1
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
2
|
Ho WHJ, Marinova MB, Listijono DR, Bertoldo MJ, Richani D, Kim LJ, Brown A, Riepsamen AH, Cabot S, Frost ER, Bustamante S, Zhong L, Selesniemi K, Wong D, Madawala R, Marchante M, Goss DM, Li C, Araki T, Livingston DJ, Turner N, Sinclair DA, Walters KA, Homer HA, Gilchrist RB, Wu LE. Fertility protection during chemotherapy treatment by boosting the NAD(P) + metabolome. EMBO Mol Med 2024; 16:2583-2618. [PMID: 39169162 PMCID: PMC11473878 DOI: 10.1038/s44321-024-00119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P)+ metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD+ metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials. Importantly, treatment of a triple-negative breast cancer mouse model with the NAD+ precursor nicotinamide mononucleotide (NMN) reduced tumour growth and did not impair the efficacy of chemotherapy drugs in vivo or in diverse cancer cell lines. Overall, these findings raise the possibility that NAD+ precursors could be a non-invasive strategy for maintaining ovarian function in cancer patients, with potential benefits in cancer therapy.
Collapse
Affiliation(s)
- Wing-Hong Jonathan Ho
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
- The Kinghorn Cancer Centre, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Maria B Marinova
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Dave R Listijono
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Michael J Bertoldo
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Dulama Richani
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Lynn-Jee Kim
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Amelia Brown
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | | | - Safaa Cabot
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Emily R Frost
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Kaisa Selesniemi
- Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Derek Wong
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Romanthi Madawala
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Maria Marchante
- IVI Foundation, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Dale M Goss
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Catherine Li
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | | | - Nigel Turner
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - David A Sinclair
- Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Kirsty A Walters
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Hayden A Homer
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
- Christopher Chen Oocyte Biology Laboratory, University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital, Herston, QLD, 4029, Australia
| | - Robert B Gilchrist
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
3
|
Neissi M, Sheikh‐Hosseini M, Mohammadi‐Asl M, Al‐Badran AI, Roghani M, Mohammadi‐Asl J, Jorfi K. Identification and characterization of NMNAT1 gene mutations in an Iranian patient with Leber congenital amaurosis 9. Clin Case Rep 2024; 12:e9506. [PMID: 39445201 PMCID: PMC11496044 DOI: 10.1002/ccr3.9506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
Key Clinical Message The discovery of compound heterozygous NMNAT1 mutations (c.245T>C; p.Val82Ala and c.575A>G; p.Asp192Gly) provides a genetic explanation for Leber congenital amaurosis 9 in an Iranian patient. The proband's symptoms-including severe visual impairment, nystagmus, night blindness, and retinal degeneration-align with Leber congenital amaurosis 9 clinical features. This case underscores the value of exome-sequencing in diagnosing rare genetic disorders and highlights its role in guiding personalized genetic counseling and potential treatments. Abstract Leber congenital amaurosis is a severe early-onset inherited retinal dystrophy. This study delves into the genetic basis of Leber congenital amaurosis, pinpointing compound heterozygous mutations in the NMNAT1 gene as significant causative factors. While one mutation validates previous findings (c.245T>C; p.Val82Ala), the second (c.575A>G; p.Asp192Gly) proves novel, expanding the genetic landscape of Leber congenital amaurosis 9. Both mutations, inherited independently from nonconsanguineous parents, contribute to the intricate genetic basis of light on Leber congenital amaurosis 9 in this case. The identified mutations shed light on Leber congenital amaurosis genetics in the Iranian population, showcasing the efficacy of exome-sequencing for molecular diagnoses in hereditary retinal degeneration. These findings provide valuable insights for tailored genetic counseling and potential therapeutic interventions.
Collapse
Affiliation(s)
- Mostafa Neissi
- Department of Genetics, Khuzestan Science and Research BranchIslamic Azad UniversityAhvazIran
- Department of Genetics, Ahvaz BranchIslamic Azad UniversityAhvazIran
- Noor‐Gene Genetic LaboratoryAhvazIran
| | - Motahareh Sheikh‐Hosseini
- Noor‐Gene Genetic LaboratoryAhvazIran
- Pediatric Cell & Gene Therapy Research CenterTehran University of Medical SciencesTehranIran
| | | | | | | | - Javad Mohammadi‐Asl
- Noor‐Gene Genetic LaboratoryAhvazIran
- Department of Medical Genetics, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | | |
Collapse
|
4
|
McGuinness HY, Gu W, Shi Y, Kobe B, Ve T. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. Neuroscientist 2024; 30:473-492. [PMID: 37002660 PMCID: PMC11282687 DOI: 10.1177/10738584231162508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Helen Y. McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
5
|
Funakoshi M, Araki T. Mechanism of initiation and regulation of axonal degeneration with special reference to NMNATs and Sarm1. Neurosci Res 2023; 197:3-8. [PMID: 34767875 DOI: 10.1016/j.neures.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Axonal degeneration is observed in a variety of contexts in both the central and peripheral nervous systems. Pathological signaling to regulate the progression of axonal degeneration has long been studied using Wallerian degeneration, the prototypical axonal degradation observed after injury, as a representative model. Understanding metabolism of nicotinamide adenine dinucleotide (NAD+) and the functional regulation of Sarm1 has generated great progress in this field, but there are a number of remaining questions. Here, in this short review, we describe our current understanding of the axonal degeneration mechanism, with special reference to the biology related to wlds mice and Sarm1. Furthermore, variations of axonal degeneration initiation are discussed in order to address the remaining questions needed for mechanistic clarification.
Collapse
Affiliation(s)
- Masabumi Funakoshi
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
6
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
7
|
Takenaka T, Ohnishi Y, Yamamoto M, Setoyama D, Kishima H. Glycolytic System in Axons Supplement Decreased ATP Levels after Axotomy of the Peripheral Nerve. eNeuro 2023; 10:ENEURO.0353-22.2023. [PMID: 36894321 PMCID: PMC10035771 DOI: 10.1523/eneuro.0353-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Wallerian degeneration (WD) occurs in the early stages of numerous neurologic disorders, and clarifying WD pathology is crucial for the advancement of neurologic therapies. ATP is acknowledged as one of the key pathologic substances in WD. The ATP-related pathologic pathways that regulate WD have been defined. The elevation of ATP levels in axon contributes to delay WD and protects axons. However, ATP is necessary for the active processes to proceed WD, given that WD is stringently managed by auto-destruction programs. But little is known about the bioenergetics during WD. In this study, we made sciatic nerve transection models for GO-ATeam2 knock-in rats and mice. We presented the spatiotemporal ATP distribution in the injured axons with in vivo ATP imaging systems, and investigated the metabolic source of ATP in the distal nerve stump. A gradual decrease in ATP levels was observed before the progression of WD. In addition, the glycolytic system and monocarboxylate transporters (MCTs) were activated in Schwann cells following axotomy. Interestingly, in axons, we found the activation of glycolytic system and the inactivation of the tricarboxylic acid (TCA) cycle. Glycolytic inhibitors, 2-deoxyglucose (2-DG) and MCT inhibitors, a-cyano-4-hydroxycinnamic acid (4-CIN) decreased ATP and enhanced WD progression, whereas mitochondrial pyruvate carrier (MPC) inhibitors (MSDC-0160) did not change. Finally, ethyl pyruvate (EP) increased ATP levels and delayed WD. Together, our findings suggest that glycolytic system, both in Schwann cells and axons, is the main source of maintaining ATP levels in the distal nerve stump.
Collapse
Affiliation(s)
- Tomofumi Takenaka
- Department of neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yuichiro Ohnishi
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
- Department of Neurosurgery, Osaka Gyoumeikan Hospital, Osaka, 554-0012, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Haruhiko Kishima
- Department of neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Parsons RB, Kocinaj A, Ruiz Pulido G, Prendergast SA, Parsons AE, Facey PD, Hirth F. Alpha-synucleinopathy reduces NMNAT3 protein levels and neurite formation that can be rescued by targeting the NAD+ pathway. Hum Mol Genet 2022; 31:2918-2933. [PMID: 35397003 PMCID: PMC9433734 DOI: 10.1093/hmg/ddac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease is characterized by the deposition of α-synuclein, which leads to synaptic dysfunction, the loss of neuronal connections and ultimately progressive neurodegeneration. Despite extensive research into Parkinson's disease pathogenesis, the mechanisms underlying α-synuclein-mediated synaptopathy have remained elusive. Several lines of evidence suggest that altered nicotinamide adenine dinucleotide (NAD+) metabolism might be causally related to synucleinopathies, including Parkinson's disease. NAD+ metabolism is central to the maintenance of synaptic structure and function. Its synthesis is mediated by nicotinamide mononucleotide adenylyltransferases (NMNATs), but their role in Parkinson's disease is not known. Here we report significantly decreased levels of NMNAT3 protein in the caudate nucleus of patients who have died with Parkinson's disease, which inversely correlated with the amount of monomeric α-synuclein. The detected alterations were specific and significant as the expression levels of NMNAT1, NMNAT2 and sterile alpha and TIR motif containing 1 (SARM1) were not significantly different in Parkinson's disease patients compared to controls. To test the functional significance of these findings, we ectopically expressed wild-type α-synuclein in retinoic acid-differentiated dopaminergic SH-SY5Y cells that resulted in decreased levels of NMNAT3 protein plus a neurite pathology, which could be rescued by FK866, an inhibitor of nicotinamide phosphoribosyltransferase that acts as a key enzyme in the regulation of NAD+ synthesis. Our results establish, for the first time, NMNAT3 alterations in Parkinson's disease and demonstrate in human cells that this phenotype together with neurite pathology is causally related to α-synucleinopathy. These findings identify alterations in the NAD+ biosynthetic pathway as a pathogenic mechanism underlying α-synuclein-mediated synaptopathy.
Collapse
Affiliation(s)
- Richard B Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Altin Kocinaj
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Gustavo Ruiz Pulido
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Sarah A Prendergast
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Anna E Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D Facey
- Swansea University, Singleton Park Campus, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Department of Basic & Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
9
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
10
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
11
|
Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD + Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci 2022; 23:4887. [PMID: 35563288 PMCID: PMC9102948 DOI: 10.3390/ijms23094887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Axon degeneration in diabetic peripheral neuropathy (DPN) is associated with impaired NAD+ metabolism. We tested whether the administration of NAD+ precursors, nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), prevents DPN in models of Type 1 and Type 2 diabetes. NMN was administered to streptozotocin (STZ)-induced diabetic rats and STZ-induced diabetic mice by intraperitoneal injection at 50 or 100 mg/kg on alternate days for 2 months. mice The were fed with a high fat diet (HFD) for 2 months with or without added NR at 150 or 300 mg/kg for 2 months. The administration of NMN to STZ-induced diabetic rats or mice or dietary addition of NR to HFD-fed mice improved sensory function, normalized sciatic and tail nerve conduction velocities, and prevented loss of intraepidermal nerve fibers in skin samples from the hind-paw. In adult dorsal root ganglion (DRG) neurons isolated from HFD-fed mice, there was a decrease in NAD+ levels and mitochondrial maximum reserve capacity. These impairments were normalized in isolated DRG neurons from NR-treated mice. The results indicate that the correction of NAD+ depletion in DRG may be sufficient to prevent DPN but does not significantly affect glucose tolerance, insulin levels, or insulin resistance.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Neda Najimi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Avinash R. Sagi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Sushuma Yarlagadda
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Ahmad F. Hedayat
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Anand Kadakia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- CAMC Institute for Academic Medicine, 415 Morris Street Suite 300, Charleston, WV 25301, USA
| |
Collapse
|
12
|
Curry A, White D, Cen Y. Small Molecule Regulators Targeting NAD + Biosynthetic Enzymes. Curr Med Chem 2022; 29:1718-1738. [PMID: 34060996 PMCID: PMC8630097 DOI: 10.2174/0929867328666210531144629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a key player in many metabolic pathways as an activated carrier of electrons. In addition to being the cofactor for redox reactions, NAD+ also serves as the substrate for various enzymatic transformations such as adenylation and ADP-ribosylation. Maintaining cellular NAD+ homeostasis has been suggested as an effective anti-aging strategy. Given the importance of NAD+ in regulating a broad spectrum of cellular events, small molecules targeting NAD+ metabolism have been pursued as therapeutic interventions for the treatment of mitochondrial disorders and agerelated diseases. In this article, small molecule regulators of NAD+ biosynthetic enzymes will be reviewed. The focus will be given to the discovery and development of these molecules, the mechanism of action as well as their therapeutic potentials.
Collapse
Affiliation(s)
- Alyson Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Dawanna White
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA;,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA,Address correspondence to this author at the Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; Tel: 804-828-7405;
| |
Collapse
|
13
|
Zhang HY, Fan ZL, Wang TY. Advances of Glycometabolism Engineering in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2021; 9:774175. [PMID: 34926421 PMCID: PMC8675083 DOI: 10.3389/fbioe.2021.774175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can express various recombinant proteins with a post translational modification pattern similar to that of the proteins from human cells. During industrial production, cells need large amounts of ATP to support growth and protein expression, and since glycometabolism is the main source of ATP for cells, protein production partly depends on the efficiency of glycometabolism. And efficient glycometabolism allows less glucose uptake by cells, reducing production costs, and providing a better mammalian production platform for recombinant protein expression. In the present study, a series of progresses on the comprehensive optimization in CHO cells by glycometabolism strategy were reviewed, including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We analyzed the effects of gene regulation in the upstream and downstream of the glucose metabolism pathway on cell’s growth and protein expression. And we also pointed out the latest metabolic studies that are potentially applicable on CHO cells. In the end, we elaborated the application of metabolic models in the study of CHO cell metabolism.
Collapse
Affiliation(s)
- Huan-Yu Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China.,Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| |
Collapse
|
14
|
Yong Y, Hunter-Chang S, Stepanova E, Deppmann C. Axonal spheroids in neurodegeneration. Mol Cell Neurosci 2021; 117:103679. [PMID: 34678457 PMCID: PMC8742877 DOI: 10.1016/j.mcn.2021.103679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022] Open
Abstract
Axonal spheroids are bubble-like biological features that form on most degenerating axons, yet little is known about their influence on degenerative processes. Their formation and growth has been observed in response to various degenerative triggers such as injury, oxidative stress, inflammatory factors, and neurotoxic molecules. They often contain cytoskeletal elements and organelles, and, depending on the pathological insult, can colocalize with disease-related proteins such as amyloid precursor protein (APP), ubiquitin, and motor proteins. Initial formation of axonal spheroids depends on the disruption of axonal and membrane tension governed by cytoskeleton structure and calcium levels. Shortly after spheroid formation, the engulfment signal phosphatidylserine (PS) is exposed on the outer leaflet of spheroid plasma membrane, suggesting an important role for axonal spheroids in phagocytosis and debris clearance during degeneration. Spheroids can grow until they rupture, allowing pro-degenerative factors to exit the axon into extracellular space and accelerating neurodegeneration. Though much remains to be discovered in this area, axonal spheroid research promises to lend insight into the etiologies of neurodegenerative disease, and may be an important target for therapeutic intervention. This review summarizes over 100 years of work, describing what is known about axonal spheroid structure, regulation and function.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sarah Hunter-Chang
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Ekaterina Stepanova
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
15
|
Arthur-Farraj P, Coleman MP. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics 2021; 18:2200-2221. [PMID: 34595734 PMCID: PMC8804151 DOI: 10.1007/s13311-021-01125-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
16
|
Abstract
Significant advances have been made in recent years in identifying the genetic components of Wallerian degeneration, the process that brings the progressive destruction and removal of injured axons. It has now been accepted that Wallerian degeneration is an active and dynamic cellular process that is well regulated at molecular and cellular levels. In this review, we describe our current understanding of Wallerian degeneration, focusing on the molecular players and mechanisms that mediate the injury response, activate the degenerative program, transduce the death signal, execute the destruction order, and finally, clear away the debris. By highlighting the starring roles and sketching out the molecular script of Wallerian degeneration, we hope to provide a useful framework to understand Wallerian and Wallerian-like degeneration and to lay a foundation for developing new therapeutic strategies to treat axon degeneration in neural injury as well as in neurodegenerative disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Hopkins EL, Gu W, Kobe B, Coleman MP. A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Front Mol Biosci 2021; 8:703532. [PMID: 34307460 PMCID: PMC8295901 DOI: 10.3389/fmolb.2021.703532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanor L. Hopkins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael P. Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Wang B, Huang M, Shang D, Yan X, Zhao B, Zhang X. Mitochondrial Behavior in Axon Degeneration and Regeneration. Front Aging Neurosci 2021; 13:650038. [PMID: 33762926 PMCID: PMC7982458 DOI: 10.3389/fnagi.2021.650038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles responsible for bioenergetic metabolism, calcium homeostasis, and signal transmission essential for neurons due to their high energy consumption. Accumulating evidence has demonstrated that mitochondria play a key role in axon degeneration and regeneration under physiological and pathological conditions. Mitochondrial dysfunction occurs at an early stage of axon degeneration and involves oxidative stress, energy deficiency, imbalance of mitochondrial dynamics, defects in mitochondrial transport, and mitophagy dysregulation. The restoration of these defective mitochondria by enhancing mitochondrial transport, clearance of reactive oxidative species (ROS), and improving bioenergetic can greatly contribute to axon regeneration. In this paper, we focus on the biological behavior of axonal mitochondria in aging, injury (e.g., traumatic brain and spinal cord injury), and neurodegenerative diseases (Alzheimer's disease, AD; Parkinson's disease, PD; Amyotrophic lateral sclerosis, ALS) and consider the role of mitochondria in axon regeneration. We also compare the behavior of mitochondria in different diseases and outline novel therapeutic strategies for addressing abnormal mitochondrial biological behavior to promote axonal regeneration in neurological diseases and injuries.
Collapse
Affiliation(s)
- Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Baohong Zhao
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
19
|
Bertoldo MJ, Listijono DR, Ho WHJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, Loh WGN, Youngson NA, Maniam J, Wong ASA, Selesniemi K, Bustamante S, Li C, Zhao Y, Marinova MB, Kim LJ, Lau L, Wu RM, Mikolaizak AS, Araki T, Le Couteur DG, Turner N, Morris MJ, Walters KA, Goldys E, O'Neill C, Gilchrist RB, Sinclair DA, Homer HA, Wu LE. NAD + Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep 2021; 30:1670-1681.e7. [PMID: 32049001 PMCID: PMC7063679 DOI: 10.1016/j.celrep.2020.01.058] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/03/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Reproductive aging in female mammals is an irreversible process associated with declining oocyte quality, which is the rate-limiting factor to fertility. Here, we show that this loss of oocyte quality with age accompanies declining levels of the prominent metabolic cofactor nicotinamide adenine dinucleotide (NAD+). Treatment with the NAD+ metabolic precursor nicotinamide mononucleotide (NMN) rejuvenates oocyte quality in aged animals, leading to restoration in fertility, and this can be recapitulated by transgenic overexpression of the NAD+-dependent deacylase SIRT2, though deletion of this enzyme does not impair oocyte quality. These benefits of NMN extend to the developing embryo, where supplementation reverses the adverse effect of maternal age on developmental milestones. These findings suggest that late-life restoration of NAD+ levels represents an opportunity to rescue female reproductive function in mammals. Declining oocyte quality is considered an irreversible feature of aging and is rate limiting for human fertility. Bertoldo et al. show that reversing an age-dependent decline in NAD(P)H restores oocyte quality, embryo development, and functional fertility in aged mice. These findings may be relevant to reproductive medicine.
Collapse
Affiliation(s)
- Michael J Bertoldo
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Dave R Listijono
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wing-Hong Jonathan Ho
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | | | - Dale M Goss
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Dulama Richani
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Xing L Jin
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Saabah Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Jared M Campbell
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | | | - Neil A Youngson
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jayanthi Maniam
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ashley S A Wong
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kaisa Selesniemi
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA; Jumpstart Fertility Pty Ltd., Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Catherine Li
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Yiqing Zhao
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Maria B Marinova
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Lynn-Jee Kim
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Laurin Lau
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Rachael M Wu
- Graduate Entry Medical School, University of Limerick, Limerick, Republic of Ireland
| | | | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - David G Le Couteur
- ANZAC Medical Research Institute, University of Sydney, Concord, NSW, Australia
| | - Nigel Turner
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Kirsty A Walters
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ewa Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, UNSW Sydney, NSW, Australia
| | - Christopher O'Neill
- Human Reproduction Unit, Kolling Institute, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - David A Sinclair
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia; Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston MA, USA.
| | - Hayden A Homer
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia; Christopher Chen Oocyte Biology Laboratory, University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital, Herston, QLD, Australia.
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD + metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2021; 22:119-141. [PMID: 33353981 PMCID: PMC7963035 DOI: 10.1038/s41580-020-00313-x] [Citation(s) in RCA: 797] [Impact Index Per Article: 199.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.
Collapse
Affiliation(s)
- Anthony J Covarrubias
- Buck Institute for Research on Aging, Novato, CA, USA
- UCSF Department of Medicine, San Francisco, CA, USA
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
- UCSF Department of Medicine, San Francisco, CA, USA.
| |
Collapse
|
22
|
Salvadores N, Gerónimo-Olvera C, Court FA. Axonal Degeneration in AD: The Contribution of Aβ and Tau. Front Aging Neurosci 2020; 12:581767. [PMID: 33192476 PMCID: PMC7593241 DOI: 10.3389/fnagi.2020.581767] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder, affecting around 35 million people worldwide. Despite enormous efforts dedicated to AD research over decades, there is still no cure for the disease. Misfolding and accumulation of Aβ and tau proteins in the brain constitute a defining signature of AD neuropathology, and mounting evidence has documented a link between aggregation of these proteins and neuronal dysfunction. In this context, progressive axonal degeneration has been associated with early stages of AD and linked to Aβ and tau accumulation. As the axonal degeneration mechanism has been starting to be unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive understanding of the mechanism of axonal destruction in neurodegenerative conditions is therefore critical for the development of new therapies aimed to prevent axonal loss before irreversible neuronal death occurs in AD. Here, we review current evidence of the involvement of Aβ and tau pathologies in the activation of signaling cascades that can promote axonal demise.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Cristian Gerónimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
23
|
A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 2020; 23:1215-1228. [PMID: 32807950 DOI: 10.1038/s41593-020-0689-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.
Collapse
|
24
|
Chandrasekaran K, Salimian M, Konduru SR, Choi J, Kumar P, Long A, Klimova N, Ho CY, Kristian T, Russell JW. Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain 2019; 142:3737-3752. [PMID: 31754701 PMCID: PMC6885680 DOI: 10.1093/brain/awz324] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
In diabetic neuropathy, there is activation of axonal and sensory neuronal degeneration pathways leading to distal axonopathy. The nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylase enzyme, Sirtuin 1 (SIRT1), can prevent activation of these pathways and promote axonal regeneration. In this study, we tested whether increased expression of SIRT1 protein in sensory neurons prevents and reverses experimental diabetic neuropathy induced by a high fat diet (HFD). We generated a transgenic mouse that is inducible and overexpresses SIRT1 protein in neurons (nSIRT1OE Tg). Higher levels of SIRT1 protein were localized to cortical and hippocampal neuronal nuclei in the brain and in nuclei and cytoplasm of small to medium sized neurons in dorsal root ganglia. Wild-type and nSIRT1OE Tg mice were fed with either control diet (6.2% fat) or a HFD (36% fat) for 2 months. HFD-fed wild-type mice developed neuropathy as determined by abnormal motor and sensory nerve conduction velocity, mechanical allodynia, and loss of intraepidermal nerve fibres. In contrast, nSIRT1OE prevented a HFD-induced neuropathy despite the animals remaining hyperglycaemic. To test if nSIRT1OE would reverse HFD-induced neuropathy, nSIRT1OE was activated after mice developed peripheral neuropathy on a HFD. Two months after nSIRT1OE, we observed reversal of neuropathy and an increase in intraepidermal nerve fibre. Cultured adult dorsal root ganglion neurons from nSIRT1OE mice, maintained at high (30 mM) total glucose, showed higher basal and maximal respiratory capacity when compared to adult dorsal root ganglion neurons from wild-type mice. In dorsal root ganglion protein extracts from nSIRT1OE mice, the NAD+-consuming enzyme PARP1 was deactivated and the major deacetylated protein was identified to be an E3 protein ligase, NEDD4-1, a protein required for axonal growth, regeneration and proteostasis in neurodegenerative diseases. Our results indicate that nSIRT1OE prevents and reverses neuropathy. Increased mitochondrial respiratory capacity and NEDD4 activation was associated with increased axonal growth driven by neuronal overexpression of SIRT1. Therapies that regulate NAD+ and thereby target sirtuins may be beneficial in human diabetic sensory polyneuropathy.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sruthi R Konduru
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aaron Long
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nina Klimova
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence to: James W. Russell, MBChB, MS Professor, Department of Neurology, Anatomy and Neurobiology University of Maryland School of Medicine 3S-129, 110 South Paca Street, Baltimore, MD 21201-1642, USA E-mail:
| |
Collapse
|
25
|
Moss KR, Höke A. Targeting the programmed axon degeneration pathway as a potential therapeutic for Charcot-Marie-Tooth disease. Brain Res 2019; 1727:146539. [PMID: 31689415 DOI: 10.1016/j.brainres.2019.146539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The programmed axon degeneration pathway has emerged as an important process contributing to the pathogenesis of several neurological diseases. The most crucial events in this pathway include activation of the central executioner SARM1 and NAD+ depletion, which leads to an energetic failure and ultimately axon destruction. Given the prevalence of this pathway, it is not surprising that inhibitory therapies are currently being developed in order to treat multiple neurological diseases with the same therapy. Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of neurological diseases that may also benefit from this therapeutic approach. To evaluate the appropriateness of this strategy, the contribution of the programmed axon degeneration pathway to the pathogenesis of different CMT subtypes is being actively investigated. The subtypes CMT1A, CMT1B and CMT2D are the first to have been examined. Based on the results from these studies and advances in developing therapies to block the programmed axon degeneration pathway, promising therapeutics for CMT are now on the horizon.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
26
|
Kline RA, Dissanayake KN, Hurtado ML, Martínez NW, Ahl A, Mole AJ, Lamont DJ, Court FA, Ribchester RR, Wishart TM, Murray LM. Altered mitochondrial bioenergetics are responsible for the delay in Wallerian degeneration observed in neonatal mice. Neurobiol Dis 2019; 130:104496. [PMID: 31176719 PMCID: PMC6704473 DOI: 10.1016/j.nbd.2019.104496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative and neuromuscular disorders can manifest throughout the lifespan of an individual, from infant to elderly individuals. Axonal and synaptic degeneration are early and critical elements of nearly all human neurodegenerative diseases and neural injury, however the molecular mechanisms which regulate this process are yet to be fully elucidated. Furthermore, how the molecular mechanisms governing degeneration are impacted by the age of the individual is poorly understood. Interestingly, in mice which are under 3 weeks of age, the degeneration of axons and synapses following hypoxic or traumatic injury is significantly slower. This process, known as Wallerian degeneration (WD), is a molecularly and morphologically distinct subtype of neurodegeneration by which axons and synapses undergo distinct fragmentation and death following a range of stimuli. In this study, we first use an ex-vivo model of axon injury to confirm the significant delay in WD in neonatal mice. We apply tandem mass-tagging quantitative proteomics to profile both nerve and muscle between P12 and P24 inclusive. Application of unbiased in silico workflows to relevant protein identifications highlights a steady elevation in oxidative phosphorylation cascades corresponding to the accelerated degeneration rate. We demonstrate that inhibition of Complex I prevents the axotomy-induced rise in reactive oxygen species and protects axons following injury. Furthermore, we reveal that pharmacological activation of oxidative phosphorylation significantly accelerates degeneration at the neuromuscular junction in neonatal mice. In summary, we reveal dramatic changes in the neuromuscular proteome during post-natal maturation of the neuromuscular system, and demonstrate that endogenous dynamics in mitochondrial bioenergetics during this time window have a functional impact upon regulating the stability of the neuromuscular system.
Collapse
Affiliation(s)
- Rachel A Kline
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Kosala N Dissanayake
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Maica Llavero Hurtado
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Nicolás W Martínez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Alexander Ahl
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Alannah J Mole
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Douglas J Lamont
- Fingerprints Proteomics Facility, Dundee University, Dundee DD1 4HN, United Kingdom
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, United States
| | - Richard R Ribchester
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Thomas M Wishart
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.
| |
Collapse
|
27
|
Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD). Sci Rep 2019; 9:13102. [PMID: 31511627 PMCID: PMC6739475 DOI: 10.1038/s41598-019-49547-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important coenzyme that regulates various metabolic pathways, including glycolysis, β-oxidation, and oxidative phosphorylation. Additionally, NAD serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD glycohydrolase, and it regulates DNA repair, gene expression, energy metabolism, and stress responses. Many studies have demonstrated that NAD metabolism is deeply involved in aging and aging-related diseases. Previously, we demonstrated that nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD), which are analogs of NAD, are significantly increased in Nmnat3-overexpressing mice. However, there is insufficient knowledge about NGD and NHD in vivo. In the present study, we aimed to investigate the metabolism and biochemical properties of these NAD analogs. We demonstrated that endogenous NGD and NHD were found in various murine tissues, and their synthesis and degradation partially rely on Nmnat3 and CD38. We have also shown that NGD and NHD serve as coenzymes for alcohol dehydrogenase (ADH) in vitro, although their affinity is much lower than that of NAD. On the other hand, NGD and NHD cannot be used as substrates for SIRT1, SIRT3, and PARP1. These results reveal the basic metabolism of NGD and NHD and also highlight their biological function as coenzymes.
Collapse
|
28
|
Hikosaka K, Yaku K, Okabe K, Nakagawa T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases. Nutr Neurosci 2019; 24:371-383. [PMID: 31280708 DOI: 10.1080/1028415x.2019.1637504] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that mediates various redox reactions. Particularly, mitochondrial NAD plays a critical role in energy production pathways, including the tricarboxylic acid (TCA) cycle, fatty acid oxidation, and oxidative phosphorylation. NAD also serves as a substrate for ADP-ribosylation and deacetylation by poly(ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response. Numerous studies have demonstrated the involvement of NAD metabolism in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and retinal degenerative diseases. Mitochondrial dysfunction is considered crucial pathogenesis for neurodegenerative diseases such as AD and PD. Maintaining appropriate NAD levels is important for mitochondrial function. Indeed, decreased NAD levels are observed in AD and PD, and supplementation of NAD precursors ameliorates disease phenotypes by activating mitochondrial functions. NAD metabolism also plays an important role in axonal degeneration, a characteristic feature of peripheral neuropathy and neurodegenerative diseases. In addition, dysregulated NAD metabolism is implicated in retinal degenerative diseases such as glaucoma and Leber congenital amaurosis, and NAD metabolism is considered a therapeutic target for these diseases. In this review, we summarize the involvement of NAD metabolism in axon degeneration and various neurodegenerative diseases and discuss perspectives of nutritional intervention using NAD precursors.
Collapse
Affiliation(s)
- Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
29
|
Chandrasekaran K, Anjaneyulu M, Choi J, Kumar P, Salimian M, Ho CY, Russell JW. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD +-dependent SIRT1-PGC-1α-TFAM pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:177-209. [PMID: 31208524 DOI: 10.1016/bs.irn.2019.04.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survival of human peripheral nervous system neurons and associated distal axons is highly dependent on energy. Diabetes invokes a maladaptation in glucose and lipid energy metabolism in adult sensory neurons, axons and Schwann cells. Mitochondrial (Mt) dysfunction has been implicated as an etiological factor in failure of energy homeostasis that results in a low intrinsic aerobic capacity within the neuron. Over time, this energy failure can lead to neuronal and axonal degeneration and results in increased oxidative injury in the neuron and axon. One of the key pathways that is impaired in diabetic peripheral neuropathy (DPN) is the energy sensing pathway comprising the nicotinamide-adenine dinucleotide (NAD+)-dependent Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α)/Mt transcription factor A (TFAM or mtTFA) signaling pathway. Knockout of PGC-1α exacerbates DPN, whereas overexpression of human TFAM is protective. LY379268, a selective metabolomic glutamate receptor 2/3 (mGluR2/3) receptor agonist, also upregulates the SIRT1/PGC-1α/TFAM signaling pathway and prevents DPN through glutamate recycling in Schwann/satellite glial (SG) cells and by improving dorsal root ganglion (DRG) neuronal Mt function. Furthermore, administration of nicotinamide riboside (NR), a precursor of NAD+, prevents and reverses DPN, in part by increasing NAD+ levels and SIRT1 activity. In summary, we review the role of NAD+, mitochondria and the SIRT1-PGC-1α-TFAM pathway both from the perspective of pathogenesis and therapy in DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muragundla Anjaneyulu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Preclinical Division, Syngene International Ltd., Bangalore, India
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
30
|
Peters OM, Lewis EA, Osterloh JM, Weiss A, Salameh JS, Metterville J, Brown RH, Freeman MR. Loss of Sarm1 does not suppress motor neuron degeneration in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 2019; 27:3761-3771. [PMID: 30010873 PMCID: PMC6196650 DOI: 10.1093/hmg/ddy260] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Axon degeneration occurs in all neurodegenerative diseases, but the molecular pathways regulating axon destruction during neurodegeneration are poorly understood. Sterile Alpha and TIR Motif Containing 1 (Sarm1) is an essential component of the prodegenerative pathway driving axon degeneration after axotomy and represents an appealing target for therapeutic intervention in neurological conditions involving axon loss. Amyotrophic lateral sclerosis (ALS) is characterized by rapid, progressive motor neuron degeneration and muscle atrophy, causing paralysis and death. Patient tissue and animal models of ALS show destruction of upper and lower motor neuron cell bodies and loss of their associated axons. Here, we investigate whether loss of Sarm1 can mitigate motor neuron degeneration in the SOD1G93A mouse model of ALS. We found no change in survival, behavioral, electrophysiogical or histopathological outcomes in SOD1G93A mice null for Sarm1. Blocking Sarm1-mediated axon destruction alone is therefore not sufficient to suppress SOD1G93A-induced neurodegeneration. Our data suggest the molecular pathways driving axon loss in ALS may be Sarm1-independent or involve genetic pathways that act in a redundant fashion with Sarm1.
Collapse
Affiliation(s)
- Owen M Peters
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Elizabeth A Lewis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeannette M Osterloh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Johnny S Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jake Metterville
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
31
|
Pieper AA, McKnight SL. Benefits of Enhancing Nicotinamide Adenine Dinucleotide Levels in Damaged or Diseased Nerve Cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:207-217. [PMID: 30787047 DOI: 10.1101/sqb.2018.83.037622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three unbiased lines of research have commonly pointed to the benefits of enhanced levels of nicotinamide adenine dinucleotide (NAD+) to diseased or damaged neurons. Mice carrying a triplication of the gene encoding the culminating enzyme in NAD+ salvage from nicotinamide, NMNAT, are protected from a variety of insults to axons. Protection from Wallerian degeneration of axons is also observed in flies and mice bearing inactivating mutations in the SARM1 gene. Functional studies of the SARM1 gene product have revealed the presence of an enzymatic activity directed toward the hydrolysis of NAD+ Finally, an unbiased drug screen performed in living mice led to the discovery of a neuroprotective chemical designated P7C3. Biochemical studies of the P7C3 chemical show that it can enhance recovery of NAD+ from nicotinamide by activating NAMPT, the first enzyme in the salvage pathway. In combination, these three unrelated research endeavors offer evidence of the benefits of enhanced NAD+ levels to damaged neurons.
Collapse
Affiliation(s)
- Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio 44106, USA
| | - Steven L McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
32
|
NMNAT Proteins that Limit Wallerian Degeneration Also Regulate Critical Period Plasticity in the Visual Cortex. eNeuro 2019; 6:eN-NWR-0277-18. [PMID: 30671537 PMCID: PMC6338469 DOI: 10.1523/eneuro.0277-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Many brain regions go through critical periods of development during which plasticity is enhanced. These critical periods are associated with extensive growth and retraction of thalamocortical and intracortical axons. Here, we investigated whether a signaling pathway that is central in Wallerian axon degeneration also regulates critical period plasticity in the primary visual cortex (V1). Wallerian degeneration is characterized by rapid disintegration of axons once they are separated from the cell body. This degenerative process is initiated by reduced presence of cytoplasmic nicotinamide mononucleotide adenylyltransferases (NMNATs) and is strongly delayed in mice overexpressing cytoplasmic NMNAT proteins, such as WldS mutant mice producing a UBE4b-NMNAT1 fusion protein or NMNAT3 transgenic mice. Here, we provide evidence that in WldS mice and NMNAT3 transgenic mice, ocular dominance (OD) plasticity in the developing visual cortex is reduced. This deficit is only observed during the second half of the critical period. Additionally, we detect an early increase of visual acuity in the V1 of WldS mice. We do not find evidence for Wallerian degeneration occurring during OD plasticity. Our findings suggest that NMNATs do not only regulate Wallerian degeneration during pathological conditions but also control cellular events that mediate critical period plasticity during the physiological development of the cortex.
Collapse
|
33
|
Neumann B, Linton C, Giordano-Santini R, Hilliard MA. Axonal fusion: An alternative and efficient mechanism of nerve repair. Prog Neurobiol 2018; 173:88-101. [PMID: 30500382 DOI: 10.1016/j.pneurobio.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.
Collapse
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia.
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
34
|
Gulshan M, Yaku K, Okabe K, Mahmood A, Sasaki T, Yamamoto M, Hikosaka K, Usui I, Kitamura T, Tobe K, Nakagawa T. Overexpression of Nmnat3 efficiently increases NAD and NGD levels and ameliorates age-associated insulin resistance. Aging Cell 2018; 17:e12798. [PMID: 29901258 PMCID: PMC6052485 DOI: 10.1111/acel.12798] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/26/2018] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important cofactor that regulates various biological processes, including metabolism and gene expression. As a coenzyme, NAD controls mitochondrial respiration through enzymes of the tricarboxylic acid (TCA) cycle, β‐oxidation, and oxidative phosphorylation and also serves as a substrate for posttranslational protein modifications, such as deacetylation and ADP‐ribosylation by sirtuins and poly(ADP‐ribose) polymerase (PARP), respectively. Many studies have demonstrated that NAD levels decrease with aging and that these declines cause various aging‐associated diseases. In contrast, activation of NAD metabolism prevents declines in NAD levels during aging. In particular, dietary supplementation with NAD precursors has been associated with protection against age‐associated insulin resistance. However, it remains unclear which NAD synthesis pathway is important and/or efficient at increasing NAD levels in vivo. In this study, Nmnat3 overexpression in mice efficiently increased NAD levels in various tissues and prevented aging‐related declines in NAD levels. We also demonstrated that Nmnat3‐overexpressing (Nmnat3 Tg) mice were protected against diet‐induced and aging‐associated insulin resistance. Moreover, in skeletal muscles of Nmnat3 Tg mice, TCA cycle activity was significantly enhanced, and the energy source for oxidative phosphorylation was shifted toward fatty acid oxidation. Furthermore, reactive oxygen species (ROS) generation was significantly suppressed in aged Nmnat3 Tg mice. Interestingly, we also found that concentrations of the NAD analog nicotinamide guanine dinucleotide (NGD) were dramatically increased in Nmnat3 Tg mice. These results suggest that Nmnat3 overexpression improves metabolic health and that Nmnat3 is an attractive therapeutic target for metabolic disorders that are caused by aging.
Collapse
Affiliation(s)
- Maryam Gulshan
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Keisuke Yaku
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Keisuke Okabe
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Arshad Mahmood
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Tsutomu Sasaki
- Laboratory of Metabolic Signal; Metabolic Signal Research Center; Institute for Molecular and Cellular Regulation; Gunma University; Maebashi Japan
| | - Masashi Yamamoto
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- Department of Otorhinolaryngology-Head and Neck Surgery; Osaka University Graduate School of Medicine; Osaka Japan
| | - Keisuke Hikosaka
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
| | - Isao Usui
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal; Metabolic Signal Research Center; Institute for Molecular and Cellular Regulation; Gunma University; Maebashi Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
| | - Takashi Nakagawa
- Frontier Research Core for Life Sciences; University of Toyama; Toyama Japan
- Department of Metabolism and Nutrition; Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Toyama Japan
- Institute of Natural Medicine; University of Toyama; Toyama Japan
| |
Collapse
|
35
|
Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE. The Molecular Interplay between Axon Degeneration and Regeneration. Dev Neurobiol 2018; 78:978-990. [PMID: 30022605 DOI: 10.1002/dneu.22627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Neurons face a series of morphological and molecular changes following trauma and in the progression of neurodegenerative disease. In neurons capable of mounting a spontaneous regenerative response, including invertebrate neurons and mammalian neurons of the peripheral nervous system (PNS), axons regenerate from the proximal side of the injury and degenerate on the distal side. Studies of Wallerian degeneration slow (WldS /Ola) mice have revealed that a level of coordination between the processes of axon regeneration and degeneration occurs during successful repair. Here, we explore how shared cellular and molecular pathways that regulate both axon regeneration and degeneration coordinate the two distinct outcomes in the proximal and distal axon segments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Mardja Bueno
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Victoria Julian
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Sienna Drake
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Alexandra B Byrne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alyson E Fournier
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
36
|
Stassart RM, Möbius W, Nave KA, Edgar JM. The Axon-Myelin Unit in Development and Degenerative Disease. Front Neurosci 2018; 12:467. [PMID: 30050403 PMCID: PMC6050401 DOI: 10.3389/fnins.2018.00467] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are electrically excitable, cable-like neuronal processes that relay information between neurons within the nervous system and between neurons and peripheral target tissues. In the central and peripheral nervous systems, most axons over a critical diameter are enwrapped by myelin, which reduces internodal membrane capacitance and facilitates rapid conduction of electrical impulses. The spirally wrapped myelin sheath, which is an evolutionary specialisation of vertebrates, is produced by oligodendrocytes and Schwann cells; in most mammals myelination occurs during postnatal development and after axons have established connection with their targets. Myelin covers the vast majority of the axonal surface, influencing the axon's physical shape, the localisation of molecules on its membrane and the composition of the extracellular fluid (in the periaxonal space) that immerses it. Moreover, myelinating cells play a fundamental role in axonal support, at least in part by providing metabolic substrates to the underlying axon to fuel its energy requirements. The unique architecture of the myelinated axon, which is crucial to its function as a conduit over long distances, renders it particularly susceptible to injury and confers specific survival and maintenance requirements. In this review we will describe the normal morphology, ultrastructure and function of myelinated axons, and discuss how these change following disease, injury or experimental perturbation, with a particular focus on the role the myelinating cell plays in shaping and supporting the axon.
Collapse
Affiliation(s)
- Ruth M. Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Julia M. Edgar
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
37
|
Liu X, Liu M, Tang C, Xiang Z, Li Q, Ruan X, Xiong K, Zheng L. Overexpression of Nmnat improves the adaption of health span in aging Drosophila. Exp Gerontol 2018; 108:276-283. [DOI: 10.1016/j.exger.2018.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
|
38
|
Davila A, Liu L, Chellappa K, Redpath P, Nakamaru-Ogiso E, Paolella LM, Zhang Z, Migaud ME, Rabinowitz JD, Baur JA. Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. eLife 2018; 7:33246. [PMID: 29893687 PMCID: PMC6013257 DOI: 10.7554/elife.33246] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial NAD levels influence fuel selection, circadian rhythms, and cell survival under stress. It has alternately been argued that NAD in mammalian mitochondria arises from import of cytosolic nicotinamide (NAM), nicotinamide mononucleotide (NMN), or NAD itself. We provide evidence that murine and human mitochondria take up intact NAD. Isolated mitochondria preparations cannot make NAD from NAM, and while NAD is synthesized from NMN, it does not localize to the mitochondrial matrix or effectively support oxidative phosphorylation. Treating cells with nicotinamide riboside that is isotopically labeled on the nicotinamide and ribose moieties results in the appearance of doubly labeled NAD within mitochondria. Analogous experiments with doubly labeled nicotinic acid riboside (labeling cytosolic NAD without labeling NMN) demonstrate that NAD(H) is the imported species. Our results challenge the long-held view that the mitochondrial inner membrane is impermeable to pyridine nucleotides and suggest the existence of an unrecognized mammalian NAD (or NADH) transporter.
Collapse
Affiliation(s)
- Antonio Davila
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,PARC, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Ling Liu
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, United States
| | - Karthikeyani Chellappa
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Philip Redpath
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Lauren M Paolella
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Marie E Migaud
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.,Mitchell Cancer Institute, University of South Alabama, Mobile, United States
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, United States
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
39
|
Röderer P, Klatt L, John F, Theis V, Winklhofer KF, Theiss C, Matschke V. Increased ROS Level in Spinal Cord of Wobbler Mice due to Nmnat2 Downregulation. Mol Neurobiol 2018; 55:8414-8424. [PMID: 29549647 DOI: 10.1007/s12035-018-0999-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis is a devastating motor neuron disease and to this day not curable. While 5-10% of patients inherit the disease (familiar ALS), up to 95% of patients are diagnosed with the sporadic form (sALS). ALS is characterized by the degeneration of upper motor neurons in the cerebral cortex and of lower motor neurons in the brainstem and spinal cord. The wobbler mouse resembles almost all phenotypical hallmarks of human sALS patients and is therefore an excellent motor neuron disease model. The motor neuron disease of the wobbler mouse develops over a time course of around 40 days and can be divided into three phases: p0, presymptomatic; p20, early clinical; and p40, stable clinical phase. Recent findings suggest an essential implication of the NAD+-producing enzyme Nmnat2 in neurodegeneration as well as maintenance of healthy axons. Here, we were able to show a significant downregulation of both gene and protein expression of Nmnat2 in the spinal cord of the wobbler mice at the stable clinical phase. The product of the enzyme NAD+ is also significantly reduced, and the values of the reactive oxygen species are significantly increased in the spinal cord of the wobbler mouse at p40. Thus, the deregulated expression of Nmnat2 appears to have a great influence on the cellular stress in the spinal cord of wobbler mice.
Collapse
Affiliation(s)
- Pascal Röderer
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lara Klatt
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Felix John
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Verena Theis
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Department of Molecular Cell Biology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Veronika Matschke
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany. .,Institute of Anatomy, Department of Cytology, Ruhr University Bochum, Universitätsstr. 150, Building MA 5/52, 44780, Bochum, Germany.
| |
Collapse
|
40
|
Abstract
Nicotinic acid and nicotinamide, collectively referred to as niacin, are nutritional precursors of the bioactive molecules nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). NAD and NADP are important cofactors for most cellular redox reactions, and as such are essential to maintain cellular metabolism and respiration. NAD also serves as a cosubstrate for a large number of ADP-ribosylation enzymes with varied functions. Among the NAD-consuming enzymes identified to date are important genetic and epigenetic regulators, e.g., poly(ADP-ribose)polymerases and sirtuins. There is rapidly growing knowledge of the close connection between dietary niacin intake, NAD(P) availability, and the activity of NAD(P)-dependent epigenetic regulator enzymes. It points to an exciting role of dietary niacin intake as a central regulator of physiological processes, e.g., maintenance of genetic stability, and of epigenetic control mechanisms modulating metabolism and aging. Insight into the role of niacin and various NAD-related diseases ranging from cancer, aging, and metabolic diseases to cardiovascular problems has shifted our view of niacin as a vitamin to current views that explore its potential as a therapeutic.
Collapse
Affiliation(s)
- James B Kirkland
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
41
|
Galindo R, Banks Greenberg M, Araki T, Sasaki Y, Mehta N, Milbrandt J, Holtzman DM. NMNAT3 is protective against the effects of neonatal cerebral hypoxia-ischemia. Ann Clin Transl Neurol 2017; 4:722-738. [PMID: 29046881 PMCID: PMC5634348 DOI: 10.1002/acn3.450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To determine whether the NAD+ biosynthetic protein, nicotinamide mononucleotide adenylyltransferase-3 (NMNAT3), is a neuroprotective inducible enzyme capable of decreasing cerebral injury after neonatal hypoxia-ischemia (H-I) and reducing glutamate receptor-mediated excitotoxic neurodegeneration of immature neurons. METHODS Using NMNAT3-overexpressing mice we investigated whether increases in brain NMNAT3 reduced cerebral tissue loss following H-I. We then employed biochemical methods from injured neonatal brains to examine the inducibility of NMNAT3 and the mechanism of NMNAT3-dependent neuroprotection. Using AAV8-mediated vectors for in vitro neuronal NMNAT3 knockdown, we then examine the endogenous role of this protein on immature neuronal survival prior and following NMDA receptor-mediated excitotoxicity. RESULTS NMNAT3 mRNA and protein levels increased after neonatal H-I. In addition, NMNAT3 overexpression decreased cortical and hippocampal tissue loss 7 days following injury. We further show that the NMNAT3 neuroprotective mechanism involves a decrease in calpastatin degradation, and a decrease in caspase-3 activity and calpain-mediated cleavage. Conversely, NMNAT3 knockdown of cortical and hippocampal neurons in vitro caused neuronal degeneration and increased excitotoxic cell death. The neurodegenerative effects of NMNAT3 knockdown were counteracted by exogenous upregulation of NMNAT3. CONCLUSIONS Our observations provide new insights into the neuroprotective mechanisms of NMNATs in the injured developing brain, adding NMNAT3 as an important neuroprotective enzyme in neonatal H-I via inhibition of apoptotic and necrotic neurodegeneration. Interestingly, we find that endogenous NMNAT3 is an inducible protein important for maintaining the survival of immature neurons. Future studies aimed at uncovering the mechanisms of NMNAT3 upregulation and neuroprotection may offer new therapies against the effects of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Rafael Galindo
- Department of NeurologyHope Center for Neurological DisordersWashington UniversitySt. LouisMissouri63110
| | - Marianne Banks Greenberg
- Department of NeurologyHope Center for Neurological DisordersWashington UniversitySt. LouisMissouri63110
| | - Toshiyuki Araki
- Department of Peripheral Nervous System ResearchNational Institute of NeuroscienceKodairaTokyoJapan
| | - Yo Sasaki
- Department of GeneticsWashington UniversitySt. LouisMissouri63110
| | - Nehali Mehta
- Department of NeurologyHope Center for Neurological DisordersWashington UniversitySt. LouisMissouri63110
| | | | - David M. Holtzman
- Department of NeurologyHope Center for Neurological DisordersWashington UniversitySt. LouisMissouri63110
| |
Collapse
|
42
|
Sultani G, Samsudeen AF, Osborne B, Turner N. NAD + : A key metabolic regulator with great therapeutic potential. J Neuroendocrinol 2017; 29. [PMID: 28718934 DOI: 10.1111/jne.12508] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is a ubiquitous metabolite that serves an essential role in the catabolism of nutrients. Recently, there has been a surge of interest in NAD+ biology, with the recognition that NAD+ influences many biological processes beyond metabolism, including transcription, signalling and cell survival. There are a multitude of pathways involved in the synthesis and breakdown of NAD+ , and alterations in NAD+ homeostasis have emerged as a common feature of a range of disease states. Here, we provide an overview of NAD+ metabolism and summarise progress on the development of NAD+ -related therapeutics.
Collapse
Affiliation(s)
- G Sultani
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - A F Samsudeen
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - B Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| | - N Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, NSW, Australia
| |
Collapse
|
43
|
Vaur P, Brugg B, Mericskay M, Li Z, Schmidt MS, Vivien D, Orset C, Jacotot E, Brenner C, Duplus E. Nicotinamide riboside, a form of vitamin B 3, protects against excitotoxicity-induced axonal degeneration. FASEB J 2017; 31:5440-5452. [PMID: 28842432 DOI: 10.1096/fj.201700221rr] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/31/2017] [Indexed: 11/11/2022]
Abstract
NAD+ depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD+ was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD+ to NR prompted us to probe the effects of NAD+ and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD+ reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD+ Moreover, the stronger effect of NR compared to NAD+ depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD+ and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD+ in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD+ homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration.
Collapse
Affiliation(s)
- Pauline Vaur
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Bernard Brugg
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Mathias Mericskay
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Unité Signalisation et Physiopathologie Cardiovasculaire, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Zhenlin Li
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Equipe de Recherche Labellisée (ERL) U1164, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Denis Vivien
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Cyrille Orset
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Etienne Jacotot
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Eric Duplus
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France;
| |
Collapse
|
44
|
Brazill JM, Li C, Zhu Y, Zhai RG. NMNAT: It's an NAD + synthase… It's a chaperone… It's a neuroprotector. Curr Opin Genet Dev 2017; 44:156-162. [PMID: 28445802 DOI: 10.1016/j.gde.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Nicotinamide mononucleotide adenylyl transferases (NMNATs) are a family of highly conserved proteins indispensable for cellular homeostasis. NMNATs are classically known for their enzymatic function of catalyzing NAD+ synthesis, but also have gained a reputation as essential neuronal maintenance factors. NMNAT deficiency has been associated with various human diseases with pronounced consequences on neural tissues, underscoring the importance of the neuronal maintenance and protective roles of these proteins. New mechanistic studies have challenged the role of NMNAT-catalyzed NAD+ production in delaying Wallerian degeneration and have specified new mechanisms of NMNAT's chaperone function critical for neuronal health. Progress in understanding the regulation of NMNAT has uncovered a neuronal stress response with great therapeutic promise for treating various neurodegenerative conditions.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
45
|
Inman DM, Harun-Or-Rashid M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front Neurosci 2017; 11:146. [PMID: 28424571 PMCID: PMC5371671 DOI: 10.3389/fnins.2017.00146] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Axons can be several orders of magnitude longer than neural somas, presenting logistical difficulties in cargo trafficking and structural maintenance. Keeping the axon compartment well supplied with energy also presents a considerable challenge; even seemingly subtle modifications of metabolism can result in functional deficits and degeneration. Axons require a great deal of energy, up to 70% of all energy used by a neuron, just to maintain the resting membrane potential. Axonal energy, in the form of ATP, is generated primarily through oxidative phosphorylation in the mitochondria. In addition, glial cells contribute metabolic intermediates to axons at moments of high activity or according to need. Recent evidence suggests energy disruption is an early contributor to pathology in a wide variety of neurodegenerative disorders characterized by axonopathy. However, the degree to which the energy disruption is intrinsic to the axon vs. associated glia is not clear. This paper will review the role of energy availability and utilization in axon degeneration in glaucoma, a chronic axonopathy of the retinal projection.
Collapse
Affiliation(s)
- Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA
| | | |
Collapse
|
46
|
Ali YO, Bradley G, Lu HC. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci Rep 2017; 7:43846. [PMID: 28266613 PMCID: PMC5358788 DOI: 10.1038/srep43846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer’s, Huntington’s, Parkinson’s diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.
Collapse
Affiliation(s)
- Yousuf O Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gillian Bradley
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
47
|
Kuo CC, Su HL, Chang TL, Chiang CY, Sheu ML, Cheng FC, Chen CJ, Sheehan J, Pan HC. Prevention of Axonal Degeneration by Perineurium Injection of Mitochondria in a Sciatic Nerve Crush Injury Model. Neurosurgery 2017; 80:475-488. [PMID: 28362972 DOI: 10.1093/neuros/nyw090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 11/23/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Axon degeneration leads to cytoskeletal disassembly, metabolism imbalance, and mitochondrial dysfunction during neurodegeneration or nerve injury. OBJECTIVE In this study, we assess the possibility of mitigating axon degeneration by local injection of mitochondria in a crushed sciatic nerve. METHODS Sciatic nerve explants cocultured with mitochondria were assessed for the optimal dosage in local injection and nerve regeneration potential. The left sciatic nerve was crushed in Sprague-Dawley rats and then local injection of mitochondria into the distal end of the injured nerve was conducted for further assessment. RESULTS Mitochondrial coculture attenuated cytoskeletal loss and oxidative stress in isolated nerve explants. In Vivo analyses also showed that mitochondrial transplantation improved animal neurobehaviors, electrophysiology of nerve conduction, and muscle activities. Mitochondria injection significantly attenuated the oxidative stress and increased the expression of neurotrophic factors both in injured nerves and denervated muscles, as well as restored muscular integrity, and increased the pool of muscular progenitor cells and total muscle weight. CONCLUSION Mitochondria injection can protect injured nerves from axonal degeneration both in Vitro and in Vivo. This improvement was accompanied with the expression of neurotrophic factors as well as the reduction of oxidative stress, which may account for the functional recovery of both injured nerves and denervated muscles.
Collapse
Affiliation(s)
- Chi-Chung Kuo
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, China
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, China
- School of Medicine, Tzu Chi University, Hualien, Taiwan, China
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, China
| | - Tzu-Lin Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, China
| | - Chien-Yi Chiang
- Institute of Biomedical Sciences, Agriculture Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, China
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, Agriculture Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, China
| | - Fu-Chou Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, China
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, China
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan, China
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, China
| |
Collapse
|
48
|
Abstract
Abstract
Axonal loss is an important process both during development and diseases of the nervous system. While the molecular mechanisms that mediate axonal loss are largely elusive, modern imaging technology affords an increasingly clear view of the cellular processes that allow nerve cells to shed individiual axon branches or even dismantle entire parts of their axonal projections. The present review discusses the characteristics of post-traumatic Wallerian degeneration, the process of axonal loss currently best understood. Subsequently, the properties of a number of recently discovered axonal loss phenomena are described. These phenomena explain some of the axonal loss that occurs locally after axon transection, during neuro-inflammatory insults, and as part of normal neurodevelopment.
Collapse
|
49
|
Saitoh F, Wakatsuki S, Tokunaga S, Fujieda H, Araki T. Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation. Sci Rep 2016; 6:29856. [PMID: 27432639 PMCID: PMC4949416 DOI: 10.1038/srep29856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Rapid saltatory nerve conduction is facilitated by myelin structure, which is produced by Schwann cells (SC) in the peripheral nervous system (PNS). Proper development and degeneration/regeneration after injury requires regulated phenotypic changes of SC. We have previously shown that glutamate can induce SC proliferation in culture. Here we show that glutamate signals through metabotropic glutamate receptor 2 (mGluR2) to induce Erk phosphorylation in SC. mGluR2-elicited Erk phosphorylation requires ErbB2/3 receptor tyrosine kinase phosphorylation to limit the signaling cascade that promotes phosphorylation of Erk, but not Akt. We found that Gβγ and Src are involved in subcellular signaling downstream of mGluR2. We also found that glutamate can transform myelinating SC to proliferating SC, while inhibition of mGluR2 signaling can inhibit demyelination of injured nerves in vivo. These data suggest pathophysiological significance of mGluR2 signaling in PNS and its possible therapeutic importance to combat demyelinating disorders including Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Fuminori Saitoh
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shinji Tokunaga
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroki Fujieda
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
50
|
Chang B, Quan Q, Lu S, Wang Y, Peng J. Molecular mechanisms in the initiation phase of Wallerian degeneration. Eur J Neurosci 2016; 44:2040-8. [PMID: 27062141 DOI: 10.1111/ejn.13250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Axonal degeneration is an early hallmark of nerve injury and many neurodegenerative diseases. The discovery of the Wallerian degeneration slow mutant mouse, in which axonal degeneration is delayed, revealed that Wallerian degeneration is an active progress and thereby illuminated the mechanisms underlying axonal degeneration. Nicotinamide mononucleotide adenylyltransferase 2 and sterile alpha and armadillo motif-containing protein 1 play essential roles in the maintenance of axon integrity by regulating the level of nicotinamide adenine dinucleotide, which seems to be the key molecule involved in the maintenance of axonal health. However, the function of nicotinamide mononucleotide remains debatable, and we discuss two apparently conflicting roles of nicotinamide mononucleotide in Wallerian degeneration. In this article, we focus on the roles of these molecules in the initiation phase of Wallerian degeneration to improve our understanding of the mechanisms underpinning this phenomenon.
Collapse
Affiliation(s)
- Biao Chang
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Qi Quan
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, China
| | - Jiang Peng
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, China
| |
Collapse
|