1
|
Xu Z, Duan W, Yuan S, Zhang X, You C, Yu JT, Wang J, Li JD, Deng S, Shu Y. Deep brain stimulation alleviates Parkinsonian motor deficits through desynchronizing GABA release in mice. Nat Commun 2025; 16:3726. [PMID: 40253429 PMCID: PMC12009282 DOI: 10.1038/s41467-025-59113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/11/2025] [Indexed: 04/21/2025] Open
Abstract
High-frequency deep brain stimulation (DBS) at subthalamic nucleus (STN) is an effective therapy for Parkinson's disease (PD), but the underlying mechanisms remain unclear. Here we find an important role of asynchronous release (AR) of GABA induced by high-frequency stimulation (HFS) in alleviating motor functions of dopamine-depleted male mice. Electrophysiological recordings reveal that 130-Hz HFS causes an initial inhibition followed by desynchronization of STN neurons, largely attributable to presynaptic GABA release. Low-frequency stimulation at 20 Hz, however, produces much weaker AR and negligible effects on neuronal firing. Further optogenetic and cell-ablation experiments demonstrate that activation of parvalbumin axons, but not non-parvalbumin axons, from external globus pallidus (GPe) is both necessary and sufficient for DBS effects. Reducing AR diminishes the high-frequency DBS effect, while increasing AR allows low-frequency DBS to achieve a therapeutic benefit. Therefore, asynchronous GABA release from GPe PV neurons may contribute significantly to the therapeutic effects of high-frequency DBS.
Collapse
Affiliation(s)
- Zongyi Xu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Duan
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Shuyu Yuan
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoxue Zhang
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Chong You
- Shanghai Institute for Mathematics and Interdisciplinary Sciences, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, MOE Key Laboratory of Rare Pediatric Diseases, Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Suixin Deng
- Center for Medical Genetics, School of Life Sciences, MOE Key Laboratory of Rare Pediatric Diseases, Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Kang S, Yang MA, Bennett A, Kang S, Lee SW, Choi DS. Pallidal prototypic neuron and astrocyte activities regulate flexible reward-seeking behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637554. [PMID: 39990452 PMCID: PMC11844423 DOI: 10.1101/2025.02.10.637554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Behavioral flexibility allows animals to adjust actions to changing environments. While the basal ganglia are critical for adaptation, the specific role of the external globus pallidus (GPe) is unclear. This study examined the contributions of two major GPe cell types-prototypic neurons projecting to the subthalamic nucleus (ProtoGPe→STN neurons) and astrocytes-to behavioral flexibility. Using longitudinal operant conditioning with context reversals, we found that ProtoGPe→STN neurons dynamically represent contextual information correlating with behavioral optimality. In contrast, GPe astrocytes exhibited gradual contextual encoding independent of performance. Deleting ProtoGPe→STN neurons impaired adaptive responses to changing action-outcome contingencies without altering initial reward-seeking acquisition, highlighting their specific role in enabling behavioral flexibility. Furthermore, we discovered that ProtoGPe→STN neurons integrate inhibitory striatal and excitatory subthalamic inputs, modulating downstream basal ganglia circuits to support flexible behavior. This research elucidates the complementary roles of ProtoGPe→STN neurons and astrocytes in cellular mechanisms of flexible reward-seeking behavior.
Collapse
Affiliation(s)
- Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, 31151, Cheonan-si
| | - Minsu Abel Yang
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
| | - Aubrey Bennett
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| | - Seungwoo Kang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, USA
| | - Sang Wan Lee
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Department of Brain & Cognitive Sciences
- Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
- Department of Psychiatry and Psychology
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA
| |
Collapse
|
3
|
Karekal A, Mandawe R, Chun C, Byri SK, Cheline D, Ortiz S, Hochman S, Wilkinson KA. Optogenetic methods to stimulate gamma motor neuron axons ex vivo. Exp Physiol 2025. [PMID: 39898428 DOI: 10.1113/ep092359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
It is challenging to stimulate gamma motor neurons, which are important regulators of muscle spindle afferent function, without also recruiting alpha motor neurons. Here, we test the feasibility of stimulating gamma motor neuron axons using optogenetics in two transgenic mouse lines. We used an ex vivo muscle-nerve preparation in adult mice to monitor muscle spindle afferent firing, which should increase in response to gamma motor neuron-induced lengthening of the sensory region of the muscle spindle. A force transducer measured alpha motor neuron-mediated twitch contractions. Blue LED light (470 nm; 1-5 mW) was delivered via a light guide to the sciatic nerve. We confirmed that the more slowly conducting gamma motor neurons were recruited first in mice expressing channelrhodopsin 2 in choline acetyltransferase-positive motor neurons, whereas alpha motor neurons required higher optical intensities, enabling co-activation of alpha and gamma motor neurons depending on light intensity. However, this approach cannot isolate gamma motor neuron activity completely. Cre-dependent channelrhodopsin 2 optoactivation using the putative gamma motor neuron marker neuronal PAS domain protein 1 (Npas1) also increased muscle spindle afferent firing rates and caused only small twitch contractions. This provides functional validation that Npas1 is present primarily in gamma motor neurons and can be used to manipulate gamma motor neurons independently. We propose optogenetic stimulation as a promising tool to manipulate gamma motor neuron activity.
Collapse
Affiliation(s)
- Apoorva Karekal
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Remie Mandawe
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Cameron Chun
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Sai Kiran Byri
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Danitza Cheline
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Serena Ortiz
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| | - Shawn Hochman
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katherine A Wilkinson
- Department of Biological Sciences, One Washington Square, San José State University, San Jose, California, USA
| |
Collapse
|
4
|
Giossi C, Bahuguna J, Rubin JE, Verstynen T, Vich C. Arkypallidal neurons in the external globus pallidus can mediate inhibitory control by altering competition in the striatum. Proc Natl Acad Sci U S A 2024; 121:e2408505121. [PMID: 39536079 PMCID: PMC11588131 DOI: 10.1073/pnas.2408505121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe). Here, we investigate this suggestion by harnessing a biologically constrained spiking model of the cortico-basal ganglia-thalamic (CBGT) circuit that includes pallidostriatal pathways originating from arkypallidal neurons. Through a series of experiments probing the interaction between three critical inhibitory nodes (the STN, arkypallidal cells, and indirect pathway spiny projection neurons), we find that the GPe acts as a critical mediator of both ascending and descending inhibitory signals in the CBGT circuit. In particular, pallidostriatal pathways regulate this process by weakening the direct pathway dominance of the evidence accumulation process driving decisions, which increases the relative suppressive influence of the indirect pathway on basal ganglia output. These findings delineate how pallidostriatal pathways can facilitate action cancellation by managing the bidirectional flow of information within CBGT circuits.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma07122, Spain
- Institute of Applied Computing and Community Code, Palma07122, Spain
| | - Jyotika Bahuguna
- Laboratoire de Neurosciences Cognitives et Adaptatives, Universite of Strasbourg, Strasbourg67000, France
| | - Jonathan E. Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA15213
- Center for the Neural Basis of Cognition, Pittsburgh, PA15213
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, Pittsburgh, PA15213
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA15213
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma07122, Spain
- Institute of Applied Computing and Community Code, Palma07122, Spain
| |
Collapse
|
5
|
Tomioka R, Shigematsu N, Miyashita T, Takahashi Y, Yamamoto M, Yoshimura Y, Kobayashi K, Yanagawa Y, Tamamaki N, Fukuda T, Song WJ. The External Globus Pallidus as the Hub of the Auditory Cortico-Basal Ganglia Loop. eNeuro 2024; 11:ENEURO.0161-24.2024. [PMID: 39592219 PMCID: PMC11594937 DOI: 10.1523/eneuro.0161-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The cortico-basal ganglia loop has traditionally been conceptualized as consisting of three distinct information networks: motor, limbic, and associative. However, this three-loop concept is insufficient to comprehensively explain the diverse functions of the cortico-basal ganglia system, as emerging evidence suggests its involvement in sensory processing, including the auditory systems. In the present study, we demonstrate the auditory cortico-basal ganglia loop by using transgenic mice and viral-assisted labelings. The caudal part of the external globus pallidus (GPe) emerged as a major output nucleus of the auditory cortico-basal ganglia loop with the cortico-striato-pallidal projections as its input pathway and pallido-cortical and pallido-thalamo-cortical projections as its output pathway. GABAergic neurons in the caudal GPe dominantly innervated the nonlemniscal auditory pathway. They also projected to various regions, including the substantia nigra pars lateralis, cuneiform nucleus, and periaqueductal gray. Considering the functions associated with these GPe-projecting regions, auditory cortico-basal ganglia circuits may play a pivotal role in eliciting defensive behaviors against acoustic stimuli.
Collapse
Affiliation(s)
- Ryohei Tomioka
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Morphological Neural Science, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Shigematsu
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Toshio Miyashita
- Department of Anatomy, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yukie Takahashi
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Nobuaki Tamamaki
- Morphological Neural Science, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
6
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. Eur J Neurosci 2024; 60:6129-6144. [PMID: 38659055 DOI: 10.1111/ejn.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
For decades, the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here, we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity and functional role of the GPe in behaviour. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behaviour.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Catalina Vich
- Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Illes Balears, Spain
- Institute of Applied Computing and Community Code, Universitat de les Illes Balears, Palma, Illes Balears, Spain
| |
Collapse
|
7
|
Ryan MB, Girasole AE, Flores AJ, Twedell EL, McGregor MM, Brakaj R, Paletzki RF, Hnasko TS, Gerfen CR, Nelson AB. Excessive firing of dyskinesia-associated striatal direct pathway neurons is gated by dopamine and excitatory synaptic input. Cell Rep 2024; 43:114483. [PMID: 39024096 DOI: 10.1016/j.celrep.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
The striatum integrates dopaminergic and glutamatergic inputs to select preferred versus alternative actions. However, the precise mechanisms underlying this process remain unclear. One way to study action selection is to understand how it breaks down in pathological states. Here, we explored the cellular and synaptic mechanisms of levodopa-induced dyskinesia (LID), a complication of Parkinson's disease therapy characterized by involuntary movements. We used an activity-dependent tool (FosTRAP) in conjunction with a mouse model of LID to investigate functionally distinct subsets of striatal direct pathway medium spiny neurons (dMSNs). In vivo, levodopa differentially activates dyskinesia-associated (TRAPed) dMSNs compared to other dMSNs. We found this differential activation of TRAPed dMSNs is likely to be driven by higher dopamine receptor expression, dopamine-dependent excitability, and excitatory input from the motor cortex and thalamus. Together, these findings suggest how the intrinsic and synaptic properties of heterogeneous dMSN subpopulations integrate to support action selection.
Collapse
Affiliation(s)
- Michael B Ryan
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Andrew J Flores
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Emily L Twedell
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew M McGregor
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Rea Brakaj
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Ronald F Paletzki
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Thomas S Hnasko
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Fujiyama F, Karube F, Hirai Y. Globus pallidus is not independent from striatal direct pathway neurons: an up-to-date review. Mol Brain 2024; 17:34. [PMID: 38849935 PMCID: PMC11157709 DOI: 10.1186/s13041-024-01107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Striatal projection neurons, which are classified into two groups-direct and indirect pathway neurons, play a pivotal role in our understanding of the brain's functionality. Conventional models propose that these two pathways operate independently and have contrasting functions, akin to an "accelerator" and "brake" in a vehicle. This analogy further elucidates how the depletion of dopamine neurons in Parkinson's disease can result in bradykinesia. However, the question arises: are these direct and indirect pathways truly autonomous? Despite being distinct types of neurons, their interdependence cannot be overlooked. Single-neuron tracing studies employing membrane-targeting signals have shown that the majority of direct pathway neurons terminate not only in the output nuclei, but also in the external segment of the globus pallidus (GP in rodents), a relay nucleus of the indirect pathway. Recent studies have unveiled the existence of arkypallidal neurons, which project solely to the striatum, in addition to prototypic neurons. This raises the question of which type of GP neurons receive these striatal axon collaterals. Our morphological and electrophysiological experiments showed that the striatal direct pathway neurons may affect prototypic neurons via the action of substance P on neurokinin-1 receptors. Conversely, another research group has reported that direct pathway neurons inhibit arkypallidal neurons via GABA. Regardless of the neurotransmitter involved, it can be concluded that the GP is not entirely independent of direct pathway neurons. This review article underscores the intricate interplay between different neuronal pathways and challenges the traditional understanding of their independence.
Collapse
Affiliation(s)
- Fumino Fujiyama
- Laboratory of Cytology and Histology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Fuyuki Karube
- Laboratory of Cytology and Histology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yasuharu Hirai
- Laboratory of Cytology and Histology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Troppoli TA, Yang C, Katsuki F, Uygun DS, Lin I, Aguilar DD, Spratt T, Basheer R, McNally JM, Savio Chan C, McKenna JT, Brown RE. Neuronal PAS domain 1 identifies a major subpopulation of wakefulness-promoting GABAergic neurons in the basal forebrain. Proc Natl Acad Sci U S A 2024; 121:e2321410121. [PMID: 38748575 PMCID: PMC11127008 DOI: 10.1073/pnas.2321410121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Here, we describe a group of basal forebrain (BF) neurons expressing neuronal Per-Arnt-Sim (PAS) domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1+ neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1+ neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1+ neurons was high, five to six times that of neighboring cholinergic, parvalbumin, or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1+ neurons to brain regions involved in sleep-wake control, motivated behaviors, and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area, and olfactory bulb. Chemogenetic activation of BF Npas1+ neurons in the light period increased the amount of wakefulness and the latency to sleep for 2 to 3 h, due to an increase in long wake bouts and short NREM sleep bouts. NREM slow-wave and sigma power, as well as sleep spindle density, amplitude, and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1+ neurons in stress responsiveness, the anatomical projections of BF Npas1+ neurons and the effect of activating them suggest a possible role for BF Npas1+ neurons in motivationally driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia, and other neuropsychiatric conditions involving BF.
Collapse
Affiliation(s)
- Timothy A. Troppoli
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
| | - Chun Yang
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
- Boston Veterans Affairs (VA) Research Institute, Boston, MA02130
| | - Fumi Katsuki
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
| | - David S. Uygun
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
| | | | - David D. Aguilar
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
| | - Tristan Spratt
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
| | - Radhika Basheer
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
- Boston Veterans Affairs (VA) Research Institute, Boston, MA02130
| | - James M. McNally
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
- Boston Veterans Affairs (VA) Research Institute, Boston, MA02130
| | - C. Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - James T. McKenna
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
- Boston Veterans Affairs (VA) Research Institute, Boston, MA02130
| | - Ritchie E. Brown
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Boston, MA02132
- Department of Psychiatry, Harvard Medical School, Boston, MA02115
- Boston Veterans Affairs (VA) Research Institute, Boston, MA02130
| |
Collapse
|
10
|
Giossi C, Bahuguna J, Rubin JE, Verstynen T, Vich C. Arkypallidal neurons in the external globus pallidus can mediate inhibitory control by altering competition in the striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592321. [PMID: 38746308 PMCID: PMC11092778 DOI: 10.1101/2024.05.03.592321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe). Here we investigate this suggestion by harnessing a biologically-constrained spiking model of the corticobasal ganglia-thalamic (CBGT) circuit that includes pallidostriatal pathways originating from arkypallidal neurons. Through a series of experiments probing the interaction between three critical inhibitory nodes (the STN, arkypallidal cells, and indirect path-way spiny projection neurons), we find that the GPe acts as a critical mediator of both ascending and descending inhibitory signals in the CBGT circuit. In particular, pallidostriatal pathways regulate this process by weakening the direct pathway dominance of the evidence accumulation process driving decisions, which increases the relative suppressive influence of the indirect pathway on basal ganglia output. These findings delineate how pallidostriatal pathways can facilitate action cancellation by managing the bidirectional flow of information within CBGT circuits.
Collapse
|
11
|
Reiner A, Medina L, Abellan A, Deng Y, Toledo CA, Luksch H, Vega-Zuniga T, Riley NB, Hodos W, Karten HJ. Neurochemistry and circuit organization of the lateral spiriform nucleus of birds: A uniquely nonmammalian direct pathway component of the basal ganglia. J Comp Neurol 2024; 532:e25620. [PMID: 38733146 PMCID: PMC11090467 DOI: 10.1002/cne.25620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
We used diverse methods to characterize the role of avian lateral spiriform nucleus (SpL) in basal ganglia motor function. Connectivity analysis showed that SpL receives input from globus pallidus (GP), and the intrapeduncular nucleus (INP) located ventromedial to GP, whose neurons express numerous striatal markers. SpL-projecting GP neurons were large and aspiny, while SpL-projecting INP neurons were medium sized and spiny. Connectivity analysis further showed that SpL receives inputs from subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr), and that the SNr also receives inputs from GP, INP, and STN. Neurochemical analysis showed that SpL neurons express ENK, GAD, and a variety of pallidal neuron markers, and receive GABAergic terminals, some of which also contain DARPP32, consistent with GP pallidal and INP striatal inputs. Connectivity and neurochemical analysis showed that the SpL input to tectum prominently ends on GABAA receptor-enriched tectobulbar neurons. Behavioral studies showed that lesions of SpL impair visuomotor behaviors involving tracking and pecking moving targets. Our results suggest that SpL modulates brainstem-projecting tectobulbar neurons in a manner comparable to the demonstrated influence of GP internus on motor thalamus and of SNr on tectobulbar neurons in mammals. Given published data in amphibians and reptiles, it seems likely the SpL circuit represents a major direct pathway-type circuit by which the basal ganglia exerts its motor influence in nonmammalian tetrapods. The present studies also show that avian striatum is divided into three spatially segregated territories with differing connectivity, a medial striato-nigral territory, a dorsolateral striato-GP territory, and the ventrolateral INP motor territory.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellan
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Claudio A.B. Toledo
- Neuroscience Research Nucleus, Universidade Cidade de Sao Paulo, Sao Paulo 65057-420, Brazil
| | - Harald Luksch
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tomas Vega-Zuniga
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nell B. Riley
- Department of Psychology, University of Maryland College Park 20742-4411
| | - William Hodos
- Department of Psychology, University of Maryland College Park 20742-4411
| | - Harvey J. Karten
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093-0608
| |
Collapse
|
12
|
Jones JA, Peña J, Likhotvorik RI, Garcia-Castañeda BI, Wilson CJ. Comparison of unitary synaptic currents generated by indirect and direct pathway neurons of the mouse striatum. J Neurophysiol 2024; 131:914-936. [PMID: 38596834 PMCID: PMC11381124 DOI: 10.1152/jn.00066.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/11/2024] Open
Abstract
Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons. We used optogenetic excitation to elicit repetitive firing in a small number of nearby SPNs, producing sparse barrages of inhibitory postsynaptic currents (IPSCs) in GPe neurons. From these barrages, we isolated sequences of IPSCs with similar time courses and amplitudes, which presumably arose from the same SPN. There was no difference between the amplitudes of unitary IPSCs generated by the indirect and direct pathways. Most unitary IPSCs were small, but a subset from each pathway were much larger. To determine the effects of these unitary synaptic currents on the action potential firing of GPe neurons, we drove SPNs to fire as before and recorded the membrane potential of GPe neurons. Large unitary potentials from iSPNs and dSPNs perturbed the spike timing of GPe neurons in a similar way. Most SPN-GPe neuron pairs are weakly connected, but a subset of pairs in both pathways are strongly connected.NEW & NOTEWORTHY This is the first study to record the synaptic currents generated by single identified direct or indirect pathway striatal neurons on single pallidal neurons. Each GPe neuron receives synaptic inputs from both pathways. Most striatal neurons generate small synaptic currents that become influential when occurring together, but a few are powerful enough to be individually influential.
Collapse
Affiliation(s)
- James A Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Jacob Peña
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Rostislav I Likhotvorik
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Brandon I Garcia-Castañeda
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| | - Charles J Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
13
|
Vidal-Ortiz A, Blanco-Centurion C, Shiromani PJ. Unilateral optogenetic stimulation of Lhx6 neurons in the zona incerta increases REM sleep. Sleep 2024; 47:zsad217. [PMID: 37599437 PMCID: PMC11502959 DOI: 10.1093/sleep/zsad217] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/08/2023] [Indexed: 08/22/2023] Open
Abstract
To determine how a waking brain falls asleep researchers have monitored and manipulated activity of neurons and glia in various brain regions. While imaging Gamma-Aminobutyric Acid (GABA) neurons in the zona incerta (ZI) we found a subgroup that anticipates onset of NREM sleep (Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral ZI anticipates sleep onset. Sleep. 2021;44(6):zsaa268. doi:10.1093/sleep/zsaa268.). To differentiate the GABA subtype we now image and optogenetically manipulate the ZI neurons containing the transcription factor, Lhx6. In the first study, Lhx6-cre mice (n = 5; female = 4) were given rAAV-DJ-EF1a-DIO-GCaMP6M into the ZI (isofluorane anesthesia), a GRIN lens implanted, and 21days later sleep and fluorescence in individual Lhx6 neurons were recorded for 4 hours. Calcium fluorescence was detected in 132 neurons. 45.5% of the Lhx6 neurons were REM-max; 30.3% were wake-max; 11.4% were wake + REM max; 9% were NREM-max; and 3.8% had no change. The NREM-max group of neurons fluoresced 30 seconds ahead of sleep onset. The second study tested the effects of unilateral optogenetic stimulation of the ZI Lhx6 neurons (n = 14 mice) (AAV5-Syn-FLEX-rc[ChrimsonR-tdTomato]. Stimulation at 1 and 5 Hz (1 minute on- 4 minutes off) significantly increased percent REM sleep during the 4 hours stimulation period (last half of day cycle). The typical experimental approach is to stimulate neurons in both hemispheres, but here we found that low-frequency stimulation of ZI Lhx6 neurons in one hemisphere is sufficient to shift states of consciousness. Detailed mapping combined with mechanistic testing is necessary to identify local nodes that can shift the brain between wake-sleep states.
Collapse
Affiliation(s)
- Aurelio Vidal-Ortiz
- Laboratory of Sleep Medicine and Chronobiology, Ralph H. Johnson Veterans Healthcare System, Charleston, SC, USA
| | - Carlos Blanco-Centurion
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Priyattam J Shiromani
- Laboratory of Sleep Medicine and Chronobiology, Ralph H. Johnson Veterans Healthcare System, Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Cerri DH, Albaugh DL, Walton LR, Katz B, Wang TW, Chao THH, Zhang W, Nonneman RJ, Jiang J, Lee SH, Etkin A, Hall CN, Stuber GD, Shih YYI. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat Commun 2024; 15:1916. [PMID: 38429266 PMCID: PMC10907631 DOI: 10.1038/s41467-024-46088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.
Collapse
Affiliation(s)
- Domenic H Cerri
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Albaugh
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lindsay R Walton
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany Katz
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randal J Nonneman
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sung-Ho Lee
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Catherine N Hall
- Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Garret D Stuber
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Azizpour Lindi S, Mallet NP, Leblois A. Synaptic Changes in Pallidostriatal Circuits Observed in the Parkinsonian Model Triggers Abnormal Beta Synchrony with Accurate Spatio-temporal Properties across the Basal Ganglia. J Neurosci 2024; 44:e0419232023. [PMID: 38123981 PMCID: PMC10903930 DOI: 10.1523/jneurosci.0419-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive oscillatory activity across basal ganglia (BG) nuclei in the β frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated β oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of β-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal β oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal β oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-β (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-β range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD β oscillations and may thereby guide the future development of therapeutic strategies.
Collapse
Affiliation(s)
- Shiva Azizpour Lindi
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Nicolas P Mallet
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| | - Arthur Leblois
- CNRS, Institut des Maladies Neurodégénératives (IMN), UMR 5293, Université de Bordeaux, Bordeaux F-33000, France
| |
Collapse
|
16
|
Guilhemsang L, Mallet NP. Arkypallidal neurons in basal ganglia circuits: Unveiling novel pallidostriatal loops? Curr Opin Neurobiol 2024; 84:102814. [PMID: 38016260 DOI: 10.1016/j.conb.2023.102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Just over a decade ago, a novel GABAergic input originating from a subpopulation of external globus pallidus neurons known as Arkypallidal and projecting exclusively to the striatum was unveiled. At the single-cell level, these pallidostriatal Arkypallidal projections represent one of the largest extrinsic sources of GABA known to innervate the dorsal striatum. This discovery has sparked new questions regarding their role in striatal information processing, the circuit that recruit these neurons, and their influence on behaviour, especially in the context of action selection vs. inhibition. In this review, we will present the different anatomo-functional organization of Arkypallidal neurons as compared to classic Prototypic neurons, including their unique molecular properties and what is known about their specific input/output synaptic organization. We will further describe recent findings that demonstrate one mode of action of Arkypallidal neurons, which is to convey feedback inhibition to the striatum, and how this mechanism is differentially modulated by both striatal projection pathways. Lastly, we will delve into speculations on their mechanistic contribution to striatal action execution or inhibition.
Collapse
Affiliation(s)
- Lise Guilhemsang
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Nicolas P Mallet
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France.
| |
Collapse
|
17
|
McLoughlin C, Lowery M. Impact of Network Topology on Neural Synchrony in a Model of the Subthalamic Nucleus-Globus Pallidus Circuit. IEEE Trans Neural Syst Rehabil Eng 2024; 32:282-292. [PMID: 38145524 DOI: 10.1109/tnsre.2023.3346456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Synchronous neural oscillations within the beta frequency range are observed across the parkinsonian basal ganglia network, including within the subthalamic nucleus (STN) - globus pallidus (GPe) subcircuit. The emergence of pathological synchrony in Parkinson's disease is often attributed to changes in neural properties or connection strength, and less often to the network topology, i.e. the structural arrangement of connections between neurons. This study investigates the relationship between network structure and neural synchrony in a model of the STN-GPe circuit comprised of conductance-based spiking neurons. Changes in net synaptic input were controlled for through a synaptic scaling rule, which facilitated separation of the effects of network structure from net synaptic input. Five topologies were examined as structures for the STN-GPe circuit: Watts-Strogatz, preferential attachment, spatial, stochastic block, k-regular random. Beta band synchrony generally increased as the number of connections increased, however the exact relationship was topology specific. Varying the wiring pattern while maintaining a constant number of connections caused network synchrony to be enhanced or suppressed, demonstrating the ability of purely structural changes to alter synchrony. This relationship was well-captured by the algebraic connectivity of the network, the second smallest eigenvalue of the network's Laplacian matrix. The structure-synchrony relationship was further investigated in a network model designed to emulate the action selection role of the STN-GPe circuit. It was found that increasing the number of connections and/or the overlap of action selection channels could lead to a rapid transition to synchrony, which was also predicted by the algebraic connectivity.
Collapse
|
18
|
Fang LZ, Creed MC. Updating the striatal-pallidal wiring diagram. Nat Neurosci 2024; 27:15-27. [PMID: 38057614 PMCID: PMC11892008 DOI: 10.1038/s41593-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Espallergues J, Boubaker-Vitre J, Mignon A, Avrillon M, Le Bon-Jego M, Baufreton J, Valjent E. Spatiomolecular Characterization of Dopamine D2 Receptors Cells in the Mouse External Globus Pallidus. Curr Neuropharmacol 2024; 22:1528-1539. [PMID: 37475558 PMCID: PMC11097984 DOI: 10.2174/1570159x21666230720121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 07/22/2023] Open
Abstract
The external globus pallidus (GPe) is part of the basal ganglia circuit and plays a key role in controlling the actions. Although, many evidence indicate that dopamine through its activation of dopamine D2 receptors (D2Rs) modulates the GPe neuronal activity, the precise spatiomolecular characterization of cell populations expressing D2Rs in the mouse GPe is still lacking. By combining single molecule in situ hybridization, cell type-specific imaging analyses, and electrophysiology slice recordings, we found that GPe D2R cells are neurons preferentially localized in the caudal portion of GPe. These neurons comprising pallido-striatal, pallido-nigral, and pallido-cortical neurons segregate into two distinct populations displaying molecular and electrophysiological features of GPe GABAergic PV/NKX2.1 and cholinergic neurons respectively. By clarifying the spatial molecular identity of GPe D2R neurons in the mouse, this work provides the basis for future studies aiming at disentangling the action of dopamine within the GPe.
Collapse
Affiliation(s)
| | | | - Audrey Mignon
- IGF, University Montpellier, CNRS, Inserm, F-34094 Montpellier, France
| | - Maelle Avrillon
- IGF, University Montpellier, CNRS, Inserm, F-34094 Montpellier, France
| | | | - Jerome Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Emmanuel Valjent
- IGF, University Montpellier, CNRS, Inserm, F-34094 Montpellier, France
| |
Collapse
|
20
|
Nambu A, Chiken S. External segment of the globus pallidus in health and disease: Its interactions with the striatum and subthalamic nucleus. Neurobiol Dis 2024; 190:106362. [PMID: 37992783 DOI: 10.1016/j.nbd.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.
Collapse
Affiliation(s)
- Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
21
|
Giossi C, Rubin JE, Gittis A, Verstynen T, Vich C. Rethinking the external globus pallidus and information flow in cortico-basal ganglia-thalamic circuits. ARXIV 2023:arXiv:2312.14267v2. [PMID: 38196745 PMCID: PMC10775352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
For decades the external globus pallidus (GPe) has been viewed as a passive way-station in the indirect pathway of the cortico-basal ganglia-thalamic (CBGT) circuit, sandwiched between striatal inputs and basal ganglia outputs. According to this model, one-way descending striatal signals in the indirect pathway amplify the suppression of downstream thalamic nuclei by inhibiting GPe activity. Here we revisit this assumption, in light of new and emerging work on the cellular complexity, connectivity, and functional role of the GPe in behavior. We show how, according to this new circuit-level logic, the GPe is ideally positioned for relaying ascending and descending control signals within the basal ganglia. Focusing on the problem of inhibitory control, we illustrate how this bidirectional flow of information allows for the integration of reactive and proactive control mechanisms during action selection. Taken together, this new evidence points to the GPe as being a central hub in the CBGT circuit, participating in bidirectional information flow and linking multifaceted control signals to regulate behavior.
Collapse
Affiliation(s)
- Cristina Giossi
- Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
| | - Aryn Gittis
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Center for the Neural Basis of Cognition, Pittsburgh, Carnegie Mellon University, Pennsylvania, United States of America
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Catalina Vich
- Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma, Spain
- Institute of Applied Computing and Community Code, Palma, Spain
| |
Collapse
|
22
|
Troppoli TA, Yang C, Katsuki F, Uygun DS, Lin I, Aguilar D, Spratt T, Basheer R, McNally JM, Chan CS, McKenna JT, Brown RE. Neuronal PAS domain 1 identifies a major subpopulation of wakefulness-promoting GABAergic neurons in basal forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566065. [PMID: 37986953 PMCID: PMC10659409 DOI: 10.1101/2023.11.09.566065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Here we describe a novel group of basal forebrain (BF) neurons expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. Immunohistochemical staining in Npas1-cre-2A-TdTomato mice revealed BF Npas1 + neurons are distinct from well-studied parvalbumin or cholinergic neurons. Npas1 staining in GAD67-GFP knock-in mice confirmed that the vast majority of Npas1 + neurons are GABAergic, with minimal colocalization with glutamatergic neurons in vGlut1-cre-tdTomato or vGlut2-cre-tdTomato mice. The density of Npas1 + neurons was high, 5-6 times that of neighboring cholinergic, parvalbumin or glutamatergic neurons. Anterograde tracing identified prominent projections of BF Npas1 + neurons to brain regions involved in sleep-wake control, motivated behaviors and olfaction such as the lateral hypothalamus, lateral habenula, nucleus accumbens shell, ventral tegmental area and olfactory bulb. Chemogenetic activation of BF Npas1 + neurons in the light (inactive) period increased the amount of wakefulness and the latency to sleep for 2-3 hr, due to an increase in long wake bouts and short NREM sleep bouts. Non-REM slow-wave (0-1.5 Hz) and sigma (9-15 Hz) power, as well as sleep spindle density, amplitude and duration, were reduced, reminiscent of findings in several neuropsychiatric disorders. Together with previous findings implicating BF Npas1 + neurons in stress responsiveness, the anatomical projections of BF Npas1 + neurons and the effect of activating them suggest a possible role for BF Npas1 + neurons in motivationally-driven wakefulness and stress-induced insomnia. Identification of this major subpopulation of BF GABAergic neurons will facilitate studies of their role in sleep disorders, dementia and other neuropsychiatric conditions involving BF. SIGNIFICANCE STATEMENT We characterize a group of basal forebrain (BF) neurons in the mouse expressing neuronal PAS domain 1 (Npas1), a developmental transcription factor linked to neuropsychiatric disorders. BF Npas1 + neurons are a major subset of GABAergic neurons distinct and more numerous than cholinergic, parvalbumin or glutamate neurons. BF Npas1 + neurons target brain areas involved in arousal, motivation and olfaction. Activation of BF Npas1 + neurons in the light (inactive) period increased wakefulness and the latency to sleep due to increased long wake bouts. Non-REM sleep slow waves and spindles were reduced reminiscent of findings in several neuropsychiatric disorders. Identification of this major subpopulation of BF GABAergic wake-promoting neurons will allow studies of their role in insomnia, dementia and other conditions involving BF.
Collapse
|
23
|
Biswas S, Chan CS, Rubenstein JLR, Gan L. The transcription regulator Lmo3 is required for the development of medial ganglionic eminence derived neurons in the external globus pallidus. Dev Biol 2023; 503:10-24. [PMID: 37532091 PMCID: PMC10658356 DOI: 10.1016/j.ydbio.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The external globus pallidus (GPe) is an essential component of the basal ganglia, a group of subcortical nuclei that are involved in control of action. Changes in the firing of GPe neurons are associated with both passive and active body movements. Aberrant activity of GPe neurons has been linked to motor symptoms of a variety of movement disorders, such as Parkinson's Disease, Huntington's disease and dystonia. Recent studies have helped delineate functionally distinct subtypes of GABAergic GPe projection neurons. However, not much is known about specific molecular mechanisms underlying the development of GPe neuronal subtypes. We show that the transcriptional regulator Lmo3 is required for the development of medial ganglionic eminence derived Nkx2.1+ and PV+ GPe neurons, but not lateral ganglionic eminence derived FoxP2+ neurons. As a consequence of the reduction in PV+ neurons, Lmo3-null mice have a reduced GPe input to the subthalamic nucleus.
Collapse
Affiliation(s)
- Shiona Biswas
- The Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA.
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John L R Rubenstein
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California at San Francisco, CA, 94143, USA
| | - Lin Gan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA; Department of Ophthalmology and the Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14627, USA
| |
Collapse
|
24
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
25
|
Campbell RR, Lobo MK. Pallidal circuits drive addiction behavior. Trends Neurosci 2023; 46:S0166-2236(23)00228-X. [PMID: 39492310 DOI: 10.1016/j.tins.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
Understanding the neural mechanisms that control addiction processes, including drug-seeking and relapse, is key to finding new targets for substance use disorder (SUD) pharmacotherapies and circuit-based therapies. Addictive drugs alter activity in distinct neural circuits that can lead to SUD symptoms, including compulsive drug craving and taking. This includes the pallidum, a region in the basal ganglia that acts as an integrator of associative, sensorimotor, and limbic information to shape motor responses, promote reward-learning, and regulate habit formation. Here, we review key findings that demonstrate the sub-regional and circuit-specific functions of the pallidum that drive addiction-related behaviors in rodents. We also highlight newly discovered mechanisms within distinct cell types and circuits of the pallidum that drive drug-seeking. Overall, this review serves to emphasize the importance of the pallidum in addiction processes and underscore the need for studying circuit-specific mechanisms in SUD research.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Labouesse MA, Torres-Herraez A, Chohan MO, Villarin JM, Greenwald J, Sun X, Zahran M, Tang A, Lam S, Veenstra-VanderWeele J, Lacefield CO, Bonaventura J, Michaelides M, Chan CS, Yizhar O, Kellendonk C. A non-canonical striatopallidal Go pathway that supports motor control. Nat Commun 2023; 14:6712. [PMID: 37872145 PMCID: PMC10593790 DOI: 10.1038/s41467-023-42288-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess axon collaterals within the globus pallidus (GPe) (bridging collaterals), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches in mice to dissect the roles of dSPN GPe collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of Npas1 neurons. We propose a model by which dSPN GPe axon collaterals (striatopallidal Go pathway) act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 neurons.
Collapse
Affiliation(s)
- Marie A Labouesse
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Health, Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland.
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Muhammad O Chohan
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Joseph M Villarin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Julia Greenwald
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Xiaoxiao Sun
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mysarah Zahran
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Barnard College, Columbia University, New York, NY, 10027, USA
| | - Alice Tang
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Columbia College, Columbia University, New York, NY, 10027, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Clay O Lacefield
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Farries MA, Faust TW, Mohebi A, Berke JD. Selective encoding of reward predictions and prediction errors by globus pallidus subpopulations. Curr Biol 2023; 33:4124-4135.e5. [PMID: 37703876 PMCID: PMC10591972 DOI: 10.1016/j.cub.2023.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/04/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Basal ganglia (BG) circuits help guide and invigorate actions using predictions of future rewards (values). Within the BG, the globus pallidus pars externa (GPe) may play an essential role in aggregating and distributing value information. We recorded from the GPe in unrestrained rats performing both Pavlovian and instrumental tasks to obtain rewards and distinguished neuronal subtypes by their firing properties across the wake/sleep cycle and optogenetic tagging. In both tasks, the parvalbumin-positive (PV+), faster-firing "prototypical" neurons showed strong, sustained modulation by value, unlike other subtypes, including the "arkypallidal" cells that project back to striatum. Furthermore, we discovered that a distinct minority (7%) of GP cells display slower, pacemaker-like firing and encode reward prediction errors (RPEs) almost identically to midbrain dopamine neurons. These cell-specific forms of GPe value representation help define the circuit mechanisms by which the BG contribute to motivation and reinforcement learning.
Collapse
Affiliation(s)
- Michael A Farries
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80210, USA
| | - Thomas W Faust
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joshua D Berke
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
28
|
López-Niño J, Padilla-Orozco M, Ortega A, Alejandra Cáceres-Chávez V, Tapia D, Laville A, Galarraga E, Bargas J. Dopaminergic Dependency of Cholinergic Pallidal Neurons. Neuroscience 2023; 528:12-25. [PMID: 37536611 DOI: 10.1016/j.neuroscience.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
We employed the whole-cell patch-clamp method and ChAT-Cre mice to study the electrophysiological attributes of cholinergic neurons in the external globus pallidus. Most neurons were inactive, although approximately 20% displayed spontaneous firing, including burst firing. The resting membrane potential, the whole neuron input resistance, the membrane time constant and the total neuron membrane capacitance were also characterized. The current-voltage relationship showed time-independent inward rectification without a "sag". Firing induced by current injections had a brief initial fast adaptation followed by tonic firing with minimal accommodation. Intensity-frequency plots exhibited maximal average firing rates of about 10 Hz. These traits are similar to those of some cholinergic neurons in the basal forebrain. Also, we examined their dopamine sensitivity by acutely blocking dopamine receptors. This action demonstrated that the membrane potential, excitability, and firing pattern of pallidal cholinergic neurons rely on the constitutive activity of dopamine receptors, primarily D2-class receptors. The blockade of these receptors induced a resting membrane potential hyperpolarization, a decrease in firing for the same stimulus, the disappearance of fast adaptation, and the emergence of a depolarization block. This shift in physiological characteristics was evident even when the hyperpolarization was corrected with D.C. current. Neither the currents that generate the action potentials nor those from synaptic inputs were responsible. Instead, our findings suggest, that subthreshold slow ion currents, that require further investigation, are the target of this novel dopaminergic signaling.
Collapse
Affiliation(s)
- Janintzitzic López-Niño
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
29
|
Wang N, Jia Y, Zhou X, Wang X, Zhou H, Xiao N. Effects of Repetitive Transcranial Magnetic Stimulation on Pallidum GABAergic Neurons and Motor Function in Rat Models of Kernicterus. Brain Sci 2023; 13:1252. [PMID: 37759853 PMCID: PMC10526431 DOI: 10.3390/brainsci13091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Kernicterus is a serious complication of hyperbilirubinemia, caused by neuronal injury due to excessive unconjugated bilirubin (UCB) in specific brain areas. This injury induced by this accumulation in the globus pallidus can induce severe motor dysfunction. Repetitive transcranial magnetic stimulation (rTMS) has shown neuroprotective effects in various neurological diseases. This study aimed to investigate the effects of rTMS on pallidal nerve damage and motor dysfunction in a rat model of kernicterus. Rats were divided into a sham group (n = 16), a model group (bilirubin with sham rTMS; n = 16) and an rTMS group (bilirubin with rTMS; n = 16). High-frequency rTMS (10 Hz) was applied starting from 24 h postmodeling for 7 days. The rotarod test, western blotting and immunohistochemical staining were performed to measure motor function and protein expression levels. The rTMS mitigated the negative effects of UCB on the general health of kernicterus-model rats and improved their growth and development. Furthermore, the rTMS alleviated UCB-induced motor dysfunction and increased the expression of GABAergic neuronal marker GAD67 in the globus pallidus. Notably, it also inhibited apoptosis-related protein caspase-3 activation. In conclusion, rTMS could alleviate motor dysfunction by inhibiting apoptosis and increasing globus pallidus GAD67 in kernicterus rat models, indicating that it may be a promising treatment for kernicterus.
Collapse
Affiliation(s)
| | | | | | | | | | - Nong Xiao
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400010, China; (N.W.); (Y.J.); (X.Z.); (X.W.); (H.Z.)
| |
Collapse
|
30
|
Isett BR, Nguyen KP, Schwenk JC, Yurek JR, Snyder CN, Vounatsos MV, Adegbesan KA, Ziausyte U, Gittis AH. The indirect pathway of the basal ganglia promotes transient punishment but not motor suppression. Neuron 2023; 111:2218-2231.e4. [PMID: 37207651 PMCID: PMC10524991 DOI: 10.1016/j.neuron.2023.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Optogenetic stimulation of Adora2a receptor-expressing spiny projection neurons (A2A-SPNs) in the striatum drives locomotor suppression and transient punishment, results attributed to activation of the indirect pathway. The sole long-range projection target of A2A-SPNs is the external globus pallidus (GPe). Unexpectedly, we found that inhibition of the GPe drove transient punishment but not suppression of movement. Within the striatum, A2A-SPNs inhibit other SPNs through a short-range inhibitory collateral network, and we found that optogenetic stimuli that drove motor suppression shared a common mechanism of recruiting this inhibitory collateral network. Our results suggest that the indirect pathway plays a more prominent role in transient punishment than in motor control and challenges the assumption that activity of A2A-SPNs is synonymous with indirect pathway activity.
Collapse
Affiliation(s)
- Brian R Isett
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katrina P Nguyen
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jenna C Schwenk
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeff R Yurek
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christen N Snyder
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Maxime V Vounatsos
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kendra A Adegbesan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ugne Ziausyte
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aryn H Gittis
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Baker M, Kang S, Hong SI, Song M, Yang MA, Peyton L, Essa H, Lee SW, Choi DS. External globus pallidus input to the dorsal striatum regulates habitual seeking behavior in male mice. Nat Commun 2023; 14:4085. [PMID: 37438336 PMCID: PMC10338526 DOI: 10.1038/s41467-023-39545-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/16/2023] [Indexed: 07/14/2023] Open
Abstract
The external globus pallidus (GPe) coordinates action-selection through GABAergic projections throughout the basal ganglia. GPe arkypallidal (arky) neurons project exclusively to the dorsal striatum, which regulates goal-directed and habitual seeking. However, the role of GPe arky neurons in reward-seeking remains unknown. Here, we identified that a majority of arky neurons target the dorsolateral striatum (DLS). Using fiber photometry, we found that arky activities were higher during random interval (RI; habit) compared to random ratio (RR; goal) operant conditioning. Support vector machine analysis demonstrated that arky neuron activities have sufficient information to distinguish between RR and RI behavior. Genetic ablation of this arkyGPe→DLS circuit facilitated a shift from goal-directed to habitual behavior. Conversely, chemogenetic activation globally reduced seeking behaviors, which was blocked by systemic D1R agonism. Our findings reveal a role of this arkyGPe→DLS circuit in constraining habitual seeking in male mice, which is relevant to addictive behaviors and other compulsive disorders.
Collapse
Affiliation(s)
- Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Minryung Song
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsu Abel Yang
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sang Wan Lee
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Courtney CD, Pamukcu A, Chan CS. Cell and circuit complexity of the external globus pallidus. Nat Neurosci 2023; 26:1147-1159. [PMID: 37336974 PMCID: PMC11382492 DOI: 10.1038/s41593-023-01368-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/18/2023] [Indexed: 06/21/2023]
Abstract
The external globus pallidus (GPe) of the basal ganglia has been underappreciated owing to poor understanding of its cells and circuits. It was assumed that the GPe consisted of a homogeneous neuron population primarily serving as a 'relay station' for information flowing through the indirect basal ganglia pathway. However, the advent of advanced tools in rodent models has sparked a resurgence in interest in the GPe. Here, we review recent data that have unveiled the cell and circuit complexity of the GPe. These discoveries have revealed that the GPe does not conform to traditional views of the basal ganglia. In particular, recent evidence confirms that the afferent and efferent connections of the GPe span both the direct and the indirect pathways. Furthermore, the GPe displays broad interconnectivity beyond the basal ganglia, consistent with its emerging multifaceted roles in both motor and non-motor functions. In summary, recent data prompt new proposals for computational rules of the basal ganglia.
Collapse
Affiliation(s)
- Connor D Courtney
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arin Pamukcu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
33
|
Di Bisceglie Caballero S, Ces A, Liberge M, Ambroggi F, Amalric M, Ouagazzal AM. Optogenetic Globus Pallidus Stimulation Improves Motor Deficits in 6-Hydroxydopamine-Lesioned Mouse Model of Parkinson's Disease. Int J Mol Sci 2023; 24:7935. [PMID: 37175643 PMCID: PMC10178372 DOI: 10.3390/ijms24097935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Excessive inhibition of the external globus pallidus (GPe) by striatal GABAergic neurons is considered a central mechanism contributing to motor symptoms of Parkinson's disease (PD). While electrophysiological findings support this view, behavioral studies assessing the beneficial effects of global GPe activations are scarce and the reported results are controversial. We used an optogenetic approach and the standard unilateral 6-hydroxydopamine nigrostriatal dopamine (DA) lesion model of PD to explore the effects of GPe photostimulation on motor deficits in mice. Global optogenetic GPe inhibition was used in normal mice to verify whether it reproduced the typical motor impairment induced by DA lesions. GPe activation improved ipsilateral circling, contralateral forelimb akinesia, locomotor hypoactivity, and bradykinesia in 6-OHDA-lesioned mice at ineffective photostimulation parameters (532 nm, 5 Hz, 3 mW) in normal mice. GPe photoinhibition (450 nm, 12 mW) had no effect on locomotor activity and forelimb use in normal mice. Bilateral photoinhibition (450 nm, 6 mW/side) reduced directed exploration and improved working memory performances indicating that recruitment of GPe in physiological conditions may depend on the behavioral task involved. Collectively, these findings shed new light on the functional role of GPe and suggest that it is a promising target for neuromodulatory restoration of motor deficits in PD.
Collapse
|
34
|
Ortone A, Vergani AA, Ahmadipour M, Mannella R, Mazzoni A. Dopamine depletion leads to pathological synchronization of distinct basal ganglia loops in the beta band. PLoS Comput Biol 2023; 19:e1010645. [PMID: 37104542 PMCID: PMC10168586 DOI: 10.1371/journal.pcbi.1010645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/09/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Motor symptoms of Parkinson's Disease (PD) are associated with dopamine deficits and pathological oscillation of basal ganglia (BG) neurons in the β range ([12-30] Hz). However, how dopamine depletion affects the oscillation dynamics of BG nuclei is still unclear. With a spiking neurons model, we here capture the features of BG nuclei interactions leading to oscillations in dopamine-depleted condition. We highlight that both the loop between subthalamic nucleus (STN) and Globus Pallidus pars externa (GPe) and the loop between striatal fast spiking and medium spiny neurons and GPe display resonances in the β range, and synchronize to a common β frequency through interaction. Crucially, the synchronization depends on dopamine depletion: the two loops are largely independent for high levels of dopamine, but progressively synchronize as dopamine is depleted due to the increased strength of the striatal loop. The model is validated against recent experimental reports on the role of cortical inputs, STN and GPe activity in the generation of β oscillations. Our results highlight the role of the interplay between the GPe-STN and the GPe-striatum loop in generating sustained β oscillations in PD subjects, and explain how this interplay depends on the level of dopamine. This paves the way to the design of therapies specifically addressing the onset of pathological β oscillations.
Collapse
Affiliation(s)
- Andrea Ortone
- Dipartimento di Fisica, Università di Pisa, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Alberto Arturo Vergani
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Mahboubeh Ahmadipour
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
35
|
Dos Santos NL, Lenert ME, Castillo ZW, Mody PH, Thompson LT, Burton MD. Age and sex drive differential behavioral and neuroimmune phenotypes during postoperative pain. Neurobiol Aging 2023; 123:129-144. [PMID: 36577640 PMCID: PMC9892227 DOI: 10.1016/j.neurobiolaging.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Surgical procedures in the geriatric population are steadily increasing, driven by improved healthcare technologies and longer lifespans. However, effective postoperative pain treatments are lacking, and this diminishes quality of life and recovery. Here we present one of the first preclinical studies to pursue sex- and age-specific differences in postoperative neuroimmune phenotypes and pain. We found that aged males, but not females, had a delayed onset of mechanical hypersensitivity post-surgery and faster resolution than young counterparts. This sex-specific age effect was accompanied by decreased paw innervation and increased local inflammation. Additionally, we find evidence of an age-dependent decrease in hyperalgesic priming and perioperative changes in nociceptor populations and spinal microglia in the aged. These findings suggest that impaired neuronal function and maladaptive inflammatory mechanisms influence postoperative pain development in advanced age. Elucidation of these neuroimmune phenotypes across age and sex enables the development of novel therapies that can be tailored for improved pain relief.
Collapse
Affiliation(s)
- Natalia L Dos Santos
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Zachary W Castillo
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA
| | - Lucien T Thompson
- Aging and Memory Research Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX, USA.
| |
Collapse
|
36
|
Jones JA, Higgs MH, Olivares E, Peña J, Wilson CJ. Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus. J Neurosci 2023; 43:1281-1297. [PMID: 36623877 PMCID: PMC9987574 DOI: 10.1523/jneurosci.1969-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Autonomously firing GABAergic neurons in the external globus pallidus (GPe) form a local synaptic network. In slices, most GPe neurons receive a continuous inhibitory synaptic barrage from 1 or 2 presynaptic GPe neurons. We measured the barrage's effect on the firing rate and regularity of GPe neurons in male and female mice using perforated patch recordings. Silencing the firing of parvalbumin-positive (PV+) GPe neurons by activating genetically expressed Archaerhodopsin current increased the firing rate and regularity of PV- neurons. In contrast, silencing Npas1+ GPe neurons with Archaerhodopsin had insignificant effects on Npas1- neuron firing. Blocking spontaneous GABAergic synaptic input with gabazine reproduced the effects of silencing PV+ neuron firing on the firing rate and regularity of Npas1+ neurons and had similar effects on PV+ neuron firing. To simulate the barrage, we constructed conductance waveforms for dynamic clamp based on experimentally measured inhibitory postsynaptic conductance trains from 1 or 2 unitary local connections. The resulting inhibition replicated the effect on firing seen in the intact active network in the slice. We then increased the number of unitary inputs to match estimates of local network connectivity in vivo As few as 5 unitary inputs produced large increases in firing irregularity. The firing rate was also reduced initially, but PV+ neurons exhibited a slow spike-frequency adaptation that partially restored the rate despite sustained inhibition. We conclude that the irregular firing pattern of GPe neurons in vivo is largely due to the ongoing local inhibitory synaptic barrage produced by the spontaneous firing of other GPe neurons.SIGNIFICANCE STATEMENT Functional roles of local axon collaterals in the external globus pallidus (GPe) have remained elusive because of difficulty in isolating local inhibition from other GABAergic inputs in vivo, and in preserving the autonomous firing of GPe neurons and detecting their spontaneous local inputs in slices. We used perforated patch recordings to detect spontaneous local inputs during rhythmic firing. We found that the autonomous firing of single presynaptic GPe neurons produces inhibitory synaptic barrages that significantly alter the firing regularity of other GPe neurons. Our findings suggest that, although GPe neurons receive input from only a few other GPe neurons, each local connection has a large impact on their firing.
Collapse
Affiliation(s)
- James A. Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Matthew H. Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Erick Olivares
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jacob Peña
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Charles J. Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
37
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
38
|
Johansson Y, Ketzef M. Sensory processing in external globus pallidus neurons. Cell Rep 2023; 42:111952. [PMID: 36640317 DOI: 10.1016/j.celrep.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Sensory processing is crucial for execution of appropriate behavior. The external globus pallidus (GPe), a nucleus within the basal ganglia, is highly involved in the control of movement and could potentially integrate sensory-motor information. The GPe comprises prototypic and arkypallidal cells, which receive partially overlapping inputs. It is unclear, however, which inputs convey sensory information to them. Here, we used in vivo whole-cell recordings in the mouse GPe and optogenetic silencing to characterize the pathways that shape the response to whisker stimulation in prototypic and arkypallidal cells. Our results show that sensory integration in prototypic cells is controlled by the subthalamic nucleus and indirect pathway medium spiny neurons (MSNs), whereas in arkypallidal cells, it is primarily shaped by direct pathway MSNs. These results suggest that GPe subpopulations receive sensory information from largely different neural populations, reinforcing that the GPe consists of two parallel pathways, which differ anatomically and functionally.
Collapse
Affiliation(s)
- Yvonne Johansson
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Maya Ketzef
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
39
|
Morais-Silva G, Campbell RR, Nam H, Basu M, Pagliusi M, Fox ME, Chan CS, Iñiguez SD, Ament S, Cramer N, Marin MT, Lobo MK. Molecular, Circuit, and Stress Response Characterization of Ventral Pallidum Npas1-Neurons. J Neurosci 2023; 43:405-418. [PMID: 36443000 PMCID: PMC9864552 DOI: 10.1523/jneurosci.0971-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Altered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for motivational behavior. While Npas1+ neurons have been characterized in the globus pallidus external, there is limited information on these neurons in the VP. To address this limitation, we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-sequencing on ribosome-associated mRNA from VP Npas1+ neurons to determine their molecular identity. Finally, we used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We used a similar approach in females using the chronic witness defeat stress (CWDS). We identified VP Npas1+ projections to the nucleus accumbens, ventral tegmental area, medial and lateral habenula, lateral hypothalamus, thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct translatome representing distinct biological processes. Chemogenetic activation of hM3D(Gq) receptors in VP Npas1+ neurons increased susceptibility to a subthreshold SDS and anxiety-like behavior in the elevated plus maze and open field while the activation of hM4D(Gi) receptors in VP Npas1+ neurons enhanced resilience to chronic SDS and CWDS. Thus, the activity of VP Npas1+ neurons modulates susceptibility to social stressors and anxiety-like behavior. Our studies provide new information on VP Npas1+ neuron circuitry, molecular identity, and their role in stress response.SIGNIFICANCE STATEMENT The ventral pallidum (VP) is a structure connected to both reward-related and aversive brain centers. It is a key brain area that signals the hedonic value of natural rewards. Disruption in the VP underlies altered motivation in stress and substance use disorder. However, VP is a very heterogeneous area with multiple neuron subtypes. This study characterized the projection pattern and molecular signatures of VP Neuronal PAS 1-positive (Npas1+) neurons. We further used tools to alter receptor signaling in VP Npas1+ neurons in stress to demonstrate a role for these neurons in stress behavioral outcomes. Our studies have implications for understanding brain cell type identities and their role in brain disorders, such as depression, a serious disorder that is precipitated by stressful events.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Rianne R Campbell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marco Pagliusi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Structural and Functional Biology, State University of Campinas, SP-13083-872, Campinas, Brazil
| | - Megan E Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, Texas 79902
| | - Seth Ament
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Marcelo Tadeu Marin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, Sao Paulo 14800903, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos/Sao Paulo State University, CEP 13565-905, São Carlos/Araraquara, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
40
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
41
|
Xenias HS, Chen C, Kang S, Cherian S, Situ X, Shanmugasundaram B, Liu G, Scesa G, Chan CS, Parisiadou L. R1441C and G2019S LRRK2 knockin mice have distinct striatal molecular, physiological, and behavioral alterations. Commun Biol 2022; 5:1211. [PMID: 36357506 PMCID: PMC9649688 DOI: 10.1038/s42003-022-04136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
LRRK2 mutations are closely associated with Parkinson's disease (PD). Convergent evidence suggests that LRRK2 regulates striatal function. Here, by using knock-in mouse lines expressing the two most common LRRK2 pathogenic mutations-G2019S and R1441C-we investigated how LRRK2 mutations altered striatal physiology. While we found that both R1441C and G2019S mice displayed reduced nigrostriatal dopamine release, hypoexcitability in indirect-pathway striatal projection neurons, and alterations associated with an impaired striatal-dependent motor learning were observed only in the R1441C mice. We also showed that increased synaptic PKA activities in the R1441C and not G2019S mice underlie the specific alterations in motor learning deficits in the R1441C mice. In summary, our data argue that LRRK2 mutations' impact on the striatum cannot be simply generalized. Instead, alterations in electrochemical, electrophysiological, molecular, and behavioral levels were distinct between LRRK2 mutations. Our findings offer mechanistic insights for devising and optimizing treatment strategies for PD patients.
Collapse
Affiliation(s)
- Harry S Xenias
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Suraj Cherian
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaolei Situ
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Guoxiang Liu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Giuseppe Scesa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
42
|
Nanobody-based RFP-dependent Cre recombinase for selective anterograde tracing in RFP-expressing transgenic animals. Commun Biol 2022; 5:979. [PMID: 36114373 PMCID: PMC9481622 DOI: 10.1038/s42003-022-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractTransgenic animals expressing fluorescent proteins are widely used to label specific cells and proteins. By using a split Cre recombinase fused with mCherry-binding nanobodies or designed ankyrin repeat proteins, we created Cre recombinase dependent on red fluorescent protein (RFP) (Cre-DOR). Functional binding units for monomeric RFPs are different from those for polymeric RFPs. We confirmed selective target RFP-dependent gene expression in the mouse cerebral cortex using stereotaxic injection of adeno-associated virus vectors. In estrogen receptor-beta (Esr2)-mRFP1 mice and gastrin-releasing peptide receptor (Grpr)-mRFP1 rats, we confirmed that Cre-DOR can be used for selective tracing of the neural projection from RFP-expressing specific neurons. Cellular localization of RFPs affects recombination efficiency of Cre-DOR, and light and chemical-induced nuclear translocation of an RFP-fused protein can modulate Cre-DOR efficiency. Our results provide a method for manipulating gene expression in specific cells expressing RFPs and expand the repertory of nanobody-based genetic tools.
Collapse
|
43
|
Lawler AJ, Ramamurthy E, Brown AR, Shin N, Kim Y, Toong N, Kaplow IM, Wirthlin M, Zhang X, Phan BN, Fox GA, Wade K, He J, Ozturk BE, Byrne LC, Stauffer WR, Fish KN, Pfenning AR. Machine learning sequence prioritization for cell type-specific enhancer design. eLife 2022; 11:e69571. [PMID: 35576146 PMCID: PMC9110026 DOI: 10.7554/elife.69571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Recent discoveries of extreme cellular diversity in the brain warrant rapid development of technologies to access specific cell populations within heterogeneous tissue. Available approaches for engineering-targeted technologies for new neuron subtypes are low yield, involving intensive transgenic strain or virus screening. Here, we present Specific Nuclear-Anchored Independent Labeling (SNAIL), an improved virus-based strategy for cell labeling and nuclear isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other computational approaches to identify DNA sequence features that confer cell type-specific gene activation and then make a probe that drives an affinity purification-compatible reporter gene. As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-expressing (PV+) neurons. Nuclear isolation using SNAIL in wild-type mice is sufficient to capture characteristic open chromatin features of PV+ neurons in the cortex, striatum, and external globus pallidus. The SNAIL framework also has high utility for multispecies cell probe engineering; expression from a mouse PV+ SNAIL enhancer sequence was enriched in PV+ neurons of the macaque cortex. Expansion of this technology has broad applications in cell type-specific observation, manipulation, and therapeutics across species and disease models.
Collapse
Affiliation(s)
- Alyssa J Lawler
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Biological Sciences Department, Mellon College of Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Easwaran Ramamurthy
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Ashley R Brown
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Naomi Shin
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Yeonju Kim
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Noelle Toong
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Irene M Kaplow
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Morgan Wirthlin
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Xiaoyu Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - BaDoi N Phan
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
- Medical Scientist Training Program, University of PittsburghPittsburghUnited States
| | - Grant A Fox
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Kirsten Wade
- Department of Psychiatry, Translational Neuroscience Program, University of PittsburghPittsburghUnited States
| | - Jing He
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of CognitionPittsburghUnited States
| | - Bilge Esin Ozturk
- Department of Ophthalmology, University of PittsburghPittsburghUnited States
| | - Leah C Byrne
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Department of Ophthalmology, University of PittsburghPittsburghUnited States
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| | - William R Stauffer
- Department of Neurobiology, University of PittsburghPittsburghUnited States
| | - Kenneth N Fish
- Department of Psychiatry, Translational Neuroscience Program, University of PittsburghPittsburghUnited States
| | - Andreas R Pfenning
- Computational Biology Department, School of Computer Science, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
44
|
Olivares E, Higgs MH, Wilson CJ. Local inhibition in a model of the indirect pathway globus pallidus network slows and deregularizes background firing, but sharpens and synchronizes responses to striatal input. J Comput Neurosci 2022; 50:251-272. [PMID: 35274227 DOI: 10.1007/s10827-022-00814-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
The external segment of globus pallidus (GPe) is a network of oscillatory neurons connected by inhibitory synapses. We studied the intrinsic dynamic and the response to a shared brief inhibitory stimulus in a model GPe network. Individual neurons were simulated using a phase resetting model based on measurements from mouse GPe neurons studied in slices. The neurons showed a broad heterogeneity in their firing rates and in the shapes and sizes of their phase resetting curves. Connectivity in the network was set to match experimental measurements. We generated statistically equivalent neuron heterogeneity in a small-world model, in which 99% of connections were made with near neighbors and 1% at random, and in a model with entirely random connectivity. In both networks, the resting activity was slowed and made more irregular by the local inhibition, but it did not show any periodic pattern. Cross-correlations among neuron pairs were limited to directly connected neurons. When stimulated by a shared inhibitory input, the individual neuron responses separated into two groups: one with a short and stereotyped period of inhibition followed by a transient increase in firing probability, and the other responding with a sustained inhibition. Despite differences in firing rate, the responses of the first group of neurons were of fixed duration and were synchronized across cells.
Collapse
Affiliation(s)
- Erick Olivares
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Matthew H Higgs
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
45
|
Callahan JW, Wokosin DL, Bevan MD. Dysregulation of the Basal Ganglia Indirect Pathway in Early Symptomatic Q175 Huntington's Disease Mice. J Neurosci 2022; 42:2080-2102. [PMID: 35058372 PMCID: PMC8916764 DOI: 10.1523/jneurosci.0782-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/21/2022] Open
Abstract
The debilitating psychomotor symptoms of Huntington's disease (HD) are linked partly to degeneration of the basal ganglia indirect pathway. At early symptomatic stages, before major cell loss, indirect pathway neurons exhibit numerous cellular and synaptic changes in HD and its models. However, the impact of these alterations on circuit activity remains poorly understood. To address this gap, optogenetic- and reporter-guided electrophysiological interrogation was used in early symptomatic male and female Q175 HD mice. D2 dopamine receptor-expressing striatal projection neurons (D2-SPNs) were hypoactive during synchronous cortical slow-wave activity, consistent with known reductions in dendritic excitability and cortical input strength. Downstream prototypic parvalbumin-expressing external globus pallidus (PV+ GPe) neurons discharged at 2-3 times their normal rate, even during periods of D2-SPN inactivity, arguing that defective striatopallidal inhibition was not the only cause of their hyperactivity. Indeed, PV+ GPe neurons also exhibited abnormally elevated autonomous firing ex vivo Optogenetic inhibition of PV+ GPe neurons in vivo partially and fully ameliorated the abnormal hypoactivity of postsynaptic subthalamic nucleus (STN) and putative PV- GPe neurons, respectively. In contrast to STN neurons whose autonomous firing is impaired in HD mice, putative PV- GPe neuron activity was unaffected ex vivo, implying that excessive inhibition was responsible for their hypoactivity in vivo Together with previous studies, these data demonstrate that (1) indirect pathway nuclei are dysregulated in Q175 mice through changes in presynaptic activity and/or intrinsic cellular and synaptic properties; and (2) prototypic PV+ GPe neuron hyperactivity and excessive target inhibition are prominent features of early HD pathophysiology.SIGNIFICANCE STATEMENT The early symptoms of Huntington's disease (HD) are linked to degenerative changes in the action-suppressing indirect pathway of the basal ganglia. Consistent with this linkage, the intrinsic properties of cells in this pathway exhibit complex alterations in HD and its models. However, the impact of these changes on activity is poorly understood. Using electrophysiological and optogenetic approaches, we demonstrate that the indirect pathway is highly dysregulated in early symptomatic HD mice through changes in upstream activity and/or intrinsic properties. Furthermore, we reveal that hyperactivity of external globus pallidus neurons and excessive inhibition of their targets are key features of early HD pathophysiology. Together, these findings could help to inform the development and targeting of viral-based, gene therapeutic approaches for HD.
Collapse
Affiliation(s)
- Joshua W Callahan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Mark D Bevan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
46
|
Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G. The Stereological Analysis and Spatial Distribution of Neurons in the Human Subthalamic Nucleus. Front Neuroanat 2022; 15:749390. [PMID: 34970124 PMCID: PMC8712451 DOI: 10.3389/fnana.2021.749390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, ovoid structure, and an important site of deep brain stimulation (DBS) for the treatment of Parkinson’s disease. Although the STN is a clinically important structure, there are many unresolved issues with regard to it. These issues are especially related to the anatomical subdivision, neuronal phenotype, neuronal composition, and spatial distribution. In this study, we have examined the expression pattern of 8 neuronal markers [nNOS, NeuN, parvalbumin (PV), calbindin (CB), calretinin (CR), FOXP2, NKX2.1, and PAX6] in the adult human STN. All of the examined markers, except CB, were present in the STN. To determine the neuronal density, we have performed stereological analysis on Nissl-stained and immunohistochemical slides of positive markers. The stereology data were also used to develop a three-dimensional map of the spatial distribution of neurons within the STN. The nNOS population exhibited the largest neuronal density. The estimated total number of nNOS STN neurons is 281,308 ± 38,967 (± 13.85%). The STN neuronal subpopulations can be divided into two groups: one with a neuronal density of approximately 3,300 neurons/mm3 and the other with a neuronal density of approximately 2,200 neurons/mm3. The largest density of STN neurons was observed along the ventromedial border of the STN and the density gradually decreased toward the dorsolateral border. In this study, we have demonstrated the presence of 7 neuronal markers in the STN, three of which were not previously described in the human STN. The human STN is a collection of diverse, intermixed neuronal subpopulations, and our data, as far as the cytoarchitectonics is concerned, did not support the tripartite STN subdivision.
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Andrija Štajduhar
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,School of Public Health "Andrija Štampar," University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fadi Almahariq
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Neurosurgery, Clinical Hospital "Dubrava," Zagreb, Croatia
| | - Marija Baković
- Department of Forensic Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
47
|
Simpson EH, Gallo EF, Balsam PD, Javitch JA, Kellendonk C. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry 2022; 27:436-444. [PMID: 34385603 PMCID: PMC8837728 DOI: 10.1038/s41380-021-01253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
It was first posited, more than five decades ago, that the etiology of schizophrenia involves overstimulation of dopamine receptors. Since then, advanced clinical research methods, including brain imaging, have refined our understanding of the relationship between striatal dopamine and clinical phenotypes as well as disease trajectory. These studies point to striatal dopamine D2 receptors, the main target for all current antipsychotic medications, as being involved in both positive and negative symptoms. Simultaneously, animal models have been central to investigating causal relationships between striatal dopamine D2 receptors and behavioral phenotypes relevant to schizophrenia. We begin this article by reviewing the circuit, cell-type and subcellular locations of dopamine D2 receptors and their downstream signaling pathways. We then summarize results from several mouse models in which D2 receptor levels were altered in various brain regions, cell-types and developmental periods. Behavioral, electrophysiological and anatomical consequences of these D2 receptor perturbations are reviewed with a selective focus on striatal circuit function and alterations in motivated behavior, a core negative symptom of schizophrenia. These studies show that D2 receptors serve distinct physiological roles in different cell types and at different developmental time points, regulating motivated behaviors in sometimes opposing ways. We conclude by considering the clinical implications of this complex regulation of striatal circuit function by D2 receptors.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY 10458
| | - Peter D. Balsam
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027,Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032,Department of Molecular Pharmacology and Therapeutics, Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA. .,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. .,Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.
| |
Collapse
|
48
|
Yu Y, Han F, Wang Q, Wang Q. Model-based optogenetic stimulation to regulate beta oscillations in Parkinsonian neural networks. Cogn Neurodyn 2021; 16:667-681. [DOI: 10.1007/s11571-021-09729-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/16/2021] [Accepted: 10/02/2021] [Indexed: 12/27/2022] Open
|
49
|
Hong SI, Kang S, Baker M, Choi DS. Astrocyte-neuron interaction in the dorsal striatum-pallidal circuits and alcohol-seeking behaviors. Neuropharmacology 2021; 198:108759. [PMID: 34433087 DOI: 10.1016/j.neuropharm.2021.108759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022]
Abstract
In the striatum, two main types of GABAergic medium spiny neurons (MSNs), denoted striatonigral (or direct-pathway MSNs, dMSNs) and striatopallidal neurons (indirect-pathway MSNs, iMSNs), form circuits with distinct pallidal nuclei, which sends "GO" or "NO-GO" signals through the thalamus. These striatopallidal circuits evaluate and execute reward-seeking and taking behaviors. Especially, the dorsal striatum can be further divided into the dorsomedial striatum (DMS, equivalent to caudate in primates and humans) and dorsolateral striatum (DLS, equivalent to putamen), which orchestrates goal-directed and habitual reward-seeking and taking behaviors, respectively. Using optogenetics, chemogenetics and in vivo calcium imaging technologies combined with electrophysiology and digitalized behavior phenotyping, recent studies have revealed cell-, circuit- and context-specific functions of these microcircuits in addictive behaviors. Also, region-specific astrocytes regulate the homeostatic activities of the dMSNs and iMSNs as well as the downstream circuits, which determine the net balance of cortico-striato-pallidal activities to the thalamic neurons. This review will summarize the recent progress of striatopallidal circuits focusing on astrocyte-neuron interaction and, reward- and alcohol-seeking behaviors. Our review will also discuss the translational and clinical implications of these microcircuit studies. This article is part of the special Issue on "Neurocircuitry Modulating Drug and Alcohol Abuse".
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, 55905, USA
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, 55905, USA
| | - Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
50
|
Gast R, Gong R, Schmidt H, Meijer HGE, Knösche TR. On the Role of Arkypallidal and Prototypical Neurons for Phase Transitions in the External Pallidum. J Neurosci 2021; 41:6673-6683. [PMID: 34193559 PMCID: PMC8336705 DOI: 10.1523/jneurosci.0094-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/08/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023] Open
Abstract
The external pallidum (globus pallidus pars externa [GPe]) plays a central role for basal ganglia functions and dynamics and, consequently, has been included in most computational studies of the basal ganglia. These studies considered the GPe as a homogeneous neural population. However, experimental studies have shown that the GPe contains at least two distinct cell types (prototypical and arkypallidal cells). In this work, we provide in silico insight into how pallidal heterogeneity modulates dynamic regimes inside the GPe and how they affect the GPe response to oscillatory input. We derive a mean-field model of the GPe system from a microscopic spiking neural network of recurrently coupled prototypical and arkypallidal neurons. Using bifurcation analysis, we examine the influence of dopamine-dependent changes of intrapallidal connectivity on the GPe dynamics. We find that increased self-inhibition of prototypical cells can induce oscillations, whereas increased inhibition of prototypical cells by arkypallidal cells leads to the emergence of a bistable regime. Furthermore, we show that oscillatory input to the GPe, arriving from striatum, leads to characteristic patterns of cross-frequency coupling observed at the GPe. Based on these findings, we propose two different hypotheses of how dopamine depletion at the GPe may lead to phase-amplitude coupling between the parkinsonian beta rhythm and a GPe-intrinsic γ rhythm. Finally, we show that these findings generalize to realistic spiking neural networks of sparsely coupled Type I excitable GPe neurons.SIGNIFICANCE STATEMENT Our work provides (1) insight into the theoretical implications of a dichotomous globus pallidus pars externa (GPe) organization, and (2) an exact mean-field model that allows for future investigations of the relationship between GPe spiking activity and local field potential fluctuations. We identify the major phase transitions that the GPe can undergo when subject to static or periodic input and link these phase transitions to the emergence of synchronized oscillations and cross-frequency coupling in the basal ganglia. Because of the close links between our model and experimental findings on the structure and dynamics of prototypical and arkypallidal cells, our results can be used to guide both experimental and computational studies on the role of the GPe for basal ganglia dynamics in health and disease.
Collapse
Affiliation(s)
- Richard Gast
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany 04103
| | - Ruxue Gong
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany 04103
| | - Helmut Schmidt
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany 04103
| | - Hil G E Meijer
- Department of Applied Mathematics, Technical Medical Centre, University of Twente, Enschede, The Netherlands 7522 NB
| | - Thomas R Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany 04103
- Institute for Biomedical Engineering and Informatics, Ilmenau, Germany 98684
| |
Collapse
|