1
|
Toader AE, Fukuda M, Vazquez AL. Evaluation of calibrated and uncalibrated optical imaging approaches for relative cerebral oxygen metabolism measurements in awake mice. Physiol Meas 2024; 45:045007. [PMID: 38569522 DOI: 10.1088/1361-6579/ad3a2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus.Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration.Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2with differences as small as 7%-9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2change calculations.Significance. The effect of calibration on rCMRO2calculations remains understudied, and we systematically evaluated different rCMRO2calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2calculation.
Collapse
Affiliation(s)
- A E Toader
- Departments of Radiology, University of Pittsburgh, Pittsburgh PA 15217, United States of America
| | - M Fukuda
- Departments of Radiology, University of Pittsburgh, Pittsburgh PA 15217, United States of America
| | - A L Vazquez
- Departments of Radiology, University of Pittsburgh, Pittsburgh PA 15217, United States of America
- Bioengineering, University of Pittsburgh, Pittsburgh PA 15217, United States of America
| |
Collapse
|
2
|
Padawer-Curry JA, Bowen RM, Jarang A, Wang X, Lee JM, Bauer AQ. Wide-Field Optical Imaging in Mouse Models of Ischemic Stroke. Methods Mol Biol 2023; 2616:113-151. [PMID: 36715932 DOI: 10.1007/978-1-0716-2926-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional neuroimaging is a powerful tool for evaluating how local and global brain circuits evolve after focal ischemia and how these changes relate to functional recovery. For example, acutely after stroke, changes in functional brain organization relate to initial deficit and are predictive of recovery potential. During recovery, the reemergence and restoration of connections lost due to stroke correlate with recovery of function. Thus, information gleaned from functional neuroimaging can be used as a proxy for behavior and inform on the efficacy of interventional strategies designed to affect plasticity mechanisms after injury. And because these findings are consistently observed across species, bridge measurements can be made in animal models to enrich findings in human stroke populations. In mice, genetic engineering techniques have provided several new opportunities for extending optical neuroimaging methods to more direct measures of neuronal activity. These developments are especially useful in the context of stroke where neurovascular coupling can be altered, potentially limiting imaging measures based on hemodynamic activity alone. This chapter is designed to give an overview of functional wide-field optical imaging (WFOI) for applications in rodent models of stroke, primarily in the mouse. The goal is to provide a protocol for laboratories that want to incorporate an affordable functional neuroimaging assay into their current research thrusts, but perhaps lack the background knowledge or equipment for developing a new arm of research in their lab. Within, we offer a comprehensive guide developing and applying WFOI technology with the hope of facilitating accessibility of neuroimaging technology to other researchers in the stroke field.
Collapse
Affiliation(s)
- Jonah A Padawer-Curry
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan M Bowen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Anmol Jarang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaodan Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Novi SL, Carvalho AC, Forti RM, Cendes F, Yasuda CL, Mesquita RC. Revealing the spatiotemporal requirements for accurate subject identification with resting-state functional connectivity: a simultaneous fNIRS-fMRI study. NEUROPHOTONICS 2023; 10:013510. [PMID: 36756003 PMCID: PMC9896013 DOI: 10.1117/1.nph.10.1.013510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Brain fingerprinting refers to identifying participants based on their functional patterns. Despite its success with functional magnetic resonance imaging (fMRI), brain fingerprinting with functional near-infrared spectroscopy (fNIRS) still lacks adequate validation. AIM We investigated how fNIRS-specific acquisition features (limited spatial information and nonneural contributions) influence resting-state functional connectivity (rsFC) patterns at the intra-subject level and, therefore, brain fingerprinting. APPROACH We performed multiple simultaneous fNIRS and fMRI measurements in 29 healthy participants at rest. Data were preprocessed following the best practices, including the removal of motion artifacts and global physiology. The rsFC maps were extracted with the Pearson correlation coefficient. Brain fingerprinting was tested with pairwise metrics and a simple linear classifier. RESULTS Our results show that average classification accuracy with fNIRS ranges from 75% to 98%, depending on the number of runs and brain regions used for classification. Under the right conditions, brain fingerprinting with fNIRS is close to the 99.9% accuracy found with fMRI. Overall, the classification accuracy is more impacted by the number of runs and the spatial coverage than the choice of the classification algorithm. CONCLUSIONS This work provides evidence that brain fingerprinting with fNIRS is robust and reliable for extracting unique individual features at the intra-subject level once relevant spatiotemporal constraints are correctly employed.
Collapse
Affiliation(s)
- Sergio L. Novi
- University of Campinas, “Gleb Wataghin” Institute of Physics, Campinas, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Alex C. Carvalho
- University of Campinas, “Gleb Wataghin” Institute of Physics, Campinas, Brazil
- University of Campinas, Laboratory of Neuroimaging, Campinas, Brazil
| | - R. M. Forti
- University of Campinas, “Gleb Wataghin” Institute of Physics, Campinas, Brazil
- The Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Fernado Cendes
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
- University of Campinas, School of Medical Sciences, Department of Neurology, Campinas, Brazil
| | - Clarissa L. Yasuda
- University of Campinas, Laboratory of Neuroimaging, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
- University of Campinas, School of Medical Sciences, Department of Neurology, Campinas, Brazil
| | - Rickson C. Mesquita
- University of Campinas, “Gleb Wataghin” Institute of Physics, Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| |
Collapse
|
4
|
Abdalmalak A, Novi SL, Kazazian K, Norton L, Benaglia T, Slessarev M, Debicki DB, Lawrence KS, Mesquita RC, Owen AM. Effects of Systemic Physiology on Mapping Resting-State Networks Using Functional Near-Infrared Spectroscopy. Front Neurosci 2022; 16:803297. [PMID: 35350556 PMCID: PMC8957952 DOI: 10.3389/fnins.2022.803297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Resting-state functional connectivity (rsFC) has gained popularity mainly due to its simplicity and potential for providing insights into various brain disorders. In this vein, functional near-infrared spectroscopy (fNIRS) is an attractive choice due to its portability, flexibility, and low cost, allowing for bedside imaging of brain function. While promising, fNIRS suffers from non-neural signal contaminations (i.e., systemic physiological noise), which can increase correlation across fNIRS channels, leading to spurious rsFC networks. In the present work, we hypothesized that additional measurements with short channels, heart rate, mean arterial pressure, and end-tidal CO2 could provide a better understanding of the effects of systemic physiology on fNIRS-based resting-state networks. To test our hypothesis, we acquired 12 min of resting-state data from 10 healthy participants. Unlike previous studies, we investigated the efficacy of different pre-processing approaches in extracting resting-state networks. Our results are in agreement with previous studies and reinforce the fact that systemic physiology can overestimate rsFC. We expanded on previous work by showing that removal of systemic physiology decreases intra- and inter-subject variability, increasing the ability to detect neural changes in rsFC across groups and over longitudinal studies. Our results show that by removing systemic physiology, fNIRS can reproduce resting-state networks often reported with functional magnetic resonance imaging (fMRI). Finally, the present work details the effects of systemic physiology and outlines how to remove (or at least ameliorate) their contributions to fNIRS signals acquired at rest.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
- *Correspondence: Androu Abdalmalak,
| | - Sergio L. Novi
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas, Brazil
- *Correspondence: Androu Abdalmalak,
| | - Karnig Kazazian
- Brain and Mind Institute, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King’s University College at Western University, London, ON, Canada
| | - Tatiana Benaglia
- Institute of Mathematics, Statistics and Scientific Computing, University of Campinas, Campinas, Brazil
| | - Marat Slessarev
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Derek B. Debicki
- Brain and Mind Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Rickson C. Mesquita
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas, Brazil
| | - Adrian M. Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Brain and Mind Institute, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| |
Collapse
|
5
|
Cortical connectivity is embedded in resting state at columnar resolution. Prog Neurobiol 2022; 213:102263. [DOI: 10.1016/j.pneurobio.2022.102263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023]
|
6
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Khan AF, Zhang F, Yuan H, Ding L. Brain-wide functional diffuse optical tomography of resting state networks. J Neural Eng 2021; 18. [PMID: 33946052 DOI: 10.1088/1741-2552/abfdf9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Objective.Diffuse optical tomography (DOT) has the potential in reconstructing resting state networks (RSNs) in human brains with high spatio-temporal resolutions and multiple contrasts. While several RSNs have been reported and successfully reconstructed using DOT, its full potential in recovering a collective set of distributed brain-wide networks with the number of RSNs close to those reported using functional magnetic resonance imaging (fMRI) has not been demonstrated.Approach.The present study developed a novel brain-wide DOT (BW-DOT) framework that integrates a cap-based whole-head optode placement system with multiple computational approaches, i.e. finite-element modeling, inverse source reconstruction, data-driven pattern recognition, and statistical correlation tomography, to reconstruct RSNs in dual contrasts of oxygenated (HbO) and deoxygenated hemoglobins (HbR).Main results.Our results from the proposed framework revealed a comprehensive set of RSNs and their subnetworks, which collectively cover almost the entire neocortical surface of the human brain, both at the group level and individual participants. The spatial patterns of these DOT RSNs suggest statistically significant similarities to fMRI RSN templates. Our results also reported the networks involving the medial prefrontal cortex and precuneus that had been missed in previous DOT studies. Furthermore, RSNs obtained from HbO and HbR suggest similarity in terms of both the number of RSN types reconstructed and their corresponding spatial patterns, while HbR RSNs show statistically more similarity to fMRI RSN templates and HbO RSNs indicate more bilateral patterns over two hemispheres. In addition, the BW-DOT framework allowed consistent reconstructions of RSNs across individuals and across recording sessions, indicating its high robustness and reproducibility, respectively.Significance.Our present results suggest the feasibility of using the BW-DOT, as a neuroimaging tool, in simultaneously mapping multiple RSNs and its potential values in studying RSNs, particularly in patient populations under diverse conditions and needs, due to its advantages in accessibility over fMRI.
Collapse
Affiliation(s)
- Ali F Khan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America
| | - Fan Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States of America
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States of America
| |
Collapse
|
8
|
Mocanu VM, Shmuel A. Optical Imaging-Based Guidance of Viral Microinjections and Insertion of a Laminar Electrophysiology Probe Into a Predetermined Barrel in Mouse Area S1BF. Front Neural Circuits 2021; 15:541676. [PMID: 34054436 PMCID: PMC8158817 DOI: 10.3389/fncir.2021.541676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/31/2021] [Indexed: 12/04/2022] Open
Abstract
Wide-field Optical Imaging of Intrinsic Signals (OI-IS; Grinvald et al., 1986) is a method for imaging functional brain hemodynamic responses, mainly used to image activity from the surface of the cerebral cortex. It localizes small functional modules – such as cortical columns – with great spatial resolution and spatial specificity relative to the site of increases in neuronal activity. OI-IS is capable of imaging responses either through an intact or thinned skull or following a craniotomy. Therefore, it is minimally invasive, which makes it ideal for survival experiments. Here we describe OI-IS-based methods for guiding microinjections of optogenetics viral vectors in proximity to small functional modules (S1 barrels) of the cerebral cortex and for guiding the insertion of electrodes for electrophysiological recording into such modules. We validate our proposed methods by tissue processing of the cerebral barrel field area, revealing the track of the electrode in a predetermined barrel. In addition, we demonstrate the use of optical imaging to visualize the spatial extent of the optogenetics photostimulation, making it possible to estimate one of the two variables that conjointly determine which region of the brain is stimulated. Lastly, we demonstrate the use of OI-IS at high-magnification for imaging the upper recording contacts of a laminar probe, making it possible to estimate the insertion depth of all contacts relative to the surface of the cortex. These methods support the precise positioning of microinjections and recording electrodes, thus overcoming the variability in the spatial position of fine-scale functional modules.
Collapse
Affiliation(s)
- Victor M Mocanu
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Howarth C, Mishra A, Hall CN. More than just summed neuronal activity: how multiple cell types shape the BOLD response. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190630. [PMID: 33190598 PMCID: PMC7116385 DOI: 10.1098/rstb.2019.0630] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Functional neuroimaging techniques are widely applied to investigations of human cognition and disease. The most commonly used among these is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. The BOLD signal occurs because neural activity induces an increase in local blood supply to support the increased metabolism that occurs during activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in an active brain region, and a corresponding decrease in deoxygenated blood, which generates the BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through metabolism, and supply, in the blood. To understand what information is carried in BOLD signals, we must understand how several cell types in the brain-local excitatory neurons, inhibitory neurons, astrocytes and vascular cells (pericytes, vascular smooth muscle and endothelial cells), and their modulation by ascending projection neurons-contribute to both metabolism and haemodynamic changes. Here, we review the contributions of each cell type to the regulation of cerebral blood flow and metabolism, and discuss situations where a simplified interpretation of the BOLD response as reporting local excitatory activity may misrepresent important biological phenomena, for example with regards to arousal states, ageing and neurological disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
10
|
Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discov 2020; 6:39. [PMID: 32566247 PMCID: PMC7296038 DOI: 10.1038/s41421-020-0180-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Functional hyperemia, or the matching of blood flow with activity, directs oxygen and nutrients to regionally firing neurons. The mechanisms responsible for this spatial accuracy remain unclear but are critical for brain function and establish the diagnostic resolution of BOLD-fMRI. Here, we described a mosaic of pericytes, the vasomotor capillary cells in the living retina. We then tested whether this net of pericytes and surrounding neuroglia predicted a connectivity map in response to sensory stimuli. Surprisingly, we found that these connections were not only selective across cell types, but also highly asymmetric spatially. First, pericytes connected predominantly to other neighboring pericytes and endothelial cells, and less to arteriolar smooth muscle cells, and not to surrounding neurons or glia. Second, focal, but not global stimulation evoked a directional vasomotor response by strengthening connections along the feeding vascular branch. This activity required local NO signaling and occurred by means of direct coupling via gap junctions. By contrast, bath application of NO or diabetes, a common microvascular pathology, not only weakened the vascular signaling but also abolished its directionality. We conclude that the exclusivity of neurovascular interactions may thus establish spatial accuracy of blood delivery with the precision of the neuronal receptive field size, and is disrupted early in diabetes.
Collapse
Affiliation(s)
- Tamas Kovacs-Oller
- Burke Neurological Institute, White Plains, NY 10605 USA
- Szentagothai Research Centre, University of Pécs, Pécs, H-7624 Hungary
| | - Elena Ivanova
- Burke Neurological Institute, White Plains, NY 10605 USA
| | | | - Botir T. Sagdullaev
- Burke Neurological Institute, White Plains, NY 10605 USA
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
11
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Ma Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN, Zhao HT, Yu H, Hillman EMC. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0360. [PMID: 27574312 PMCID: PMC5003860 DOI: 10.1098/rstb.2015.0360] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.
Collapse
Affiliation(s)
- Ying Ma
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Mohammed A Shaik
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sharon H Kim
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Mariel G Kozberg
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David N Thibodeaux
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hang Yu
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
13
|
Hall CN, Howarth C, Kurth-Nelson Z, Mishra A. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0348. [PMID: 27574302 DOI: 10.1098/rstb.2015.0348] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
| | - Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Zebulun Kurth-Nelson
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Anusha Mishra
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
14
|
Poplawsky AJ, Fukuda M, Kang BM, Kim JH, Suh M, Kim SG. Dominance of layer-specific microvessel dilation in contrast-enhanced high-resolution fMRI: Comparison between hemodynamic spread and vascular architecture with CLARITY. Neuroimage 2017; 197:657-667. [PMID: 28822749 DOI: 10.1016/j.neuroimage.2017.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/04/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022] Open
Abstract
Contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI response peaks are specific to the layer of evoked synaptic activity (Poplawsky et al., 2015), but the spatial resolution limit of CBVw fMRI is unknown. In this study, we measured the laminar spread of the CBVw fMRI evoked response in the external plexiform layer (EPL, 265 ± 65 μm anatomical thickness, mean ± SD, n = 30 locations from 5 rats) of the rat olfactory bulb during electrical stimulation of the lateral olfactory tract and examined its potential vascular source. First, we obtained the evoked CBVw fMRI responses with a 55 × 55 μm2 in-plane resolution and a 500-μm thickness at 9.4 T, and found that the fMRI signal peaked predominantly in the inner half of EPL (136 ± 54 μm anatomical thickness). The mean full-width at half-maximum of these fMRI peaks was 347 ± 102 μm and the functional spread was approximately 100 or 200 μm when the effects of the laminar thicknesses of EPL or inner EPL were removed, respectively. Second, we visualized the vascular architecture of EPL from a different rat using a Clear Lipid-exchanged Anatomically Rigid Imaging/immunostaining-compatible Tissue hYdrogel (CLARITY)-based tissue preparation method and confocal microscopy. Microvascular segments with an outer diameter of <11 μm accounted for 64.3% of the total vascular volume within EPL and had a mean segment length of 55 ± 40 μm (n = 472). Additionally, vessels that crossed the EPL border had a mean segment length outside of EPL equal to 73 ± 61 μm (n = 28), which is comparable to half of the functional spread (50-100 μm). Therefore, we conclude that dilation of these microvessels, including capillaries, likely dominate the CBVw fMRI response and that the biological limit of the fMRI spatial resolution is approximately the average length of 1-2 microvessel segments, which may be sufficient for examining sublaminar circuits.
Collapse
Affiliation(s)
| | - Mitsuhiro Fukuda
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bok-Man Kang
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jae Hwan Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
15
|
Herman MC, Cardoso MMB, Lima B, Sirotin YB, Das A. Simultaneously estimating the task-related and stimulus-evoked components of hemodynamic imaging measurements. NEUROPHOTONICS 2017; 4:031223. [PMID: 28721355 PMCID: PMC5502953 DOI: 10.1117/1.nph.4.3.031223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Task-related hemodynamic responses contribute prominently to functional magnetic resonance imaging (fMRI) recordings. They reflect behaviorally important brain states, such as arousal and attention, and can dominate stimulus-evoked responses, yet they remain poorly understood. To help characterize these responses, we present a method for parametrically estimating both stimulus-evoked and task-related components of hemodynamic responses from subjects engaged in temporally predictable tasks. The stimulus-evoked component is modeled by convolving a hemodynamic response function (HRF) kernel with spiking. The task-related component is modeled by convolving a Fourier-series task-related function (TRF) kernel with task timing. We fit this model with simultaneous electrode recordings and intrinsic-signal optical imaging from the primary visual cortex of alert, task-engaged monkeys. With high [Formula: see text], the model returns HRFs that are consistent across experiments and recording sites for a given animal and TRFs that entrain to task timing independent of stimulation or local spiking. When the task schedule conflicts with that of stimulation, the TRF remains locked to the task emphasizing its behavioral origins. The current approach is strikingly more robust to fluctuations than earlier ones and gives consistently, if modestly, better fits. This approach could help parse the distinct components of fMRI recordings made in the context of a task.
Collapse
Affiliation(s)
- Max Charles Herman
- Columbia University, Department of Neuroscience, New York, New York, United States
| | - Mariana M. B. Cardoso
- Columbia University, Department of Neuroscience, New York, New York, United States
- University of California at San Francisco, Department of Physiology and Center for Integrative Neuroscience, San Francisco, California, United States
| | - Bruss Lima
- Columbia University, Department of Neuroscience, New York, New York, United States
- Federal University of Rio de Janeiro, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Yevgeniy B. Sirotin
- Columbia University, Department of Neuroscience, New York, New York, United States
| | - Aniruddha Das
- Columbia University, Department of Neuroscience, New York, New York, United States
| |
Collapse
|
16
|
High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials. Proc Natl Acad Sci U S A 2017; 114:5253-5258. [PMID: 28461461 DOI: 10.1073/pnas.1620520114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.
Collapse
|
17
|
|
18
|
Eccentricity mapping of the human visual cortex to evaluate temporal dynamics of functional T1ρ mapping. J Cereb Blood Flow Metab 2015; 35:1213-9. [PMID: 25966957 PMCID: PMC4640285 DOI: 10.1038/jcbfm.2015.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Abstract
Recent experiments suggest that T1 relaxation in the rotating frame (T(1ρ)) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T(1ρ) is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T(1ρ) changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T(1ρ), BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T(1ρ) versus BOLD and ASL. The results suggest that T(1ρ) changes precede changes in the two blood flow-dependent measures. These observations indicate that T(1ρ) detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T(1ρ) is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T(1ρ) changes.
Collapse
|
19
|
Abstract
Hemodynamic signals are widely used to infer neural activity in the brain. We tested the hypothesis that hemodynamic signals faithfully report neural activity during voluntary behaviors by measuring cerebral blood volume (CBV) and neural activity in the somatosensory cortex and frontal cortex of head-fixed mice during locomotion. Locomotion induced a large and robust increase in firing rate and gamma-band (40-100 Hz) power in the local field potential in the limb representations in somatosensory cortex, and was accompanied by increases in CBV, demonstrating that hemodynamic signals are coupled with neural activity in this region. However, in the frontal cortex, CBV did not change during locomotion, but firing rate and gamma-band power both increased, indicating a decoupling of neural activity from the hemodynamic signal. These results show that hemodynamic signals are not faithful indicators of the mean neural activity in the frontal cortex during locomotion; thus, the results from fMRI and other hemodynamic imaging methodologies for studying neural processes must be interpreted with caution.
Collapse
|
20
|
Srinivasan VJ, Radhakrishnan H. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation. Neuroimage 2014; 102 Pt 2:393-406. [PMID: 25111471 DOI: 10.1016/j.neuroimage.2014.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/28/2014] [Accepted: 08/02/2014] [Indexed: 11/15/2022] Open
Abstract
The BOLD (blood-oxygen-level dependent) fMRI (functional Magnetic Resonance Imaging) signal is shaped, in part, by changes in red blood cell (RBC) content and flow across vascular compartments over time. These complex dynamics have been challenging to characterize directly due to a lack of appropriate imaging modalities. In this study, making use of infrared light scattering from RBCs, depth-resolved Optical Coherence Tomography (OCT) angiography was applied to image laminar functional hyperemia in the rat somatosensory cortex. After defining and validating depth-specific metrics for changes in RBC content and speed, laminar hemodynamic responses in microvasculature up to cortical depths of >1mm were measured during a forepaw stimulus. The results provide a comprehensive picture of when and where changes in RBC content and speed occur during and immediately following cortical activation. In summary, the earliest and largest microvascular RBC content changes occurred in the middle cortical layers, while post-stimulus undershoots were most prominent superficially. These laminar variations in positive and negative responses paralleled known distributions of excitatory and inhibitory synapses, suggesting neuronal underpinnings. Additionally, the RBC speed response consistently returned to baseline more promptly than RBC content after the stimulus across cortical layers, supporting a "flow-volume mismatch" of hemodynamic origin.
Collapse
Affiliation(s)
- Vivek J Srinivasan
- Department of Biomedical Engineering, University of California at Davis, 451 E. Health Sciences Dr. GBSF 2303, Davis, CA 95616, USA.
| | - Harsha Radhakrishnan
- Department of Biomedical Engineering, University of California at Davis, 451 E. Health Sciences Dr. GBSF 2303, Davis, CA 95616, USA
| |
Collapse
|
21
|
Wu J, Guo C, Chen S, Jiang T, He Y, Ding W, Yang Z, Luo Q, Gong H. Direct 3D Analyses Reveal Barrel-Specific Vascular Distribution and Cross-Barrel Branching in the Mouse Barrel Cortex. Cereb Cortex 2014; 26:23-31. [PMID: 25085882 DOI: 10.1093/cercor/bhu166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Whether vascular distribution is spatially specific among cortical columns is a fundamental yet controversial question. Here, we have obtained 1-μm resolution 3D datasets that cover the whole mouse barrel cortex by combining Nissl staining with micro-optical sectioning tomography to simultaneously visualize individual cells and blood vessels, including capillaries. Pinpointing layer IV of the posteromedial barrel subfield, direct 3D reconstruction and quantitative analysis showed that (1) penetrating vessels preferentially locate in the interbarrel septa/barrel wall (75.1%) rather than the barrel hollows, (2) the branches of 70% penetrating vessels only reach the neighboring but not always all the neighboring barrels and the other 30% extend beyond the neighboring barrels and may provide cross-barrel blood supply or drainage, (3) the branches of 59.6% penetrating vessels reach all the neighboring barrels, while the rest only reach part of them, and (4) the length density of microvessels in the interbarrel septa/barrel wall is lower than that in the barrel hollows with a ratio of 0.92. These results reveal that the penetrating vessels and microvessels exhibit a barrel-specific organization, whereas the branches of penetrating vessels do not, which suggests a much more complex vascular distribution pattern among cortical columns than previously thought.
Collapse
Affiliation(s)
- Jingpeng Wu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Congdi Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong He
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenxiang Ding
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongqin Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Patel KS, Zhao M, Ma H, Schwartz TH. Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurg Focus 2014; 34:E10. [PMID: 23544406 DOI: 10.3171/2013.1.focus12408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The ability to predict seizure occurrence is extremely important to trigger abortive therapies and to warn patients and their caregivers. Optical imaging of hemodynamic parameters such as blood flow, blood volume, and tissue and hemoglobin oxygenation has already been shown to successfully localize epileptic events with high spatial and temporal resolution. The ability to actually predict seizure occurrence using hemodynamic parameters is less well explored. METHODS In this article, the authors critically review data from the literature on neocortical epilepsy and optical imaging, and they discuss the preictal hemodynamic changes and their application in neurosurgery. RESULTS Recent optical mapping studies have demonstrated preictal hemodynamic changes in both human and animal neocortex. CONCLUSIONS Optical measurements of blood flow and oxygenation may become increasingly important for predicting and localizing epileptic events. The ability to successfully predict ictal onsets may be useful to trigger closed-loop abortive therapies.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York 10065, USA
| | | | | | | |
Collapse
|
23
|
Meyer T, Sobottka SB, Kirsch M, Schackert G, Steinmeier R, Koch E, Morgenstern U. Intraoperative optical imaging of functional brain areas for improved image-guided surgery. ACTA ACUST UNITED AC 2014; 58:225-36. [PMID: 23729529 DOI: 10.1515/bmt-2012-0072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/03/2013] [Indexed: 11/15/2022]
Abstract
Intraoperative optical imaging of intrinsic signals can improve the localization of functional areas of the cortex. On the basis of a review of the current state of technology, a setup was developed and evaluated. The aim was to implement an easy-to-use and robust imaging setup that can be used in clinical routine with standard hardware equipment (surgical microscope, high-resolution camera, stimulator for peripheral nerve stimulation) and custom-made software for intraoperative and postoperative data analysis. Evaluation of different light sources (halogen, xenon) showed a sufficient temporal behavior of xenon light without using a stabilized power supply. Spatial binning (2×2) of the camera reduces temporal variations in the images by preserving a high spatial resolution. The setup was tested in eight patients. Images were acquired continuously for 9 min with alternating 30-s rest and 30-s stimulation conditions. Intraoperative measurement and visualization of high-resolution two-dimensional activity maps could be achieved in <15 min. The detected functional regions corresponded with anatomical and electrophysiological validation. The integration of optical imaging in clinical routine could successfully be achieved using standard hardware, which improves guidance for the surgeon during interventions near the eloquent areas of the brain.
Collapse
Affiliation(s)
- Tobias Meyer
- Institute of Biomedical Engineering, Faculty of Electrical Engineering and Information Technology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Functional Imaging of Cerebral Oxygenation with Intrinsic Optical Contrast and Phosphorescent Probes. NEUROMETHODS 2014. [DOI: 10.1007/978-1-62703-785-3_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Sobottka SB, Meyer T, Kirsch M, Koch E, Steinmeier R, Morgenstern U, Schackert G. Intraoperative optical imaging of intrinsic signals: a reliable method for visualizing stimulated functional brain areas during surgery. J Neurosurg 2013; 119:853-63. [DOI: 10.3171/2013.5.jns122155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Intraoperative optical imaging (IOI) is an experimental technique used for visualizing functional brain areas after surgical exposure of the cerebral cortex. This technique identifies areas of local changes in blood volume and oxygenation caused by stimulation of specific brain functions. The authors describe a new IOI method, including innovative data analysis, that can facilitate intraoperative functional imaging on a routine basis. To evaluate the reliability and validity of this approach, they used the new IOI method to demonstrate visualization of the median nerve area of the somatosensory cortex.
Methods
In 41 patients with tumor lesions adjacent to the postcentral gyrus, lesions were surgically removed by using IOI during stimulation of the contralateral median nerve. Optical properties of the cortical tissue were measured with a sensitive camera system connected to a surgical microscope. Imaging was performed by using 9 cycles of alternating prolonged stimulation and rest periods of 30 seconds. Intraoperative optical imaging was based on blood volume changes detected by using a filter at an isosbestic wavelength (λ = 568 nm). A spectral analysis algorithm was used to improve computation of the activity maps. Movement artifacts were compensated for by an elastic registration algorithm. For validation, intraoperative conduction of the phase reversal over the central sulcus and postoperative evaluation of the craniotomy site were used.
Results
The new method and analysis enabled significant differentiation (p < 0.005) between functional and nonfunctional tissue. The identification and visualization of functionally intact somatosensory cortex was highly reliable; sensitivity was 94.4% and specificity was almost 100%. The surgeon was provided with a 2D high-resolution activity map within 12 minutes. No method-related side effects occurred in any of the 41 patients.
Conclusions
The authors' new approach makes IOI a contact-free and label-free optical technique that can be used safely in a routine clinical setup. Intraoperative optical imaging can be used as an alternative to other methods for the identification of sensory cortex areas and offers the added benefit of a high-resolution map of functional activity. It has great potential for visualizing and monitoring additional specific functional brain areas such as the visual, motor, and speech cortex. A prospective national multicenter clinical trial is currently being planned.
Collapse
Affiliation(s)
| | - Tobias Meyer
- 1Department of Neurosurgery, University Hospital Carl Gustav Carus
- 2Institute for Biomedical Engineering
| | - Matthias Kirsch
- 1Department of Neurosurgery, University Hospital Carl Gustav Carus
| | - Edmund Koch
- 3Clinical Sensoring and Monitoring, Faculty of Medicine Carl Gustav Carus, Technical University of Dresden, Dresden; and
| | - Ralf Steinmeier
- 4Department of Neurosurgery, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | | | | |
Collapse
|
26
|
Lu H, Hua J, van Zijl PCM. Noninvasive functional imaging of cerebral blood volume with vascular-space-occupancy (VASO) MRI. NMR IN BIOMEDICINE 2013; 26:932-948. [PMID: 23355392 PMCID: PMC3659207 DOI: 10.1002/nbm.2905] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/29/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Functional MRI (fMRI) based on changes in cerebral blood volume (CBV) can probe directly vasodilatation and vasoconstriction during brain activation or physiologic challenges, and can provide important insights into the mechanism of blood oxygenation level-dependent (BOLD) signal changes. At present, the most widely used CBV fMRI technique in humans is called vascular-space-occupancy (VASO) MRI, and this article provides a technical review of this method. VASO MRI utilizes T1 differences between blood and tissue to distinguish between these two compartments within a voxel, and employs a blood-nulling inversion recovery sequence to yield an MR signal proportional to 1 - CBV. As such, vasodilatation will result in a VASO signal decrease and vasoconstriction will have the reverse effect. The VASO technique can be performed dynamically with a temporal resolution comparable with several other fMRI methods, such as BOLD or arterial spin labeling (ASL), and is particularly powerful when conducted in conjunction with these complementary techniques. The pulse sequence and imaging parameters of VASO can be optimized such that the signal change is predominantly of CBV origin, but careful considerations should be taken to minimize other contributions, such as those from the BOLD effect, cerebral blood flow (CBF) and cerebrospinal fluid (CSF). The sensitivity of the VASO technique is the primary disadvantage when compared with BOLD, but this technique is increasingly demonstrating its utility in neuroscientific and clinical applications.
Collapse
Affiliation(s)
- Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | |
Collapse
|
27
|
Heo C, Lee SY, Jo A, Jung S, Suh M, Lee YH. Flexible, transparent, and noncytotoxic graphene electric field stimulator for effective cerebral blood volume enhancement. ACS NANO 2013; 7:4869-4878. [PMID: 23651168 DOI: 10.1021/nn305884w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Enhancing cerebral blood volume (CBV) of a targeted area without causing side effects is a primary strategy for treating cerebral hypoperfusion. Here, we report a new nonpharmaceutical and nonvascular surgical method to increase CBV. A flexible, transparent, and skin-like biocompatible graphene electrical field stimulator was placed directly onto the cortical brain, and a noncontact electric field was applied at a specific local blood vessel. Effective CBV increases in the blood vessels of mouse brains were directly observed from in vivo optical recordings of intrinsic signal imaging. The CBV was significantly increased in arteries of the stimulated area, but neither tissue damage nor unnecessary neuronal activation was observed. No transient hypoxia was observed. This technique provides a new method to treat cerebral blood circulation deficiencies at local vessels and can be applied to brain regeneration and rehabilitation.
Collapse
Affiliation(s)
- Chaejeong Heo
- IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science, Daejeon 305-811, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Clarkson AN, López-Valdés HE, Overman JJ, Charles AC, Brennan KC, Thomas Carmichael S. Multimodal examination of structural and functional remapping in the mouse photothrombotic stroke model. J Cereb Blood Flow Metab 2013; 33:716-23. [PMID: 23385201 PMCID: PMC3652691 DOI: 10.1038/jcbfm.2013.7] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent studies show a limited capacity for neural repair after stroke, which includes remapping of sensorimotor functions and sprouting of new connections. However, physiologic and connectional plasticity of sensory maps during long-term functional recovery in the mouse have not been determined. Using a photothrombotic stroke model, we targeted the motor cortex, which we show results in lasting behavioral deficits on the grid-walking and in the cylinder tasks out to 8 weeks after stroke. Mice recovered performance in a skilled reaching task, showing no deficit from week 2 after stroke. Long-term optical intrinsic signal imaging revealed functional reorganization of sensory cortical maps for both forelimb and hindlimb, with more diffuse sensory physiologic maps. There was a small but significant increase in motor neuron projections within the areas of functional cortical reorganization as assessed using the neuroanatomic tracer biotinylated dextran amine. These findings show that the sensorimotor cortex undergoes remapping of cortical functions and axonal sprouting within the same regions during recovery after stroke. This suggests a linked structural and physiologic plasticity underlying recovery. Combined long-term structural and functional mapping after stroke in the mouse is practical and provides a rich data set for mechanistic analysis of stroke recovery.
Collapse
Affiliation(s)
- Andrew N Clarkson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mace E, Montaldo G, Osmanski BF, Cohen I, Fink M, Tanter M. Functional ultrasound imaging of the brain: theory and basic principles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:492-506. [PMID: 23475916 DOI: 10.1109/tuffc.2013.2592] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain.
Collapse
Affiliation(s)
- Emilie Mace
- Institut Langevin, CNRS UMR7587, Inserm U979, Université Paris VII, Ecole Superieure de Physique et de Chimie Industrielles de Paris, Paris, France.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The migraine attack is characterized by alterations in sensory perception, such as photophobia or allodynia, which have in common an uncomfortable amplification of the percept. It is not known how these changes arise. We evaluated the ability of cortical spreading depression (CSD), the proposed mechanism of the migraine aura, to shape the cortical activity that underlies sensory perception. We measured forepaw- and hindpaw-evoked sensory responses in rat, before and after CSD, using multielectrode array recordings and two-dimensional optical spectroscopy. CSD significantly altered cortical sensory processing on a timescale compatible with the duration of the migraine attack. Both electrophysiological and hemodynamic maps had a reduced surface area (were sharpened) after CSD. Electrophysiological responses were potentiated at the receptive field center but suppressed in surround regions. Finally, the normal adaptation of sensory-evoked responses was attenuated at the receptive field center. In summary, we show that CSD induces changes in the evoked cortical response that are consistent with known mechanisms of cortical plasticity. These mechanisms provide a novel neurobiological substrate to explain the sensory alterations of the migraine attack.
Collapse
|
31
|
Schei JL, Van Nortwick AS, Meighan PC, Rector DM. Neurovascular saturation thresholds under high intensity auditory stimulation during wake. Neuroscience 2012; 227:191-200. [PMID: 23041761 DOI: 10.1016/j.neuroscience.2012.09.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 11/19/2022]
Abstract
Coupling between neural activity and hemodynamic responses is important in understanding brain function, interpreting brain-imaging signals, and assessing pathological conditions. Tissue state is a major factor in neurovascular coupling and may alter the relationship between neural and hemodynamic activity. However, most neurovascular-coupling studies are performed under anesthetized or sedated states which may have severe consequences on coupling mechanisms. Our previous studies showed that following prolonged periods of sleep deprivation, evoked hemodynamic responses were muted despite consistent electrical responses, suggesting that sustained neural activity may decrease vascular compliance and limit blood perfusion. To investigate potential perfusion limitations during natural waking conditions, we simultaneously measured evoked response potentials (ERPs) and evoked hemodynamic responses using optical-imaging techniques to increase intensity auditory stimulation. The relationship between evoked hemodynamic responses and integrated ERPs followed a sigmoid relationship where the hemodynamic response approached saturation at lower stimulus intensities than the ERP. If limits in blood perfusion are caused by stretching of the vessel wall, then these results suggest there may be decreased vascular compliance due to sustained neural activity during wake, which could limit vascular responsiveness and local blood perfusion. Conditions that stress cerebral vasculature, such as sleep deprivation and some pathologies (e.g., epilepsy), may further decrease vascular compliance, limit metabolic delivery, and cause tissue trauma. While ERPs and evoked hemodynamic responses provide an indication of the correlated neural activity and metabolic demand, the relationship between these two responses is complex and the different measurement techniques are not directly correlated. Future studies are required to verify these findings and further explore neurovascular coupling during wake by assessing local field potentials, vascular expansion, hemodynamic response localization.
Collapse
Affiliation(s)
- J L Schei
- Department of Physics and Astronomy, Washington State University, Pullman, WA 99164-2814, USA
| | | | | | | |
Collapse
|
32
|
de Celis Alonso B, Sergeyeva M, Brune K, Hess A. Lateralization of responses to vibrissal stimulation: Connectivity and information integration in the rat sensory-motor cortex assessed with fMRI. Neuroimage 2012; 62:2101-9. [DOI: 10.1016/j.neuroimage.2012.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 11/30/2022] Open
|
33
|
Columnar specificity of microvascular oxygenation and blood flow response in primary visual cortex: evaluation by local field potential and spiking activity. J Cereb Blood Flow Metab 2012; 32:6-16. [PMID: 22027939 PMCID: PMC3323306 DOI: 10.1038/jcbfm.2011.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The relation of cortical microcirculation, oxygen metabolism, and underlying neuronal network activity remains poorly understood. Anatomical distribution of cortical microvasculature and its relationship to cortical functional domains suggests that functional organizations may be revealed by mapping cerebral blood flow responses. However, there is little direct experimental evidence and a lack of electrophysiological evaluation. In this study, we mapped ocular-dominance columns in primary visual cortex (V1) of anesthetized macaques with capillary flow-based laser speckle contrast imaging and deoxyhemoglobin-based intrinsic optical imaging. In parallel, the local field potentials (LFPs) and spikes were recorded from a linear array of eight microelectrodes, carefully positioned into left and right eye columns in V1. We found differential activation maps of blood flow, after masking large superficial draining vessels, exhibited a column-like pattern similar as the oximetric maps. Both the activated spikes and γ-band LFP demonstrated corresponding eye preference, consistent with the imaging maps. Our results present direct support in favor of previous proposals that the regulation of microcirculation can be as fine as the submillimeter scale, suggesting that cortical vasculature is functionally organized at the columnar level in a manner appropriate for supplying energy demands of functionally specific neuronal populations.
Collapse
|
34
|
Vasomotion and neurovascular coupling in the visual thalamus in vivo. PLoS One 2011; 6:e28746. [PMID: 22174886 PMCID: PMC3235153 DOI: 10.1371/journal.pone.0028746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/14/2011] [Indexed: 11/22/2022] Open
Abstract
Spontaneous contraction and relaxation of arteries (and in some instances venules) has been termed vasomotion and has been observed in an extensive variety of tissues and species. However, its functions and underlying mechanisms are still under discussion. We demonstrate that in vivo spectrophotometry, measured simultaneously with extracellular recordings at the same locations in the visual thalamus of the cat, reveals vasomotion, measured as an oscillation (0.14hz) in the recorded oxyhemoglobin (OxyHb) signal, which appears spontaneously in the microcirculation and can last for periods of hours. During some non-oscillatory periods, maintained sensory stimulation evokes vasomotion lasting ∼30s, resembling an adaptive vascular phenomenon. This oscillation in the oxyhaemoblobin signal is sensitive to pharmacological manipulation: it is inducible by chloralose anaesthesia and it can be temporarily blocked by systemic administration of adrenaline or acetylcholine (ACh). During these oscillatory periods, neurovascular coupling (i.e. the relationship between local neural activity and the rate of blood supply to that location) appears significantly altered. This raises important questions with regard to the interpretation of results from studies currently dependent upon a linear relationship between neural activity and blood flow, such as neuroimaging.
Collapse
|
35
|
Nemoto M, Hoshi Y, Sato C, Iguchi Y, Hashimoto I, Kohno E, Hirano T, Terakawa S. Diversity of neural-hemodynamic relationships associated with differences in cortical processing during bilateral somatosensory activation in rats. Neuroimage 2011; 59:3325-38. [PMID: 22166795 DOI: 10.1016/j.neuroimage.2011.11.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 11/17/2011] [Accepted: 11/19/2011] [Indexed: 11/30/2022] Open
Abstract
The neural-hemodynamic relationships may vary depending on cortical processing patterns. To investigate how cortical hemodynamics reflects neural activity involving different cortical processing patterns, we delivered electrical stimulation pulses to rat hindpaws, unilaterally or bilaterally, and simultaneously measured electrophysiological (local field potential, LFP < 100 Hz; multiunit activity, MUA>300 Hz) and optical intrinsic signals associated with changes in cerebral blood volume (CBV). Unilateral stimulation evoked neural and optical signals in bilateral primary somatosensory cortices. Ipsilateral optical responses indicating an increased CBV exhibited a peak magnitude of ~30% and mediocaudal shifts relative to contralateral responses. Correlation analyses revealed different scale factors between contralateral and ipsilateral responses in LFP-MUA and LFP-CBV relationships. Bilateral stimulation at varying time intervals evoked hemodynamic responses that were strongly suppressed at 40-ms intervals. This suppression quantitatively reflected suppressed LFP responses to contralateral testing stimulation and not linear summation, with slowly fluctuating LFP responses to ipsilateral conditioning stimulation. Consequently, in the overall responses to bilateral stimulation, CBV-related responses were more linearly correlated with MUA than with LFPs. When extracting high-frequency components (>30 Hz) from LFPs, we found similar scale factors between contralateral and ipsilateral responses in LFP-MUA and LFP-CBV relationships, resulting in significant linear relationships among these components, MUA, and cortical hemodynamics in overall responses to bilateral stimulation. The dependence of LFP-MUA-hemodynamic relationships on cortical processing patterns and the LFP temporal/spectral structure is important for interpreting hemodynamic signals in complex functional paradigms driving diverse cortical processing.
Collapse
Affiliation(s)
- Masahito Nemoto
- Integrated Neuroscience Research Team, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gagnon L, Yücel MA, Dehaes M, Cooper RJ, Perdue KL, Selb J, Huppert TJ, Hoge RD, Boas DA. Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. Neuroimage 2011; 59:3933-40. [PMID: 22036999 DOI: 10.1016/j.neuroimage.2011.10.054] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
Near-Infrared Spectroscopy (NIRS) measures the functional hemodynamic response occurring at the surface of the cortex. Large pial veins are located above the surface of the cerebral cortex. Following activation, these veins exhibit oxygenation changes but their volume likely stays constant. The back-reflection geometry of the NIRS measurement renders the signal very sensitive to these superficial pial veins. As such, the measured NIRS signal contains contributions from both the cortical region as well as the pial vasculature. In this work, the cortical contribution to the NIRS signal was investigated using (1) Monte Carlo simulations over a realistic geometry constructed from anatomical and vascular MRI and (2) multimodal NIRS-BOLD recordings during motor stimulation. A good agreement was found between the simulations and the modeling analysis of in vivo measurements. Our results suggest that the cortical contribution to the deoxyhemoglobin signal change (ΔHbR) is equal to 16-22% of the cortical contribution to the total hemoglobin signal change (ΔHbT). Similarly, the cortical contribution of the oxyhemoglobin signal change (ΔHbO) is equal to 73-79% of the cortical contribution to the ΔHbT signal. These results suggest that ΔHbT is far less sensitive to pial vein contamination and therefore, it is likely that the ΔHbT signal provides better spatial specificity and should be used instead of ΔHbO or ΔHbR to map cerebral activity with NIRS. While different stimuli will result in different pial vein contributions, our finger tapping results do reveal the importance of considering the pial contribution.
Collapse
Affiliation(s)
- Louis Gagnon
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Feig SL, Haberly LB. Surface-associated astrocytes, not endfeet, form the glia limitans in posterior piriform cortex and have a spatially distributed, not a domain, organization. J Comp Neurol 2011; 519:1952-69. [PMID: 21452238 DOI: 10.1002/cne.22615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
"Surface-associated astrocytes" (SAAs) in posterior piriform cortex (PPC) are unique by virtue of a direct apposition to the cortical surface and large-caliber processes that descend into layer I. In this study additional unique and functionally relevant features of SAAs in PPC of the rat were identified by light and electron microscopy. Examination of sections cut parallel to the surface of PPC and stained for glial fibrillar acidic protein revealed that, in addition to descending processes, SAAs give rise to an extensive matrix of "superficial processes." Electron microscopy revealed that these superficial processes, together with cell bodies, form a continuous sheet at the surface of PPC with features in common with the glia limitans that is formed by endfeet in other cortical areas. These include a glia limiting membrane with basal lamina and similar associated organelles, including a striking array of mitochondria. Of particular interest, SAAs lack the domain organization observed in neocortex and hippocampus. Rather, superficial processes overlap extensively with gap junctions between their proximal regions as well as between cell bodies. Study of the descending processes revealed thin extensions, many of which appose synaptic profiles. We conclude that SAAs provide a potential substrate for bidirectional signaling and transport between brain and the pial arteries and cerebrospinal fluid in the subarachnoid space. We postulate that the spatially distributed character of SAAs in PPC reflects and supports the spatially distributed circuitry and sensory representation that are also unique features of this area.
Collapse
Affiliation(s)
- S L Feig
- Department of Anatomy and Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
38
|
Kannurpatti SS, Biswal BB. Frequency tuning in the rat whisker barrel cortex revealed through RBC flux maps. Brain Res 2011; 1417:16-26. [PMID: 21911212 DOI: 10.1016/j.brainres.2011.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/29/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022]
Abstract
The rodent whisker barrel cortex is ideal for studies related to sensory processing and neural plasticity in the brain. However, its small spatial dimensions challenge optical and other imaging technologies mapping cortical hemodynamics as functional resolution (the ability to spatially and selectively discriminate signals from microvascular compartments) limit measurement accuracy. To precisely map hemodynamic activity within the rat posteriomedial barrel subfield (PMBSF), we used functional Laser Doppler Imaging (fLDI) at high spatial resolution with optimized detection and analysis. In this configuration, we demonstrate prominent whisker deflection-induced fLDI hemodynamic responses from microvascular regions indicating the technique's specificity to smaller vessel compartments. Clusters of fLDI activation were confined within the PMBSF region during deflection of either single or all whiskers. Stereotaxic co-ordinate mapping was performed over all animals leading to an average maximum activity cluster at +5.3, -3.5 from the Bregma. The maximum activity cluster during all whisker stimulation combined with the principal activation cluster during deflection of the C1 whisker were used as a reference to characterize the fLDI maps within the PMBSF. fLDI activation area increased with the frequency of whisker deflection. In a quantitative analysis, we reveal the increase in the spatial extent of fLDI activation with stimulation frequency as spatially non-uniform with a bias towards the caudal region for low and rostral region for higher stimulation frequencies.
Collapse
|
39
|
Dubeau S, Ferland G, Gaudreau P, Beaumont E, Lesage F. Cerebrovascular hemodynamic correlates of aging in the Lou/c rat: a model of healthy aging. Neuroimage 2011; 56:1892-901. [PMID: 21497659 DOI: 10.1016/j.neuroimage.2011.03.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 11/18/2022] Open
Abstract
The LOU/c rat is an inbred strain considered a model of healthy aging. It exhibits a longer free disease lifespan and a low adiposity throughout life. While this animal model has been shown to maintain eating behavior and neuroendocrine, metabolic and cognitive functions with age, no study has yet investigated vascular correlates in this model of healthy aging. In the present work, multispectral optical imaging was used to investigate the hemodynamic response in the somatosensory cortex of LOU/c rats following forepaw stimulation in three age groups, 4, 24 and 40months. Results indicate reduced hemodynamic responses in the contralateral somatosensory cortex between young (4months) and older groups following stimulation. This decrease was associated with an increase in the spatial extent of activation. The ipsilateral response did not change with aging leading to decreased laterality. Estimations of the relative change in the local cerebral metabolic rate of oxygen during stimulation based on multimodal data showed no significant change with age. The exponent describing the relation between blood volume and blood flow changes, Grubb's parameter, did display a significant change with age which may suggest vessel compliance modifications. This work finds its relevance in recent findings underlying the importance of vascular changes with aging and its impact on neurodegenerative disease.
Collapse
Affiliation(s)
- S Dubeau
- Electrical Engineering Department, Ecole Polytechnique Montréal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
40
|
Gozzi A, Turrini G, Piccoli L, Massagrande M, Amantini D, Antolini M, Martinelli P, Cesari N, Montanari D, Tessari M, Corsi M, Bifone A. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists. PLoS One 2011; 6:e16406. [PMID: 21307957 PMCID: PMC3030585 DOI: 10.1371/journal.pone.0016406] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/18/2010] [Indexed: 11/18/2022] Open
Abstract
Orexins are neuro-modulatory peptides involved in the control of diverse physiological functions through interaction with two receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Recent evidence in pre-clinical models points toward a putative dichotomic role of the two receptors, with OX2R predominantly involved in the regulation of the sleep/wake cycle and arousal, and the OX1R being more specifically involved in reward processing and motivated behaviour. However, the specific neural substrates underlying these distinct processes in the rat brain remain to be elucidated. Here we used functional magnetic resonance imaging (fMRI) in the rat to map the modulatory effect of selective OXR blockade on the functional response produced by D-amphetamine, a psychostimulant and arousing drug that stimulates orexigenic activity. OXR blockade was produced by GSK1059865 and JNJ1037049, two novel OX1R and OX2R antagonists with unprecedented selectivity at the counter receptor type. Both drugs inhibited the functional response to D-amphetamine albeit with distinct neuroanatomical patterns: GSK1059865 focally modulated functional responses in striatal terminals, whereas JNJ1037049 induced a widespread pattern of attenuation characterised by a prominent cortical involvement. At the same doses tested in the fMRI study, JNJ1037049 exhibited robust hypnotic properties, while GSK1059865 failed to display significant sleep-promoting effects, but significantly reduced drug-seeking behaviour in cocaine-induced conditioned place preference. Collectively, these findings highlight an essential contribution of the OX2R in modulating cortical activity and arousal, an effect that is consistent with the robust hypnotic effect exhibited by JNJ1037049. The subcortical and striatal pattern observed with GSK1059865 represent a possible neurofunctional correlate for the modulatory role of OX1R in controlling reward-processing and goal-oriented behaviours in the rat.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Pisa, IIT@NEST, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
White BR, Bauer AQ, Snyder AZ, Schlaggar BL, Lee JM, Culver JP. Imaging of functional connectivity in the mouse brain. PLoS One 2011; 6:e16322. [PMID: 21283729 PMCID: PMC3024435 DOI: 10.1371/journal.pone.0016322] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/11/2010] [Indexed: 11/19/2022] Open
Abstract
Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models.
Collapse
Affiliation(s)
- Brian R. White
- Department of Physics, Washington University, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University, St. Louis, Missouri, United States of America
| | - Adam Q. Bauer
- Department of Radiology, Washington University, St. Louis, Missouri, United States of America
| | - Abraham Z. Snyder
- Department of Radiology, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
| | - Bradley L. Schlaggar
- Department of Radiology, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Department of Anatomy and Neurobiology, Washington University, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States of America
| | - Jin-Moo Lee
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
| | - Joseph P. Culver
- Department of Physics, Washington University, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University, St. Louis, Missouri, United States of America
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Weng JC, Chuang KH, Goloshevsky A, Dodd SJ, Sharer K. Mapping plasticity in the forepaw digit barrel subfield of rat brains using functional MRI. Neuroimage 2011; 54:1122-9. [PMID: 20804851 PMCID: PMC3517913 DOI: 10.1016/j.neuroimage.2010.08.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 07/18/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022] Open
Abstract
The topographic organization of the forepaw barrel subfield in layer IV of rat primary somatosensory cortex (S1) is a good model for studying neural function and plasticity. The goal of this study was to test the feasibility of functional MRI (fMRI) to map the forepaw digit representations in the S1 of the rat and its plasticity after digit amputation. Three dimensional echo-planar imaging with 300 micron isotropic resolution at 11.7 T was used to achieve high signal-to-noise ratios and laminar layer resolution. By alternating electrical stimulation of the 2nd (D2) and 4th (D4) digits, functional activation in layer IV of the barrel subfields could be distinguished using a differential analysis. Furthermore, 2 and a half months after the amputation of the 3rd digit in baby rats, the overlapping area between D2 and D4 representations was increased. This indicates that the forepaw barrel subfield previously associated with the ablated digit is now associated with the representation of nearby digits, which is consistent with studies using electrophysiology and cytochrome oxidase staining.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Hsiang Chuang
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - Artem Goloshevsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J. Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn Sharer
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 2010; 107:22290-5. [PMID: 21135230 DOI: 10.1073/pnas.1011321108] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modern functional imaging techniques of the brain measure local hemodynamic responses evoked by neuronal activity. Capillary pericytes recently were suggested to mediate neurovascular coupling in brain slices, but their role in vivo remains unexplored. We used two-photon microscopy to study in real time pericytes and the dynamic changes of capillary diameter and blood flow in the cortex of anesthetized mice, as well as in brain slices. The thromboxane A(2) analog, 9,11-dideoxy-9α,11α-methanoepoxy Prostaglandin F2α (U46619), induced constrictions in the vicinity of pericytes in a fraction of capillaries, whereas others dilated. The changes in vessel diameter resulted in changes in capillary red blood cell (RBC) flow. In contrast, during brief epochs of seizure activity elicited by local administration of the GABA(A) receptor antagonist, bicuculline, capillary RBC flow increased without pericyte-induced capillary diameter changes. Precapillary arterioles were the smallest vessels to dilate, together with penetrating and pial arterioles. Our results provide in vivo evidence that pericytes can modulate capillary blood flow in the brain, which may be important under pathological conditions. However, our data suggest that precapillary and penetrating arterioles, rather than pericytes in capillaries, are responsible for the blood flow increase induced by neural activity.
Collapse
|
44
|
Lorthois S, Cassot F, Lauwers F. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters. Neuroimage 2010; 54:2840-53. [PMID: 21047557 DOI: 10.1016/j.neuroimage.2010.10.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 09/29/2010] [Accepted: 10/12/2010] [Indexed: 01/26/2023] Open
Abstract
In a companion paper (Lorthois et al., Neuroimage, in press), we perform the first simulations of blood flow in an anatomically accurate large human intra-cortical vascular network (~10000 segments), using a 1D non-linear model taking into account the complex rheological properties of blood flow in microcirculation. This model predicts blood pressure, blood flow and hematocrit distributions, volumes of functional vascular territories, regional flow at voxel and network scales, etc. Using the same approach, we study flow reorganizations induced by global arteriolar vasodilations (an isometabolic global increase in cerebral blood flow). For small to moderate global vasodilations, the relationship between changes in volume and changes in flow is in close agreement with Grubb's law, providing a quantitative tool for studying the variations of its exponent with underlying vascular architecture. A significant correlation between blood flow and vascular structure at the voxel scale, practically unchanged with respect to baseline, is demonstrated. Furthermore, the effects of localized arteriolar vasodilations, representative of a local increase in metabolic demand, are analyzed. In particular, localized vasodilations induce flow changes, including vascular steal, in the neighboring arteriolar trunks at small distances (<300 μm), while their influence in the neighboring veins is much larger (about 1 mm), which provides an estimate of the vascular point spread function. More generally, for the first time, the hemodynamic component of various functional neuroimaging techniques has been isolated from metabolic and neuronal components, and a direct relationship with several known characteristics of the BOLD signal has been demonstrated.
Collapse
Affiliation(s)
- S Lorthois
- Institut de Mécanique des Fluides de Toulouse, UMR CNRS/INP/UPS 5502, Toulouse, France.
| | | | | |
Collapse
|
45
|
Gozzi A, Jain A, Giovanelli A, Bertollini C, Crestan V, Schwarz AJ, Tsetsenis T, Ragozzino D, Gross CT, Bifone A. A Neural Switch for Active and Passive Fear. Neuron 2010; 67:656-66. [DOI: 10.1016/j.neuron.2010.07.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
|
46
|
Mesquita RC, Franceschini MA, Boas DA. Resting state functional connectivity of the whole head with near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2010; 1:324-336. [PMID: 21258470 PMCID: PMC3005169 DOI: 10.1364/boe.1.000324] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/24/2010] [Accepted: 07/27/2010] [Indexed: 05/18/2023]
Abstract
Resting state connectivity aims to identify spontaneous cerebral hemodynamic fluctuations that reflect neuronal activity at rest. In this study, we investigated the spatial-temporal correlation of hemoglobin concentration signals over the whole head during the resting state. By choosing a source-detector pair as a seed, we calculated the correlation value between its time course and the time course of all other source-detector combinations, and projected them onto a topographic map. In all subjects, we found robust spatial interactions in agreement with previous fMRI and NIRS findings. Strong correlations between the two opposite hemispheres were seen for both sensorimotor and visual cortices. Correlations in the prefrontal cortex were more heterogeneous and dependent on the hemodynamic contrast. HbT provided robust, well defined maps, suggesting that this contrast may be used to better localize functional connectivity. The effects of global systemic physiology were also investigated, particularly low frequency blood pressure oscillations which give rise to broad regions of high correlation and mislead interpretation of the results. These results confirm the feasibility of using functional connectivity with optical methods during the resting state, and validate its use to investigate cortical interactions across the whole head.
Collapse
Affiliation(s)
- Rickson C. Mesquita
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, MA 02129, USA
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, PA 19104, USA
| | - Maria A. Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, MA 02129, USA
| | - David A. Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
Charlestown, MA 02129, USA
| |
Collapse
|
47
|
Sirotin YB, Das A. Spatial Relationship between Flavoprotein Fluorescence and the Hemodynamic Response in the Primary Visual Cortex of Alert Macaque Monkeys. FRONTIERS IN NEUROENERGETICS 2010; 2:6. [PMID: 20577638 PMCID: PMC2890124 DOI: 10.3389/fnene.2010.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/10/2010] [Indexed: 11/13/2022]
Abstract
Flavoprotein fluorescence imaging (FFI) is a novel intrinsic optical signal that is steadily gaining ground as a valuable imaging tool in neuroscience research due to its closer relationship with local metabolism relative to the more commonly used hemodynamic signals. We have developed a technique for FFI imaging in the primary visual cortex (V1) of alert monkeys. Due to the nature of neurovascular coupling, hemodynamic signals are known to spread beyond the locus of metabolic activity. To determine whether FFI signals could provide a more focal measure of cortical activity in alert animals, we compared FFI and hemodynamic point spreads (i.e. responses to a minimal visual stimulus) and functional mapping signals over V1 in macaques performing simple fixation tasks. FFI responses were biphasic, with an early and focal fluorescence increase followed by a delayed and spatially broader fluorescence decrease. As expected, the early fluorescence increase, indicating increased local oxidative metabolism, was somewhat narrower than the simultaneously observed hemodynamic response. However, the later FFI decrease was broader than the hemodynamic response and started prior to the cessation of visual stimulation suggesting different mechanisms underlying the two phases of the fluorescence signal. FFI mapping signals were free of vascular artifacts and comparable in amplitude to hemodynamic mapping signals. These results indicate that the FFI response may be a more local and direct indicator of cortical metabolism than the hemodynamic response in alert animals.
Collapse
|
48
|
Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. FRONTIERS IN NEUROENERGETICS 2010; 2. [PMID: 20725515 PMCID: PMC2912025 DOI: 10.3389/fnene.2010.00005] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/28/2010] [Indexed: 12/18/2022]
Abstract
Because regional blood flow increases in association with the increased metabolic demand generated by localized increases in neural activity, functional imaging researchers often assume that changes in blood flow are an accurate read-out of changes in underlying neural activity. An understanding of the mechanisms that link changes in neural activity to changes in blood flow is crucial for assessing the validity of this assumption, and for understanding the processes that can go wrong during disease states such as ischaemic stroke. Many studies have investigated the mechanisms of neurovascular regulation in arterioles but other evidence suggests that blood flow regulation can also occur in capillaries, because of the presence of contractile cells, pericytes, on the capillary wall. Here we review the evidence that pericytes can modulate capillary diameter in response to neuronal activity and assess the likely importance of neurovascular regulation at the capillary level for functional imaging experiments. We also discuss evidence suggesting that pericytes are particularly sensitive to damage during pathological insults such as ischaemia, Alzheimer's disease and diabetic retinopathy, and consider the potential impact that pericyte dysfunction might have on the development of therapeutic interventions and on the interpretation of functional imaging data in these disorders.
Collapse
Affiliation(s)
- Nicola B Hamilton
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | | | | |
Collapse
|
49
|
Zhang N, Zhu XH, Zhang Y, Park JK, Chen W. High-resolution fMRI mapping of ocular dominance layers in cat lateral geniculate nucleus. Neuroimage 2010; 50:1456-63. [PMID: 20114078 DOI: 10.1016/j.neuroimage.2010.01.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 11/19/2022] Open
Abstract
In this work, we exploited the superior capability of high-resolution functional magnetic resonance imaging (fMRI) for functional mapping of ocular dominance layer (ODL) in the cat lateral geniculate nucleus (LGN). The stimulus-evoked neuronal activities in the LGN ODLs associated with contralateral- and ipsilateral-eye visual inputs were successfully differentiated and mapped using both blood-oxygenation-level dependent (BOLD)-weighted and cerebral blood volume (CBV)-weighted fMRI methods. The morphology of mapped LGN ODLs was in remarkable consistency with histology findings in terms of ODL shape, orientation, thickness and eye-dominance. Compared with the BOLD signal, the CBV signal provides higher reproducibility and better spatial resolvability for function mapping of LGN because of improved contrast-to-noise ratio and point-spread function. The capability of fMRI for non-invasively imaging the functional sub-units of ODL in a small LGN overcomes the limitation of conventional neural-recording approach, and it opens a new opportunity for studying critical roles of LGN in brain function and dysfunction at the fine scale of ocular dominance layer.
Collapse
Affiliation(s)
- Nanyin Zhang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School of Medicine, 2021 6(th) Street S.E., Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
50
|
Ramsøy TZ, Liptrot MG, Skimminge A, Lund TE, Sidaros K, Christensen MS, Baaré W, Paulson OB, Jernigan TL. Regional activation of the human medial temporal lobe during intentional encoding of objects and positions. Neuroimage 2009; 47:1863-72. [DOI: 10.1016/j.neuroimage.2009.03.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 03/12/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022] Open
|