1
|
Sepúlveda-Cuéllar RD, Soria-Medina DA, Cañedo-Solares I, Gómez-Chávez F, Molina-López LM, Cruz-Martínez MY, Correa D. Controversies and insights into cytokine regulation of neurogenesis and behavior in adult rodents. Front Immunol 2025; 16:1550660. [PMID: 40352932 PMCID: PMC12061686 DOI: 10.3389/fimmu.2025.1550660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Adult learning, memory, and social interaction partially depend on neurogenesis in two regions: the hippocampus and the subventricular zone. There is evidence that the immune system is important for these processes in pathological situations, but there is no review of its role in non-pathological or near-physiological conditions. Although further research is warranted in this area, some conclusions can be drawn. Intrusive LyC6hi monocytes and autoreactive CD4+ T cells have a positive impact on neurogenesis and behavior, but the latter are deleterious if specific to external antigens. Mildly activated microglia play a crucial role in promoting these processes, by eliminating apoptotic neuronal progenitors and producing low levels of interleukins, which increase if the cells are activated, leading to inhibition of neurogenesis. Chemokines are poorly studied, but progenitor cells and neurons express their receptors, which appear important for migration and maturation. The few works that jointly analyzed neurogenesis and behavior showed congruent effects of immune cells and cytokines. In conclusion, the immune system components -mostly local- seem of utmost importance for the control of behavior under non-pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Daniel Sepúlveda-Cuéllar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Diego Alberto Soria-Medina
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría (INP), Secretaría de Salud, Ciudad de México, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Liliana Monserrat Molina-López
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - María Yolanda Cruz-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Dolores Correa
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| |
Collapse
|
2
|
Prosperi G, Marchetti N, D'Elia A, Massari R, Giusto M, Pietrodangelo A, Rossi T, Nucara A, Scavizzi F, Strimpakos G, Marinelli S, Mandillo S, D'Amato FR, Farioli-Vecchioli S. Inhalation of nanoplastics in the mouse model: Tissue bio-distribution and effects on the olfactory system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178853. [PMID: 39970562 DOI: 10.1016/j.scitotenv.2025.178853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
The impact of plastic fragments on human health is currently under investigation, with nanoplastics (NPs) being particularly concerning due to their small size. This allows them to be inhaled, pass through blood barriers, and reach various organs. In this study, we evaluated the effects of airborne NPs on the mouse olfactory system, which is a primary target of NPs inhalation. Adult mice were exposed to an aerosol solution containing synthetic polystyrene nanoplastics (PS-NPs) labelled with a red fluorophore for 5 h a day over 7 days. Biodistribution analysis revealed that PS-NPs accumulated in tissues, such as brain, lung, adipose tissue, and testicles, but were cleared after one month. This study is the first to investigate the effects of inhaled PS-NPs on the olfactory bulb (OB) and subventricular neurogenesis in adult mice. We observed long-term impairments in olfactory discrimination, decreased neuronal functionality, and pro-inflammatory activation in microglia in OB following PS-NPs exposure. Surprisingly, we noted a compensatory increase in olfactory neurogenesis, although insufficient to counteract the olfaction impairment induced by the PS-NPs. These results provide novel insights into the potential neurotoxic effects of inhaled PS-NPs and emphasize the importance of assessing occupational and environmental exposure to these pollutants.
Collapse
Affiliation(s)
- G Prosperi
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - N Marchetti
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy; PhD Course in Sciences of Nutrition, Aging, Metabolism and Gender Pathologies, Catholic University of Rome, 00100 Rome, Italy
| | - A D'Elia
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - R Massari
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - M Giusto
- Institute of Atmospheric Pollution Research, CNR, Monterotondo St., Rome 00015, Italy
| | - A Pietrodangelo
- Institute of Atmospheric Pollution Research, CNR, Monterotondo St., Rome 00015, Italy
| | - T Rossi
- Institute of Atmospheric Pollution Research, CNR, Monterotondo St., Rome 00015, Italy
| | - A Nucara
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - F Scavizzi
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - G Strimpakos
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - S Marinelli
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - S Mandillo
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - F R D'Amato
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy.
| | - S Farioli-Vecchioli
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy.
| |
Collapse
|
3
|
Laub V, Nan E, Elias L, Donaldson IJ, Bentsen M, Rusling LA, Schupp J, Lun JH, Plate KH, Looso M, Langer JD, Günther S, Bobola N, Schulte D. Integrated multi-omics analysis of PBX1 in mouse adult neural stem- and progenitor cells identifies a transcriptional module that functionally links PBX1 to TCF3/4. Nucleic Acids Res 2024; 52:12262-12280. [PMID: 39377397 PMCID: PMC11551771 DOI: 10.1093/nar/gkae864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Developmental transcription factors act in networks, but how these networks achieve cell- and tissue specificity is still poorly understood. Here, we explored pre-B cell leukemia homeobox 1 (PBX1) in adult neurogenesis combining genomic, transcriptomic, and proteomic approaches. ChIP-seq analysis uncovered PBX1 binding to numerous genomic sites. Integration of PBX1 ChIP-seq with ATAC-seq data predicted interaction partners, which were subsequently validated by mass spectrometry. Whole transcriptome spatial RNA analysis revealed shared expression dynamics of Pbx1 and interacting factors. Among these were class I bHLH proteins TCF3 and TCF4. RNA-seq following Pbx1, Tcf3 or Tcf4 knockdown identified proliferation- and differentiation associated genes as shared targets, while sphere formation assays following knockdown argued for functional cooperativity of PBX1 and TCF3 in progenitor cell proliferation. Notably, while physiological PBX1-TCF interaction has not yet been described, chromosomal translocation resulting in genomic TCF3::PBX1 fusion characterizes a subtype of acute lymphoblastic leukemia. Introducing Pbx1 into Nalm6 cells, a pre-B cell line expressing TCF3 but lacking PBX1, upregulated the leukemogenic genes BLK and NOTCH3, arguing that functional PBX1-TCF cooperativity likely extends to hematopoiesis. Our study hence uncovers a transcriptional module orchestrating the balance between progenitor cell proliferation and differentiation in adult neurogenesis with potential implications for leukemia etiology.
Collapse
Affiliation(s)
- Vera Laub
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
| | - Elisabeth Nan
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
| | - Lena Elias
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
| | - Ian J Donaldson
- University of Manchester, Faculty of Biology, Medicine and Health, Bioinformatics Core Facility, Manchester, M13 9PT, UK
| | - Mette Bentsen
- Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany
| | - Leona A Rusling
- Max Planck Institute for Biophysics, Proteomics, and Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Jonathan Schupp
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
- Goethe University, Frankfurt Cancer Institute, 60528 Frankfurt am Main, Germany
| | - Jennifer H Lun
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
- Goethe University, Frankfurt Cancer Institute, 60528 Frankfurt am Main, Germany
| | - Karl H Plate
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
- Goethe University, Frankfurt Cancer Institute, 60528 Frankfurt am Main, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany
| | - Julian D Langer
- Max Planck Institute for Biophysics, Proteomics, and Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, 61231 Bad Nauheim, Germany
| | - Nicoletta Bobola
- University of Manchester, Faculty of Biology, Medicine and Health, Manchester, M13 9PT, UK
| | - Dorothea Schulte
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
| |
Collapse
|
4
|
Kim Y, Ko HR, Hwang I, Ahn JY. ErbB3 binding protein 1 contributes to adult hippocampal neurogenesis by modulating Bmp4 and Ascl1 signaling. BMB Rep 2024; 57:182-187. [PMID: 37817439 PMCID: PMC11058358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Neural stem cells (NSCs) in the adult hippocampus divide infrequently; the endogenous molecules modulating adult hippocampal neurogenesis (AHN) remain largely unknown. Here, we show that ErbB3 binding protein 1 (Ebp1), which plays important roles in embryonic neurodevelopment, acts as an essential modulator of adult neurogenic factors. In vivo analysis of Ebp1 neuron depletion mice showed impaired AHN with a low number of hippocampal NSCs and neuroblasts. Ebp1 leads to transcriptional repression of Bmp4 and suppression of Ascl1 promoter methylation in the dentate gyrus of the adult hippocampus reflecting an unusually high level of Bmp4 and low Ascl1 level in neurons of Ebp1-deficient mice. Therefore, our findings suggests that Ebp1 could act as an endogenous modulator of the interplay between Bmp4 and Ascl1/Notch signaling, contributing to AHN. [BMB Reports 2024; 57(4): 182-187].
Collapse
Affiliation(s)
- Youngkwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
5
|
Lozano-Ros A, Martínez-Ginés ML, García-Domínguez JM, Salvador-Martín S, Goicochea-Briceño H, Cuello JP, Meldaña-Rivera A, Higueras-Hernández Y, Sanjurjo-Sáez M, Álvarez-Sala-Walther LA, López-Fernández LA. Changes in the Expression of TGF-Beta Regulatory Pathway Genes Induced by Vitamin D in Patients with Relapsing-Remitting Multiple Sclerosis. Int J Mol Sci 2023; 24:14447. [PMID: 37833895 PMCID: PMC10572771 DOI: 10.3390/ijms241914447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Vitamin D is an environmental factor related to multiple sclerosis that plays a significant role in immune regulation. TGF-β is a superfamily of cytokines with an important dual effect on the immune system. TGF-β inhibits the Th1 response while facilitating the preservation of regulatory T cells (FOXP3+) in an immunoregulatory capacity. However, when IL-6 is present, it stimulates the Th17 response. Our aim was to analyze the regulatory effect of vitamin D on the in vivo TGF-β signaling pathway in patients with relapsing-remitting multiple sclerosis (RRMS). A total of 21 patients with vitamin D levels < 30 ng/mL were recruited and supplemented with oral vitamin D. All patients were receiving disease-modifying therapy, with the majority being on natalizumab. Expression of SMAD7, ERK1, ZMIZ1, BMP2, BMPRII, BMP4, and BMP5 was measured in CD4+ lymphocytes isolated from peripheral blood at baseline and one and six months after supplementation. SMAD7 was overexpressed at six months with respect to baseline and month one. ERK1 was overexpressed at six months with respect to month one of treatment. No significant differences in expression were observed for the remaining genes. No direct correlation was found with serum vitamin D levels. BMPRII expression changed differentially in non-natalizumab- versus natalizumab-treated patients. Changes were observed in the expression of ERK1, BMP2, and BMP5 based on disease activity measured using the Rio-Score, BMP2 in patients who had relapses, and BMP5 in those whose EDSS worsened. Our results suggest indirect regulation of vitamin D in TGF-β pathway genes in patients with RRMS.
Collapse
Affiliation(s)
- Alberto Lozano-Ros
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (M.L.M.-G.); (J.M.G.-D.); (H.G.-B.); (J.P.C.); (A.M.-R.); (Y.H.-H.)
| | - María L. Martínez-Ginés
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (M.L.M.-G.); (J.M.G.-D.); (H.G.-B.); (J.P.C.); (A.M.-R.); (Y.H.-H.)
| | - José M. García-Domínguez
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (M.L.M.-G.); (J.M.G.-D.); (H.G.-B.); (J.P.C.); (A.M.-R.); (Y.H.-H.)
| | - Sara Salvador-Martín
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (M.S.-S.)
| | - Haydee Goicochea-Briceño
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (M.L.M.-G.); (J.M.G.-D.); (H.G.-B.); (J.P.C.); (A.M.-R.); (Y.H.-H.)
| | - Juan P. Cuello
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (M.L.M.-G.); (J.M.G.-D.); (H.G.-B.); (J.P.C.); (A.M.-R.); (Y.H.-H.)
| | - Ariana Meldaña-Rivera
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (M.L.M.-G.); (J.M.G.-D.); (H.G.-B.); (J.P.C.); (A.M.-R.); (Y.H.-H.)
| | - Yolanda Higueras-Hernández
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (M.L.M.-G.); (J.M.G.-D.); (H.G.-B.); (J.P.C.); (A.M.-R.); (Y.H.-H.)
| | - María Sanjurjo-Sáez
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (M.S.-S.)
| | - Luis A. Álvarez-Sala-Walther
- Servicio de Medicina Interna, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Luis A. López-Fernández
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (S.S.-M.); (M.S.-S.)
| |
Collapse
|
6
|
Blasco-Chamarro L, Fariñas I. Fine-tuned rest: unveiling the regulatory landscape of adult quiescent neural stem cells. Neuroscience 2023:S0306-4522(23)00298-1. [PMID: 37437796 DOI: 10.1016/j.neuroscience.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Cell quiescence is an essential mechanism that allows cells to temporarily halt proliferation while preserving the potential to resume it at a later time. The molecular mechanisms underlying cell quiescence are complex and involve the regulation of various signaling pathways, transcription factors and epigenetic modifications. The importance of unveiling the mechanisms regulating the quiescent state is undeniable, as its long-term maintenance is key to sustain tissue homeostasis throughout life. Neural stem cells (NSCs) are maintained in the subependymal zone (SEZ) niche of adult mammalian brains mostly as long-lasting quiescent cells, owing to multiple intrinsic and extrinsic cues that actively regulate this state. Differently from other non-proliferative states, quiescence is a reversible and tightly regulated condition that can re-activate to support the formation of new neurons throughout adult lifespan. Decoding its regulatory mechanisms in homeostasis and unveiling how it is modulated in the context of the aged brain or during tumorigenesis, could bring us closer to the development of new potential strategies to intervene in adult neurogenesis with therapeutic purposes. Starting with a general conceptualization of the quiescent state in different stem cell niches, we here review what we have learned about NSC quiescence in the SEZ, encompassing the experimental strategies used for its study, to end up discussing the modulation of quiescence in the context of a physiology or pathological NSC dysregulation.
Collapse
Affiliation(s)
- Laura Blasco-Chamarro
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain
| | - Isabel Fariñas
- Biomedical Research Network on Neurodegenerative Diseases (CIBERNED); Department of Cell Biology; Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, Spain.
| |
Collapse
|
7
|
Alzheimer's Disease and Impaired Bone Microarchitecture, Regeneration and Potential Genetic Links. Life (Basel) 2023; 13:life13020373. [PMID: 36836731 PMCID: PMC9963274 DOI: 10.3390/life13020373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's Disease (AD) and osteoporosis are both age-related degenerative diseases. Many studies indicate that these two diseases share common pathogenesis mechanisms. In this review, the osteoporotic phenotype of AD mouse models was discussed, and shared mechanisms such as hormonal imbalance, genetic factors, similar signaling pathways and impaired neurotransmitters were identified. Moreover, the review provides recent data associated with these two diseases. Furthermore, potential therapeutic approaches targeting both diseases were discussed. Thus, we proposed that preventing bone loss should be one of the most important treatment goals in patients with AD; treatment targeting brain disorders is also beneficial for osteoporosis.
Collapse
|
8
|
Karimy JK, Newville JC, Sadegh C, Morris JA, Monuki ES, Limbrick DD, McAllister Ii JP, Koschnitzky JE, Lehtinen MK, Jantzie LL. Outcomes of the 2019 hydrocephalus association workshop, "Driving common pathways: extending insights from posthemorrhagic hydrocephalus". Fluids Barriers CNS 2023; 20:4. [PMID: 36639792 PMCID: PMC9838022 DOI: 10.1186/s12987-023-00406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The Hydrocephalus Association (HA) workshop, Driving Common Pathways: Extending Insights from Posthemorrhagic Hydrocephalus, was held on November 4 and 5, 2019 at Washington University in St. Louis. The workshop brought together a diverse group of basic, translational, and clinical scientists conducting research on multiple hydrocephalus etiologies with select outside researchers. The main goals of the workshop were to explore areas of potential overlap between hydrocephalus etiologies and identify drug targets that could positively impact various forms of hydrocephalus. This report details the major themes of the workshop and the research presented on three cell types that are targets for new hydrocephalus interventions: choroid plexus epithelial cells, ventricular ependymal cells, and immune cells (macrophages and microglia).
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Family Medicine, Mountain Area Health Education Center - Boone, North Carolina, 28607, USA
| | - Jessie C Newville
- Department of Pediatrics and Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Cameron Sadegh
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, MA, Boston, 02114, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jill A Morris
- National Institute of Neurological Disorders and Stroke, Neuroscience Center, National Institutes of Health, 6001 Executive Blvd, NSC Rm 2112, Bethesda, MD, 20892, USA
| | - Edwin S Monuki
- Departments of Pathology & Laboratory Medicine and Developmental & Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - James P McAllister Ii
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Lauren L Jantzie
- Department of Pediatrics and Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
- Kennedy Krieger Institute, Baltimore, MD, 21287, USA.
| |
Collapse
|
9
|
Domingo-Muelas A, Morante-Redolat JM, Moncho-Amor V, Jordán-Pla A, Pérez-Villalba A, Carrillo-Barberà P, Belenguer G, Porlan E, Kirstein M, Bachs O, Ferrón SR, Lovell-Badge R, Fariñas I. The rates of adult neurogenesis and oligodendrogenesis are linked to cell cycle regulation through p27-dependent gene repression of SOX2. Cell Mol Life Sci 2023; 80:36. [PMID: 36627412 PMCID: PMC9832098 DOI: 10.1007/s00018-022-04676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
Cell differentiation involves profound changes in global gene expression that often has to occur in coordination with cell cycle exit. Because cyclin-dependent kinase inhibitor p27 reportedly regulates proliferation of neural progenitor cells in the subependymal neurogenic niche of the adult mouse brain, but can also have effects on gene expression, we decided to molecularly analyze its role in adult neurogenesis and oligodendrogenesis. At the cell level, we show that p27 restricts residual cyclin-dependent kinase activity after mitogen withdrawal to antagonize cycling, but it is not essential for cell cycle exit. By integrating genome-wide gene expression and chromatin accessibility data, we find that p27 is coincidentally necessary to repress many genes involved in the transit from multipotentiality to differentiation, including those coding for neural progenitor transcription factors SOX2, OLIG2 and ASCL1. Our data reveal both a direct association of p27 with regulatory sequences in the three genes and an additional hierarchical relationship where p27 repression of Sox2 leads to reduced levels of its downstream targets Olig2 and Ascl1. In vivo, p27 is also required for the regulation of the proper level of SOX2 necessary for neuroblasts and oligodendroglial progenitor cells to timely exit cell cycle in a lineage-dependent manner.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain
- Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jose Manuel Morante-Redolat
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Verónica Moncho-Amor
- The Francis Crick Institute, London, NW1 1AT, UK
- IIS Biodonostia, 48013, Bilbao, Spain
| | - Antonio Jordán-Pla
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Ana Pérez-Villalba
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Pau Carrillo-Barberà
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain
- Institute for Research in Biomedicine, 6500, Bellinzona, Switzerland
| | - Germán Belenguer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Eva Porlan
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Instituto de Salud Carlos III, Madrid, Spain
| | - Martina Kirstein
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, University of Barcelona-IDIBAPS, CIBERONC, Barcelona, Spain
| | - Sacri R Ferrón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain
| | | | - Isabel Fariñas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Departamento de Biología Celular Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
10
|
Ahmed AKMA, Nakagawa H, Isaksen TJ, Yamashita T. The effects of Bone Morphogenetic Protein 4 on adult neural stem cell proliferation, differentiation and survival in an in vitro model of ischemic stroke. Neurosci Res 2022; 183:17-29. [PMID: 35870553 DOI: 10.1016/j.neures.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
The subventricular zone (SVZ) of the lateral ventricles represents a main region where neural stem cells (NSCs) of the mature central nervous system (CNS) reside. Bone Morphogenetic Proteins (BMPs) are the largest subclass of the transforming growth factor-β (TGF-β) superfamily of ligands. BMP4 is one such member and plays important roles in adult NSC differentiation. However, the exact effects of BMP4 on SVZ adult NSCs in CNS ischemia are still unknown. Using oxygen and glucose deprivation (OGD) as an in vitro model of ischemia, we examined the behavior of adult NSCs. We observed that anoxia resulted in reduced viability of adult NSCs, and that BMP4 treatment clearly rescued apoptotic cell death following anoxia. Furthermore, BMP4 treatment exhibited a strong inhibitory effect on cellular proliferation of the adult NSCs in normoxic conditions. Moreover, such inhibitory effects of BMP4 treatment were also found in OGD conditions, despite the enhanced cellular proliferation of the adult NSCs that was observed under such ischemic conditions. Increased neuronal and astroglial commitment of adult NSCs were found in the OGD conditions, whereas a reduction in differentiated neurons and an increase in differentiated astrocytes were observed following BMP4 treatment. The present data indicate that BMP4 modulates proliferation and differentiation of SVZ-derived adult NSCs and promotes cell survival in the in vitro model of ischemic stroke.
Collapse
Affiliation(s)
- Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nakagawa
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toke Jost Isaksen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Bioscience, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
12
|
BMP4 Exerts Anti-Neurogenic Effect via Inducing Id3 during Aging. Biomedicines 2022; 10:biomedicines10051147. [PMID: 35625884 PMCID: PMC9138880 DOI: 10.3390/biomedicines10051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling has been shown to be intimately associated with adult neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ). Adult neurogenesis declines in aging rodents and primates. However, the role of BMP signaling in the age-related neurogenesis decline remains elusive and the effect of BMP4 on adult SVZ neurogenesis remains controversial. Here, the expression of BMP4 and its canonical effector phosphorylated-Smad1/5/8 (p-Smad1/5/8) in the murine SVZ and SGZ were found to be increased markedly with age. We identified Id3 as a major target of BMP4 in neuronal stem cells (NSCs) of both neurogenic regions, which exhibited a similar increase during aging. Intracerebroventricular infusion of BMP4 activated Smad1/5/8 phosphorylation and upregulated Id3 expression, which further restrained NeuroD1, leading to attenuated neurogenesis in both neurogenic regions and defective differentiation in the SGZ. Conversely, noggin, a potent inhibitor of BMP4, demonstrated opposing effects. In support of this, BMP4 treatment or lentiviral overexpression of Id3 resulted in decreased NeuroD1 protein levels in NSCs of both neurogenic regions and significantly inhibited neurogenesis. Thus, our findings revealed that the increased BMP4 signaling with age inhibited adult neurogenesis in both SVZ and SGZ, which may be attributed at least in part, to the changes in the Id3-NeuroD1 axis.
Collapse
|
13
|
Le Dréau G. BuMPing Into Neurogenesis: How the Canonical BMP Pathway Regulates Neural Stem Cell Divisions Throughout Space and Time. Front Neurosci 2022; 15:819990. [PMID: 35153664 PMCID: PMC8829030 DOI: 10.3389/fnins.2021.819990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted factors that contribute to many aspects of the formation of the vertebrate central nervous system (CNS), from the initial shaping of the neural primordium to the maturation of the brain and spinal cord. In particular, the canonical (SMAD1/5/8-dependent) BMP pathway appears to play a key role during neurogenesis, its activity dictating neural stem cell fate decisions and thereby regulating the growth and homeostasis of the CNS. In this mini-review, I summarize accumulating evidence demonstrating how the canonical BMP activity promotes the amplification and/or maintenance of neural stem cells at different times and in diverse regions of the vertebrate CNS, and highlight findings suggesting that this function is evolutionarily conserved.
Collapse
|
14
|
Reece AS, Hulse GK. Effects of cannabis on congenital limb anomalies in 14 European nations: A geospatiotemporal and causal inferential study. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac016. [PMID: 35966826 PMCID: PMC9364687 DOI: 10.1093/eep/dvac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 05/16/2023]
Abstract
Cannabinoid exposure is increasing in some European nations. Europe therefore provides an interesting test environment for the recently reported link between cannabis exposure and congenital limb anomaly (CLA) rates (CLARs). Exponential genotoxic dose-response relationships make this investigation both intriguing and imperative. Annual CLAR in 14 nations were from Epidemiological Surveillance of Congenital Anomalies. Drug use rates were from European Monitoring Centre for Drugs and Drug Dependency. Median household income was from the World Bank. E-values provide a quantitative measure of robustness of results to confounding by extraneous covariates. Inverse probability weighting is an important technique for equalizing exposures across countries and removing sources of bias. Rates of CLA, hip dysplasia and the whole group of limb anomalies were higher in countries with increasing daily cannabis use (P = 1.81 × 10-16, 0.0005 and 2.53 × 10-6, respectively). In additive inverse-probability-weighted panel models, the limb reduction-resin Δ9-tetrahydrocannabinol (THC) concentration E-value estimate was 519.93 [95% lower bound (mEV) 49.56], order Resin > Herb ≫ Tobacco > Alcohol. Elevations were noted in 86% E-value estimates and 70.2% of mEVs from 57 E-value pairs from inverse-probability-weighted panel models and from spatial models. As judged by the mEV the degree of association with metrics of cannabis exposure was hip dysplasia > polydactyly > syndactyly > limb anomalies > limb reductions with median E-value estimates from 3.40 × 1065 to 7.06 and median mEVs from 6.14 × 1033 to 3.41. Daily cannabis use interpolated was a more powerful metric of cannabis exposure than herb or resin THC exposure. Data indicate that metrics of cannabis exposure are closely linked with CLAR and satisfy epidemiological criteria for causality. Along with Hawaii and the USA, Europe now forms the third international population in which this causal link has been demonstrated. Cannabis as a predictor of limb anomalies was more potent than tobacco or alcohol. Cannabinoid access should be restricted to protect public health and the community genome/epigenome transgenerationally.
Collapse
Affiliation(s)
- Albert Stuart Reece
- *Correspondence address. 39 Gladstone Rd., Highgate Hill, Brisbane, Queensland, Australia. Tel: (+617) 3844-4000; Fax: (+617) 3844-4015; E-mail:
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
15
|
Joseph-Pauline S, Morrison N, Braccia M, Payne A, Gugerty L, Mostoller J, Lecker P, Tsai EJ, Kim J, Martin M, Brahmbhatt R, Gorski G, Gerhart J, George-Weinstein M, Stone J, Purushothuman S, Bravo-Nuevo A. Acute Response and Neuroprotective Role of Myo/Nog Cells Assessed in a Rat Model of Focal Brain Injury. Front Neurosci 2021; 15:780707. [PMID: 34949984 PMCID: PMC8689062 DOI: 10.3389/fnins.2021.780707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Focal brain injury in the form of a needlestick (NS) results in cell death and induces a self-protective response flanking the lesion. Myo/Nog cells are identified by their expression of bone morphogenetic protein inhibitor Noggin, brain-specific angiogenesis inhibitor 1 (BAI1) and the skeletal muscle specific transcription factor MyoD. Myo/Nog cells limit cell death in two forms of retinopathy. In this study, we examined the acute response of Myo/Nog cells to a NS lesion that extended from the rat posterior parietal cortex to the hippocampus. Myo/Nog cells were identified with antibodies to Noggin and BAI1. These cells were the primary source of both molecules in the uninjured and injured brain. One day after the NS, the normally small population of Myo/Nog cells expanded approximately eightfold within a 1 mm area surrounding the lesion. Myo/Nog cells were reduced by approximately 50% along the lesion with an injection of the BAI1 monoclonal antibody and complement. The number of dying cells, identified by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), was unchanged at this early time point in response to the decrease in Myo/Nog cells. However, increasing the number of Myo/Nog cells within the lesion by injecting BAI1-positive (+) cells isolated from the brains of other animals, significantly reduced cell death and increased the number of NeuN+ neurons compared to brains injected with phosphate buffered saline or exogenous BAI1-negative cells. These findings demonstrate that Myo/Nog cells rapidly react to injury within the brain and increasing their number within the lesion is neuroprotective.
Collapse
Affiliation(s)
| | - Nathan Morrison
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Michael Braccia
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Alana Payne
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Lindsay Gugerty
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jesse Mostoller
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Paul Lecker
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - E-Jine Tsai
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jessica Kim
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Mark Martin
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Rushil Brahmbhatt
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Grzegorz Gorski
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jacquelyn Gerhart
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | | | - Jonathan Stone
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Sivaraman Purushothuman
- Brain and Mind Centre and Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Arturo Bravo-Nuevo
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
16
|
Gender-Related Differences in BMP Expression and Adult Hippocampal Neurogenesis within Joint-Hippocampal Axis in a Rat Model of Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222212163. [PMID: 34830044 PMCID: PMC8620092 DOI: 10.3390/ijms222212163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
BMPs regulate synovial quiescence and adult neurogenesis in the hippocampus in non-stress conditions. However, changes in BMP expression that are induced by inflammation during rheumatoid arthritis (RA) have not yet been reported. Here, we show that signalling with synovial BMPs (BMP-4 and -7) mediates the effect of systemic inflammation on adult neurogenesis in the hippocampus during pristane-induced arthritis (PIA) in Dark Agouti (DA) rats, an animal model of RA. Moreover, we show gender differences in BMP expressions and their antagonists (Noggin and Gremlin) during PIA and their correlations with the clinical course and IL-17A and TNF-α levels in serum. Our results indicate gender differences in the clinical course, where male rats showed earlier onset and earlier recovery but a worse clinical course in the first two phases of the disease (onset and peak), which correlates with the initial increase of serum IL-17A level. The clinical course of the female rats worsened in remission. Their prolonged symptoms could be a reflection of an increased TNF-α level in serum during remission. Synovial inflammation was greater in females in PIA-remission with greater synovial BMP and antagonist expressions. More significant correlations between serum cytokines (IL-17A and TNF-α), and synovial BMPs and their antagonists were found in females than in males. On the other hand, males showed an increase in hippocampal BMP-4 expression during the acute phase, but both genders showed a decrease in antagonist expressions during PIA in general. Both genders showed a decrease in the number of Ki-67+ and SOX-2+ and DCX+ cells and in the ratio of DCX+ to Ki67+ cells in the dentate gyrus during PIA. However, in PIA remission, females showed a faster increase in the number of Ki67+, SOX-2+, and DCX+ cells and a faster increase in the DCX/Ki67 ratio than males. Both genders showed an increase of hippocampal BMP-7 expression during remission, although males constantly showed greater BMP-7 expression at all time points. Our data show that gender differences exist in the BMP expressions in the periphery-hippocampus axis and in the IL-17A and TNF-α levels in serum, which could imply differences in the mechanisms for the onset and progression of the disease, the clinical course severity, and adult neurogenesis with subsequent neurological complications between genders.
Collapse
|
17
|
Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells 2021; 10:3047. [PMID: 34831271 PMCID: PMC8618878 DOI: 10.3390/cells10113047] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.
Collapse
Affiliation(s)
- Luana C. Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Osama Al-Dalahmah
- Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - James Hillis
- Massachusets General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA;
| | - Christopher C. Young
- Department of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA;
| | - Isaiah Asbed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| |
Collapse
|
18
|
Ohlig S, Clavreul S, Thorwirth M, Simon-Ebert T, Bocchi R, Ulbricht S, Kannayian N, Rossner M, Sirko S, Smialowski P, Fischer-Sternjak J, Götz M. Molecular diversity of diencephalic astrocytes reveals adult astrogenesis regulated by Smad4. EMBO J 2021; 40:e107532. [PMID: 34549820 PMCID: PMC8561644 DOI: 10.15252/embj.2020107532] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Astrocytes regulate brain‐wide functions and also show region‐specific differences, but little is known about how general and region‐specific functions are aligned at the single‐cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA‐2‐mediated magnetic‐activated cell sorting (MACS). Single‐cell RNA‐seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation‐related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low‐level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.
Collapse
Affiliation(s)
- Stefanie Ohlig
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Solène Clavreul
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Manja Thorwirth
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Tatiana Simon-Ebert
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Riccardo Bocchi
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Sabine Ulbricht
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Nirmal Kannayian
- Molecular Neurobiology, Department of Psychiatry, LMU Munich, Munich, Germany
| | - Moritz Rossner
- Molecular Neurobiology, Department of Psychiatry, LMU Munich, Munich, Germany
| | - Swetlana Sirko
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Pawel Smialowski
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Judith Fischer-Sternjak
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, Munich, Germany.,Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Neuherberg, Germany.,SYNERGY, Excellence cluster of Systems Neurology, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Zhang G, Lübke L, Chen F, Beil T, Takamiya M, Diotel N, Strähle U, Rastegar S. Neuron-Radial Glial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Cells 2021; 10:cells10102794. [PMID: 34685774 PMCID: PMC8534405 DOI: 10.3390/cells10102794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
The central nervous system of adult zebrafish displays an extraordinary neurogenic and regenerative capacity. In the zebrafish adult brain, this regenerative capacity relies on neural stem cells (NSCs) and the careful management of the NSC pool. However, the mechanisms controlling NSC pool maintenance are not yet fully understood. Recently, Bone Morphogenetic Proteins (BMPs) and their downstream effector Id1 (Inhibitor of differentiation 1) were suggested to act as key players in NSC maintenance under constitutive and regenerative conditions. Here, we further investigated the role of BMP/Id1 signaling in these processes, using different genetic and pharmacological approaches. Our data show that BMPs are mainly expressed by neurons in the adult telencephalon, while id1 is expressed in NSCs, suggesting a neuron-NSC communication via the BMP/Id1 signaling axis. Furthermore, manipulation of BMP signaling by conditionally inducing or repressing BMP signaling via heat-shock, lead to an increase or a decrease of id1 expression in the NSCs, respectively. Induction of id1 was followed by an increase in the number of quiescent NSCs, while knocking down id1 expression caused an increase in NSC proliferation. In agreement, genetic ablation of id1 function lead to increased proliferation of NSCs, followed by depletion of the stem cell pool with concomitant failure to heal injuries in repeatedly injured mutant telencephala. Moreover, pharmacological inhibition of BMP and Notch signaling suggests that the two signaling systems cooperate and converge onto the transcriptional regulator her4.1. Interestingly, brain injury lead to a depletion of NSCs in animals lacking BMP/Id1 signaling despite an intact Notch pathway. Taken together, our data demonstrate how neurons feedback on NSC proliferation and that BMP1/Id1 signaling acts as a safeguard of the NSC pool under regenerative conditions.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Fushun Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Tanja Beil
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien, INSERM, UMR 1188, Université de La Réunion, 97400 Saint-Denis de La Réunion, France;
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Centre of Organismal Studies, University Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
- Correspondence: (U.S.); (S.R.)
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany; (G.Z.); (L.L.); (F.C.); (T.B.); (M.T.)
- Correspondence: (U.S.); (S.R.)
| |
Collapse
|
20
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
21
|
Mausner-Fainberg K, Benhamou M, Golan M, Kimelman NB, Danon U, Marom E, Karni A. Specific Blockade of Bone Morphogenetic Protein-2/4 Induces Oligodendrogenesis and Remyelination in Demyelinating Disorders. Neurotherapeutics 2021; 18:1798-1814. [PMID: 34159538 PMCID: PMC8608985 DOI: 10.1007/s13311-021-01068-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are present in demyelinated lesions of multiple sclerosis (MS) patients. However, their differentiation into functional oligodendrocytes is insufficient, and most lesions evolve into nonfunctional astroglial scars. Blockade of bone morphogenetic protein (BMP) signaling induces differentiation of OPCs into myelin-producing oligodendrocytes. We studied the effect of specific blockade of BMP-2/4 signaling, by intravenous (IV) treatment with anti-BMP-2/4 neutralizing mAb in both the inflammatory model of relapsing experimental autoimmune encephalomyelitis (R-EAE) and the cuprizone-toxic model of demyelination in mice. Administration of anti-BMP-2/4 to R-EAE-induced mice, on day 9 post-immunization (p.i.), ameliorated R-EAE signs, diminished the expression of phospho-SMAD1/5/8, primarily within the astrocytic lineage, increased the numbers of de novo immature and mature oligodendrocytes, and reduced the numbers of newly generated astrocytes within the spinal cord as early as day 18 p.i. This effect was accompanied with elevated remyelination, manifested by increased density of remyelinating axons (0.8 < g-ratios < 1), and reduced fully demyelinated and demyelinating axons, in the anti-BMP-2/4-treated R-EAE mice, studied by electron microscopy. No significant immunosuppressive effect was observed in the CNS and in the periphery, during the peak of the first attack, or at the end of the experiment. Moreover, IV treatment with anti-BMP-2/4 mAb in the cuprizone-challenged mice augmented the numbers of mature oligodendrocytes and remyelination in the corpus callosum during the recovery phase of the disease. Based on our findings, the specific blockade of BMP-2/4 has a therapeutic potential in demyelinating disorders such as MS, by inducing early oligodendrogenesis-mediated remyelination in the affected tissue.
Collapse
Affiliation(s)
- Karin Mausner-Fainberg
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | - Moshe Benhamou
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
- Sackler's Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Golan
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | | | - Uri Danon
- Stem Cell Medicine Ltd, Jerusalem, Israel
| | - Ehud Marom
- Stem Cell Medicine Ltd, Jerusalem, Israel
| | - Arnon Karni
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel.
- Sackler's Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
Bressan C, Saghatelyan A. Intrinsic Mechanisms Regulating Neuronal Migration in the Postnatal Brain. Front Cell Neurosci 2021; 14:620379. [PMID: 33519385 PMCID: PMC7838331 DOI: 10.3389/fncel.2020.620379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental brain development process that allows cells to move from their birthplaces to their sites of integration. Although neuronal migration largely ceases during embryonic and early postnatal development, neuroblasts continue to be produced and to migrate to a few regions of the adult brain such as the dentate gyrus and the subventricular zone (SVZ). In the SVZ, a large number of neuroblasts migrate into the olfactory bulb (OB) along the rostral migratory stream (RMS). Neuroblasts migrate in chains in a tightly organized micro-environment composed of astrocytes that ensheath the chains of neuroblasts and regulate their migration; the blood vessels that are used by neuroblasts as a physical scaffold and a source of molecular factors; and axons that modulate neuronal migration. In addition to diverse sets of extrinsic micro-environmental cues, long-distance neuronal migration involves a number of intrinsic mechanisms, including membrane and cytoskeleton remodeling, Ca2+ signaling, mitochondria dynamics, energy consumption, and autophagy. All these mechanisms are required to cope with the different micro-environment signals and maintain cellular homeostasis in order to sustain the proper dynamics of migrating neuroblasts and their faithful arrival in the target regions. Neuroblasts in the postnatal brain not only migrate into the OB but may also deviate from their normal path to migrate to a site of injury induced by a stroke or by certain neurodegenerative disorders. In this review, we will focus on the intrinsic mechanisms that regulate long-distance neuroblast migration in the adult brain and on how these pathways may be modulated to control the recruitment of neuroblasts to damaged/diseased brain areas.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
23
|
Diotel N, Lübke L, Strähle U, Rastegar S. Common and Distinct Features of Adult Neurogenesis and Regeneration in the Telencephalon of Zebrafish and Mammals. Front Neurosci 2020; 14:568930. [PMID: 33071740 PMCID: PMC7538694 DOI: 10.3389/fnins.2020.568930] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to mammals, the adult zebrafish brain shows neurogenic activity in a multitude of niches present in almost all brain subdivisions. Irrespectively, constitutive neurogenesis in the adult zebrafish and mouse telencephalon share many similarities at the cellular and molecular level. However, upon injury during tissue repair, the situation is entirely different. In zebrafish, inflammation caused by traumatic brain injury or by induced neurodegeneration initiates specific and distinct neurogenic programs that, in combination with signaling pathways implicated in constitutive neurogenesis, quickly, and efficiently overcome the loss of neurons. In the mouse brain, injury-induced inflammation promotes gliosis leading to glial scar formation and inhibition of regeneration. A better understanding of the regenerative mechanisms occurring in the zebrafish brain could help to develop new therapies to combat the debilitating consequences of brain injury, stroke, and neurodegeneration. The aim of this review is to compare the properties of neural progenitors and the signaling pathways, which control adult neurogenesis and regeneration in the zebrafish and mammalian telencephalon.
Collapse
Affiliation(s)
- Nicolas Diotel
- INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Denis, France
| | - Luisa Lübke
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
24
|
Kobayashi T, Kageyama R. Lysosomes and signaling pathways for maintenance of quiescence in adult neural stem cells. FEBS J 2020; 288:3082-3093. [PMID: 32902139 PMCID: PMC8246936 DOI: 10.1111/febs.15555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Quiescence is a cellular strategy for maintaining somatic stem cells in a specific niche in a low metabolic state without senescence for a long period of time. During development, neural stem cells (NSCs) actively proliferate and self-renew, and their progeny differentiate into both neurons and glial cells to form mature brain tissues. On the other hand, most NSCs in the adult brain are quiescent and arrested in G0/G1 phase of the cell cycle. Quiescence is essential in order to avoid the precocious exhaustion of NSCs, ensuring a sustainable source of available stem cells in the brain throughout the lifespan. After receiving activation signals, quiescent NSCs reenter the cell cycle and generate new neurons. This switching between quiescence and proliferation is tightly regulated by diverse signaling pathways. Recent studies suggest significant involvement of cellular proteostasis (homeostasis of the proteome) in the quiescent state of NSCs. Proteostasis is the result of integrated regulation of protein synthesis, folding, and degradation. In this review, we discuss regulation of quiescence by multiple signaling pathways, especially bone morphogenetic protein and Notch signaling, and focus on the functional involvement of the lysosome, an organelle governing cellular degradation, in quiescence of adult NSCs.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
26
|
Deryckere A, Stappers E, Dries R, Peyre E, van den Berghe V, Conidi A, Zampeta FI, Francis A, Bresseleers M, Stryjewska A, Vanlaer R, Maas E, Smal IV, van IJcken WFJ, Grosveld FG, Nguyen L, Huylebroeck D, Seuntjens E. Multifaceted actions of Zeb2 in postnatal neurogenesis from the ventricular-subventricular zone to the olfactory bulb. Development 2020; 147:dev184861. [PMID: 32253238 DOI: 10.1242/dev.184861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 03/01/2024]
Abstract
The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Elke Stappers
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Ruben Dries
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Elise Peyre
- GIGA-Stem Cells and GIGA-Neurosciences, Liège University, Liège 4000, Belgium
| | - Veronique van den Berghe
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, and MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - F Isabella Zampeta
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Annick Francis
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Marjolein Bresseleers
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Agata Stryjewska
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Ria Vanlaer
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Elke Maas
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven 3000, Belgium
| | - Ihor V Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
- Center for Biomics-Genomics, Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Liège University, Liège 4000, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
27
|
Oliveros-Matus P, Perez-Urrutia N, Alvarez-Ricartes N, Echeverria F, Barreto GE, Elliott J, Iarkov A, Echeverria V. Cotinine Enhances Fear Extinction and Astrocyte Survival by Mechanisms Involving the Nicotinic Acetylcholine Receptors Signaling. Front Pharmacol 2020; 11:303. [PMID: 32300297 PMCID: PMC7142247 DOI: 10.3389/fphar.2020.00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/28/2020] [Indexed: 01/03/2023] Open
Abstract
Fear memory extinction (FE) is an important therapeutic goal for Posttraumatic stress disorder (PTSD). Cotinine facilitates FE in rodents, in part due to its inhibitory effect on the amygdala by the glutamatergic projections from the medial prefrontal cortex (mPFC). The cellular and behavioral effects of infusing cotinine into the mPFC on FE, astroglia survival, and the expression of bone morphogenetic proteins (BMP) 2 and 8, were assessed in C57BL/6 conditioned male mice. The role of the α4β2- and α7 nicotinic acetylcholine receptors (nAChRs) on cotinine’s actions were also investigated. Cotinine infused into the mPFC enhanced contextual FE and decreased BMP8 expression by a mechanism dependent on the α7nAChRs. In addition, cotinine increased BMP2 expression and prevented the loss of GFAP + astrocytes in a form independent on the α7nAChRs but dependent on the α4β2 nAChRs. This evidence suggests that cotinine exerts its effect on FE by modulating nAChRs signaling in the brain.
Collapse
Affiliation(s)
- Patricia Oliveros-Matus
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Nelson Perez-Urrutia
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Nathalie Alvarez-Ricartes
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Florencia Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - James Elliott
- Northern Sydney Local Health District, The Kolling Research Institute and Faculty of Health Sciences, The University of Sydney, St. Leonards, NSW, Australia.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research and Development Department, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
28
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
29
|
Al-Dalahmah O, Campos Soares L, Nicholson J, Draijer S, Mundim M, Lu VM, Sun B, Tyler T, Adorján I, O'Neill E, Szele FG. Galectin-3 modulates postnatal subventricular zone gliogenesis. Glia 2019; 68:435-450. [PMID: 31626379 PMCID: PMC6916335 DOI: 10.1002/glia.23730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
Postnatal subventricular zone (SVZ) neural stem cells generate forebrain glia, namely astrocytes and oligodendrocytes. The cues necessary for this process are unclear, despite this phase of brain development being pivotal in forebrain gliogenesis. Galectin‐3 (Gal‐3) is increased in multiple brain pathologies and thereby regulates astrocyte proliferation and inflammation in injury. To study the function of Gal‐3 in inflammation and gliogenesis, we carried out functional studies in mouse. We overexpressed Gal‐3 with electroporation and using immunohistochemistry surprisingly found no inflammation in the healthy postnatal SVZ. This allowed investigation of inflammation‐independent effects of Gal‐3 on gliogenesis. Loss of Gal‐3 function via knockdown or conditional knockout reduced gliogenesis, whereas Gal‐3 overexpression increased it. Gal‐3 overexpression also increased the percentage of striatal astrocytes generated by the SVZ but decreased the percentage of oligodendrocytes. These novel findings were further elaborated with multiple analyses demonstrating that Gal‐3 binds to the bone morphogenetic protein receptor one alpha (BMPR1α) and increases bone morphogenetic protein (BMP) signaling. Conditional knockout of BMPR1α abolished the effect of Gal‐3 overexpression on gliogenesis. Gain‐of‐function of Gal‐3 is relevant in pathological conditions involving the human forebrain, which is particularly vulnerable to hypoxia/ischemia during perinatal gliogenesis. Hypoxic/ischemic injury induces astrogliosis, inflammation and cell death. We show that Gal‐3 immunoreactivity was increased in the perinatal human SVZ and striatum after hypoxia/ischemia. Our findings thus show a novel inflammation‐independent function for Gal‐3; it is necessary for gliogenesis and when increased in expression can induce astrogenesis via BMP signaling.
Collapse
Affiliation(s)
- Osama Al-Dalahmah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Luana Campos Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - James Nicholson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Swip Draijer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Mayara Mundim
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Victor M Lu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Teadora Tyler
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - István Adorján
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Lepko T, Pusch M, Müller T, Schulte D, Ehses J, Kiebler M, Hasler J, Huttner HB, Vandenbroucke RE, Vandendriessche C, Modic M, Martin‐Villalba A, Zhao S, LLorens‐Bobadilla E, Schneider A, Fischer A, Breunig CT, Stricker SH, Götz M, Ninkovic J. Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J 2019; 38:e100481. [PMID: 31304985 PMCID: PMC6717894 DOI: 10.15252/embj.2018100481] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of adult neural stem cell (NSC) number is critical for lifelong neurogenesis. Here, we identified a post-transcriptional control mechanism, centered around the microRNA 204 (miR-204), to control the maintenance of quiescent (q)NSCs. miR-204 regulates a spectrum of transcripts involved in cell cycle regulation, neuronal migration, and differentiation in qNSCs. Importantly, inhibition of miR-204 function reduced the number of qNSCs in the subependymal zone (SEZ) by inducing pre-mature activation and differentiation of NSCs without changing their neurogenic potential. Strikingly, we identified the choroid plexus of the mouse lateral ventricle as the major source of miR-204 that is released into the cerebrospinal fluid to control number of NSCs within the SEZ. Taken together, our results describe a novel mechanism to maintain adult somatic stem cells by a niche-specific miRNA repressing activation and differentiation of stem cells.
Collapse
Affiliation(s)
- Tjasa Lepko
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Graduate School of Systemic NeurosciencesLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Melanie Pusch
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
| | - Tamara Müller
- Institute of Neurology (Edinger Institute)University HospitalGoethe University FrankfurtFrankfurtGermany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute)University HospitalGoethe University FrankfurtFrankfurtGermany
| | - Janina Ehses
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Michael Kiebler
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
| | - Julia Hasler
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
| | - Hagen B Huttner
- Department of NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- Ghent Gut Inflammation Group (GGIG)Ghent UniversityGhentBelgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- Ghent Gut Inflammation Group (GGIG)Ghent UniversityGhentBelgium
| | - Miha Modic
- The Francis Crick InstituteLondonUK
- Department for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | | | - Sheng Zhao
- Molecular NeurobiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Anja Schneider
- Translational Dementia Research GroupGerman Center for Neurodegenerative Diseases (DZNE) BonnBonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity Clinic BonnBonnGermany
| | - Andre Fischer
- Department for Epigenetics and Systems MedicineGerman Center for Neurodegenerative Diseases (DZNE) GöttingenGöttingenGermany
| | - Christopher T Breunig
- MCN Junior Research GroupMunich Center for NeurosciencesBioMedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Epigenetic EngineeringHelmholtz Zentrum MünchenNeuherbergGermany
| | - Stefan H Stricker
- MCN Junior Research GroupMunich Center for NeurosciencesBioMedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Epigenetic EngineeringHelmholtz Zentrum MünchenNeuherbergGermany
| | - Magdalena Götz
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Jovica Ninkovic
- Institute of Stem Cell ResearchHelmholtz Center MunichNeuherbergGermany
- Physiological GenomicsBiomedical CenterMedical FacultyLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Department for Cell Biology and AnatomyBiomedical CenterLudwig‐Maximilians UniversitaetPlanegg‐MartinsriedGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
31
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
32
|
Cho IJ, Lui PP, Obajdin J, Riccio F, Stroukov W, Willis TL, Spagnoli F, Watt FM. Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence. Stem Cell Reports 2019; 12:1190-1200. [PMID: 31189093 PMCID: PMC6565921 DOI: 10.1016/j.stemcr.2019.05.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Cellular quiescence is a dormant but reversible cellular state in which cell-cycle entry and proliferation are prevented. Recent studies both in vivo and in vitro demonstrate that quiescence is actively maintained through synergistic interactions between intrinsic and extrinsic signals. Subtypes of adult mammalian stem cells can be maintained in this poised, quiescent state, and subsequently reactivated upon tissue injury to restore homeostasis. However, quiescence can become deregulated in pathological settings. In this review, we discuss the recent advances uncovering intracellular signaling pathways, transcriptional changes, and extracellular cues within the stem cell niche that control induction and exit from quiescence in tissue stem cells. We discuss the implications of quiescence as well as the pharmacological and genetic approaches that are being explored to either induce or prevent quiescence as a therapeutic strategy.
Collapse
Affiliation(s)
- Inchul J Cho
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Prudence PokWai Lui
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Jana Obajdin
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Federica Riccio
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Wladislaw Stroukov
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Thea Louise Willis
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Francesca Spagnoli
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
33
|
Running-Activated Neural Stem Cells Enhance Subventricular Neurogenesis and Improve Olfactory Behavior in p21 Knockout Mice. Mol Neurobiol 2019; 56:7534-7556. [DOI: 10.1007/s12035-019-1590-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
|
34
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
35
|
Abstract
Neuronal connectivity in the cortex is determined by the laminar positioning of neurons. An important determinant of laminar positioning is likely to be the control of leading process behavior during migration, maintaining their tips directed toward the pia. In this study, we provide evidence that pial bone morphogenetic protein (Bmp) signaling regulates cortical neuronal migration during cortical layer formation. Specific disruption of pial Bmp ligands impaired the positioning of early-born neurons in the deep layer; further, cell-autonomous inhibition of Smad4, a core nuclear factor mediating Bmp signaling, in the cortical radial glial cells or postmitotic cortical neurons also produced neuronal migration defects that blurred the cortical layers. We found that leading processes were abnormal and that this was accompanied by excess dephosphorylated cofilin-1, an actin-severing protein, in Smad4 mutant neurons. This suggested that regulation of cofilin-1 might transduce Bmp signaling in the migrating neurons. Ectopic expression of a phosphorylation-defective form of cofilin-1 in the late-born wild-type neurons led them to stall in the deep layer, similar to the Smad4 mutant neurons. Expression of a phosphomimetic variant of cofilin-1 in the Smad4 mutant neurons rescued the migration defects. This suggests that cofilin-1 activity underlies Bmp-mediated cortical neuronal migration. This study shows that cofilin-1 mediates pial Bmp signaling during the positioning of cortical neurons and the formation of cortical layers.
Collapse
Affiliation(s)
- Youngshik Choe
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Korea Brain Research Institute, Dong-gu, Daegu, Korea
| | - Samuel J Pleasure
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Neuroscience, University of California, San Francisco, San Francisco, CA, USA.,Department of Developmental Stem Cell Biology, University of California, San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
36
|
Expression of Bone Morphogenetic Proteins in Multiple Sclerosis Lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:665-676. [PMID: 30553833 DOI: 10.1016/j.ajpath.2018.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/17/2023]
Abstract
Bone morphogenetic proteins (BMPs) are secreted proteins that belong to the transforming growth factor-β superfamily. In the adult brain, they modulate neurogenesis, favor astrogliogenesis, and inhibit oligodendrogenesis. Because BMPs may be involved in the failure of remyelination in multiple sclerosis (MS), we characterized the expression of BMP-2, BMP-4, BMP-5, and BMP-7; BMP type II receptor (BMPRII); and phosphorylated SMAD (pSMAD) 1/5/8 in lesions of MS and other demyelinating diseases. A total of 42 MS lesions, 12 acute ischemic lesions, 8 progressive multifocal leukoencephalopathy lesions, and 10 central nervous system areas from four nonneuropathological patients were included. Lesions were histologically classified according to the inflammatory activity. The expression of BMP-2, BMP-4, BMP-5, BMP-7, BMPRII, and pSMAD1/5/8 was quantified by immunostaining, and colocalization studies were performed. In MS lesions, astrocytes, microglia/macrophages, and neurons expressed BMP-2, BMP-4, BMP-5, and BMP-7; BMPRII; and pSMAD1/5/8. Oligodendrocytes expressed BMP-2 and BMP-7 and pSMAD1/5/8. The percentage of cells that expressed BMPs, BMPRII, and pSMAD1/5/8 correlated with the inflammatory activity of MS lesions, and changes in the percentage of positive cells were more relevant in MS than in other white matter-damaging diseases. These data indicate that BMPs are increased in active MS lesions, suggesting a possible role in MS pathogenesis.
Collapse
|
37
|
Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 2018; 56:4653-4679. [DOI: 10.1007/s12035-018-1396-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
38
|
Ulanska-Poutanen J, Mieczkowski J, Zhao C, Konarzewska K, Kaza B, Pohl HB, Bugajski L, Kaminska B, Franklin RJ, Zawadzka M. Injury-induced perivascular niche supports alternative differentiation of adult rodent CNS progenitor cells. eLife 2018; 7:30325. [PMID: 30222103 PMCID: PMC6141235 DOI: 10.7554/elife.30325] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/03/2018] [Indexed: 01/06/2023] Open
Abstract
Following CNS demyelination, oligodendrocyte progenitor cells (OPCs) are able to differentiate into either remyelinating oligodendrocytes (OLs) or remyelinating Schwann cells (SCs). However, the signals that determine which type of remyelinating cell is generated and the underlying mechanisms involved have not been identified. Here, we show that distinctive microenvironments created in discrete niches within demyelinated white matter determine fate decisions of adult OPCs. By comparative transcriptome profiling we demonstrate that an ectopic, injury-induced perivascular niche is enriched with secreted ligands of the BMP and Wnt signalling pathways, produced by activated OPCs and endothelium, whereas reactive astrocyte within non-vascular area express the dual BMP/Wnt antagonist Sostdc1. The balance of BMP/Wnt signalling network is instructive for OPCs to undertake fate decision shortly after their activation: disruption of the OPCs homeostasis during demyelination results in BMP4 upregulation, which, in the absence of Socstdc1, favours SCs differentiation.
Collapse
Affiliation(s)
- Justyna Ulanska-Poutanen
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Chao Zhao
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Katarzyna Konarzewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hartmut Bf Pohl
- Department of Biology, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Lukasz Bugajski
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robin Jm Franklin
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Malgorzata Zawadzka
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
39
|
Draijer S, Chaves I, Hoekman MFM. The circadian clock in adult neural stem cell maintenance. Prog Neurobiol 2018; 173:41-53. [PMID: 29886147 DOI: 10.1016/j.pneurobio.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Neural stem cells persist in the adult central nervous system as a continuing source of astrocytes, oligodendrocytes and neurons. Various signalling pathways and transcription factors actively maintain this population by regulating cell cycle entry and exit. Similarly, the circadian clock is interconnected with the cell cycle and actively maintains stem cell populations in various tissues. Here, we discuss emerging evidence for an important role of the circadian clock in neural stem cell maintenance. We propose that the NAD+-dependent deacetylase SIRT1 exerts control over the circadian clock in adult neural stem cell function to limit exhaustion of their population. Conversely, disruption of the circadian clock may compromise neural stem cell quiescence resulting in a premature decline of the neural stem cell population. As such, energy metabolism and the circadian clock converge in adult neural stem cell maintenance.
Collapse
Affiliation(s)
- Swip Draijer
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Inês Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Marco F M Hoekman
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Petrik D, Myoga MH, Grade S, Gerkau NJ, Pusch M, Rose CR, Grothe B, Götz M. Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner. Cell Stem Cell 2018; 22:865-878.e8. [DOI: 10.1016/j.stem.2018.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
|
41
|
Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression. J Neurosci 2018; 38:4791-4810. [PMID: 29695415 DOI: 10.1523/jneurosci.2423-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/21/2022] Open
Abstract
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases.SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders.
Collapse
|
42
|
Yamamoto H, Kurachi M, Naruse M, Shibasaki K, Ishizaki Y. BMP4 signaling in NPCs upregulates Bcl-xL to promote their survival in the presence of FGF-2. Biochem Biophys Res Commun 2018; 496:588-593. [DOI: 10.1016/j.bbrc.2018.01.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
|
43
|
Eixarch H, Calvo-Barreiro L, Montalban X, Espejo C. Bone morphogenetic proteins in multiple sclerosis: Role in neuroinflammation. Brain Behav Immun 2018; 68:1-10. [PMID: 28249802 DOI: 10.1016/j.bbi.2017.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that represent the largest subgroup of signalling ligands of the transforming growth factor beta (TGF-β) superfamily. Their participation in the proliferation, survival and cell fate of several cell types and their involvement in many pathological conditions are now well known. BMP expression is altered in multiple sclerosis (MS) patients, suggesting that BMPs have a role in the pathogenesis of this disease. MS is a demyelinating and neurodegenerative autoimmune disorder of the central nervous system (CNS). MS is a complex pathological condition in which genetic, epigenetic and environmental factors converge, although its aetiology remains elusive. Multifunctional molecules, such as BMPs, are extremely interesting in the field of MS because they are involved in the regulation of several adult tissues, including the CNS and the immune system. In this review, we discuss the extensive data available regarding the role of BMP signalling in neuronal progenitor/stem cell fate and focus on the participation and expression of BMPs in CNS demyelination. Additionally, we provide an overview of the involvement of BMPs as modulators of the immune system, as this subject has not been thoroughly explored even though it is of great interest in autoimmune disorders. Moreover, we describe the data on BMP signalling in autoimmunity and inflammatory diseases, including MS and its experimental models. Thus, we aim to provide an integrated view of the putative role of BMPs in MS pathogenesis and to open the field for the further development of alternative therapeutic strategies for MS patients.
Collapse
Affiliation(s)
- Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Laura Calvo-Barreiro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
44
|
Basak O, Krieger TG, Muraro MJ, Wiebrands K, Stange DE, Frias-Aldeguer J, Rivron NC, van de Wetering M, van Es JH, van Oudenaarden A, Simons BD, Clevers H. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci U S A 2018; 115:E610-E619. [PMID: 29311336 PMCID: PMC5789932 DOI: 10.1073/pnas.1715911114] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnfrsf19/Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Ki67iresCreER allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.
Collapse
Affiliation(s)
- Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Teresa G Krieger
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Mauro J Muraro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Kay Wiebrands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Daniel E Stange
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Javier Frias-Aldeguer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - Nicolas C Rivron
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - Marc van de Wetering
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
- Princess Máxima Centre, 3584 CT, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom;
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands;
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
- Princess Máxima Centre, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
45
|
Montaner A, da Silva Santana TT, Schroeder T, Einicker-Lamas M, Girardini J, Costa MR, Banchio C. Specific Phospholipids Regulate the Acquisition of Neuronal and Astroglial Identities in Post-Mitotic Cells. Sci Rep 2018; 8:460. [PMID: 29323239 PMCID: PMC5765016 DOI: 10.1038/s41598-017-18700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
Hitherto, the known mechanisms underpinning cell-fate specification act on neural progenitors, affecting their commitment to generate neuron or glial cells. Here, we show that particular phospholipids supplemented in the culture media modify the commitment of post-mitotic neural cells in vitro. Phosphatidylcholine (PtdCho)-enriched media enhances neuronal differentiation at the expense of astroglial and unspecified cells. Conversely, phosphatidylethanolamine (PtdEtn) enhances astroglial differentiation and accelerates astrocyte maturation. The ability of phospholipids to modify the fate of post-mitotic cells depends on its presence during a narrow time-window during cell differentiation and it is mediated by the selective activation of particular signaling pathways. While PtdCho-mediated effect on neuronal differentiation depends on cAMP-dependent kinase (PKA)/calcium responsive element binding protein (CREB), PtdEtn stimulates astrogliogenesis through the activation of the MEK/ERK signaling pathway. Collectively, our results provide an additional degree of plasticity in neural cell specification and further support the notion that cell differentiation is a reversible phenomenon. They also contribute to our understanding of neuronal and glial lineage specification in the central nervous system, opening up new avenues to retrieve neurogenic capacity in the brain.
Collapse
Affiliation(s)
- Aneley Montaner
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Predio CONICET and Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | | | - Timm Schroeder
- Department of Biosystems Science and Engineering, Cell Systems Dynamics, ETH Zurich, Basel, Switzerland
| | - Marcelo Einicker-Lamas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21949-902, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Javier Girardini
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Predio CONICET and Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Marcos Romualdo Costa
- Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, 59056-450, Natal, Brazil.
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Predio CONICET and Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| |
Collapse
|
46
|
Falk S, Götz M. Glial control of neurogenesis. Curr Opin Neurobiol 2017; 47:188-195. [PMID: 29145015 DOI: 10.1016/j.conb.2017.10.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/27/2022]
Abstract
Glial cells are central components of all neurogenic niches in the embryonic as well as in the adult central nervous system. While neural stem cells (NSCs) themselves exhibit glial features the behavior of NSCs is also strongly influenced by niche glial cells. Recently, studies have begun to uncover a large variety of glial cell-extrinsic as well as intrinsic factors that play crucial roles in the control of NSCs and the regulation of the cellular output from the neurogenic niches. In this review, we focus on mechanisms underlying the formation of adult NSCs by embryonic radial glia cells, discuss the influence of niche glia cells on adult NSCs and examine how the neurogenic potential of glial cells is controlled.
Collapse
Affiliation(s)
- Sven Falk
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, 82152 Planegg/Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, 82152 Planegg/Munich, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany.
| |
Collapse
|
47
|
Luque-Molina I, Khatri P, Schmidt-Edelkraut U, Simeonova IK, Hölzl-Wenig G, Mandl C, Ciccolini F. Bone Morphogenetic Protein Promotes Lewis X Stage-Specific Embryonic Antigen 1 Expression Thereby Interfering with Neural Precursor and Stem Cell Proliferation. Stem Cells 2017; 35:2417-2429. [PMID: 28869691 DOI: 10.1002/stem.2701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/17/2023]
Abstract
The glycoprotein Prominin-1 and the carbohydrate Lewis X stage-specific embryonic antigen 1 (LeX-SSEA1) both have been extensively used as cell surface markers to purify neural stem cells (NSCs). While Prominin-1 labels a specialized membrane region in NSCs and ependymal cells, the specificity of LeX-SSEA1 expression and its biological significance are still unknown. To address these issues, we have here monitored the expression of the carbohydrate in neonatal and adult NSCs and in their progeny. Our results show that the percentage of immunopositive cells and the levels of LeX-SSEA1 immunoreactivity both increase with postnatal age across all stages of the neural lineage. This is associated with decreased proliferation in precursors including NSCs, which accumulate the carbohydrate at the cell surface while remaining quiescent. Exposure of precursors to bone morphogenetic protein (BMP) increases LEX-SSEA1 expression, which promotes cell cycle withdrawal by a mechanism involving LeX-SSEA1-mediated interaction at the cell surface. Conversely, interference with either BMP signaling or with LeX-SSEA1 promotes proliferation to a similar degree. Thus, in the postnatal germinal niche, the expression of LeX-SSEA1 increases with age and exposure to BMP signaling, thereby downregulating the proliferation of subependymal zone precursors including NSCs. Stem Cells 2017;35:2417-2429.
Collapse
Affiliation(s)
- Inma Luque-Molina
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Priti Khatri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Udo Schmidt-Edelkraut
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Ina K Simeonova
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Claudi Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
48
|
Meyers EA, Kessler JA. TGF-β Family Signaling in Neural and Neuronal Differentiation, Development, and Function. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022244. [PMID: 28130363 DOI: 10.1101/cshperspect.a022244] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling by the transforming growth factor β (TGF-β) family is necessary for proper neural development and function throughout life. Sequential waves of activation, inhibition, and reactivation of TGF-β family members regulate numerous elements of the nervous system from the earliest stages of embryogenesis through adulthood. This review discusses the expression, regulation, and function of TGF-β family members in the central nervous system at various developmental stages, beginning with induction and patterning of the nervous system to their importance in the adult as modulators of inflammatory response and involvement in degenerative diseases.
Collapse
Affiliation(s)
- Emily A Meyers
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
49
|
Sabo JK, Heine V, Silbereis JC, Schirmer L, Levison SW, Rowitch DH. Olig1 is required for noggin-induced neonatal myelin repair. Ann Neurol 2017; 81:560-571. [PMID: 28253550 DOI: 10.1002/ana.24907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 02/06/2017] [Accepted: 02/26/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neonatal white matter injury (NWMI) is a lesion found in preterm infants that can lead to cerebral palsy. Although antagonists of bone morphogenetic protein (BMP) signaling, such as Noggin, promote oligodendrocyte precursor cell (OPC) production after hypoxic-ischemic (HI) injury, the downstream functional targets are poorly understood. The basic helix-loop-helix protein, oligodendrocyte transcription factor 1 (Olig1), promotes oligodendrocyte (OL) development and is essential during remyelination in adult mice. Here, we investigated whether Olig1 function is required downstream of BMP antagonism for response to injury in the neonatal brain. METHODS We used wild-type and Olig1-null mice subjected to neonatal stroke and postnatal neural progenitor cultures, and we analyzed Olig1 expression in human postmortem samples from neonates that suffered HI encephalopathy (HIE). RESULTS Olig1-null neonatal mice showed significant hypomyelination after moderate neonatal stroke. Surprisingly, damaged white matter tracts in Olig1-null mice lacked Olig2+ OPCs, and instead proliferating neuronal precursors and GABAergic interneurons were present. We demonstrate that Noggin-induced OPC production requires Olig1 function. In postnatal neural progenitors, Noggin governs production of OLs versus interneurons through Olig1-mediated repression of Dlx1/2 transcription factors. Additionally, we observed that Olig1 and the BMP signaling effector, phosphorylated SMADs (Sma- and Mad-related proteins) 1, 5, and 8, were elevated in the subventricular zone of human infants with HIE compared to controls. INTERPRETATION These findings indicate that Olig1 has a critical function in regulation of postnatal neural progenitor cell production in response to Noggin. Ann Neurol 2017;81:560-571.
Collapse
Affiliation(s)
- Jennifer K Sabo
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - Vivi Heine
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - John C Silbereis
- Department of Neuroscience, University of California San Francisco, San Francisco, CA
| | - Lucas Schirmer
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steven W Levison
- Department of Neurology and Neuroscience, New Jersey Medical School, Rutgers University-New Jersey Medical School, Newark, NJ
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Paediatrics, Wellcome Trust-MRC Stem Cell Institute, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
50
|
Kawaguchi-Niida M, Shibata N, Furuta Y. Smad4 is essential for directional progression from committed neural progenitor cells through neuronal differentiation in the postnatal mouse brain. Mol Cell Neurosci 2017; 83:55-64. [PMID: 28669622 DOI: 10.1016/j.mcn.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/01/2017] [Accepted: 06/25/2017] [Indexed: 01/19/2023] Open
Abstract
Signaling by the TGFβ super-family, consisting of TGFβ/activin- and bone morphogenetic protein (BMP) branch pathways, is involved in the central nervous system patterning, growth, and differentiation during embryogenesis. Neural progenitor cells are implicated in various pathological conditions, such as brain injury, infarction, Parkinson's disease and Alzheimer's disease. However, the roles of TGFβ/BMP signaling in the postnatal neural progenitor cells in the brain are still poorly understood. We examined the functional contribution of Smad4, a key integrator of TGFβ/BMP signaling pathways, to the regulation of neural progenitor cells in the subventricular zone (SVZ). Conditional loss of Smad4 in neural progenitor cells caused an increase in the number of neural stem like cells in the SVZ. Smad4 conditional mutants also exhibited attenuation in neuronal lineage differentiation in the adult brain that led to a deficit in olfactory bulb neurons as well as to a reduction of brain parenchymal volume. SVZ-derived neural stem/progenitor cells from the Smad4 mutant brains yielded increased growth of neurospheres, elevated self-renewal capacity and resistance to differentiation. These results indicate that loss of Smad4 in neural progenitor cells causes defects in progression of neural progenitor cell commitment within the SVZ and subsequent neuronal differentiation in the postnatal mouse brain.
Collapse
Affiliation(s)
- Motoko Kawaguchi-Niida
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan; Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Japan; Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|