1
|
Lee S, Robinson K, Lodge M, Theroux M, Miller F, Akins R. Resistance to Neuromuscular Blockade by Rocuronium in Surgical Patients with Spastic Cerebral Palsy. J Pers Med 2021; 11:jpm11080765. [PMID: 34442409 PMCID: PMC8400439 DOI: 10.3390/jpm11080765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Individuals with spastic cerebral palsy (CP) often exhibit altered sensitivities to neuromuscular blocking agents (NMBAs) used for surgical intubation. We assessed usage of the NMBA rocuronium in patients with spastic CP and evaluated potential modifiers of dosing including gross motor function classification system (GMFCS) level, birthweight, gestational age, and the use of anticonvulsant therapy. In a case-control study, surgical patients with spastic CP (n = 64) or with idiopathic or non-neuromuscular conditions (n = 73) were enrolled after informed consent/assent. Patient data, GMFCS level, anticonvulsant use, and rocuronium dosing for intubation and post-intubation neuromuscular blockade were obtained from medical records. Findings reveal participants with CP required more rocuronium per body weight for intubation than controls (1.00 ± 0.08 versus 0.64 ± 0.03 mg/kg; p < 0.0001). Dosing increased with GMFCS level (Spearman's rho = 0.323; p = 0.005), and participants with moderate to severe disability (GMFCS III-V) had elevated rocuronium with (1.21 ± 0.13 mg/kg) or without (0.86 ± 0.09 mg/kg) concurrent anticonvulsant therapy. Children born full-term or with birthweight >2.5 kg in the CP cohort required more rocuronium than preterm and low birthweight counterparts. Individuals with CP exhibited highly varied and significant resistance to neuromuscular blockade with rocuronium that was related to GMFCS and gestational age and weight at birth.
Collapse
Affiliation(s)
- Stephanie Lee
- Nemours Biomedical Research, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.L.); (K.R.); (M.L.)
| | - Karyn Robinson
- Nemours Biomedical Research, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.L.); (K.R.); (M.L.)
| | - Madison Lodge
- Nemours Biomedical Research, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.L.); (K.R.); (M.L.)
| | - Mary Theroux
- Department of Anesthesiology, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA;
| | - Freeman Miller
- Department of Orthopedics, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA;
| | - Robert Akins
- Nemours Biomedical Research, Nemours-Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; (S.L.); (K.R.); (M.L.)
- Correspondence: ; Tel.: +1-302-651-6779
| |
Collapse
|
2
|
Abstract
Herein, I intend to capture highlights shared with my academic and research colleagues over the 60 years I devoted initially to my graduate and postdoctoral training and then to academic endeavors starting as an assistant professor in a new medical school at the University of California, San Diego (UCSD). During this period, the Department of Pharmacology emerged from a division within the Department of Medicine to become the first basic science department, solely within the School of Medicine at UCSD in 1979. As part of the school's plans to reorganize and to retain me at UCSD, I was appointed as founding chair. Some years later in 2002, faculty, led largely within the Department of Pharmacology and by practicing pharmacists within UCSD Healthcare, started the independent Skaggs School of Pharmacy and Pharmaceutical Sciences with a doctor of pharmacy (PharmD) program, where I served as the founding dean. My career pathway, from working at my family-owned pharmacy to chairing a department in a school of medicine and then becoming the dean of a school of pharmacy at a research-intensive, student-centered institution, involved some risky decisions. But the academic, curricular, and accreditation challenges posed were met by a cadre of creative faculty colleagues. I offer my experiences to individuals confronted with a multiplicity of real or imagined opportunities in academic health sciences, the related pharmaceutical industry, and government oversight agencies.
Collapse
Affiliation(s)
- Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, and School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
3
|
Nervo A, Calas AG, Nachon F, Krejci E. Respiratory failure triggered by cholinesterase inhibitors may involve activation of a reflex sensory pathway by acetylcholine spillover. Toxicology 2019; 424:152232. [PMID: 31175885 DOI: 10.1016/j.tox.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 01/18/2023]
Abstract
Respiration failure during exposure by cholinesterase inhibitors has been widely assumed to be due to inhibition of cholinesterase in the brain. Using a double chamber plethysmograph to measure various respiratory parameters, we observed long "end inspiratory pauses" (EIP) during most exposure that depressed breathing. Surprisingly, Colq KO mice that have a normal level of acetylcholinesterase (AChE) in the brain but a severe deficit in muscles and other peripheral tissues do not pause the breathing by long EIP. In mice, long EIP can be triggered by a nasal irritant. Eucalyptol, an agonist of cold receptor (TRPM8) acting on afferent sensory neurons and known to reduce the EIP triggered by such irritants, strongly reduced the EIP induced by cholinesterase inhibitor. These results suggest that acetylcholine (ACh) spillover from the neuromuscular junction, which is unchanged in Colq KO mice, may activate afferent sensory systems and trigger sensory reflexes, as reversed by eucalyptol. Indeed, the role of AChE at the cholinergic synapses is not only to accurately control the synaptic transmission but also to prevent the spillover of ACh. In the peripheral tissues, the ACh flood induced by cholinesterase inhibition may be very toxic due to interaction with non-neuronal cells that use ACh at low levels to communicate with afferent sensory neurons.
Collapse
Affiliation(s)
- Aurélie Nervo
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France; COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France
| | - André-Guilhem Calas
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France; COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Eric Krejci
- COGnition and Action Group, UMR 8257, CNRS, Université Paris Descartes, Paris, France.
| |
Collapse
|
4
|
Xu ML, Luk WKW, Bi CWC, Liu EYL, Wu KQY, Yao P, Dong TTX, Tsim KWK. Erythropoietin regulates the expression of dimeric form of acetylcholinesterase during differentiation of erythroblast. J Neurochem 2018; 146:390-402. [PMID: 29675901 DOI: 10.1111/jnc.14448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/11/2018] [Accepted: 03/27/2018] [Indexed: 01/28/2023]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) is known to hydrolyze acetylcholine at cholinergic synapses. In mammalian erythrocyte, AChE exists as a dimer (G2 ) and is proposed to play role in erythropoiesis. To reveal the regulation of AChE during differentiation of erythroblast, erythroblast-like cells (TF-1) were induced to differentiate by application of erythropoietin (EPO). The expression of AChE was increased in parallel to the stages of differentiation. Application of EPO in cultured TF-1 cells induced transcriptional activity of ACHE gene, as well as its protein product. This EPO-induced event was in parallel with erythrocytic proteins, for example, α- and β-globins. The EPO-induced AChE expression was mediated by phosphorylations of Akt and GATA-1; because the application of Akt kinase inhibitor blocked the gene activation. Erythroid transcription factor also known as GATA-1, a downstream transcription factor of EPO signaling, was proposed here to account for regulation of AChE in TF-1 cell. A binding sequence of GATA-1 was identified in ACHE gene promoter, which was further confirmed by chromatin immunoprecipitation (ChIP) assay. Over-expression of GATA-1 in TF-1 cultures induced AChE expression, as well as activity of ACHE promoter tagged with luciferase gene (pAChE-Luc). The deletion of GATA-1 sequence on the ACHE promoter, pAChEΔGATA-1 -Luc, reduced the promoter activity during erythroblastic differentiation. On the contrary, the knock-down of AChE in TF-1 cultures could lead to a reduction in EPO-induced expression of erythrocytic proteins. These findings indicated specific regulation of AChE during maturation of erythroblast, which provided an insight into elucidating possible mechanisms in regulating erythropoiesis.
Collapse
Affiliation(s)
- Miranda L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| | - Wilson K W Luk
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kevin Q Y Wu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ping Yao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
5
|
Mir-34a-5p Mediates Cross-Talk between M2 Muscarinic Receptors and Notch-1/EGFR Pathways in U87MG Glioblastoma Cells: Implication in Cell Proliferation. Int J Mol Sci 2018; 19:ijms19061631. [PMID: 29857516 PMCID: PMC6032387 DOI: 10.3390/ijms19061631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive human brain tumor. The high growth potential and decreased susceptibility to apoptosis of the glioma cells is mainly dependent on genetic amplifications or mutations of oncogenic or pro-apoptotic genes, respectively. We have previously shown that the activation of the M2 acetylcholine muscarinic receptors inhibited cell proliferation and induced apoptosis in two GBM cell lines and cancer stem cells. The aim of this study was to delve into the molecular mechanisms underlying the M2-mediated cell proliferation arrest. Exploiting U87MG and U251MG cell lines as model systems, we evaluated the ability of M2 receptors to interfere with Notch-1 and EGFR pathways, whose activation promotes GBM proliferation. We demonstrated that the activation of M2 receptors, by agonist treatment, counteracted Notch and EGFR signaling, through different regulatory cascades depending, at least in part, on p53 status. Only in U87MG cells, which mimic p53-wild type GBMs, did M2 activation trigger a molecular circuitry involving p53, Notch-1, and the tumor suppressor mir-34a-5p. This regulatory module negatively controls Notch-1, which affects cell proliferation mainly through the Notch-1/EGFR axis. Our data highlighted, for the first time, a molecular circuitry that is deregulated in the p53 wild type GBM, based on the cross-talk between M2 receptor and the Notch-1/EGFR pathways, mediated by mir-34a-5p.
Collapse
|
6
|
Mis K, Grubic Z, Lorenzon P, Sciancalepore M, Mars T, Pirkmajer S. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle. Molecules 2017; 22:molecules22091418. [PMID: 28846617 PMCID: PMC6151842 DOI: 10.3390/molecules22091418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Acetylcholinesterase (AChE) and agrin, a heparan-sulfate proteoglycan, reside in the basal lamina of the neuromuscular junction (NMJ) and play key roles in cholinergic transmission and synaptogenesis. Unlike most NMJ components, AChE and agrin are expressed in skeletal muscle and α-motor neurons. AChE and agrin are also expressed in various other types of cells, where they have important alternative functions that are not related to their classical roles in NMJ. In this review, we first focus on co-cultures of embryonic rat spinal cord explants with human skeletal muscle cells as an experimental model to study functional innervation in vitro. We describe how this heterologous rat-human model, which enables experimentation on highly developed contracting human myotubes, offers unique opportunities for AChE and agrin research. We then highlight innovative approaches that were used to address salient questions regarding expression and alternative functions of AChE and agrin in developing human skeletal muscle. Results obtained in co-cultures are compared with those obtained in other models in the context of general advances in the field of AChE and agrin neurobiology.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Zoran Grubic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Tomaz Mars
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Wu J, Jin T, Wang H, Li ST. Sepsis Strengthens Antagonistic Actions of Neostigmine on Rocuronium in a Rat Model of Cecal Ligation and Puncture. Chin Med J (Engl) 2017; 129:1477-82. [PMID: 27270546 PMCID: PMC4910374 DOI: 10.4103/0366-6999.183420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: The antagonistic actions of anticholinesterase drugs on non-depolarizing muscle relaxants are theoretically related to the activity of acetylcholinesterase (AChE) in the neuromuscular junction (NMJ). However, till date the changes of AChE activity in the NMJ during sepsis have not been directly investigated. We aimed to investigate the effects of sepsis on the antagonistic actions of neostigmine on rocuronium (Roc) and the underlying changes of AChE activity in the NMJ in a rat model of cecal ligation and puncture (CLP). Methods: A total of 28 male adult Sprague-Dawley rats were randomized to undergo a sham surgery (the sham group, n = 12) or CLP (the septic group, n = 16). After 24 h, the time-response curves of the antagonistic actions of 0.1 or 0.5 μmol/L of neostigmine on Roc (10 μmol/L)-depressed diaphragm twitch tension were measured. Meanwhile, the activity of AChE in the NMJ was detected using a modified Karnovsky and Roots method. The mRNA levels of the primary transcript and the type T transcript of AChE (AChET) in the diaphragm were determined by real-time reverse transcription-polymerase chain reaction. Results: Four of 16 rats in the septic group died within 24 h. The time-response curves of both two concentrations of neostigmine in the septic group showed significant upward shifts from those in the sham group (P < 0.001 for 0.1 μmol/L; P = 0.009 for 0.5 μmol/L). Meanwhile, the average optical density of AChE in the NMJ in the septic group was significantly lower than that in the sham group (0.517 ± 0.045 vs. 1.047 ± 0.087, P < 0.001). The AChE and AChET mRNA expression levels in the septic group were significantly lower than those in the sham group (P = 0.002 for AChE; P = 0.001 for AChET). Conclusions: Sepsis strengthened the antagonistic actions of neostigmine on Roc-depressed twitch tension of the diaphragm by inhibiting the activity of AChE in the NMJ. The reduced content of AChE might be one of the possible causes of the decreased AChE activity in the NMJ.
Collapse
Affiliation(s)
- Jin Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tian Jin
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
8
|
Ma JE, Lang QQ, Qiu FF, Zhang L, Li XG, Luo W, Wang J, Wang X, Lin XR, Liu WS, Nie QH, Zhang XQ. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line. Int J Mol Sci 2016; 17:ijms17111863. [PMID: 27834851 PMCID: PMC5133863 DOI: 10.3390/ijms17111863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.
Collapse
Affiliation(s)
- Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qian-Qian Lang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Chen G, Masuda A, Konishi H, Ohkawara B, Ito M, Kinoshita M, Kiyama H, Matsuura T, Ohno K. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Sci Rep 2016; 6:25317. [PMID: 27126921 PMCID: PMC4850456 DOI: 10.1038/srep25317] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by abnormal expansion of CTG repeats in the 3′ untranslated region of the DMPK gene. Expanded CTG repeats are transcribed into RNA and make an aggregate with a splicing regulator, MBNL1, in the nucleus, which is called the nuclear foci. The nuclear foci sequestrates and downregulates availability of MBNL1. Symptomatic treatments are available for DM1, but no rational therapy is available. In this study, we found that a nonsteroidal anti-inflammatory drug (NSAID), phenylbutazone (PBZ), upregulated the expression of MBNL1 in C2C12 myoblasts as well as in the HSALR mouse model for DM1. In the DM1 mice model, PBZ ameliorated aberrant splicing of Clcn1, Nfix, and Rpn2. PBZ increased expression of skeletal muscle chloride channel, decreased abnormal central nuclei of muscle fibers, and improved wheel-running activity in HSALR mice. We found that the effect of PBZ was conferred by two distinct mechanisms. First, PBZ suppressed methylation of an enhancer region in Mbnl1 intron 1, and enhanced transcription of Mbnl1 mRNA. Second, PBZ attenuated binding of MBNL1 to abnormally expanded CUG repeats in cellulo and in vitro. Our studies suggest that PBZ is a potent therapeutic agent for DM1 that upregulates availability of MBNL1.
Collapse
Affiliation(s)
- Guiying Chen
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Konishi
- Division of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanobu Kinoshita
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiroshi Kiyama
- Division of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Matsuura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Liu WS, Ma JE, Li WX, Zhang JG, Wang J, Nie QH, Qiu FF, Fang MX, Zeng F, Wang X, Lin XR, Zhang L, Chen SH, Zhang XQ. The Long Intron 1 of Growth Hormone Gene from Reeves' Turtle (Chinemys reevesii) Correlates with Negatively Regulated GH Expression in Four Cell Lines. Int J Mol Sci 2016; 17:543. [PMID: 27077853 PMCID: PMC4848999 DOI: 10.3390/ijms17040543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022] Open
Abstract
Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii) have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH) cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp), comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS) of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO) cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH) gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei-Xia Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jin-Ge Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Mei-Xia Fang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shao-Hao Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Chao S, Krejci E, Bernard V, Leroy J, Jean L, Renard PY. A selective and sensitive near-infrared fluorescent probe for acetylcholinesterase imaging. Chem Commun (Camb) 2016; 52:11599-602. [DOI: 10.1039/c6cc05936h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HupNIR2 is the first NIR fluorescent probe for acetylcholinesterase imaging in tissues. This probe penetrates easily and deeply into the tissue, and directly labels AChE.
Collapse
Affiliation(s)
- Sovy Chao
- Normandie Univ
- UNIROUEN
- INSA Rouen
- CNRS
- COBRA (UMR 6014)
| | - Eric Krejci
- Université Paris Descartes
- CNRS
- IRBA
- COGNAC G (UMR 8257)
- 45 rue des Saints Pères
| | - Véronique Bernard
- Neuroscience Paris Seine
- Université Pierre et Marie Curie UM 119 CNRS UMR 8246 – INSERM U1130 9 quai Saint Bernard
- Paris
- France
| | - Jacqueline Leroy
- Université Paris Descartes
- CNRS
- IRBA
- COGNAC G (UMR 8257)
- 45 rue des Saints Pères
| | - Ludovic Jean
- Normandie Univ
- UNIROUEN
- INSA Rouen
- CNRS
- COBRA (UMR 6014)
| | | |
Collapse
|
12
|
Murakawa T, Matsushita Y, Suzuki T, Khan MTH, Kurita N. Ab initio molecular simulations for proposing potent inhibitors to butyrylcholinesterases. J Mol Graph Model 2014; 54:54-61. [DOI: 10.1016/j.jmgm.2014.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022]
|
13
|
Gros K, Parato G, Pirkmajer S, Mis K, Podbregar M, Grubic Z, Lorenzon P, Mars T. Non-synaptic roles of acetylcholinesterase and agrin. J Mol Neurosci 2013; 53:454-60. [PMID: 24326956 DOI: 10.1007/s12031-013-0188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/18/2013] [Indexed: 01/25/2023]
Abstract
Proteins in living organisms have names that are usually derived from their function in the biochemical system their discoverer was investigating. Typical examples are acetylcholinesterase and agrin; however, for both of these, various other functions that are not related to the cholinergic system have been revealed. Our investigations have been focused on the alternative roles of acetylcholinesterase and agrin in the processes of muscle development and regeneration. Previously, we described a role for agrin in the development of excitability in muscle contraction. In this study, we report the effects of agrin on secretion of interleukin 6 in developing human muscle. At the myoblast stage, agrin increases interleukin 6 secretion. This effect seems to be general as it was observed in all of the cell models analysed (human, mouse, cell lines). After fusion of myoblasts into myotubes, the effects of agrin are no longer evident, although agrin has further effects at the innervation stage, at least in in vitro innervated human muscle. These effects of agrin are another demonstration of its non-synaptic roles that are apparently developmental-stage specific. Our data support the view that acetylcholinesterase and agrin participate in various processes during development of skeletal muscle.
Collapse
Affiliation(s)
- Katarina Gros
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mis K, Matkovic U, Pirkmajer S, Sciancalepore M, Lorenzon P, Mars T, Grubic Z. Acetylcholinesterase and agrin: different functions, similar expression patterns, multiple roles. Chem Biol Interact 2012; 203:297-301. [PMID: 23117006 DOI: 10.1016/j.cbi.2012.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) and agrin play unique functional roles in the neuromuscular junction (NMJ). AChE is a cholinergic and agrin a synaptogenetic component. In spite of their different functions, they share several common features: their targeting is determined by alternative splicing; unlike most other NMJ components they are expressed in both, muscle and motor neuron and both reside on the synaptic basal lamina of the NMJ. Also, both were reported to play various nonjunctional roles. However, while the origin of basal lamina bound agrin is undoubtedly neural, the neural origin of AChE, which is anchored to the basal lamina with collagenic tail ColQ, is elusive. Hypothesizing that motor neuron proteins targeted to the NMJ basal lamina share common temporal pattern of expression, which is coordinated with the formation of basal lamina, we compared expression of agrin isoforms with the expression of AChE-T and ColQ in the developing rat spinal cord at the stages before and after the formation of NMJ basal lamina. Cellular origin of AChE-T and agrin was determined by in situ hybridization and their quantitative levels by RT PCR. We found parallel increase in expression of the synaptogenetic (agrin 8) isoform of agrin and ColQ after the formation of basal lamina supporting the view that ColQ bound AChE and agrin 8 isoform are destined to the basal lamina. Catalytic AChE-T subunit and agrin isoforms 19 and 0 followed different expression patterns. In accordance with the reports of other authors, our investigations also revealed various alternative functions for AChE and agrin. We have already demonstrated participation of AChE in myoblast apoptosis; here we present the evidence that agrin promotes the maturation of heavy myosin chains and the excitation-contraction coupling. These results show that common features of AChE and agrin extend to their capacity to play multiple roles in muscle development.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
15
|
Farar V, Mohr F, Legrand M, Lamotte d'Incamps B, Cendelin J, Leroy J, Abitbol M, Bernard V, Baud F, Fournet V, Houze P, Klein J, Plaud B, Tuma J, Zimmermann M, Ascher P, Hrabovska A, Myslivecek J, Krejci E. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J Neurochem 2012; 122:1065-80. [PMID: 22747514 DOI: 10.1111/j.1471-4159.2012.07856.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps. Surprisingly, PRiMA KO mice in which AChE is mostly eliminated from the brain show very few deficits. We now report that most of the changes observed in the brain of AChE-deficient mice, and in particular the high levels of ambient extracellular acetylcholine and the massive decrease of muscarinic receptors, are also observed in the brain of PRiMA KO. However, the two groups of mutants differ in their responses to AChE inhibitors. Since PRiMA-KO mice and AChE-deficient mice have similar low AChE concentrations in the brain but differ in the AChE content of the peripheral nervous system, these results suggest that peripheral nervous system AChE is a major target of AChE inhibitors, and that its absence in AChE- deficient mice is the main cause of the slow development and vulnerability of these mice. At the level of the brain, the adaptation to the absence of AChE is nearly complete.
Collapse
Affiliation(s)
- Vladimir Farar
- Centre d'Etude de la Sensorimotricité, Université Paris Descartes, CNRS UMR 8194, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Valle AM, Radic Z, Rana BK, Mahboubi V, Wessel J, Shih PAB, Rao F, O'Connor DT, Taylor P. Naturally occurring variations in the human cholinesterase genes: heritability and association with cardiovascular and metabolic traits. J Pharmacol Exp Ther 2011; 338:125-33. [PMID: 21493754 PMCID: PMC3126649 DOI: 10.1124/jpet.111.180091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/12/2011] [Indexed: 11/22/2022] Open
Abstract
Cholinergic neurotransmission in the central and autonomic nervous systems regulates immediate variations in and longer-term maintenance of cardiovascular function with acetylcholinesterase (AChE) activity that is critical to temporal responsiveness. Butyrylcholinesterase (BChE), largely confined to the liver and plasma, subserves metabolic functions. AChE and BChE are found in hematopoietic cells and plasma, enabling one to correlate enzyme levels in whole blood with hereditary traits in twins. Using both twin and unrelated subjects, we found certain single nucleotide polymorphisms (SNPs) in the ACHE gene correlated with catalytic properties and general cardiovascular functions. SNP discovery from ACHE resequencing identified 19 SNPs: 7 coding SNPs (cSNPs), of which 4 are nonsynonymous, and 12 SNPs in untranslated regions, of which 3 are in a conserved sequence of an upstream intron. Both AChE and BChE activity traits in blood were heritable: AChE at 48.8 ± 6.1% and BChE at 81.4 ± 2.8%. Allelic and haplotype variations in the ACHE and BCHE genes were associated with changes in blood AChE and BChE activities. AChE activity was associated with BP status and SBP, whereas BChE activity was associated with features of the metabolic syndrome (especially body weight and BMI). Gene products from cDNAs with nonsynonymous cSNPs were expressed and purified. Protein expression of ACHE nonsynonymous variant D134H (SNP6) is impaired: this variant shows compromised stability and altered rates of organophosphate inhibition and oxime-assisted reactivation. A substantial fraction of the D134H instability could be reversed in the D134H/R136Q mutant. Hence, common genetic variations at ACHE and BCHE loci were associated with changes in corresponding enzymatic activities in blood.
Collapse
Affiliation(s)
- Anne M Valle
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093-0657, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bernard V, Girard E, Hrabovska A, Camp S, Taylor P, Plaud B, Krejci E. Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction. Mol Cell Neurosci 2010; 46:272-81. [PMID: 20883790 DOI: 10.1016/j.mcn.2010.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 11/30/2022] Open
Abstract
Acetylcholinesterase (AChE) terminates the action of acetylcholine at cholinergic synapses thereby preventing rebinding of acetylcholine to nicotinic postsynaptic receptors at the neuromuscular junction. Here we show that AChE is not localized close to these receptors on the postsynaptic surface, but is instead clustered along the presynaptic membrane and deep in the postsynaptic folds. Because AChE is anchored by ColQ in the basal lamina and is linked to the plasma membrane by a transmembrane subunit (PRiMA), we used a genetic approach to evaluate the respective contribution of each anchoring oligomer. By visualization and quantification of AChE in mouse strains devoid of ColQ, PRiMA or AChE, specifically in the muscle, we found that along the nerve terminus the vast majority of AChE is anchored by ColQ that is only produced by the muscle, whereas very minor amounts of AChE are anchored by PRiMA that is produced by motoneurons. In its synaptic location, AChE is therefore positioned to scavenge ACh that effluxes from the nerve by non-quantal release. AChE-PRiMA, produced by the muscle, is diffusely distributed along the muscle in extrajunctional regions.
Collapse
Affiliation(s)
- Véronique Bernard
- Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
From Split to Sibenik: the tortuous pathway in the cholinesterase field. Chem Biol Interact 2010; 187:3-9. [PMID: 20493179 DOI: 10.1016/j.cbi.2010.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/03/2010] [Accepted: 05/07/2010] [Indexed: 11/22/2022]
Abstract
The interim between the first and tenth International Cholinesterase Meetings has seen remarkable advances associated with the applications of structural biology and recombinant DNA methodology to our field. The cloning of the cholinesterase genes led to the identification of a new super family of proteins, termed the alpha,beta-hydrolase fold; members of this family possess a four helix bundle capable of linking structural subunits to the functioning globular protein. Sequence comparisons and three-dimensional structural studies revealed unexpected cousins possessing this fold that, in turn, revealed three distinct functions for the alpha,beta-hydrolase proteins. These encompass: (1) a capacity for hydrolytic cleavage of a great variety of substrates, (2) a heterophilic adhesion function that results in trans-synaptic associations in linked neurons, (3) a chaperone function leading to stabilization of nascent protein and its trafficking to an extracellular or secretory storage location. The analysis and modification of structure may go beyond understanding mechanism, since it may be possible to convert the cholinesterases to efficient detoxifying agents of organophosphatases assisted by added oximes. Also, the study of the relationship between the alpha,beta-hydrolase fold proteins and their biosynthesis may yield means by which aberrant trafficking may be corrected, enhancing expression of mutant proteins. Those engaged in cholinesterase research should take great pride in our accomplishments punctuated by the series of ten meetings. The momentum established and initial studies with related proteins all hold great promise for the future.
Collapse
|
19
|
Contributions of selective knockout studies to understanding cholinesterase disposition and function. Chem Biol Interact 2010; 187:72-7. [PMID: 20153304 DOI: 10.1016/j.cbi.2010.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/23/2022]
Abstract
The complete knockout of the acetylcholinesterase gene (AChE) in the mouse yielded a surprising phenotype that could not have been predicted from deletion of the cholinesterase genes in Drosophila, that of a living, but functionally compromised animal. The phenotype of this animal showed a sufficient compromise in motor function that precluded precise characterization of central and peripheral nervous functional deficits. Since AChE in mammals is encoded by a single gene with alternative splicing, additional understanding of gene expression might be garnered from selected deletions of the alternatively spliced exons. To this end, transgenic strains were generated that deleted exon 5, exon 6, and the combination of exons 5 and 6. Deletion of exon 6 reduces brain AChE by 93% and muscle AChE by 72%. Deletion of exon 5 eliminates AChE from red cells and the platelet surface. These strains, as well as knockout strains that selectively eliminate the AChE anchoring protein subunits PRiMA or ColQ (which bind to sequences specified by exon 6) enabled us to examine the role of the alternatively spliced exons responsible for the tissue disposition and function of the enzyme. In addition, a knockout mouse was made with a deletion in an upstream intron that had been identified in differentiating cultures of muscle cells to control AChE expression. We found that deletion of the intronic regulatory region in the mouse essentially eliminated AChE in muscle and surprisingly from the surface of platelets. The studies generated by these knockout mouse strains have yielded valuable insights into the function and localization of AChE in mammalian systems that cannot be approached in cell culture or in vitro.
Collapse
|
20
|
Targeting of acetylcholinesterase in neurons in vivo: a dual processing function for the proline-rich membrane anchor subunit and the attachment domain on the catalytic subunit. J Neurosci 2009; 29:4519-30. [PMID: 19357277 DOI: 10.1523/jneurosci.3863-08.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Acetylcholinesterase (AChE) accumulates on axonal varicosities and is primarily found as tetramers associated with a proline-rich membrane anchor (PRiMA). PRiMA is a small transmembrane protein that efficiently transforms secreted AChE to an enzyme anchored on the outer cell surface. Surprisingly, in the striatum of the PRiMA knock-out mouse, despite a normal level of AChE mRNA, we find only 2-3% of wild type AChE activity, with the residual AChE localized in the endoplasmic reticulum, demonstrating that PRiMA in vivo is necessary for intracellular processing of AChE in neurons. Moreover, deletion of the retention signal of the AChE catalytic subunit in mice, which is the domain of interaction with PRiMA, does not restore AChE activity in the striatum, establishing that PRiMA is necessary to target and/or to stabilize nascent AChE in neurons. These unexpected findings open new avenues to modulating AChE activity and its distribution in CNS disorders.
Collapse
|
21
|
Current world literature. Ageing: biology and nutrition. Curr Opin Clin Nutr Metab Care 2009; 12:95-100. [PMID: 19057195 DOI: 10.1097/mco.0b013e32831fd97a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Boudinot E, Bernard V, Camp S, Taylor P, Champagnat J, Krejci E, Foutz AS. Influence of differential expression of acetylcholinesterase in brain and muscle on respiration. Respir Physiol Neurobiol 2008; 165:40-8. [PMID: 18977317 DOI: 10.1016/j.resp.2008.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/01/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
Abstract
A mouse strain with a deleted acetylcholinesterase (AChE) gene (AChE knockout) shows a decreased inspiration time and increased tidal volume and ventilation .To investigate the respective roles of AChE in brain and muscle, we recorded respiration by means of whole-body plethysmography in knockout mice with tissue selective deletions in AChE expression. A mouse strain with the anchoring domains of AChE deleted (del E5+6 knockout mice) has very low activity in the brain and neuromuscular junction, but increased monomeric AChE in serum. A mouse strain with deletion of the muscle specific region of AChE (del i1RR knockout mice) exhibits no expression in muscle, but unaltered expression in the central nervous system. Neither strain exhibits the pronounced phenotypic traits observed in the complete AChE knockout strain. A third strain lacking the anchor molecule PRiMA, has no functional AChE and butyrylcholinesterase (BChE) in brain and an unaltered respiratory function. BChE inhibition by bambuterol decreases tidal volume and body temperature in del E5+6 and i1RR knockout strains, but not in PRiMA deletion or wild-type controls. We find that: (1) deletion of the full AChE gene is required for a pronounced alteration in respiratory phenotype, (2) BChE is involved in respiratory muscles contraction and temperature control in del E5+6 and i1RR knockout mice, and (3) AChE expression requiring a gene product splice to either exons 5 and 6 or regulated by intron1 influences temperature control.
Collapse
Affiliation(s)
- Eliane Boudinot
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|