the synaptic transmission alterations shown in the AD hippocampus. Therefore, uncovering these layer-dependent changes in P/Q calcium currents associated with AD pathology can benefit the development of future strategies for AD management.
Collapse
Affiliation(s)
- Alejandro Martín‐Belmonte
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Carolina Aguado
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Rocío Alfaro‐Ruiz
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Akos Kulik
- Institute for Physiology II, Medical FacultyUniversity of FreiburgFreiburgGermany
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería InformáticaUniversidad de Castilla‐La ManchaAlbaceteSpain
| | - Ana Esther Moreno‐Martínez
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Samuel Alberquilla
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Lucía García‐Carracedo
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Miriam Fernández
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Ana Fajardo‐Serrano
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan
- Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Rafael Luján
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| |
Collapse
|
2
|
Bosch M, Castro J, Sur M, Hayashi Y. Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microscopy Imaging of Single Stimulated Synapses. Methods Mol Biol 2025; 2910:145-175. [PMID: 40220099 DOI: 10.1007/978-1-0716-4446-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.
Collapse
Affiliation(s)
- Miquel Bosch
- RIKEN-MIT Neuroscience Research Center, Saitama, Japan.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Jorge Castro
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MBF Bioscience, Williston, VT, USA
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Saitama, Japan
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama University, Saitama, Japan
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Alfaro-Ruiz R, Martín-Belmonte A, Aguado C, Moreno-Martínez AE, Fukazawa Y, Luján R. Selective disruption of synaptic NMDA receptors of the hippocampal trisynaptic circuit in Aβ pathology. Biol Res 2024; 57:56. [PMID: 39175009 PMCID: PMC11340147 DOI: 10.1186/s40659-024-00537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
Synaptic dysfunction is an early feature in Alzheimer's disease (AD) pathogenesis and a major morphological correlate of memory deficits. Given the main synaptic location of N-methyl-D-aspartate receptors (NMDARs), their dysregulation has been implicated in these pathological effects. Here, to detect possible alterations in the expression and synaptic localisation of the GluN1 subunit in the brain of amyloidogenic APP/PS1 mice, we employed histoblot and SDS-digested freeze-fracture replica labelling (SDS-FRL) techniques. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus in a layer-dependent manner, in the cortex and the caudate putamen of APP/PS1 transgenic mice at 12 months of age but was unaltered at 1 and 6 months. Using quantitative SDS-FRL, we unravelled the molecular organisation of GluN1 in seven excitatory synapse populations at a high spatial resolution in the CA1 and CA3 fields and the DG of the hippocampus in 12-month-old APP/PS1 mice. In the CA1 field, the labelling density for GluN1 in the excitatory synapses established on spines and interneurons, was significantly reduced in APP/PS1 mice compared to age-matched wild-type mice in the stratum lacunosum-moleculare but unaltered in the stratum radiatum. In the CA3 field, synaptic GluN1 was reduced in mossy fibre-CA3 pyramidal cell synapses but unaltered in the A/C-CA3 pyramidal cell synapses. In the DG, the density of GluN1 in granule cell-perforant pathway synapses was reduced in APP/PS1 mice. Altogether, our findings provide evidence of specific alterations of synaptic GluN1 in the trisynaptic circuit of the hippocampus in Aβ pathology. This differential vulnerability in the disruption of NMDARs may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit and cognitive impairment characteristic of APP/PS1 mice.
Collapse
Affiliation(s)
- Rocio Alfaro-Ruiz
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, Albacete, 02008, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, Albacete, 02008, Spain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, 08907, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, 08907, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, Albacete, 02008, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, Albacete, 02008, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Biomedicina de la UCLM (IB-UCLM), Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, Albacete, 02008, Spain.
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain.
| |
Collapse
|
4
|
Fukata Y, Fukata M, MacGillavry HD, Nair D, Hosy E. Celebrating the Birthday of AMPA Receptor Nanodomains: Illuminating the Nanoscale Organization of Excitatory Synapses with 10 Nanocandles. J Neurosci 2024; 44:e2104232024. [PMID: 38839340 PMCID: PMC11154862 DOI: 10.1523/jneurosci.2104-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/07/2024] Open
Abstract
A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR5297, Bordeaux F-33000, France
| |
Collapse
|
5
|
Jimenez-Gomez A, Nguyen MX, Gill JS. Understanding the role of AMPA receptors in autism: insights from circuit and synapse dysfunction. Front Psychiatry 2024; 15:1304300. [PMID: 38352654 PMCID: PMC10861716 DOI: 10.3389/fpsyt.2024.1304300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Autism spectrum disorders represent a diverse etiological spectrum that converge on a syndrome characterized by discrepant deficits in developmental domains often highlighted by concerns in socialization, sensory integration, and autonomic functioning. Importantly, the incidence and prevalence of autism spectrum disorders have seen sharp increases since the syndrome was first described in the 1940s. The wide etiological spectrum and rising number of individuals being diagnosed with the condition lend urgency to capturing a more nuanced understanding of the pathogenic mechanisms underlying the autism spectrum disorders. The current review seeks to understand how the disruption of AMPA receptor (AMPAr)-mediated neurotransmission in the cerebro-cerebellar circuit, particularly in genetic autism related to SHANK3 or SYNGAP1 protein dysfunction function and autism associated with in utero exposure to the anti-seizure medications valproic acid and topiramate, may contribute to the disease presentation. Initially, a discussion contextualizing AMPAr signaling in the cerebro-cerebellar circuitry and microstructural circuit considerations is offered. Subsequently, a detailed review of the literature implicating mutations or deletions of SHANK3 and SYNGAP1 in disrupted AMPAr signaling reveals how bidirectional pathogenic modulation of this key circuit may contribute to autism. Finally, how pharmacological exposure may interact with this pathway, via increased risk of autism diagnosis with valproic acid and topiramate exposure and potential treatment of autism using AMPAr modulator perampanel, is discussed. Through the lens of the review, we will offer speculation on how neuromodulation may be used as a rational adjunct to therapy. Together, the present review seeks to synthesize the disparate considerations of circuit understanding, genetic etiology, and pharmacological modulation to understand the mechanistic interaction of this important and complex disorder.
Collapse
Affiliation(s)
- Andres Jimenez-Gomez
- Neurodevelopmental Disabilities Program, Department of Neurology, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Megan X. Nguyen
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Yamada R, Takada S. Postsynaptic protein assembly in three and two dimensions studied by mesoscopic simulations. Biophys J 2023; 122:3395-3410. [PMID: 37496268 PMCID: PMC10465727 DOI: 10.1016/j.bpj.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Recently, cellular biomolecular condensates formed via phase separation have received considerable attention. While they can be formed either in cytosol (denoted as 3D) or beneath the membrane (2D), the underlying difference between the two has not been well clarified. To compare the phase behaviors in 3D and 2D, postsynaptic density (PSD) serves as a model system. PSD is a protein condensate located under the postsynaptic membrane that influences the localization of glutamate receptors and thus contributes to synaptic plasticity. Recent in vitro studies have revealed the formation of droplets of various soluble PSD proteins via liquid-liquid phase separation. However, it is unclear how these protein condensates are formed beneath the membrane and how they specifically affect the localization of glutamate receptors in the membrane. In this study, focusing on the mixture of a glutamate receptor complex, AMPAR-TARP, and a ubiquitous scaffolding protein, PSD-95, we constructed a mesoscopic model of protein-domain interactions in PSD and performed comparative molecular simulations. The results showed a sharp contrast in the phase behaviors of protein assemblies in 3D and those under the membrane (2D). A mixture of a soluble variant of the AMPAR-TARP complex and PSD-95 in the 3D system resulted in a phase-separated condensate, which was consistent with the experimental results. However, with identical domain interactions, AMPAR-TARP embedded in the membrane formed clusters with PSD-95, but did not form a stable separated phase. Thus, the cluster formation behaviors of PSD proteins in the 3D and 2D systems were distinct. The current study suggests that, more generally, stable phase separation can be more difficult to achieve in and beneath the membrane than in 3D systems.
Collapse
Affiliation(s)
- Risa Yamada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
8
|
Bell MK, Lee CT, Rangamani P. Spatiotemporal modelling reveals geometric dependence of AMPAR dynamics on dendritic spine morphology. J Physiol 2023; 601:3329-3350. [PMID: 36326020 DOI: 10.1113/jp283407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/01/2022] [Indexed: 08/02/2023] Open
Abstract
The modification of neural circuits depends on the strengthening and weakening of synaptic connections. Synaptic strength is often correlated to the density of the ionotropic, glutamatergic receptors, AMPARs, (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors) at the postsynaptic density (PSD). While AMPAR density is known to change based on complex biological signalling cascades, the effect of geometric factors such as dendritic spine shape, size and curvature remain poorly understood. In this work, we developed a deterministic, spatiotemporal model to study the dynamics of AMPARs during long-term potentiation (LTP). This model includes a minimal set of biochemical events that represent the upstream signalling events, trafficking of AMPARs to and from the PSD, lateral diffusion in the plane of the spine membrane, and the presence of an extrasynaptic AMPAR pool. Using idealized and realistic spine geometries, we show that the dynamics and increase of bound AMPARs at the PSD depends on a combination of endo- and exocytosis, membrane diffusion, the availability of free AMPARs and intracellular signalling interactions. We also found non-monotonic relationships between spine volume and the change in AMPARs at the PSD, suggesting that spines restrict changes in AMPARs to optimize resources and prevent runaway potentiation. KEY POINTS: Synaptic plasticity involves dynamic biochemical and physical remodelling of small protrusions called dendritic spines along the dendrites of neurons. Proper synaptic functionality within these spines requires changes in receptor number at the synapse, which has implications for downstream neural functions, such as learning and memory formation. In addition to being signalling subcompartments, spines also have unique morphological features that can play a role in regulating receptor dynamics on the synaptic surface. We have developed a spatiotemporal model that couples biochemical signalling and receptor trafficking modalities in idealized and realistic spine geometries to investigate the role of biochemical and biophysical factors in synaptic plasticity. Using this model, we highlight the importance of spine size and shape in regulating bound AMPA receptor dynamics that govern synaptic plasticity, and predict how spine shape might act to reset synaptic plasticity as a built-in resource optimization and regulation tool.
Collapse
Affiliation(s)
- Miriam K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Jain A, Woolley CS. Mechanisms That Underlie Expression of Estradiol-Induced Excitatory Synaptic Potentiation in the Hippocampus Differ between Males and Females. J Neurosci 2023; 43:1298-1309. [PMID: 36650060 PMCID: PMC9987570 DOI: 10.1523/jneurosci.2080-19.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
17β-estradiol (E2) is synthesized in the hippocampus of both sexes and acutely potentiates excitatory synapses in each sex. Previously, we found that the mechanisms for initiation of E2-induced synaptic potentiation differ between males and females, including in the molecular signaling involved. Here, we used electrical stimulation and two-photon glutamate uncaging in hippocampal slices from adult male and female rats to investigate whether the downstream consequences of distinct molecular signaling remain different between the sexes or converge to the same mechanism(s) of expression of potentiation. This showed that synaptic activity is necessary for expression of E2-induced potentiation in females but not males, which paralleled a sex-specific requirement in females for calcium-permeable AMPARs (cpAMPARs) to stabilize potentiation. Nonstationary fluctuation analysis of two-photon evoked unitary synaptic currents showed that the postsynaptic component of E2-induced potentiation occurs either through an increase in AMPAR conductance or in nonconductive properties of AMPARs (number of channels × open probability) and never both at the same synapse. In females, most synapses (76%) were potentiated via increased AMPAR conductance, whereas in males, more synapses (60%) were potentiated via an increase in nonconductive AMPAR properties. Inhibition of cpAMPARs eliminated E2-induced synaptic potentiation in females, whereas some synapses in males were unaffected by cpAMPAR inhibition; these synapses in males potentiated exclusively via increased AMPAR nonconductive properties. This sex bias in expression mechanisms of E2-induced synaptic potentiation underscores the concept of latent sex differences in mechanisms of synaptic plasticity in which the same outcome in each sex is achieved through distinct underlying mechanisms.SIGNIFICANCE STATEMENT Estrogens are synthesized in the brains of both sexes and potentiate excitatory synapses to the same degree in each sex. Despite this apparent similarity, the molecular signaling that initiates estrogen-induced synaptic potentiation differs between the sexes. Here we show that these differences extend to the mechanisms of expression of synaptic potentiation and result in distinct patterns of postsynaptic neurotransmitter receptor modulation in each sex. Such latent sex differences, in which the same outcome is achieved through distinct underlying mechanisms in males versus females, indicate that molecular mechanisms targeted for drug development may differ between the sexes even in the absence of an overt sex difference in behavior or disease.
Collapse
Affiliation(s)
- Anant Jain
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Catherine S Woolley
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
10
|
Bell MK, Rangamani P. Crosstalk between biochemical signalling network architecture and trafficking governs AMPAR dynamics in synaptic plasticity. J Physiol 2023. [PMID: 36620889 DOI: 10.1113/jp284029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Synaptic plasticity involves modification of both biochemical and structural components of neurons. Many studies have revealed that the change in the number density of the glutamatergic receptor AMPAR at the synapse is proportional to synaptic weight update; an increase in AMPAR corresponds to strengthening of synapses while a decrease in AMPAR density weakens synaptic connections. The dynamics of AMPAR are thought to be regulated by upstream signalling, primarily the calcium-CaMKII pathway, trafficking to and from the synapse, and influx from extrasynaptic sources. Previous work in the field of deterministic modelling of CaMKII dynamics has assumed bistable kinetics, while experiments and rule-based modelling have revealed that CaMKII dynamics can be either monostable or ultrasensitive. This raises the following question: how does the choice of model assumptions involving CaMKII dynamics influence AMPAR dynamics at the synapse? To answer this question, we have developed a set of models using compartmental ordinary differential equations to systematically investigate contributions of different signalling and trafficking variations, along with their coupled effects, on AMPAR dynamics at the synaptic site. We find that the properties of the model including network architecture describing different stability features of CaMKII and parameters that capture the endocytosis and exocytosis of AMPAR significantly affect the integration of fast upstream species by slower downstream species. Furthermore, we predict that the model outcome, as determined by bound AMPAR at the synaptic site, depends on (1) the choice of signalling model (bistable CaMKII or monostable CaMKII dynamics), (2) trafficking versus influx contributions and (3) frequency of stimulus. KEY POINTS: The density of AMPA receptors (AMPARs) at the postsynaptic density of the synapse provides a readout of synaptic plasticity, which involves crosstalk between complex biochemical signalling networks including CaMKII dynamics and trafficking pathways including exocytosis and endocytosis. Here we build a model that integrates CaMKII dynamics and AMPAR trafficking to explore this crosstalk. We compare different models of CaMKII that result in monostable or bistable kinetics and their impact on AMPAR dynamics. Our results show that AMPAR density depends on the coupling between aspects of biochemical signalling and trafficking. Specifically, assumptions regarding CaMKII dynamics and its stability features can alter AMPAR density at the synapse. Our model also predicts that the kinetics of trafficking versus influx of AMPAR from the extrasynaptic space can further impact AMPAR density. Thus, the contributions of both signalling and trafficking should be considered in computational models.
Collapse
Affiliation(s)
- Miriam K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Alfaro-Ruiz R, Aguado C, Martín-Belmonte A, Moreno-Martínez AE, Merchán-Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Alteration in the Synaptic and Extrasynaptic Organization of AMPA Receptors in the Hippocampus of P301S Tau Transgenic Mice. Int J Mol Sci 2022; 23:13527. [PMID: 36362317 PMCID: PMC9656470 DOI: 10.3390/ijms232113527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2023] Open
Abstract
Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies, but how pathological tau accumulation alters the glutamate receptor dynamics driving synaptic dysfunction is unclear. Here, we determined the impact of tau pathology on AMPAR expression, density, and subcellular distribution in the hippocampus of P301S mice using immunoblot, histoblot, and quantitative SDS-digested freeze-fracture replica labeling (SDS-FRL). Histoblot and immunoblot showed differential regulation of GluA1 and GluA2 in the hippocampus of P301S mice. The GluA2 subunit was downregulated in the hippocampus at 3 months while both GluA1 and GluA2 subunits were downregulated at 10 months. However, the total amount of GluA1-4 was similar in P301S mice and in age-matched wild-type mice. Using quantitative SDS-FRL, we unraveled the molecular organization of GluA1-4 in various synaptic connections at a high spatial resolution on pyramidal cell spines and interneuron dendrites in the CA1 field of the hippocampus in 10-month-old P301S mice. The labeling density for GluA1-4 in the excitatory synapses established on spines was significantly reduced in P301S mice, compared to age-matched wild-type mice, in the strata radiatum and lacunosum-moleculare but unaltered in the stratum oriens. The density of synaptic GluA1-4 established on interneuron dendrites was significantly reduced in P301S mice in the three strata. The labeling density for GluA1-4 at extrasynaptic sites was significantly reduced in several postsynaptic compartments of CA1 pyramidal cells and interneurons in the three dendritic layers in P301S mice. Our data demonstrate that the progressive accumulation of phospho-tau is associated with alteration of AMPARs on the surface of different neuron types, including synaptic and extrasynaptic membranes, leading to a decline in the trafficking and synaptic transmission, thereby likely contributing to the pathological events taking place in AD.
Collapse
Affiliation(s)
- Rocio Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| |
Collapse
|
12
|
Jackson T, Seifi M, Górecki DC, Swinny JD. Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators. Cell Mol Neurobiol 2022; 42:2357-2377. [PMID: 34101068 PMCID: PMC9418305 DOI: 10.1007/s10571-021-01110-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.
Collapse
Affiliation(s)
- Torquil Jackson
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
| | - Mohsen Seifi
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Dariusz C Górecki
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK.
| |
Collapse
|
13
|
Martín-Belmonte A, Aguado C, Alfaro-Ruiz R, Moreno-Martínez AE, de la Ossa L, Aso E, Gómez-Acero L, Shigemoto R, Fukazawa Y, Ciruela F, Luján R. Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice. Alzheimers Res Ther 2022; 14:136. [PMID: 36131327 PMCID: PMC9490896 DOI: 10.1186/s13195-022-01078-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022]
Abstract
Alzheimer’s disease (AD) is characterized by a reorganization of brain activity determining network hyperexcitability and loss of synaptic plasticity. Precisely, a dysfunction in metabotropic GABAB receptor signalling through G protein-gated inwardly rectifying K+ (GIRK or Kir3) channels on the hippocampus has been postulated. Thus, we determined the impact of amyloid-β (Aβ) pathology in GIRK channel density, subcellular distribution, and its association with GABAB receptors in hippocampal CA1 pyramidal neurons from the APP/PS1 mouse model using quantitative SDS-digested freeze-fracture replica labelling (SDS-FRL) and proximity ligation in situ assay (P-LISA). In wild type mice, single SDS-FRL detection revealed a similar dendritic gradient for GIRK1 and GIRK2 in CA1 pyramidal cells, with higher densities in spines, and GIRK3 showed a lower and uniform distribution. Double SDS-FRL showed a co-clustering of GIRK2 and GIRK1 in post- and presynaptic compartments, but not for GIRK2 and GIRK3. Likewise, double GABAB1 and GIRK2 SDS-FRL detection displayed a high degree of co-clustering in nanodomains (40–50 nm) mostly in spines and axon terminals. In APP/PS1 mice, the density of GIRK2 and GIRK1, but not for GIRK3, was significantly reduced along the neuronal surface of CA1 pyramidal cells and in axon terminals contacting them. Importantly, GABAB1 and GIRK2 co-clustering was not present in APP/PS1 mice. Similarly, P-LISA experiments revealed a significant reduction in GABAB1 and GIRK2 interaction on the hippocampus of this animal model. Overall, our results provide compelling evidence showing a significant reduction on the cell surface density of pre- and postsynaptic GIRK1 and GIRK2, but not GIRK3, and a decline in GABAB receptors and GIRK2 channels co-clustering in hippocampal pyramidal neurons from APP/PS1 mice, thus suggesting that a disruption in the GABAB receptor–GIRK channel membrane assembly causes dysregulation in the GABAB signalling via GIRK channels in this AD animal model.
Collapse
|
14
|
Alfaro‐Ruiz R, Aguado C, Martín‐Belmonte A, Moreno‐Martínez AE, Merchán‐Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Different modes of synaptic and extrasynaptic NMDA receptor alteration in the hippocampus of P301S tau transgenic mice. Brain Pathol 2022; 33:e13115. [PMID: 36058615 PMCID: PMC9836375 DOI: 10.1111/bpa.13115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are pivotal players in the synaptic transmission and synaptic plasticity underlying learning and memory. Accordingly, dysfunction of NMDARs has been implicated in the pathophysiology of Alzheimer disease (AD). Here, we used histoblot and sodium dodecylsulphate-digested freeze-fracture replica labelling (SDS-FRL) techniques to investigate the expression and subcellular localisation of GluN1, the obligatory subunit of NMDARs, in the hippocampus of P301S mice. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered at 3 months. Using the SDS-FRL technique, excitatory synapses and extrasynaptic sites on spines of pyramidal cells and interneuron dendrites were analysed throughout all dendritic layers in the CA1 field. Our ultrastructural approach revealed a high density of GluN1 in synaptic sites and a substantially lower density at extrasynaptic sites. Labelling density for GluN1 in excitatory synapses established on spines was significantly reduced in P301S mice, compared with age-matched wild-type mice, in the stratum oriens (so), stratum radiatum (sr) and stratum lacunosum-moleculare (slm). Density for synaptic GluN1 on interneuron dendrites was significantly reduced in P301S mice in the so and sr but unaltered in the slm. Labelling density for GluN1 at extrasynaptic sites showed no significant differences in pyramidal cells, and only increased density in the interneuron dendrites of the sr. This differential alteration of synaptic versus extrasynaptic NMDARs supports the notion that the progressive accumulation of phospho-tau is associated with changes in NMDARs, in the absence of amyloid-β pathology, and may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit.
Collapse
Affiliation(s)
- Rocío Alfaro‐Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Alejandro Martín‐Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain,Present address:
Pharmacology Unit, Department of Pathology and Experimental TherapeuticsFaculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona08907 L'Hospitalet de LlobregatSpain
| | - Ana Esther Moreno‐Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Jesús Ávila
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan,Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| |
Collapse
|
15
|
Sanderson TM, Ralph LT, Amici M, Ng AN, Kaang BK, Zhuo M, Kim SJ, Georgiou J, Collingridge GL. Selective Recruitment of Presynaptic and Postsynaptic Forms of mGluR-LTD. Front Synaptic Neurosci 2022; 14:857675. [PMID: 35615440 PMCID: PMC9126322 DOI: 10.3389/fnsyn.2022.857675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
In area CA1 of the hippocampus, long-term depression (LTD) can be induced by activating group I metabotropic glutamate receptors (mGluRs), with the selective agonist DHPG. There is evidence that mGluR-LTD can be expressed by either a decrease in the probability of neurotransmitter release [P(r)] or by a change in postsynaptic AMPA receptor number. However, what determines the locus of expression is unknown. We investigated the expression mechanisms of mGluR-LTD using either a low (30 μM) or a high (100 μM) concentration of (RS)-DHPG. We found that 30 μM DHPG generated presynaptic LTD that required the co-activation of NMDA receptors, whereas 100 μM DHPG resulted in postsynaptic LTD that was independent of the activation of NMDA receptors. We found that both forms of LTD occur at the same synapses and that these may constitute the population with the lowest basal P(r). Our results reveal an unexpected complexity to mGluR-mediated synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Thomas M. Sanderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Liam T. Ralph
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mascia Amici
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Ai Na Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Min Zhuo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sang Jeong Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- *Correspondence: Graham L. Collingridge,
| |
Collapse
|
16
|
Guerrero-Given D, Goldin SL, Thomas CI, Anthony SA, Jerez D, Kamasawa N. Gold In-and-Out: A Toolkit for Analyzing Subcellular Distribution of Immunogold-Labeled Membrane Proteins in Freeze-Fracture Replica Images. Front Neuroanat 2022; 16:855218. [PMID: 35444519 PMCID: PMC9014018 DOI: 10.3389/fnana.2022.855218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Integral membrane proteins such as ion channels, transporters, and receptors shape cell activity and mediate cell-to-cell communication in the brain. The distribution, quantity, and clustering arrangement of those proteins contribute to the physiological properties of the cell; therefore, precise quantification of their state can be used to gain insight into cellular function. Using a highly sensitive immunoelectron microscopy technique called sodium dodecyl sulfate-digested freeze-fracture replica immunogold labeling (SDS-FRL), multiple membrane proteins can be tagged with different sizes of immunogold particles at once and visualized two-dimensionally. For quantification, gold particles in the images must be annotated, and then different mathematical and statistical methods must be applied to characterize the distribution states of proteins of interest. To perform such analyses in a user-friendly manner, we developed a program with a simple graphical user interface called Gold In-and-Out (GIO), which integrates several classical and novel analysis methods for immunogold labeled replicas into one self-contained package. GIO takes an input of particle coordinates, then allows users to implement analysis methods such as nearest neighbor distance (NND) and particle clustering. The program not only performs the selected analysis but also automatically compares the results of the real distribution to a random distribution of the same number of particles on the membrane region of interest. In addition to classical approaches for analyzing protein distribution, GIO includes new tools to analyze the positional bias of a target protein relative to a morphological landmark such as dendritic spines, and can also be applied for synaptic protein analysis. Gold Rippler provides a normalized metric of particle density that is resistant to differences in labeling efficiency among samples, while Gold Star is useful for quantifying distances between a protein and landmark. This package aims to help standardize analysis methods for subcellular and synaptic protein localization with a user-friendly interface while increasing the efficiency of these time-consuming analyses.
Collapse
Affiliation(s)
| | | | | | | | | | - Naomi Kamasawa
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Institute for Neuroscience, Jupiter, FL, United States
| |
Collapse
|
17
|
Newman ZL, Bakshinskaya D, Schultz R, Kenny SJ, Moon S, Aghi K, Stanley C, Marnani N, Li R, Bleier J, Xu K, Isacoff EY. Determinants of synapse diversity revealed by super-resolution quantal transmission and active zone imaging. Nat Commun 2022; 13:229. [PMID: 35017509 PMCID: PMC8752601 DOI: 10.1038/s41467-021-27815-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/06/2021] [Indexed: 01/23/2023] Open
Abstract
Neural circuit function depends on the pattern of synaptic connections between neurons and the strength of those connections. Synaptic strength is determined by both postsynaptic sensitivity to neurotransmitter and the presynaptic probability of action potential evoked transmitter release (Pr). Whereas morphology and neurotransmitter receptor number indicate postsynaptic sensitivity, presynaptic indicators and the mechanism that sets Pr remain to be defined. To address this, we developed QuaSOR, a super-resolution method for determining Pr from quantal synaptic transmission imaging at hundreds of glutamatergic synapses at a time. We mapped the Pr onto super-resolution 3D molecular reconstructions of the presynaptic active zones (AZs) of the same synapses at the Drosophila larval neuromuscular junction (NMJ). We find that Pr varies greatly between synapses made by a single axon, quantify the contribution of key AZ proteins to Pr diversity and find that one of these, Complexin, suppresses spontaneous and evoked transmission differentially, thereby generating a spatial and quantitative mismatch between release modes. Transmission is thus regulated by the balance and nanoscale distribution of release-enhancing and suppressing presynaptic proteins to generate high signal-to-noise evoked transmission.
Collapse
Affiliation(s)
- Zachary L Newman
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dariya Bakshinskaya
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ryan Schultz
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Krisha Aghi
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Cherise Stanley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nadia Marnani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rachel Li
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Julia Bleier
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ke Xu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated BioImaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated BioImaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Weill Neurohub, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Kopach O, Voitenko N. Spinal AMPA receptors: Amenable players in central sensitization for chronic pain therapy? Channels (Austin) 2021; 15:284-297. [PMID: 33565904 PMCID: PMC7889122 DOI: 10.1080/19336950.2021.1885836] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
The activity-dependent trafficking of AMPA receptors (AMPAR) mediates synaptic strength and plasticity, while the perturbed trafficking of the receptors of different subunit compositions has been linked to memory impairment and to causing neuropathology. In the spinal cord, nociceptive-induced changes in AMPAR trafficking determine the central sensitization of the dorsal horn (DH): changes in AMPAR subunit composition compromise the balance between synaptic excitation and inhibition, rendering interneurons hyperexcitable to afferent inputs, and promoting Ca2+ influx into the DH neurons, thereby amplifying neuronal hyperexcitability. The DH circuits become over-excitable and carry out aberrant sensory processing; this causes an increase in pain sensation in central sensory pathways, giving rise to chronic pain syndrome. Current knowledge of the contribution of spinal AMPAR to the cellular mechanisms relating to chronic pain provides opportunities for developing target-based therapies for chronic pain intervention.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Present Address: Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, UK
| | - Nana Voitenko
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
19
|
Pereyra M, Medina JH. AMPA Receptors: A Key Piece in the Puzzle of Memory Retrieval. Front Hum Neurosci 2021; 15:729051. [PMID: 34621161 PMCID: PMC8490764 DOI: 10.3389/fnhum.2021.729051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Retrieval constitutes a highly regulated and dynamic phase in memory processing. Its rapid temporal scales require a coordinated molecular chain of events at the synaptic level that support transient memory trace reactivation. AMPA receptors (AMPAR) drive the majority of excitatory transmission in the brain and its dynamic features match the singular fast timescales of memory retrieval. Here we provide a review on AMPAR contribution to memory retrieval regarding its dynamic movements along the synaptic compartments, its changes in receptor number and subunit composition that take place in activity dependent processes associated with retrieval. We highlight on the differential regulations exerted by AMPAR subunits in plasticity processes and its impact on memory recall.
Collapse
Affiliation(s)
- Magdalena Pereyra
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
20
|
Izadi M, Seemann E, Schlobinski D, Schwintzer L, Qualmann B, Kessels MM. Functional interdependence of the actin nucleator Cobl and Cobl-like in dendritic arbor development. eLife 2021; 10:67718. [PMID: 34264190 PMCID: PMC8282341 DOI: 10.7554/elife.67718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Local actin filament formation is indispensable for development of the dendritic arbor of neurons. We show that, surprisingly, the action of single actin filament-promoting factors was insufficient for powering dendritogenesis. Instead, this required the actin nucleator Cobl and its only evolutionary distant ancestor Cobl-like acting interdependently. This coordination between Cobl-like and Cobl was achieved by physical linkage by syndapins. Syndapin I formed nanodomains at convex plasma membrane areas at the base of protrusive structures and interacted with three motifs in Cobl-like, one of which was Ca2+/calmodulin-regulated. Consistently, syndapin I, Cobl-like’s newly identified N terminal calmodulin-binding site and the single Ca2+/calmodulin-responsive syndapin-binding motif all were critical for Cobl-like’s functions. In dendritic arbor development, local Ca2+/CaM-controlled actin dynamics thus relies on regulated and physically coordinated interactions of different F-actin formation-promoting factors and only together they have the power to bring about the sophisticated neuronal morphologies required for neuronal network formation in mammals.
Collapse
Affiliation(s)
- Maryam Izadi
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Dirk Schlobinski
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Lukas Schwintzer
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
21
|
Seewald A, Schönherr S, Hörtnagl H, Ehrlich I, Schmuckermair C, Ferraguti F. Fear Memory Retrieval Is Associated With a Reduction in AMPA Receptor Density at Thalamic to Amygdala Intercalated Cell Synapses. Front Synaptic Neurosci 2021; 13:634558. [PMID: 34295235 PMCID: PMC8290482 DOI: 10.3389/fnsyn.2021.634558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The amygdala plays a crucial role in attaching emotional significance to environmental cues. Its intercalated cell masses (ITC) are tight clusters of GABAergic neurons, which are distributed around the basolateral amygdala complex. Distinct ITC clusters are involved in the acquisition and extinction of conditioned fear responses. Previously, we have shown that fear memory retrieval reduces the AMPA/NMDA ratio at thalamic afferents to ITC neurons within the dorsal medio-paracapsular cluster. Here, we investigate the molecular mechanisms underlying the fear-mediated reduction in the AMPA/NMDA ratio at these synapses and, in particular, whether specific changes in the synaptic density of AMPA receptors underlie the observed change. To this aim, we used a detergent-digested freeze-fracture replica immunolabeling technique (FRIL) approach that enables to visualize the spatial distribution of intrasynaptic AMPA receptors at high resolution. AMPA receptors were detected using an antibody raised against an epitope common to all AMPA subunits. To visualize thalamic inputs, we virally transduced the posterior thalamic complex with Channelrhodopsin 2-YFP, which is anterogradely transported along axons. Using face-matched replica, we confirmed that the postsynaptic elements were ITC neurons due to their prominent expression of μ-opioid receptors. With this approach, we show that, following auditory fear conditioning in mice, the formation and retrieval of fear memory is linked to a significant reduction in the density of AMPA receptors, particularly at spine synapses formed by inputs of the posterior intralaminar thalamic and medial geniculate nuclei onto identified ITC neurons. Our study is one of the few that has directly linked the regulation of AMPA receptor trafficking to memory processes in identified neuronal networks, by showing that fear-memory induced reduction in AMPA/NMDA ratio at thalamic-ITC synapses is associated with a reduced postsynaptic AMPA receptor density.
Collapse
Affiliation(s)
- Anna Seewald
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Schönherr
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heide Hörtnagl
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ingrid Ehrlich
- Center for Integrative Neuroscience, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | | | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
The Density of Group I mGlu 5 Receptors Is Reduced along the Neuronal Surface of Hippocampal Cells in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22115867. [PMID: 34070808 PMCID: PMC8199018 DOI: 10.3390/ijms22115867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Metabotropic glutamate receptor subtype 5 (mGlu5) is implicated in the pathophysiology of Alzheimer’s disease (AD). However, its alteration at the subcellular level in neurons is still unexplored. Here, we provide a quantitative description on the expression and localisation patterns of mGlu5 in the APP/PS1 model of AD at 12 months of age, combining immunoblots, histoblots and high-resolution immunoelectron microscopic approaches. Immunoblots revealed that the total amount of mGlu5 protein in the hippocampus, in addition to downstream molecules, i.e., Gq/11 and PLCβ1, was similar in both APP/PS1 mice and age-matched wild type mice. Histoblots revealed that mGlu5 expression in the brain and its laminar expression in the hippocampus was also unaltered. However, the ultrastructural techniques of SDS-FRL and pre-embedding immunogold demonstrated that the subcellular localisation of mGlu5 was significantly reduced along the neuronal surface of hippocampal principal cells, including CA1 pyramidal cells and DG granule cells, in APP/PS1 mice at 12 months of age. The decrease in the surface localisation of mGlu5 was accompanied by an increase in its frequency at intracellular sites in the two neuronal populations. Together, these data demonstrate, for the first time, a loss of mGlu5 at the plasma membrane and accumulation at intracellular sites in different principal cells of the hippocampus in APP/PS1 mice, suggesting an alteration of the excitability and synaptic transmission that could contribute to the cognitive dysfunctions in this AD animal model. Further studies are required to elucidate the specificity of mGlu5-associated molecules and downstream signalling pathways in the progression of the pathology.
Collapse
|
23
|
Bhandari P, Vandael D, Fernández-Fernández D, Fritzius T, Kleindienst D, Önal C, Montanaro J, Gassmann M, Jonas P, Kulik A, Bettler B, Shigemoto R, Koppensteiner P. GABA B receptor auxiliary subunits modulate Cav2.3-mediated release from medial habenula terminals. eLife 2021; 10:68274. [PMID: 33913808 PMCID: PMC8121548 DOI: 10.7554/elife.68274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The synaptic connection from medial habenula (MHb) to interpeduncular nucleus (IPN) is critical for emotion-related behaviors and uniquely expresses R-type Ca2+ channels (Cav2.3) and auxiliary GABAB receptor (GBR) subunits, the K+-channel tetramerization domain-containing proteins (KCTDs). Activation of GBRs facilitates or inhibits transmitter release from MHb terminals depending on the IPN subnucleus, but the role of KCTDs is unknown. We therefore examined the localization and function of Cav2.3, GBRs, and KCTDs in this pathway in mice. We show in heterologous cells that KCTD8 and KCTD12b directly bind to Cav2.3 and that KCTD8 potentiates Cav2.3 currents in the absence of GBRs. In the rostral IPN, KCTD8, KCTD12b, and Cav2.3 co-localize at the presynaptic active zone. Genetic deletion indicated a bidirectional modulation of Cav2.3-mediated release by these KCTDs with a compensatory increase of KCTD8 in the active zone in KCTD12b-deficient mice. The interaction of Cav2.3 with KCTDs therefore scales synaptic strength independent of GBR activation.
Collapse
Affiliation(s)
- Pradeep Bhandari
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - David Vandael
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | | | - David Kleindienst
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Cihan Önal
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Jacqueline Montanaro
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter Jonas
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Akos Kulik
- Institute of Physiology II, Faculty of Medicine, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
24
|
OUP accepted manuscript. Microscopy (Oxf) 2021; 71:i72-i80. [DOI: 10.1093/jmicro/dfab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
|
25
|
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Itakura M, Moreno-Martínez AE, de la Ossa L, Molnár E, Fukazawa Y, Luján R. Age-Dependent Shift of AMPA Receptors From Synapses to Intracellular Compartments in Alzheimer's Disease: Immunocytochemical Analysis of the CA1 Hippocampal Region in APP/PS1 Transgenic Mouse Model. Front Aging Neurosci 2020; 12:577996. [PMID: 33132900 PMCID: PMC7572859 DOI: 10.3389/fnagi.2020.577996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Synapse loss occurs early in Alzheimer’s disease (AD) patients and animal models. Alterations at synaptic level are a major morphological correlate of the memory deficits and related symptoms of AD. Given the predominant roles of synaptic AMPA receptors (AMPARs) in excitatory synaptic transmission in the brain, changes in their dynamic regulation are also implicated in the pathophysiology of AD. Here, we used immunolocalization techniques to analyze the expression and subcellular distribution of AMPARs in the hippocampal region of APP/PS1 mouse model of AD. Immunoblots and histoblots revealed that the total amount of AMPARs and their regional expression pattern in the hippocampus was similar in APP/PS1 mice and in age-matched wild type mice. At the ultrastructural level, two synapse populations were examined using SDS-digested freeze-fracture replica labeling in the stratum radiatum in mice: (i) on spines of CA1 pyramidal cells; and (ii) on randomly found dendritic shafts of CA1 interneurons. While 1- and 6-months-old APP/PS1 mice exhibited no change, we observed a significant reduction at 12 months in AMPAR density at synapses in both pyramidal cells and interneurons, compared to wild-type. This reduction of AMPARs in dendritic spines was accompanied by a significant increase in AMPAR subunit proteins identified in intracellular compartments. Our data demonstrate an age-dependent reduction of synaptic AMPARs in APP/PS1 mice, which may contribute to impaired learning and memory at later stages of AD.
Collapse
Affiliation(s)
- Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Rocío Alfaro-Ruíz
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Japan
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, Bristol, United Kingdom
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, Life Science Innovation Center, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Departamento de Ciencias Médicas, Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
26
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
27
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Density of GABA B Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21072459. [PMID: 32252271 PMCID: PMC7177735 DOI: 10.3390/ijms21072459] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Metabotropic γ-aminobutyric acid (GABAB) receptors contribute to the control of network activity and information processing in hippocampal circuits by regulating neuronal excitability and synaptic transmission. The dysfunction in the dentate gyrus (DG) has been implicated in Alzheimer´s disease (AD). Given the involvement of GABAB receptors in AD, to determine their subcellular localisation and possible alteration in granule cells of the DG in a mouse model of AD at 12 months of age, we used high-resolution immunoelectron microscopic analysis. Immunohistochemistry at the light microscopic level showed that the regional and cellular expression pattern of GABAB1 was similar in an AD model mouse expressing mutated human amyloid precursor protein and presenilin1 (APP/PS1) and in age-matched wild type mice. High-resolution immunoelectron microscopy revealed a distance-dependent gradient of immunolabelling for GABAB receptors, increasing from proximal to distal dendrites in both wild type and APP/PS1 mice. However, the overall density of GABAB receptors at the neuronal surface of these postsynaptic compartments of granule cells was significantly reduced in APP/PS1 mice. Parallel to this reduction in surface receptors, we found a significant increase in GABAB1 at cytoplasmic sites. GABAB receptors were also detected at presynaptic sites in the molecular layer of the DG. We also found a decrease in plasma membrane GABAB receptors in axon terminals contacting dendritic spines of granule cells, which was more pronounced in the outer than in the inner molecular layer. Altogether, our data showing post- and presynaptic reduction in surface GABAB receptors in the DG suggest the alteration of the GABAB-mediated modulation of excitability and synaptic transmission in granule cells, which may contribute to the cognitive dysfunctions in the APP/PS1 model of AD.
Collapse
|
29
|
Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus. J Neurosci 2020; 40:2471-2484. [PMID: 32051325 DOI: 10.1523/jneurosci.2573-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 11/21/2022] Open
Abstract
The AMPA receptor (AMPAR) subunit GluA3 has been suggested to shape synaptic transmission and activity-dependent plasticity in endbulb-bushy cell synapses (endbulb synapses) in the anteroventral cochlear nucleus, yet the specific roles of GluA3 in the synaptic transmission at endbulb synapses remains unexplored. Here, we compared WT and GluA3 KO mice of both sexes and identified several important roles of GluA3 in the maturation of synaptic transmission and short-term plasticity in endbulb synapses. We show that GluA3 largely determines the ultrafast kinetics of endbulb synapses glutamatergic currents by promoting the insertion of postsynaptic AMPARs that contain fast desensitizing flop subunits. In addition, GluA3 is also required for the normal function, structure, and development of the presynaptic terminal which leads to altered short term-depression in GluA3 KO mice. The presence of GluA3 reduces and slows synaptic depression, which is achieved by lowering the probability of vesicle release, promoting efficient vesicle replenishment, and increasing the readily releasable pool of synaptic vesicles. Surprisingly, GluA3 also makes the speed of synaptic depression rate-invariant. We propose that the slower and rate-invariant speed of depression allows an initial response window that still contains presynaptic firing rate information before the synapse is depressed. Because this response window is rate-invariant, GluA3 extends the range of presynaptic firing rates over which rate information in bushy cells can be preserved. This novel role of GluA3 may be important to allowing the postsynaptic targets of spherical bushy cells in mice use rate information for encoding sound intensity and sound localization.SIGNIFICANCE STATEMENT We report novel roles of the glutamate receptor subunit GluA3 in synaptic transmission in synapses between auditory nerve fibers and spherical bushy cells (BCs) in the cochlear nucleus. We show that GluA3 contributes to the generation of ultrafast glutamatergic currents at these synapses, which is important to preserve temporal information about the sound. Furthermore, we demonstrate that GluA3 contributes to the normal function and development of the presynaptic terminal, whose properties shape short-term plasticity. GluA3 slows and attenuates synaptic depression, and makes it less dependent on the presynaptic firing rates. This may help BCs to transfer information about the high rates of activity that occur at the synapse in vivo to postsynaptic targets that use rate information for sound localization.
Collapse
|
30
|
Ultrastructural and molecular features of excitatory and glutamatergic synapses. The auditory nerve synapses. VITAMINS AND HORMONES 2020; 114:23-51. [PMID: 32723545 DOI: 10.1016/bs.vh.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutamatergic synapses mediate fast synaptic transmission in the central nervous system. New developments highlight the importance of the synapse structural and molecular remodeling during development, aging and in neurological disorders. This chapter summarizes key structural and molecular aspects of the presynaptic and postsynaptic components of glutamatergic synapses in the brain. In addition, this chapter describes how the structure of the postsynaptic density and ionotropic glutamate content contribute to the function of auditory nerve synapses in the lower auditory brainstem.
Collapse
|
31
|
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Moreno-Martínez AE, de la Ossa L, Martínez-Hernández J, Buisson A, Früh S, Bettler B, Shigemoto R, Fukazawa Y, Luján R. Reduction in the neuronal surface of post and presynaptic GABA B receptors in the hippocampus in a mouse model of Alzheimer's disease. Brain Pathol 2019; 30:554-575. [PMID: 31729777 PMCID: PMC7317930 DOI: 10.1111/bpa.12802] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
The hippocampus plays key roles in learning and memory and is a main target of Alzheimer's disease (AD), which causes progressive memory impairments. Despite numerous investigations about the processes required for the normal hippocampal functions, the neurotransmitter receptors involved in the synaptic deficits by which AD disables the hippocampus are not yet characterized. By combining histoblots, western blots, immunohistochemistry and high-resolution immunoelectron microscopic methods for GABAB receptors, this study provides a quantitative description of the expression and the subcellular localization of GABAB1 in the hippocampus in a mouse model of AD at 1, 6 and 12 months of age. Western blots and histoblots showed that the total amount of protein and the laminar expression pattern of GABAB1 were similar in APP/PS1 mice and in age-matched wild-type mice. In contrast, immunoelectron microscopic techniques showed that the subcellular localization of GABAB1 subunit did not change significantly in APP/PS1 mice at 1 month of age, was significantly reduced in the stratum lacunosum-moleculare of CA1 pyramidal cells at 6 months of age and significantly reduced at the membrane surface of CA1 pyramidal cells at 12 months of age. This reduction of plasma membrane GABAB1 was paralleled by a significant increase of the subunit at the intracellular sites. We further observed a decrease of membrane-targeted GABAB receptors in axon terminals contacting CA1 pyramidal cells. Our data demonstrate compartment- and age-dependent reduction of plasma membrane-targeted GABAB receptors in the CA1 region of the hippocampus, suggesting that this decrease might be enough to alter the GABAB -mediated synaptic transmission taking place in AD.
Collapse
Affiliation(s)
- Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Rocío Alfaro-Ruíz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, 02071, Albacete, Spain
| | - José Martínez-Hernández
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Alain Buisson
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, BP 170, Grenoble, France
| | - Simon Früh
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Ryuichi Shigemoto
- Institute of Science and Technology (IST Austria), Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| |
Collapse
|
32
|
Ellis-Davies GCR. Two-Photon Uncaging of Glutamate. Front Synaptic Neurosci 2019; 10:48. [PMID: 30687075 PMCID: PMC6333857 DOI: 10.3389/fnsyn.2018.00048] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 01/26/2023] Open
Abstract
Two-photon microscopy produces the excited singlet state of a chromophore with wavelengths approximately double that used for normal excitation. Two photons are absorbed almost simultaneously, via a virtual state, and this makes the excitation technique inherently non-linear. It requires ultra-fast lasers to deliver the high flux density needed to access intrinsically very short lived intermediates, and in combination with lenses of high numerical aperture, this confines axial excitation highly. Since the two-photon excitation volume is similar to a large spine head, the technique has been widely used to study glutamatergic transmission in brain slices. Here I describe the principles of two-photon uncaging of glutamate and provide a practical guide to its application.
Collapse
|
33
|
Patriarchi T, Buonarati OR, Hell JW. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca 2+/CaMKII signaling. EMBO J 2018; 37:e99771. [PMID: 30249603 PMCID: PMC6187224 DOI: 10.15252/embj.201899771] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
The synapse transmits, processes, and stores data within its tiny space. Effective and specific signaling requires precise alignment of the relevant components. This review examines current insights into mechanisms of AMPAR and NMDAR localization by PSD-95 and their spatial distribution at postsynaptic sites to illuminate the structural and functional framework of postsynaptic signaling. It subsequently delineates how β2 adrenergic receptor (β2 AR) signaling via adenylyl cyclase and the cAMP-dependent protein kinase PKA is organized within nanodomains. Here, we discuss targeting of β2 AR, adenylyl cyclase, and PKA to defined signaling complexes at postsynaptic sites, i.e., AMPARs and the L-type Ca2+ channel Cav1.2, and other subcellular surface localizations, the role of A kinase anchor proteins, the physiological relevance of the spatial restriction of corresponding signaling, and their interplay with signal transduction by the Ca2+- and calmodulin-dependent kinase CaMKII How localized and specific signaling by cAMP occurs is a central cellular question. The dendritic spine constitutes an ideal paradigm for elucidating the dimensions of spatially restricted signaling because of their small size and defined protein composition.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Humans
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | | | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Luján R, Aguado C, Ciruela F, Arus XM, Martín-Belmonte A, Alfaro-Ruiz R, Martínez-Gómez J, de la Ossa L, Watanabe M, Adelman JP, Shigemoto R, Fukazawa Y. SK2 Channels Associate With mGlu 1α Receptors and Ca V2.1 Channels in Purkinje Cells. Front Cell Neurosci 2018; 12:311. [PMID: 30283304 PMCID: PMC6156379 DOI: 10.3389/fncel.2018.00311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Abstract
The small-conductance, Ca2+-activated K+ (SK) channel subtype SK2 regulates the spike rate and firing frequency, as well as Ca2+ transients in Purkinje cells (PCs). To understand the molecular basis by which SK2 channels mediate these functions, we analyzed the exact location and densities of SK2 channels along the neuronal surface of the mouse cerebellar PCs using SDS-digested freeze-fracture replica labeling (SDS-FRL) of high sensitivity combined with quantitative analyses. Immunogold particles for SK2 were observed on post- and pre-synaptic compartments showing both scattered and clustered distribution patterns. We found an axo-somato-dendritic gradient of the SK2 particle density increasing 12-fold from soma to dendritic spines. Using two different immunogold approaches, we also found that SK2 immunoparticles were frequently adjacent to, but never overlap with, the postsynaptic density of excitatory synapses in PC spines. Co-immunoprecipitation analysis demonstrated that SK2 channels form macromolecular complexes with two types of proteins that mobilize Ca2+: CaV2.1 channels and mGlu1α receptors in the cerebellum. Freeze-fracture replica double-labeling showed significant co-clustering of particles for SK2 with those for CaV2.1 channels and mGlu1α receptors. SK2 channels were also detected at presynaptic sites, mostly at the presynaptic active zone (AZ), where they are close to CaV2.1 channels, though they are not significantly co-clustered. These data demonstrate that SK2 channels located in different neuronal compartments can associate with distinct proteins mobilizing Ca2+, and suggest that the ultrastructural association of SK2 with CaV2.1 and mGlu1α provides the mechanism that ensures voltage (excitability) regulation by distinct intracellular Ca2+ transients in PCs.
Collapse
Affiliation(s)
- Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Campus Biosanitario, Universidad Castilla-La Mancha, Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Campus Biosanitario, Universidad Castilla-La Mancha, Albacete, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Biochemistry and Microbiology, Faculty of Sciences, University of Ghent, Ghent, Belgium
| | - Xavier Morató Arus
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Campus Biosanitario, Universidad Castilla-La Mancha, Albacete, Spain
| | - Rocío Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Campus Biosanitario, Universidad Castilla-La Mancha, Albacete, Spain
| | - Jesús Martínez-Gómez
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - John P Adelman
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
| | - Ryuichi Shigemoto
- Institute of Science and Technology (IST Austria), Klosterneuburg, Austria
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Research Center for Child Mental Development, Life Science Advancement Program, Faculty of Medical Science, University of Fukui, Fukui, Japan
| |
Collapse
|
35
|
Choy JMC, Agahari FA, Li L, Stricker C. Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores. Front Cell Neurosci 2018; 12:213. [PMID: 30100867 PMCID: PMC6072855 DOI: 10.3389/fncel.2018.00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/28/2018] [Indexed: 11/20/2022] Open
Abstract
Somatosensory cortex is innervated by afferents originating from the locus coeruleus which typically release noradrenaline. We tested if activation of presynaptic α1-adrenoceptors (AR) coupled to a Gq-mediated signaling cascade resulted in calcium (Ca2+) release from stores and thereby increased spontaneous transmitter release in rat barrel cortex. Adding 1–100 μM noradrenaline (NA) or 5 μM cirazoline (CO), a α1-AR specific agonist, to the standard artificial cerebrospinal fluid increased the frequency of miniature excitatory postsynaptic currents (mEPSC) by 64 ± 7% in 51% of pyramidal cells in layer II (responders) with no effect on the amplitude. In 42 responders, the mEPSC frequency during control was significantly smaller (39 ± 2 vs. 53 ± 4 Hz) and upon NA exposure, the input resistance (Rin) decreased (9 ± 7%) compared to non-responders. Experiments using CO and the antagonist prazosin revealed that NA acted via binding to α1-ARs, which was further corroborated by simultaneously blocking β- and α2-ARs with propranolol and yohimbine, which did not prevent the increase in mEPSC frequency. To verify elements in the signaling cascade, both the phospholipase C inhibitor edelfosine and the membrane permeable IP3 receptor blocker 2-APB averted the increase in mEPSC frequency. Likewise, emptying Ca2+ stores with cyclopiazonic acid or the chelation of intracellular Ca2+ with BAPTA-AM prevented the frequency increase, suggesting that the frequency increase was caused by presynaptic store release. When group I metabotropic glutamate receptors were activated with DHPG, co-application of NA occluded a further frequency increase suggesting that the two receptor activations may not signal independently of each other. The increased mEPSC frequency in a subset of pyramidal cells results in enhanced synaptic noise, which, together with the reduction in Rin, will affect computation in the network.
Collapse
Affiliation(s)
- Julian M C Choy
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Fransiscus A Agahari
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| | - Li Li
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Christian Stricker
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,ANU Medical School, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
36
|
Benke T, Traynelis SF. AMPA-Type Glutamate Receptor Conductance Changes and Plasticity: Still a Lot of Noise. Neurochem Res 2018; 44:539-548. [PMID: 29476449 DOI: 10.1007/s11064-018-2491-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Abstract
Twenty years ago, we reported from the Collingridge Lab that a single-channel conductance increase through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPARs) could mediate one form of plasticity associated with long-term potentiation (LTP) in the hippocampus (Benke et al., Nature 395:793-797, 1998). Revealed through peak-scaled non-stationary fluctuation analysis (PS-NSFA, also known as noise analysis), this component of LTP could be exclusively mediated by direct increases in channel conductance or by increases in the number of high conductance synaptic AMPARs. Re-evaluation of our original data in the light of the molecular details regarding AMPARs, conductance changes and plasticity suggests that insertion of high-conductance GluA1 homomers can account for our initial findings. Any potential cost associated with manufacture or trafficking of new receptors could be mitigated if pre-existing synaptic AMPARs also undergo a modest conductance change. The literature suggests that the presence of high conductance AMPARs and/or GluA1 homomers confers an unstable synaptic state, suggesting state transitions. An experimental paradigm is proposed to differentiate these possibilities. Validation of this state diagram could provide insight into development, disease pathogenesis and treatment.
Collapse
Affiliation(s)
- Tim Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Nakano Y, Karube F, Hirai Y, Kobayashi K, Hioki H, Okamoto S, Kameda H, Fujiyama F. Parvalbumin-producing striatal interneurons receive excitatory inputs onto proximal dendrites from the motor thalamus in male mice. J Neurosci Res 2018; 96:1186-1207. [PMID: 29314192 DOI: 10.1002/jnr.24214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor-related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)-producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor-related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno-associated virus vector combined with immunodetection of pre- and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway-specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.
Collapse
Affiliation(s)
- Yasutake Nakano
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Yasuharu Hirai
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Okamoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kameda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
38
|
Abstract
Immunogold labeling of freeze-fracture replicas has recently been used for high-resolution visualization of protein localization in electron microscopy. This method has higher labeling efficiency than conventional immunogold methods for membrane molecules allowing precise quantitative measurements. However, one of the limitations of freeze-fracture replica immunolabeling is difficulty in keeping structural orientation and identifying labeled profiles in complex tissues like brain. The difficulty is partly due to fragmentation of freeze-fracture replica preparations during labeling procedures and limited morphological clues on the replica surface. To overcome these issues, we introduce here a grid-glued replica method combined with SEM observation. This method allows histological staining before dissolving the tissue and easy handling of replicas during immunogold labeling, and keeps the whole replica surface intact without fragmentation. The procedure described here is also useful for matched double-replica analysis allowing further identification of labeled profiles in corresponding P-face and E-face.
Collapse
|
39
|
Liang J, Kulasiri D, Samarasinghe S. Computational investigation of Amyloid-β-induced location- and subunit-specific disturbances of NMDAR at hippocampal dendritic spine in Alzheimer's disease. PLoS One 2017; 12:e0182743. [PMID: 28837653 PMCID: PMC5570373 DOI: 10.1371/journal.pone.0182743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/24/2017] [Indexed: 01/22/2023] Open
Abstract
In Alzheimer’s disease (AD), dysregulation of intracellular Ca2+ signalling has been observed as an early event prior to the presence of clinical symptoms and is believed to be a crucial factor contributing to AD pathogenesis. Amyloid-β oligomers (AβOs) disturb the N-methyl-D-aspartate receptor (NMDAR)-mediated postsynaptic Ca2+ signalling in response to presynaptic stimulation by increasing the availability of extracellular glutamate as well as directly disturbing the NMDARs. The abnormal Ca2+ response can further lead to impairments in long-term potentiation (LTP), an important process in memory formation. In this study, we develop a mathematical model of a CA1 pyramidal dendritic spine and conduct computational experiments. We use this model to mimic alterations by AβOs under AD conditions to investigate how they are involved in the Ca2+ dysregulation in the dendritic spine. The alterations in glutamate availability, as well as NMDAR availability and activity, are studied both individually and globally. The simulation results suggest that alterations in glutamate availability mostly affect the synaptic response and have limited effects on the extrasynaptic receptors. Moreover, overactivation of extrasynaptic NMDARs in AD is unlikely to be induced by presynaptic stimulation, but by upregulation of the resting level of glutamate, possibly resulting from these alterations. Furthermore, internalisation of synaptic NR2A-NMDAR shows greater damage to the postsynaptic Ca2+ response in comparison with the internalisation of NR2B-NMDARs; thus, the suggested neuroprotective role of the latter is very limited during synaptic transmission in AD. We integrate a CaMKII state transition model with the Ca2+ model to further study the effects of alterations of NMDARs in the CaMKII state transition, an important downstream event in the early phase of LTP. The model reveals that cooperation between NR2A- and NR2B-NMDAR is required for LTP induction. Under AD conditions, internalisation of membrane NMDARs is suggested to be the cause of the loss of synapse numbers by disrupting CaMKII-NMDAR formation.
Collapse
Affiliation(s)
- Jingyi Liang
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
- * E-mail:
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
40
|
The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Brain Struct Funct 2017; 222:3375-3393. [PMID: 28397107 PMCID: PMC5676837 DOI: 10.1007/s00429-017-1408-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.
Collapse
|
41
|
An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. J Neurosci 2017; 37:2435-2448. [PMID: 28137974 DOI: 10.1523/jneurosci.2557-16.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
The traditional classification of primary motor cortex (M1) as an agranular area has been challenged recently when a functional layer 4 (L4) was reported in M1. L4 is the principal target for thalamic input in sensory areas, which raises the question of how thalamocortical synapses formed in M1 in the mouse compare with those in neighboring sensory cortex (S1). We identified thalamic boutons by their immunoreactivity for the vesicular glutamate transporter 2 (VGluT2) and performed unbiased disector counts from electron micrographs. We discovered that the thalamus contributed proportionately only half as many synapses to the local circuitry of L4 in M1 compared with S1. Furthermore, thalamic boutons in M1 targeted spiny dendrites exclusively, whereas ∼9% of synapses were formed with dendrites of smooth neurons in S1. VGluT2+ boutons in M1 were smaller and formed fewer synapses per bouton on average (1.3 vs 2.1) than those in S1, but VGluT2+ synapses in M1 were larger than in S1 (median postsynaptic density areas of 0.064 μm2 vs 0.042 μm2). In M1 and S1, thalamic synapses formed only a small fraction (12.1% and 17.2%, respectively) of all of the asymmetric synapses in L4. The functional role of the thalamic input to L4 in M1 has largely been neglected, but our data suggest that, as in S1, the thalamic input is amplified by the recurrent excitatory connections of the L4 circuits. The lack of direct thalamic input to inhibitory neurons in M1 may indicate temporal differences in the inhibitory gating in L4 of M1 versus S1.SIGNIFICANCE STATEMENT Classical interpretations of the function of primary motor cortex (M1) emphasize its lack of the granular layer 4 (L4) typical of sensory cortices. However, we show here that, like sensory cortex (S1), mouse M1 also has the canonical circuit motif of a core thalamic input to the middle cortical layer and that thalamocortical synapses form a small fraction (M1: 12%; S1: 17%) of all asymmetric synapses in L4 of both areas. Amplification of thalamic input by recurrent local circuits is thus likely to be a significant mechanism in both areas. Unlike M1, where thalamocortical boutons typically form a single synapse, thalamocortical boutons in S1 usually formed multiple synapses, which means they can be identified with high probability in the electron microscope without specific labeling.
Collapse
|
42
|
Bosch M, Castro J, Sur M, Hayashi Y. Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microcopy Imaging of Single Stimulated Synapses. Methods Mol Biol 2017; 1538:185-214. [PMID: 27943192 DOI: 10.1007/978-1-4939-6688-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.
Collapse
Affiliation(s)
- Miquel Bosch
- RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Jorge Castro
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama University, Saitama, Japan
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
43
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
44
|
Kerti-Szigeti K, Nusser Z. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells. eLife 2016; 5. [PMID: 27537197 PMCID: PMC4990423 DOI: 10.7554/elife.18426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022] Open
Abstract
Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. DOI:http://dx.doi.org/10.7554/eLife.18426.001
Collapse
Affiliation(s)
- Katalin Kerti-Szigeti
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
45
|
Schönherr S, Seewald A, Kasugai Y, Bosch D, Ehrlich I, Ferraguti F. Combined Optogenetic and Freeze-fracture Replica Immunolabeling to Examine Input-specific Arrangement of Glutamate Receptors in the Mouse Amygdala. J Vis Exp 2016. [PMID: 27167567 PMCID: PMC4941933 DOI: 10.3791/53853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Freeze-fracture electron microscopy has been a major technique in ultrastructural research for over 40 years. However, the lack of effective means to study the molecular composition of membranes produced a significant decline in its use. Recently, there has been a major revival in freeze-fracture electron microscopy thanks to the development of effective ways to reveal integral membrane proteins by immunogold labeling. One of these methods is known as detergent-solubilized Freeze-fracture Replica Immunolabeling (FRIL). The combination of the FRIL technique with optogenetics allows a correlated analysis of the structural and functional properties of central synapses. Using this approach it is possible to identify and characterize both pre- and postsynaptic neurons by their respective expression of a tagged channelrhodopsin and specific molecular markers. The distinctive appearance of the postsynaptic membrane specialization of glutamatergic synapses further allows, upon labeling of ionotropic glutamate receptors, to quantify and analyze the intrasynaptic distribution of these receptors. Here, we give a step-by-step description of the procedures required to prepare paired replicas and how to immunolabel them. We will also discuss the caveats and limitations of the FRIL technique, in particular those associated with potential sampling biases. The high reproducibility and versatility of the FRIL technique, when combined with optogenetics, offers a very powerful approach for the characterization of different aspects of synaptic transmission at identified neuronal microcircuits in the brain. Here, we provide an example how this approach was used to gain insights into structure-function relationships of excitatory synapses at neurons of the intercalated cell masses of the mouse amygdala. In particular, we have investigated the expression of ionotropic glutamate receptors at identified inputs originated from the thalamic posterior intralaminar and medial geniculate nuclei. These synapses were shown to relay sensory information relevant for fear learning and to undergo plastic changes upon fear conditioning.
Collapse
Affiliation(s)
| | - Anna Seewald
- Department of Pharmacology, Medical University of Innsbruck
| | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck
| | - Daniel Bosch
- Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tübingen
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tübingen
| | | |
Collapse
|
46
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
High-Resolution Localization of Membrane Proteins by SDS-Digested Freeze-Fracture Replica Labeling (SDS-FRL). NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-3064-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons. Sci Rep 2015; 5:14773. [PMID: 26435058 PMCID: PMC4593176 DOI: 10.1038/srep14773] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/09/2015] [Indexed: 02/01/2023] Open
Abstract
Dopamine neurons of the substantia nigra have long been believed to have multiple aspiny dendrites which receive many glutamatergic synaptic inputs from several regions of the brain. But, here, using high-resolution two-photon confocal microscopy in the mouse brain slices, we found a substantial number of common dendritic spines in the nigral dopamine neurons including thin, mushroom, and stubby types of spines. However, the number of dendritic spines of the dopamine neurons was approximately five times lower than that of CA1 pyramidal neurons. Immunostaining and morphological analysis revealed that glutamatergic shaft synapses were present two times more than spine synapses. Using local two-photon glutamate uncaging techniques, we confirmed that shaft synapses and spine synapses had both AMPA and NMDA receptors, but the AMPA/NMDA current ratios differed. The evoked postsynaptic potentials of spine synapses showed lower amplitudes but longer half-widths than those of shaft synapses. Therefore, we provide the first evidence that the midbrain dopamine neurons have two morphologically and functionally distinct types of glutamatergic synapses, spine synapses and shaft synapses, on the same dendrite. This peculiar organization could be a new basis for unraveling many physiological and pathological functions of the midbrain dopamine neurons.
Collapse
|
49
|
Kubota Y, Kondo S, Nomura M, Hatada S, Yamaguchi N, Mohamed AA, Karube F, Lübke J, Kawaguchi Y. Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. eLife 2015; 4. [PMID: 26142457 PMCID: PMC4518632 DOI: 10.7554/elife.07919] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/04/2015] [Indexed: 01/16/2023] Open
Abstract
Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| | - Satoru Kondo
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Masaki Nomura
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Sayuri Hatada
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| | - Noboru Yamaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| | - Alsayed A Mohamed
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| | - Fuyuki Karube
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| | - Joachim Lübke
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
50
|
Lenkey N, Kirizs T, Holderith N, Máté Z, Szabó G, Vizi ES, Hájos N, Nusser Z. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals. Nat Commun 2015; 6:6557. [PMID: 25891347 PMCID: PMC4413030 DOI: 10.1038/ncomms7557] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022] Open
Abstract
The release of GABA from cholecystokinin-containing interneurons is modulated by type-1 cannabinoid receptors (CB1). Here we tested the hypothesis that the strength of CB1-mediated modulation of GABA release is related to the CB1 content of axon terminals. Basket cell boutons have on average 78% higher CB1 content than those of dendritic-layer-innervating (DLI) cells, a consequence of larger bouton surface and higher CB1 density. The CB1 antagonist AM251 caused a 54% increase in action potential-evoked [Ca(2+)] in boutons of basket cells, but not in DLI cells. However, the effect of AM251 did not correlate with CB1 immunoreactivity of individual boutons. Moreover, a CB1 agonist decreased [Ca(2+)] in a cell type- and CB1-content-independent manner. Replica immunogold labelling demonstrated the colocalization of CB1 with the Cav2.2 Ca(2+) channel subunit. Our data suggest that only a subpopulation of CB1s, within nanometre distances from their target Cav2.2 channels, are responsible for endocannabinoid-mediated modulation of GABA release.
Collapse
Affiliation(s)
- Nora Lenkey
- Lendület Laboratory of Cellular Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest
H1083, Hungary
| | - Tekla Kirizs
- Lendület Laboratory of Cellular Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest
H1083, Hungary
- János Szentágothai School of
Neurosciences, Semmelweis University, Budapest H1085,
Hungary
| | - Noemi Holderith
- Lendület Laboratory of Cellular Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest
H1083, Hungary
| | - Zoltán Máté
- Division of Medical Gene Technology, Institute of
Experimental Medicine, Hungarian Academy of Sciences, Budapest
H1083, Hungary
| | - Gábor Szabó
- Division of Medical Gene Technology, Institute of
Experimental Medicine, Hungarian Academy of Sciences, Budapest
H1083, Hungary
| | - E. Sylvester Vizi
- Laboratory of Drug Research, Institute of Experimental
Medicine, Hungarian Academy of Sciences, Budapest H1083,
Hungary
| | - Norbert Hájos
- Lendület Laboratory of Network Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Szigony street 43, Budapest
H1083, Hungary
| | - Zoltan Nusser
- Lendület Laboratory of Cellular Neurophysiology,
Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest
H1083, Hungary
| |
Collapse
|