1
|
Khan MN, Choudhary D, Mehan S, Khan Z, Gupta GD, Narula AS. Molecular mechanisms of GDNF/GFRA1/RET and PI3K/AKT/ERK signaling interplay in neuroprotection: Therapeutic strategies for treating neurological disorders. Neuropeptides 2025; 111:102516. [PMID: 40101330 DOI: 10.1016/j.npep.2025.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Neurological disorders, marked by progressive neuronal degeneration, impair essential cognitive functions like memory and motor coordination… This manuscript explores the significant roles of glial cell line-derived neurotrophic factor (GDNF), its co-receptors (GFRA1), and the receptor tyrosine kinase (RET) in mediating neuronal survival and function in various neurodegenerative conditions. The interplay between pivotal signaling pathways-PI3K/AKT and ERK1/2-facilitated by GDNF/GFRA1/RET, is emphasized for its neuroprotective effects. Dysregulation of these pathways is implicated in neurodegenerative and neuropsychiatric processes, with overactivation of GSK3β contributing to neuronal damage and apoptosis. Experimental evidence supports that activation of the RET receptor by GDNF enhances AKT signaling, promoting cell survival by inhibiting apoptotic pathways-therapeutic strategies incorporating GDNF delivery and RET activation present promising neuronal protection and regeneration options. Furthermore, inhibition of GSK3β demonstrates potential in ameliorating tau-related pathologies, while small molecule RET agonists may enhance therapeutic efficacy. This review explores the knowledge of GDNF/GFRA1/RET and PI3K/AKT/ERK1/2 associated signaling cascades, underscoring their significance in neuroprotection and therapeutic targeting to combat neurodegenerative diseases. Emerging approaches such as gene therapy and small-molecule RET agonists may offer novel avenues for treatment, although challenges like targeted delivery across the blood-brain barrier remain pertinent.
Collapse
Affiliation(s)
- Md Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Kim S, Sohn S, Choe ES. Cofilin linked to GluN2B subunits of NMDA receptors is required for behavioral sensitization by changing the dendritic spines of neurons in the caudate and putamen after repeated nicotine exposure. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:27. [PMID: 39402674 PMCID: PMC11479554 DOI: 10.1186/s12993-024-00253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Nicotine dependence is associated with glutamatergic neurotransmission in the caudate and putamen (CPu) of the forebrain which includes alterations in the structure of dendritic spines at glutamate synapses. These changes after nicotine exposure can lead to the development of habitual behaviors such as smoking. The present study investigated the hypothesis that cofilin, an actin-binding protein that is linked to the GluN2B subunits of N-methyl-D-aspartate (NMDA) receptors regulates the morphology of dendritic spines in the neurons of the CPu after repeated exposure to nicotine. RESULTS Adult male rats received subcutaneous injections of nicotine (0.3 mg/kg/day) or vehicle for seven consecutive days. DiI staining was conducted to observe changes in dendritic spine morphology. Repeated subcutaneous injections of nicotine decreased the phosphorylation of cofilin while increasing the formation of thin spines and filopodia in the dendrites of medium spiny neurons (MSN) in the CPu of rats. Bilateral intra-CPu infusion of the cofilin inhibitor, cytochalasin D (12.5 µg/µL/side), restored the thin spines and filopodia from mushroom types after repeated exposure to nicotine. Similar results were obtained from the bilateral intra-CPu infusion of the selective GluN2B subunit antagonist, Ro 25-6981 (4 µM/µL/side). Bilateral intra-CPu infusion of cytochalasin D that interferes with the actin-cofilin interaction attenuated the repeated nicotine-induced increase in locomotor sensitization in rats. CONCLUSIONS These findings suggest that active cofilin alters the structure of spine heads from mushroom to thin spine/filopodia by potentiating actin turnover, contributing to behavioral sensitization after nicotine exposure.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Sumin Sohn
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Hanes CM, Mah KM, Steffen DM, Marcucci CG, Fuller LC, Burgess RW, Garrett AM, Weiner JA. A C-terminal motif containing a PKC phosphorylation site regulates γ-Protocadherin-mediated dendrite arborization in the cerebral cortex in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577214. [PMID: 38328061 PMCID: PMC10849722 DOI: 10.1101/2024.01.25.577214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically-interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific vs. shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified PKC phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via MARCKS is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remains unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point, and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.
Collapse
Affiliation(s)
- Camille M. Hanes
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Kar Men Mah
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - David M. Steffen
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Charles G. Marcucci
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | - Leah C. Fuller
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| | | | - Andrew M. Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48202
| | - Joshua A. Weiner
- Department of Biology, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
4
|
Shao Y, Cai Y, Chen T, Hao K, Luo B, Wang X, Guo W, Su X, Lv L, Yang Y, Li W. Impaired erythropoietin-producing hepatocellular B receptors signaling in the prefrontal cortex and hippocampus following maternal immune activation in male rats. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12863. [PMID: 37575018 PMCID: PMC10733575 DOI: 10.1111/gbb.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
An environmental risk factor for schizophrenia (SZ) is maternal infection, which exerts longstanding effects on the neurodevelopment of offspring. Accumulating evidence suggests that synaptic disturbances may contribute to the pathology of the disease, but the underlying molecular mechanisms remain poorly understood. Erythropoietin-producing hepatocellular B (EphB) receptor signaling plays an important role in synaptic plasticity by regulating the formation and maturation of dendritic spines and regulating excitatory neurotransmission. We examined whether EphB receptors and downstream associated proteins are susceptible to environmental risk factors implicated in the etiology of synaptic disturbances in SZ. Using an established rodent model, which closely imitates the characteristics of SZ, we observed the behavioral performance and synaptic structure of male offspring in adolescence and early adulthood. We then analyzed the expression of EphB receptors and associated proteins in the prefrontal cortex and hippocampus. Maternal immune activation offspring showed significantly progressive cognitive impairment and pre-pulse inhibition deficits together with an increase in the expression of EphB2 receptors and NMDA receptor subunits. We also found changes in EphB receptor downstream signaling, in particular, a decrease in phospho-cofilin levels which may explain the reduced dendritic spine density. Besides, we found that the AMPA glutamate, another glutamate ionic receptor associated with cofilin, decreased significantly in maternal immune activation offspring. Thus, alterations in EphB signaling induced by immune activation during pregnancy may underlie disruptions in synaptic plasticity and function in the prefrontal cortex and hippocampus associated with behavioral and cognitive impairment. These findings may provide insight into the mechanisms underlying SZ.
Collapse
Affiliation(s)
- Yiqian Shao
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Yaqi Cai
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Tengfei Chen
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Keke Hao
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Binbin Luo
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Xiujuan Wang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
| | - Weiyun Guo
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Stem Cell and Biological Treatment Engineering Research Center of Henan, College of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Xi Su
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental DisorderXinxiang Medical UniversityXinxiangChina
| | - Luxian Lv
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental DisorderXinxiang Medical UniversityXinxiangChina
| | - Yongfeng Yang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental DisorderXinxiang Medical UniversityXinxiangChina
| | - Wenqiang Li
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental DisorderXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
5
|
Zhang Z, Xie W, Gong B, Liang X, Yu H, Yu Y, Dong Z, Shao F. ARAP1 negatively regulates stress fibers formation and metastasis in lung adenocarcinoma via controlling Rho signaling. Discov Oncol 2023; 14:214. [PMID: 38008882 PMCID: PMC10678915 DOI: 10.1007/s12672-023-00832-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
Small GTPases regulate multiple important cellular behaviors and their activities are strictly controlled by a mass of regulators. The dysfunction or abnormal expression of small GTPases or their regulators was frequently observed in various cancers. Here, we analyzed the expression and prognostic correlation of several GTPases and related regulators based on the TCGA database and found that Ankyrin Repeat and PH Domain 1 (ARAP1), a GTPase activating protein (GAP), is reduced in lung adenocarcinoma tissues compared to normal tissues and displays a positive correlation with overall survival (OS) and progression-free survival (PFS) of patients with lung adenocarcinoma. qPCR and western blot verified that ARAP1 is frequently downregulated in lung adenocarcinoma tumor tissues and cancer cells, and its downregulation might be mediated by epigenetic modification. Moreover, metastatic assays showed that overexpression of ARAP1 significantly inhibits metastasis of lung adenocarcinoma in vitro and in vivo. We further demonstrated that Rho signaling inhibition, mediated by RhoGAP activity of ARAP1, majorly contributes to suppressing migration and invasion of lung adenocarcinoma cancer cells via inhibiting stress fibers formation. In summary, this study indicates that ARAP1 may serve as a potential prognostic predictor and a metastatic suppressor in lung adenocarcinoma via its RhoGAP activity.
Collapse
Affiliation(s)
- Zhengzheng Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, 325000, Zhejiang, China
| | - Wenran Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Bojiang Gong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Xue Liang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Hongjia Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Yanwen Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China
| | - Zhixiong Dong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, University Town, Chashan, 325000, Wenzhou, Zhejiang, People's Republic of China.
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Fanggui Shao
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Davis-Lunn M, Goult BT, Andrews MR. Clutching at Guidance Cues: The Integrin-FAK Axis Steers Axon Outgrowth. BIOLOGY 2023; 12:954. [PMID: 37508384 PMCID: PMC10376711 DOI: 10.3390/biology12070954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Integrin receptors are essential contributors to neurite outgrowth and axon elongation. Activated integrins engage components of the extracellular matrix, enabling the growth cone to form point contacts, which connect the extracellular substrate to dynamic intracellular protein complexes. These adhesion complexes facilitate efficient growth cone migration and neurite extension. Major signalling pathways mediated by the adhesion complex are instigated by focal adhesion kinase (FAK), whilst axonal guidance molecules present in vivo promote growth cone turning or retraction by local modulation of FAK activity. Activation of FAK is marked by phosphorylation following integrin engagement, and this activity is tightly regulated during neurite outgrowth. FAK inhibition slows neurite outgrowth by reducing point contact turnover; however, mutant FAK constructs with enhanced activity stimulate aberrant outgrowth. Importantly, FAK is a major structural component of maturing adhesion sites, which provide the platform for actin polymerisation to drive leading edge advance. In this review, we discuss the coordinated signalling of integrin receptors and FAK, as well as their role in regulating neurite outgrowth and axon elongation. We also discuss the importance of the integrin-FAK axis in vivo, as integrin expression and activation are key determinants of successful axon regeneration following injury.
Collapse
Affiliation(s)
- Mathew Davis-Lunn
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Melissa R Andrews
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Centre for Human Development, Stem Cells and Regeneration, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
7
|
Hanover G, Vizeacoumar FS, Banerjee SL, Nair R, Dahiya R, Osornio-Hernandez AI, Morales AM, Freywald T, Himanen JP, Toosi BM, Bisson N, Vizeacoumar FJ, Freywald A. Integration of cancer-related genetic landscape of Eph receptors and ephrins with proteomics identifies a crosstalk between EPHB6 and EGFR. Cell Rep 2023; 42:112670. [PMID: 37392382 DOI: 10.1016/j.celrep.2023.112670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.
Collapse
Affiliation(s)
- Glinton Hanover
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Sara L Banerjee
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Raveena Nair
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Renuka Dahiya
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Ana I Osornio-Hernandez
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Alain Morejon Morales
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Tanya Freywald
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Juha P Himanen
- Department of Biochemistry, University of Turku, 20500 Turku, Finland
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Nicolas Bisson
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada.
| | - Franco J Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
8
|
Sequeira MK, Swanson AM, Kietzman HW, Gourley SL. Cocaine and habit training cause dendritic spine rearrangement in the prelimbic cortex. iScience 2023; 26:106240. [PMID: 37153443 PMCID: PMC10156587 DOI: 10.1016/j.isci.2023.106240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Successfully navigating dynamic environments requires organisms to learn the consequences of their actions. The prelimbic prefrontal cortex (PL) formulates action-consequence memories and is modulated by addictive drugs like cocaine. We trained mice to obtain food rewards and then unexpectedly withheld reinforcement, triggering new action-consequence memory. New memory was disrupted by cocaine when delivered immediately following non-reinforcement, but not when delayed, suggesting that cocaine disrupted memory consolidation. Cocaine also rapidly inactivated cofilin, a primary regulator of the neuronal actin cytoskeleton. This observation led to the discovery that cocaine also within the time of memory consolidation elevated dendritic spine elimination and blunted spine formation rates on excitatory PL neurons, culminating in thin-type spine attrition. Training drug-naive mice to utilize inflexible response strategies also eliminated thin-type dendritic spines. Thus, cocaine may disrupt action-consequence memory, at least in part, by recapitulating neurobiological sequalae occurring in the formation of inflexible habits.
Collapse
Affiliation(s)
- Michelle K. Sequeira
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Andrew M. Swanson
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Henry W. Kietzman
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Shannon L. Gourley
- Graduate Program in Neuroscience, Emory National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA 30329, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| |
Collapse
|
9
|
Rexrode L, Tennin M, Babu J, Young C, Bollavarapu R, Lawson LA, Valeri J, Pantazopoulos H, Gisabella B. Regulation of dendritic spines in the amygdala following sleep deprivation. FRONTIERS IN SLEEP 2023; 2:1145203. [PMID: 37928499 PMCID: PMC10624159 DOI: 10.3389/frsle.2023.1145203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The amygdala is a hub of emotional circuits involved in the regulation of cognitive and emotional behaviors and its critically involved in emotional reactivity, stress regulation, and fear memory. Growing evidence suggests that the amygdala plays a key role in the consolidation of emotional memories during sleep. Neuroimaging studies demonstrated that the amygdala is selectively and highly activated during rapid eye movement sleep (REM) and sleep deprivation induces emotional instability and dysregulation of the emotional learning process. Regulation of dendritic spines during sleep represents a morphological correlate of memory consolidation. Several studies indicate that dendritic spines are remodeled during sleep, with evidence for broad synaptic downscaling and selective synaptic upscaling in several cortical areas and the hippocampus. Currently, there is a lack of information regarding the regulation of dendritic spines in the amygdala during sleep. In the present work, we investigated the effect of 5 h of sleep deprivation on dendritic spines in the mouse amygdala. Our data demonstrate that sleep deprivation results in differential dendritic spine changes depending on both the amygdala subregions and the morphological subtypes of dendritic spines. We observed decreased density of mushroom spines in the basolateral amygdala of sleep deprived mice, together with increased neck length and decreased surface area and volume. In contrast, we observed greater densities of stubby spines in sleep deprived mice in the central amygdala, indicating that downscaling selectively occurs in this spine type. Greater neck diameters for thin spines in the lateral and basolateral nuclei of sleep deprived mice, and decreases in surface area and volume for mushroom spines in the basolateral amygdala compared to increases in the cental amygdala provide further support for spine type-selective synaptic downscaling in these areas during sleep. Our findings suggest that sleep promotes synaptic upscaling of mushroom spines in the basolateral amygdala, and downscaling of selective spine types in the lateral and central amygdala. In addition, we observed decreased density of phosphorylated cofilin immunoreactive and growth hormone immunoreactive cells in the amygdala of sleep deprived mice, providing further support for upscaling of dendritic spines during sleep. Overall, our findings point to region-and spine type-specific changes in dendritic spines during sleep in the amygdala, which may contribute to consolidation of emotional memories during sleep.
Collapse
Affiliation(s)
- Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Matthew Tennin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jobin Babu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Caleb Young
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lamiorkor Ameley Lawson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
10
|
Villa PA, Lainez NM, Jonak CR, Berlin SC, Ethell IM, Coss D. Altered GnRH neuron and ovarian innervation characterize reproductive dysfunction linked to the Fragile X messenger ribonucleoprotein ( Fmr1) gene mutation. Front Endocrinol (Lausanne) 2023; 14:1129534. [PMID: 36909303 PMCID: PMC9992745 DOI: 10.3389/fendo.2023.1129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene cause Fragile X Syndrome, the most common monogenic cause of intellectual disability. Mutations of FMR1 are also associated with reproductive disorders, such as early cessation of reproductive function in females. While progress has been made in understanding the mechanisms of mental impairment, the causes of reproductive disorders are not clear. FMR1-associated reproductive disorders were studied exclusively from the endocrine perspective, while the FMR1 role in neurons that control reproduction was not addressed. Results Here, we demonstrate that similar to women with FMR1 mutations, female Fmr1 null mice stop reproducing early. However, young null females display larger litters, more corpora lutea in the ovaries, increased inhibin, progesterone, testosterone, and gonadotropin hormones in the circulation. Ovariectomy reveals both hypothalamic and ovarian contribution to elevated gonadotropins. Altered mRNA and protein levels of several synaptic molecules in the hypothalamus are identified, indicating reasons for hypothalamic dysregulation. Increased vascularization of corpora lutea, higher sympathetic innervation of growing follicles in the ovaries of Fmr1 nulls, and higher numbers of synaptic GABAA receptors in GnRH neurons, which are excitatory for GnRH neurons, contribute to increased FSH and LH, respectively. Unmodified and ovariectomized Fmr1 nulls have increased LH pulse frequency, suggesting that Fmr1 nulls exhibit hyperactive GnRH neurons, regardless of the ovarian feedback. Conclusion These results reveal Fmr1 function in the regulation of GnRH neuron secretion, and point to the role of GnRH neurons, in addition to the ovarian innervation, in the etiology of Fmr1-mediated reproductive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| |
Collapse
|
11
|
Saggu S, Chen Y, Cottingham C, Rehman H, Wang H, Zhang S, Augelli-Szafran C, Lu S, Lambert N, Jiao K, Lu XY, Wang Q. Activation of a novel α 2AAR-spinophilin-cofilin axis determines the effect of α 2 adrenergic drugs on fear memory reconsolidation. Mol Psychiatry 2023; 28:588-600. [PMID: 36357671 PMCID: PMC9647772 DOI: 10.1038/s41380-022-01851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Posttraumatic stress disorder (PTSD) after the pandemic has emerged as a major neuropsychiatric component of post-acute COVID-19 syndrome, yet the current pharmacotherapy for PTSD is limited. The use of adrenergic drugs to treat PTSD has been suggested; however, it is hindered by conflicting clinical results and a lack of mechanistic understanding of drug actions. Our studies, using both genetically modified mice and human induced pluripotent stem cell-derived neurons, reveal a novel α2A adrenergic receptor (α2AAR)-spinophilin-cofilin axis in the hippocampus that is critical for regulation of contextual fear memory reconsolidation. In addition, we have found that two α2 ligands, clonidine and guanfacine, exhibit differential abilities in activating this signaling axis to disrupt fear memory reconsolidation. Stimulation of α2AAR with clonidine, but not guanfacine, promotes the interaction of the actin binding protein cofilin with the receptor and with the dendritic spine scaffolding protein spinophilin to induce cofilin activation at the synapse. Spinophilin-dependent regulation of cofilin is required for clonidine-induced disruption of contextual fear memory reconsolidation. Our results inform the interpretation of differential clinical observations of these two drugs on PTSD and suggest that clonidine could provide immediate treatment for PTSD symptoms related to the current pandemic. Furthermore, our study indicates that modulation of dendritic spine morphology may represent an effective strategy for the development of new pharmacotherapies for PTSD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christopher Cottingham
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Biology, University of North Alabama, Florence, AL, 35632, USA
| | - Hasibur Rehman
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hongxia Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
| | - Corinne Augelli-Szafran
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
- Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
| | - Sumin Lu
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Nevin Lambert
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
12
|
Heinze A, Schuldt C, Khudayberdiev S, van Bommel B, Hacker D, Schulz TG, Stringhi R, Marcello E, Mikhaylova M, Rust MB. Functional interdependence of the actin regulators CAP1 and cofilin1 in control of dendritic spine morphology. Cell Mol Life Sci 2022; 79:558. [PMID: 36264429 PMCID: PMC9585016 DOI: 10.1007/s00018-022-04593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
Abstract
The vast majority of excitatory synapses are formed on small dendritic protrusions termed dendritic spines. Dendritic spines vary in size and density that are crucial determinants of excitatory synaptic transmission. Aberrations in spine morphogenesis can compromise brain function and have been associated with neuropsychiatric disorders. Actin filaments (F-actin) are the major structural component of dendritic spines, and therefore, actin-binding proteins (ABP) that control F-actin dis-/assembly moved into the focus as critical regulators of brain function. Studies of the past decade identified the ABP cofilin1 as a key regulator of spine morphology, synaptic transmission, and behavior, and they emphasized the necessity for a tight control of cofilin1 to ensure proper brain function. Here, we report spine enrichment of cyclase-associated protein 1 (CAP1), a conserved multidomain protein with largely unknown physiological functions. Super-resolution microscopy and live cell imaging of CAP1-deficient hippocampal neurons revealed impaired synaptic F-actin organization and dynamics associated with alterations in spine morphology. Mechanistically, we found that CAP1 cooperates with cofilin1 in spines and that its helical folded domain is relevant for this interaction. Moreover, our data proved functional interdependence of CAP1 and cofilin1 in control of spine morphology. In summary, we identified CAP1 as a novel regulator of the postsynaptic actin cytoskeleton that is essential for synaptic cofilin1 activity.
Collapse
Affiliation(s)
- Anika Heinze
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Cara Schuldt
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Bas van Bommel
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniela Hacker
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Toni G Schulz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Ramona Stringhi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany.
- DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
| |
Collapse
|
13
|
Lee HN, Hyeon SJ, Kim H, Sim KM, Kim Y, Ju J, Lee J, Wang Y, Ryu H, Seong J. Decreased FAK activity and focal adhesion dynamics impair proper neurite formation of medium spiny neurons in Huntington's disease. Acta Neuropathol 2022; 144:521-536. [PMID: 35857122 DOI: 10.1007/s00401-022-02462-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Kyoung Mi Sim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yunha Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
14
|
Wennagel D, Braz BY, Capizzi M, Barnat M, Humbert S. Huntingtin coordinates dendritic spine morphology and function through cofilin-mediated control of the actin cytoskeleton. Cell Rep 2022; 40:111261. [PMID: 36044862 DOI: 10.1016/j.celrep.2022.111261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Compelling evidence indicates that in Huntington's disease (HD), mutation of huntingtin (HTT) alters several aspects of early brain development such as synaptogenesis. It is not clear to what extent the partial loss of wild-type HTT function contributes to these abnormalities. Here we investigate the function of HTT in the formation of spines. Although larger spines normally correlate with more synaptic activity, cell-autonomous depletion of HTT leads to enlarged spines but reduced excitatory synaptic function. We find that HTT is required for the proper turnover of endogenous actin and to recruit AMPA receptors at active synapses; loss of HTT leads to LIM kinase (LIMK) hyperactivation, which maintains cofilin in its inactive state. HTT therefore influences actin dynamics through the LIMK-cofilin pathway. Loss of HTT uncouples spine structure from synaptic function, which may contribute to the ultimate development of HD symptoms.
Collapse
Affiliation(s)
- Doris Wennagel
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Barbara Yael Braz
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Mariacristina Capizzi
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France; Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Monia Barnat
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Sandrine Humbert
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France; Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
15
|
FAK-Mediated Signaling Controls Amyloid Beta Overload, Learning and Memory Deficits in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23169055. [PMID: 36012331 PMCID: PMC9408823 DOI: 10.3390/ijms23169055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The non-receptor focal adhesion kinase (FAK) is highly expressed in the central nervous system during development, where it regulates neurite outgrowth and axon guidance, but its role in the adult healthy and diseased brain, specifically in Alzheimer's disease (AD), is largely unknown. Using the 3xTg-AD mouse model, which carries three mutations associated with familial Alzheimer's disease (APP KM670/671NL Swedish, PSEN1 M146V, MAPT P301L) and develops age-related progressive neuropathology including amyloid plaques and Tau tangles, we describe here, for the first time, the in vivo role of FAK in AD pathology. Our data demonstrate that while site-specific knockdown in the hippocampi of 3xTg-AD mice has no effect on learning and memory, hippocampal overexpression of the protein leads to a significant decrease in learning and memory capabilities, which is accompanied by a significant increase in amyloid β (Aβ) load. Furthermore, neuronal morphology is altered following hippocampal overexpression of FAK in these mice. High-throughput proteomics analysis of total and phosphorylated proteins in the hippocampi of FAK overexpressing mice indicates that FAK controls AD-like phenotypes by inhibiting cytoskeletal remodeling in neurons which results in morphological changes, by increasing Tau hyperphosphorylation, and by blocking astrocyte differentiation. FAK activates cell cycle re-entry and consequent cell death while downregulating insulin signaling, thereby increasing insulin resistance and leading to oxidative stress. Our data provide an overview of the signaling networks by which FAK regulates AD pathology and identify FAK as a novel therapeutic target for treating AD.
Collapse
|
16
|
Liu X, Wang J. NMDA receptors mediate synaptic plasticity impairment of hippocampal neurons due to arsenic exposure. Neuroscience 2022; 498:300-310. [PMID: 35905926 DOI: 10.1016/j.neuroscience.2022.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Endemic arsenism is a worldwide health problem. Chronic arsenic exposure results in cognitive dysfunction due to arsenic and its metabolites accumulating in hippocampus. As the cellular basis of cognition, synaptic plasticity is pivotal in arsenic-induced cognitive dysfunction. N-methyl-D-aspartate receptors (NMDARs) serve physiological functions in synaptic transmission. However, excessive NMDARs activity contributes to exitotoxicity and synaptic plasticity impairment. Here, we provide an overview of the mechanisms that NMDARs and their downstream signaling pathways mediate synaptic plasticity impairment due to arsenic exposure in hippocampal neurons, ways of arsenic exerting on NMDARs, as well as the potential therapeutic targets except for water improvement.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081.
| |
Collapse
|
17
|
Vasavda C, Semenza ER, Liew J, Kothari R, Dhindsa RS, Shanmukha S, Lin A, Tokhunts R, Ricco C, Snowman AM, Albacarys L, Pastore F, Ripoli C, Grassi C, Barone E, Kornberg MD, Dong X, Paul BD, Snyder SH. Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling. Sci Signal 2022; 15:eabh3066. [PMID: 35536885 PMCID: PMC9281001 DOI: 10.1126/scisignal.abh3066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Synapses connect discrete neurons into vast networks that send, receive, and encode diverse forms of information. Synaptic function and plasticity, the neuronal process of adapting to diverse and variable inputs, depend on the dynamic nature of synaptic molecular components, which is mediated in part by cell adhesion signaling pathways. Here, we found that the enzyme biliverdin reductase (BVR) physically links together key focal adhesion signaling molecules at the synapse. BVR-null (BVR-/-) mice exhibited substantial deficits in learning and memory on neurocognitive tests, and hippocampal slices in which BVR was postsynaptically depleted showed deficits in electrophysiological responses to stimuli. RNA sequencing, biochemistry, and pathway analyses suggested that these deficits were mediated through the loss of focal adhesion signaling at both the transcriptional and biochemical level in the hippocampus. Independently of its catalytic function, BVR acted as a bridge between the primary focal adhesion signaling kinases FAK and Pyk2 and the effector kinase Src. Without BVR, FAK and Pyk2 did not bind to and stimulate Src, which then did not phosphorylate the N-methyl-d-aspartate (NMDA) receptor, a critical posttranslational modification for synaptic plasticity. Src itself is a molecular hub on which many signaling pathways converge to stimulate NMDAR-mediated neurotransmission, thus positioning BVR at a prominent intersection of synaptic signaling.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Jason Liew
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan S. Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shruthi Shanmukha
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony Lin
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Robert Tokhunts
- Department of Anesthesiology, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Cristina Ricco
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Michael D. Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
19
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
20
|
LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases. Cells 2021; 10:cells10082079. [PMID: 34440848 PMCID: PMC8391678 DOI: 10.3390/cells10082079] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren syndrome, schizophrenia, and autism spectrum disorders.
Collapse
|
21
|
Li ZZ, Han WJ, Sun ZC, Chen Y, Sun JY, Cai GH, Liu WN, Wang TZ, Xie YD, Mao HH, Wang F, Ma SB, Wang FD, Xie RG, Wu SX, Luo C. Extracellular matrix protein laminin β1 regulates pain sensitivity and anxiodepression-like behaviors in mice. J Clin Invest 2021; 131:e146323. [PMID: 34156983 DOI: 10.1172/jci146323] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
Patients with neuropathic pain often experience comorbid psychiatric disorders. Cellular plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion. However, substantial efforts have thus far been focused on the intracellular mechanisms of plasticity rather than the extracellular alterations that might trigger and facilitate intracellular changes. Laminin, a key element of the extracellular matrix (ECM), consists of one α-, one β-, and one γ-chain and is implicated in several pathophysiological processes. Here, we showed in mice that laminin β1 (LAMB1) in the ACC was significantly downregulated upon peripheral neuropathy. Knockdown of LAMB1 in the ACC exacerbated pain sensitivity and induced anxiety and depression. Mechanistic analysis revealed that loss of LAMB1 caused actin dysregulation via interaction with integrin β1 and the subsequent Src-dependent RhoA/LIMK/cofilin pathway, leading to increased presynaptic transmitter release probability and abnormal postsynaptic spine remodeling, which in turn orchestrated the structural and functional plasticity of pyramidal neurons and eventually resulted in pain hypersensitivity and anxiodepression. This study sheds new light on the functional capability of ECM LAMB1 in modulating pain plasticity and identifies a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified cingulate LAMB1/integrin β1 signaling as a promising therapeutic target for the treatment of neuropathic pain and associated anxiodepression.
Collapse
Affiliation(s)
- Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine.,Department of Neurosurgery, Xijing Hospital, and
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine
| | - Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine
| | - Yun Chen
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jun-Yi Sun
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guo-Hong Cai
- Department of Neurobiology, School of Basic Medicine
| | - Wan-Neng Liu
- Department of Neurobiology, School of Basic Medicine.,College of Life Sciences, Northwest University, Xi'an, China
| | - Tao-Zhi Wang
- Department of Neurobiology, School of Basic Medicine.,Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yang-Dan Xie
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hong-Hui Mao
- Department of Neurobiology, School of Basic Medicine
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine.,Medical Experiment Center, Shaanxi University of Chinese Medicine, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine
| |
Collapse
|
22
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
23
|
Multi-omics Analysis of the Amygdala in a Rat Chronic Unpredictable Mild Stress Model of Depression. Neuroscience 2021; 463:174-183. [PMID: 33836246 DOI: 10.1016/j.neuroscience.2021.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 01/25/2023]
Abstract
Major depressive disorder is a serious and complex mental illness, and multiple brain regions are involved in its pathogenesis. There is increasing evidence that the amygdala is involved in depression; however, the underlying molecular mechanisms remain unclear. In this study, we applied a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomic and isobaric tags for relative and absolute quantitation (iTRAQ) proteomic to study changes in the amygdala in a chronic unpredictable mild stress (CUMS) rat model of depression. Differential analysis identified 42 metabolites and 171 proteins that were differentially expressed in the CUMS and control groups. Integrated analyses revealed two major changes in the amygdala of CUMS rats: (1) perturbations in amino acids and carbohydrate metabolism, transport-/catabolism-related proteins activity, and metabolic enzyme activity; (2) abnormal expression of synaptogenesis and oxidative phosphorylation-associated proteins.
Collapse
|
24
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Tejos-Bravo M, Oakley RH, Whirledge SD, Corrales WA, Silva JP, García-Rojo G, Toledo J, Sanchez W, Román-Albasini L, Aliaga E, Aguayo F, Olave F, Maracaja-Coutinho V, Cidlowski JA, Fiedler JL. Deletion of hippocampal Glucocorticoid receptors unveils sex-biased microRNA expression and neuronal morphology alterations in mice. Neurobiol Stress 2021; 14:100306. [PMID: 33665240 PMCID: PMC7906897 DOI: 10.1016/j.ynstr.2021.100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Sex differences in the brain have prompted many researchers to investigate the underlying molecular actors, such as the glucocorticoid receptor (GR). This nuclear receptor controls gene expression, including microRNAs (miRNAs), in non-neuronal cells. Here, we investigated sex-biased effects of GR on hippocampal miRNA expression and neuronal morphology by generating a neuron-specific GR knockout mouse (Emx1-Nr3c1−/−). The levels of 578 mature miRNAs were assessed using NanoString technology and, in contrast to males, female Emx1-Nr3c1−/− mice showed a substantially higher number of differentially expressed miRNAs, confirming a sex-biased effect of GR ablation. Based on bioinformatic analyses we identified several transcription factors potentially involved in miRNA regulation. Functional enrichment analyses of the miRNA-mRNA interactions revealed pathways related to neuronal arborization and both spine morphology and density in both sexes. Two recognized regulators of dendritic morphology, CAMKII-α and GSK-3β, increased their protein levels by GR ablation in female mice hippocampus, without changes in males. Additionally, sex-specific effects of GR deletion were observed on CA1 neuronal arborization and dendritic spine features. For instance, a reduced density of mushroom spines in apical dendrites was evidenced only in females, while a decreased length in basal dendrites was noted only in males. However, length and arborization of apical dendrites were reduced by GR ablation irrespective of the sex. Overall, our study provides new insights into the sex-biased GR actions, especially in terms of miRNAs expression and neuronal morphology in the hippocampus.
Collapse
Affiliation(s)
- Macarena Tejos-Bravo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Robert H Oakley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Shannon D Whirledge
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Wladimir A Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Juan P Silva
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Gonzalo García-Rojo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile.,Carrera de Odontología. Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | - Jorge Toledo
- Laboratory of Scientific Image Analysis (SCIAN-Lab), Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8380453, Chile
| | - Wendy Sanchez
- Laboratory of Scientific Image Analysis (SCIAN-Lab), Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8380453, Chile
| | - Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Esteban Aliaga
- Department of Kinesiology and the Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Felipe Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Felipe Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases -ACCDiS. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Jenny L Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de Chile, Independencia, 8380492, Santiago, Chile
| |
Collapse
|
26
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
27
|
Wang Q, Yuan W, Yang X, Wang Y, Li Y, Qiao H. Role of Cofilin in Alzheimer's Disease. Front Cell Dev Biol 2020; 8:584898. [PMID: 33324642 PMCID: PMC7726191 DOI: 10.3389/fcell.2020.584898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease and has an inconspicuous onset and progressive development. Clinically, it is characterized by severe dementia manifestations, including memory impairment, aphasia, apraxia, loss of recognition, impairment of visual-spatial skills, executive dysfunction, and changes in personality and behavior. Its etiology is unknown to date. However, several cellular biological signatures of AD have been identified such as synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies which are related to the actin cytoskeleton. Cofilin is one of the most affluent and common actin-binding proteins and plays a role in cell motility, migration, shape, and metabolism. They also play an important role in severing actin filament, nucleating, depolymerizing, and bundling activities. In this review, we summarize the structure of cofilins and their functional and regulating roles, focusing on the synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies of AD.
Collapse
Affiliation(s)
- Qiang Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Wei Yuan
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Xiaohang Yang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yuan Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Yongfeng Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
- Xianyang Key Laboratory of Neurobiology and Acupuncture, Xi’an, China
| |
Collapse
|
28
|
Ben Zablah Y, Merovitch N, Jia Z. The Role of ADF/Cofilin in Synaptic Physiology and Alzheimer's Disease. Front Cell Dev Biol 2020; 8:594998. [PMID: 33282872 PMCID: PMC7688896 DOI: 10.3389/fcell.2020.594998] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Actin-depolymerization factor (ADF)/cofilin, a family of actin-binding proteins, are critical for the regulation of actin reorganization in response to various signals. Accumulating evidence indicates that ADF/cofilin also play important roles in neuronal structure and function, including long-term potentiation and depression. These are the most extensively studied forms of long-lasting synaptic plasticity and are widely regarded as cellular mechanisms underlying learning and memory. ADF/cofilin regulate synaptic function through their effects on dendritic spines and the trafficking of glutamate receptors, the principal mediator of excitatory synaptic transmission in vertebrates. Regulation of ADF/cofilin involves various signaling pathways converging on LIM domain kinases and slingshot phosphatases, which phosphorylate/inactivate and dephosphorylate/activate ADF/cofilin, respectively. Actin-depolymerization factor/cofilin activity is also regulated by other actin-binding proteins, activity-dependent subcellular distribution and protein translation. Abnormalities in ADF/cofilin have been associated with several neurodegenerative disorders such as Alzheimer’s disease. Therefore, investigating the roles of ADF/cofilin in the brain is not only important for understanding the fundamental processes governing neuronal structure and function, but also may provide potential therapeutic strategies to treat brain disorders.
Collapse
Affiliation(s)
- Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Neil Merovitch
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Garcia-Keller C, Scofield MD, Neuhofer D, Varanasi S, Reeves MT, Hughes B, Anderson E, Richie CT, Mejias-Aponte C, Pickel J, Hope BT, Harvey BK, Cowan CW, Kalivas PW. Relapse-Associated Transient Synaptic Potentiation Requires Integrin-Mediated Activation of Focal Adhesion Kinase and Cofilin in D1-Expressing Neurons. J Neurosci 2020; 40:8463-8477. [PMID: 33051346 PMCID: PMC7605418 DOI: 10.1523/jneurosci.2666-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023] Open
Abstract
Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced drug seeking in rodent models correlates with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses in the nucleus accumbens core (NAcore). Matrix metalloproteinases (MMPs) are inducible endopeptidases that degrade extracellular matrix (ECM) proteins, and reveal tripeptide Arginine-Glycine-Aspartate (RGD) domains that bind and signal through integrins. Integrins are heterodimeric receptors composed of αβ subunits, and a primary signaling kinase is focal adhesion kinase (FAK). We previously showed that MMP activation is necessary for and potentiates cued reinstatement of cocaine seeking, and MMP-induced catalysis stimulates β3-integrins to induce t-SP. Here, we determined whether β3-integrin signaling through FAK and cofilin (actin depolymerization factor) is necessary to promote synaptic growth during t-SP. Using a small molecule inhibitor to prevent FAK activation, we blocked cued-induced cocaine reinstatement and increased spine head diameter (dh). Immunohistochemistry on NAcore labeled spines with ChR2-EYFP virus, showed increased immunoreactivity of phosphorylation of FAK (p-FAK) and p-cofilin in dendrites of reinstated animals compared with extinguished and yoked saline, and the p-FAK and cofilin depended on β3-integrin signaling. Next, male and female transgenic rats were used to selectively label D1 or D2 neurons with ChR2-mCherry. We found that p-FAK was increased during drug seeking in both D1 and D2-medium spiny neurons (MSNs), but increased p-cofilin was observed only in D1-MSNs. These data indicate that β3-integrin, FAK and cofilin constitute a signaling pathway downstream of MMP activation that is involved in promoting the transient synaptic enlargement in D1-MSNs induced during reinstated cocaine by drug-paired cues.SIGNIFICANCE STATEMENT Drug-associated cues precipitate relapse, which is correlated with transient synaptic enlargement in the accumbens core. We showed that cocaine cue-induced synaptic enlargement depends on matrix metalloprotease signaling in the extracellular matrix (ECM) through β3-integrin to activate focal adhesion kinase (FAK) and phosphorylate the actin binding protein cofilin. The nucleus accumbens core (NAcore) contains two predominate neuronal subtypes selectively expressing either D1-dopamine or D2-dopamine receptors. We used transgenic rats to study each cell type and found that cue-induced signaling through cofilin phosphorylation occurred only in D1-expressing neurons. Thus, cocaine-paired cues initiate cocaine reinstatement and synaptic enlargement through a signaling cascade selectively in D1-expressing neurons requiring ECM stimulation of β3-integrin-mediated phosphorylation of FAK (p-FAK) and cofilin.
Collapse
Affiliation(s)
- Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Daniela Neuhofer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Swathi Varanasi
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Matthew T Reeves
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Brandon Hughes
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ethan Anderson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Carlos Mejias-Aponte
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - James Pickel
- Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
30
|
Zhang Z, Ye M, Li Q, You Y, Yu H, Ma Y, Mei L, Sun X, Wang L, Yue W, Li R, Li J, Zhang D. The Schizophrenia Susceptibility Gene OPCML Regulates Spine Maturation and Cognitive Behaviors through Eph-Cofilin Signaling. Cell Rep 2020; 29:49-61.e7. [PMID: 31577955 DOI: 10.1016/j.celrep.2019.08.091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/09/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Previous genetic and biological evidence converge on the involvement of synaptic dysfunction in schizophrenia, and OPCML, encoding a synaptic membrane protein, is reported to be genetically associated with schizophrenia. However, its role in the pathophysiology of schizophrenia remains largely unknown. Here, we found that Opcml is strongly expressed in the mouse hippocampus; ablation of Opcml leads to reduced phosphorylated cofilin and dysregulated F-actin dynamics, which disturbs the spine maturation. Furthermore, Opcml interacts with EphB2 to control the stability of spines by regulating the ephrin-EphB2-cofilin signaling pathway. Opcml-deficient mice display impaired cognitive behaviors and abnormal sensorimotor gating, which are similar to features in neuropsychiatric disorders such as schizophrenia. Notably, the administration of aripiprazole partially restores the abnormal behaviors in Opcml-/- mice by increasing the phosphorylated cofilin level and facilitating spine maturation. We demonstrated a critical role of the schizophrenia-susceptible gene OPCML in spine maturation and cognitive behaviors via regulating the ephrin-EphB2-cofilin signaling pathway, providing further insights into the characteristics of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qiongwei Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yang You
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hao Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuanlin Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Liwei Mei
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaqin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
31
|
Jiang Q, Tang G, Fu J, Yang J, Xu T, Tan CH, Wang Y, Chen YM. Lim Kinase1 regulates seizure activity via modulating actin dynamics. Neurosci Lett 2020; 729:134936. [DOI: 10.1016/j.neulet.2020.134936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
|
32
|
Schill Y, Bijata M, Kopach O, Cherkas V, Abdel-Galil D, Böhm K, Schwab MH, Matsuda M, Compan V, Basu S, Bijata K, Wlodarczyk J, Bard L, Cole N, Dityatev A, Zeug A, Rusakov DA, Ponimaskin E. Serotonin 5-HT 4 receptor boosts functional maturation of dendritic spines via RhoA-dependent control of F-actin. Commun Biol 2020; 3:76. [PMID: 32060357 PMCID: PMC7021812 DOI: 10.1038/s42003-020-0791-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/23/2020] [Indexed: 01/24/2023] Open
Abstract
Activity-dependent remodeling of excitatory connections underpins memory formation in the brain. Serotonin receptors are known to contribute to such remodeling, yet the underlying molecular machinery remains poorly understood. Here, we employ high-resolution time-lapse FRET imaging in neuroblastoma cells and neuronal dendrites to establish that activation of serotonin receptor 5-HT4 (5-HT4R) rapidly triggers spatially-restricted RhoA activity and G13-mediated phosphorylation of cofilin, thus locally boosting the filamentous actin fraction. In neuroblastoma cells, this leads to cell rounding and neurite retraction. In hippocampal neurons in situ, 5-HT4R-mediated RhoA activation triggers maturation of dendritic spines. This is paralleled by RhoA-dependent, transient alterations in cell excitability, as reflected by increased spontaneous synaptic activity, apparent shunting of evoked synaptic responses, and enhanced long-term potentiation of excitatory transmission. The 5-HT4R/G13/RhoA signaling thus emerges as a previously unrecognized molecular pathway underpinning use-dependent functional remodeling of excitatory synaptic connections.
Collapse
Affiliation(s)
- Yvonne Schill
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Monika Bijata
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Olga Kopach
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Volodymyr Cherkas
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Dalia Abdel-Galil
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Katrin Böhm
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Markus H Schwab
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Michiyuki Matsuda
- Bioimaging and Cell Signaling, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Subhadip Basu
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
- Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India
| | - Krystian Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Lucie Bard
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicholas Cole
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
33
|
Shu L, Chen B, Chen B, Xu H, Wang G, Huang Y, Zhao Y, Gong H, Jiang M, Chen L, Liu X, Wang Y. Brain ischemic insult induces cofilin rod formation leading to synaptic dysfunction in neurons. J Cereb Blood Flow Metab 2019; 39:2181-2195. [PMID: 29932353 PMCID: PMC6827117 DOI: 10.1177/0271678x18785567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ischemic stroke not only induces neuron death in the infarct area but also structural and functional damage of the surviving neurons in the surrounding peri-infarct area. In the present study, we first identified cofilin rod, a pathological rod-like aggregation, formed in neurons of in vivo ischemic stroke animal model and induced neuronal impairment. Cofilin rods formed only on the ipsilateral side of the middle cerebral artery occlusion and reperfusion (MCAO-R) rat brain and showed the highest density in peri-infarct area. Our real-time live cell imaging, immunostaining and patch clamp studies showed that cofilin rod formation in neurons led to dendritic mitochondrial transportation failure, as well as impairment of synaptic structure and functions. Overexpression of LIM kinase or activation of its upstream regulator Rho, suppressed ischemia-induced cofilin rod formation and showed protective effect on synaptic function and structure impairment in both cultured neurons and MCAO-R rat model. In summary, our results demonstrate a novel mechanism of ischemic stroke-induced neuron injury in peri-infarct area and provide a potential target for the protection of neuronal structure and function against brain ischemia insult.
Collapse
Affiliation(s)
- Liang Shu
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ben Chen
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Chen
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, TCM Rehabilitation Research Center of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hai Xu
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoxiang Wang
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yian Huang
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingya Zhao
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Jiang
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lidian Chen
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Collaborative Innovation Center for Rehabilitation Technology, TCM Rehabilitation Research Center of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xu Liu
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Wang
- Department of Neurology, State Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Kruyer A, Ball LE, Townsend DM, Kalivas PW, Uys JD. Post-translational S-glutathionylation of cofilin increases actin cycling during cocaine seeking. PLoS One 2019; 14:e0223037. [PMID: 31550273 PMCID: PMC6759170 DOI: 10.1371/journal.pone.0223037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/13/2019] [Indexed: 01/11/2023] Open
Abstract
Neuronal defense against oxidative damage is mediated primarily by the glutathione redox system. Traditionally considered a mechanism to protect proteins from irreversible oxidation, mounting evidence supports a role for protein S-glutathionylation in cell signaling in response to changes in intracellular redox status. Here we determined the specific sites on the actin binding protein cofilin that undergo S-glutathionylation. In addition, we show that S-glutathionylation of cofilin reduces its capacity to depolymerize F-actin. We further describe an assay to determine the S-glutathionylation of target proteins in brain tissue from behaving rodents. Using this technique, we show that cofilin in the rat nucleus accumbens undergoes S-glutathionylation during 15-minutes of cued cocaine seeking in the absence of cocaine. Our findings demonstrate that cofilin S-glutathionylation is increased in response to cocaine-associated cues and that increased cofilin S-glutathionylation reduces cofilin-dependent depolymerization of F-actin. Thus, S-glutathionylation of cofilin may serve to regulate actin cycling in response to drug-conditioned cues.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States of America
- * E-mail: (AK); (JU)
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States of America
| | - Danyelle M. Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC, United States of America
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States of America
| | - Joachim D. Uys
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States of America
- * E-mail: (AK); (JU)
| |
Collapse
|
35
|
Garcia-Keller C, Neuhofer D, Bobadilla AC, Spencer S, Chioma VC, Monforton C, Kalivas PW. Extracellular Matrix Signaling Through β3 Integrin Mediates Cocaine Cue-Induced Transient Synaptic Plasticity and Relapse. Biol Psychiatry 2019; 86:377-387. [PMID: 31126696 PMCID: PMC6697624 DOI: 10.1016/j.biopsych.2019.03.982] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cue-induced relapse to drug use is a primary symptom of cocaine addiction. Cue-induced transient excitatory synaptic potentiation (t-SP) induced in the nucleus accumbens mediates cued cocaine seeking in rat models of relapse. Cue-induced t-SP depends on extracellular signaling by matrix metalloproteases (MMPs), but it is unknown how this catalytic activity communicates with nucleus accumbens neurons to induce t-SP and cocaine seeking. METHODS Male Sprague Dawley rats (N = 125) were trained to self-administer cocaine, after which self-administration was extinguished and then reinstated by cocaine-conditioned cues. We used a morpholino antisense strategy to knock down the β1 or β3 integrin subunits or inhibitors to prevent phosphorylation of the integrin signaling kinases focal adhesion kinase (FAK) or integrin-linked kinase. We quantified protein changes with immunoblotting and t-SP by measuring dendritic spine morphology and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate glutamate currents. Integrin signaling was stimulated by microinjecting an MMP activator or integrin peptide ligand into the accumbens. RESULTS Knockdown of β3 integrin or FAK inhibitor, but not β1 integrin or integrin-linked kinase inhibitor, prevented cue-induced cocaine seeking but not sucrose seeking. β3 integrin knockdown prevented t-SP as measured by preventing the cue-induced increases in both alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate glutamate ratio and spine head diameter. Activating MMP gelatinases with tissue plasminogen activator potentiated cue-induced reinstatement, which was prevented by β3 integrin knockdown and FAK inhibition. Stimulating integrin receptors with the RGD ligand liberated by MMP gelatinase activity also potentiated cued cocaine seeking. CONCLUSIONS Activation of MMP gelatinase in the extracellular space is necessary for and potentiates cued cocaine seeking. This extracellular catalysis stimulates β3 integrins and activates FAK to induce t-SP and promote cue-induced cocaine seeking.
Collapse
Affiliation(s)
- Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| | - Daniela Neuhofer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Sade Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Vivian C Chioma
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Cara Monforton
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
36
|
Hippocampus-specific Rictor knockdown inhibited 17β-estradiol induced neuronal plasticity and spatial memory improvement in ovariectomized mice. Behav Brain Res 2019; 364:50-61. [DOI: 10.1016/j.bbr.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 11/19/2022]
|
37
|
Awad PN, Amegandjin CA, Szczurkowska J, Carriço JN, Fernandes do Nascimento AS, Baho E, Chattopadhyaya B, Cancedda L, Carmant L, Di Cristo G. KCC2 Regulates Dendritic Spine Formation in a Brain-Region Specific and BDNF Dependent Manner. Cereb Cortex 2018; 28:4049-4062. [PMID: 30169756 PMCID: PMC6188549 DOI: 10.1093/cercor/bhy198] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023] Open
Abstract
KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.
Collapse
Affiliation(s)
- Patricia Nora Awad
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Clara Akofa Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Joanna Szczurkowska
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Elie Baho
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Bidisha Chattopadhyaya
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Laura Cancedda
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
- Telethon Dulbecco Institute, Italy
| | - Lionel Carmant
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Graziella Di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
38
|
Nicole O, Bell DM, Leste-Lasserre T, Doat H, Guillemot F, Pacary E. A novel role for CAMKIIβ in the regulation of cortical neuron migration: implications for neurodevelopmental disorders. Mol Psychiatry 2018; 23:2209-2226. [PMID: 29712998 PMCID: PMC6129389 DOI: 10.1038/s41380-018-0046-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/11/2018] [Accepted: 02/28/2018] [Indexed: 12/19/2022]
Abstract
Perturbation of CaMKIIβ expression has been associated with multiple neuropsychiatric diseases, highlighting CaMKIIβ as a gene of interest. Yet, in contrast to CaMKIIα, the specific functions of CaMKIIβ in the brain remain poorly explored. Here, we reveal a novel function for this CaMKII isoform in vivo during neuronal development. By using in utero electroporation, we show that CaMKIIβ is an important regulator of radial migration of projection neurons during cerebral cortex development. Knockdown of CaMKIIβ causes accelerated migration of nascent pyramidal neurons, whereas overexpression of CaMKIIβ inhibits migration, demonstrating that precise regulation of CaMKIIβ expression is required for correct neuronal migration. More precisely, CaMKIIβ controls the multipolar-bipolar transition in the intermediate zone and locomotion in the cortical plate through its actin-binding and -bundling activities. In addition, our data indicate that a fine-tuned balance between CaMKIIβ and cofilin activities is necessary to ensure proper migration of cortical neurons. Thus, our findings define a novel isoform-specific function for CaMKIIβ, demonstrating that CaMKIIβ has a major biological function in the developing brain.
Collapse
Affiliation(s)
- Olivier Nicole
- CNRS, UMR5293, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France,Université de Bordeaux, F-33000 Bordeaux, France
| | - Donald M. Bell
- Confocal and Image Analysis Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Hélène Doat
- Transcriptome Facility, INSERM U1215, Neurocentre Magendie, F-33000 Bordeaux, France
| | | | - Emilie Pacary
- Université de Bordeaux, F-33000, Bordeaux, France. .,INSERM U1215, Neurocentre Magendie, F-33000, Bordeaux, France.
| |
Collapse
|
39
|
Lainez NM, Jonak CR, Nair MG, Ethell IM, Wilson EH, Carson MJ, Coss D. Diet-Induced Obesity Elicits Macrophage Infiltration and Reduction in Spine Density in the Hypothalami of Male but Not Female Mice. Front Immunol 2018; 9:1992. [PMID: 30254630 PMCID: PMC6141693 DOI: 10.3389/fimmu.2018.01992] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
Increasing prevalence in obesity has become a significant public concern. C57BL/6J mice are prone to diet-induced obesity (DIO) when fed high-fat diet (HFD), and develop chronic inflammation and metabolic syndrome, making them a good model to analyze mechanisms whereby obesity elicits pathologies. DIO mice demonstrated profound sex differences in response to HFD with respect to inflammation and hypothalamic function. First, we determined that males are prone to DIO, while females are resistant. Ovariectomized females, on the other hand, are susceptible to DIO, implying protection by ovarian hormones. Males, but not females, exhibit changes in hypothalamic neuropeptide expression. Surprisingly, ovariectomized females remain resistant to neuroendocrine changes, showing that ovarian hormones are not necessary for protection. Second, obese mice exhibit sex differences in DIO-induced inflammation. Microglial activation and peripheral macrophage infiltration is seen in the hypothalami of males, while females are protected from the increase in inflammatory cytokines and do not exhibit microglia morphology changes nor monocyte-derived macrophage infiltration, regardless of the presence of ovarian hormones. Strikingly, the anti-inflammatory cytokine IL-10 is increased in the hypothalami of females but not males. Third, this study posits a potential mechanism of obesity-induced impairment of hypothalamic function whereby obese males exhibit reduced levels of synaptic proteins in the hypothalamus and fewer spines in GnRH neurons, located in the areas exhibiting macrophage infiltration. Our studies suggest that inflammation-induced synaptic remodeling is potentially responsible for hypothalamic impairment that may contribute to diminished levels of gonadotropin hormones, testosterone, and sperm numbers, which we observe and corresponds to the observations in obese humans. Taken together, our data implicate neuro-immune mechanisms underlying sex-specific differences in obesity-induced impairment of the hypothalamic function with potential consequences for reproduction and fertility.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Monica J Carson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
40
|
Henderson NT, Dalva MB. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function. Mol Cell Neurosci 2018; 91:108-121. [PMID: 30031105 PMCID: PMC6159941 DOI: 10.1016/j.mcn.2018.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Synapses are specialized cell-cell junctions that underlie the function of neural circuits by mediating communication between neurons. Both the formation and function of synapses require tight coordination of signaling between pre- and post-synaptic neurons. Trans-synaptic organizing molecules are important mediators of such signaling. Here we discuss how the EphB and ephrin-B families of trans-synaptic organizing proteins direct synapse formation during early development and regulate synaptic function and plasticity at mature synapses. Finally, we highlight recent evidence linking the synaptic organizing role of EphBs and ephrin-Bs to diseases of maladaptive synaptic function and plasticity.
Collapse
Affiliation(s)
- Nathan T Henderson
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States
| | - Matthew B Dalva
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States.
| |
Collapse
|
41
|
Giza JI, Kim J, Meyer HC, Anastasia A, Dincheva I, Zheng CI, Lopez K, Bains H, Yang J, Bracken C, Liston C, Jing D, Hempstead BL, Lee FS. The BDNF Val66Met Prodomain Disassembles Dendritic Spines Altering Fear Extinction Circuitry and Behavior. Neuron 2018; 99:163-178.e6. [PMID: 29909994 DOI: 10.1016/j.neuron.2018.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/18/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
Abstract
A human variant in the BDNF gene (Val66Met; rs6265) is associated with impaired fear extinction. Using super-resolution imaging, we demonstrate that the BDNF Met prodomain disassembles dendritic spines and eliminates synapses in hippocampal neurons. In vivo, ventral CA1 (vCA1) hippocampal neurons undergo similar morphological changes dependent on their transient co-expression of a SorCS2/p75NTR receptor complex during peri-adolescence. BDNF Met prodomain infusion into the vCA1 during this developmental time frame reduces dendritic spine density and prelimbic (PL) projections, impairing cued fear extinction. Adolescent BdnfMet/Met mice display similar spine and PL innervation deficits. Using fiber photometry, we found that, in wild-type mice, vCA1 neurons projecting to the PL encode extinction by enhancing neural activity in threat anticipation and rapidly subsiding their response. This adaptation is absent in BDNFMet/Met mice. We conclude that the BDNF Met prodomain renders vCA1-PL projection neurons underdeveloped, preventing their capacity for subsequent circuit modulation necessary for fear extinction. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Joanna I Giza
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Agustin Anastasia
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Iva Dincheva
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Crystal I Zheng
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Katherine Lopez
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Henrietta Bains
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jianmin Yang
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Key Laboratory of Shaanxi Province Department for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Clay Bracken
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deqiang Jing
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
42
|
Wang X, Huang Y, Chen Y, Ma Y, Yang F, Qian Y, Dai X, Tao L, Wang H, Guo R, Liu Y. Efficacy of extracts of Celastrus orbiculatus in suppressing migration and invasion by inhibiting the EZH2/ROCK1 signaling pathway in human nasopharyngeal carcinoma. Oncol Lett 2018; 15:6695-6700. [PMID: 29725411 DOI: 10.3892/ol.2018.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
Celastrus orbiculatus extract (COE) has been used in folk medicine in China for the treatment of a number of diseases. In the laboratory, COE exhibits a variety of anticancer functions, including inhibition of metastasis. However, the underlying molecular anti-metastatic mechanism in nasopharyngeal carcinoma (NPC) cells remains unclear. The aim of the present study was to determine whether the anti-metastatic effect of COE was involved in inhibiting migration and invasion of human NPC cells. In vitro, cell viability and apoptosis of 5-8F cells were analyzed using an MTS assay and flow cytometry, respectively. Invasion and migration of 5-8F cells were analyzed using a Transwell assay. Protein and mRNA expression levels of 5-8F cells were analyzed by western blot analysis and the reverse transcription-quantitative polymerase chain reaction, respectively. COE significantly decreased cell viability in 5-8F cells and inhibited enhancer of zeste homolog 2 (EZH2) and Rho-associated coiled coil-containing protein kinase 1 (ROCK1) expression at the mRNA and protein levels. Furthermore, COE decreased the migration and invasion of 5-8F cells in a dose-dependent manner. The results of the present study suggested that COE prevents migration and invasion by suppressing the EZH2/ROCK1 signaling pathway in NPC cells. On the basis of the results of the present study, COE may be a novel anticancer agent for the treatment of metastasis in NPC.
Collapse
Affiliation(s)
- Xuanyi Wang
- Department of Rheumatology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuxiang Huang
- Department of Oncology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yong Chen
- Department of Function Examination, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yong Ma
- Department of Function Examination, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Fei Yang
- Department of Function Examination, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yayun Qian
- School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xiaojun Dai
- Department of Oncology, TCM Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Lede Tao
- School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Haibo Wang
- School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanqing Liu
- School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
43
|
Basu S, Lamprecht R. The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory. Front Mol Neurosci 2018; 11:143. [PMID: 29765302 PMCID: PMC5938600 DOI: 10.3389/fnmol.2018.00143] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such alterations induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. This is especially intriguing as the half-life of most of the proteins that underlie such changes is usually in the range of hours to days and these proteins may change their location over time. In this review we describe studies that indicate the involvement of dendritic spines in memory formation and its maintenance. These studies show that learning leads to changes in the number and morphology of spines. Disruption in spines morphology or manipulations that lead to alteration in their number after consolidation are associated with impairment in memory maintenance. We further ask how changes in dendritic spines morphology, induced by learning and reputed to encode memory, are maintained to preserve long-term memory. We propose a mechanism, based on studies described in the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial alteration in spine morphology induced by learning are also essential for spine structural stabilization that maintains long-term memory. In this model glutamate receptors and other synaptic receptors activation during learning leads to the creation of new actin cytoskeletal scaffold leading to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins turnover and dynamics by active stabilization of the level and activity of actin regulatory proteins within these memory spines.
Collapse
Affiliation(s)
- Sreetama Basu
- Sagol Departmant of Neurobiology, Faculty of Natural Sciences, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Departmant of Neurobiology, Faculty of Natural Sciences, The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
44
|
Pyronneau A, He Q, Hwang JY, Porch M, Contractor A, Zukin RS. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal 2017; 10:10/504/eaan0852. [PMID: 29114038 DOI: 10.1126/scisignal.aan0852] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and a leading cause of autism. FXS is caused by a trinucleotide expansion in the gene FMR1 on the X chromosome. The neuroanatomical hallmark of FXS is an overabundance of immature dendritic spines, a factor thought to underlie synaptic dysfunction and impaired cognition. We showed that aberrantly increased activity of the Rho GTPase Rac1 inhibited the actin-depolymerizing factor cofilin, a major determinant of dendritic spine structure, and caused disease-associated spine abnormalities in the somatosensory cortex of FXS model mice. Increased cofilin phosphorylation and actin polymerization coincided with abnormal dendritic spines and impaired synaptic maturation. Viral delivery of a constitutively active cofilin mutant (cofilinS3A) into the somatosensory cortex of Fmr1-deficient mice rescued the immature dendritic spine phenotype and increased spine density. Inhibition of the Rac1 effector PAK1 with a small-molecule inhibitor rescued cofilin signaling in FXS mice, indicating a causal relationship between PAK1 and cofilin signaling. PAK1 inhibition rescued synaptic signaling (specifically the synaptic ratio of NMDA/AMPA in layer V pyramidal neurons) and improved sensory processing in FXS mice. These findings suggest a causal relationship between increased Rac1-cofilin signaling, synaptic defects, and impaired sensory processing in FXS and uncover a previously unappreciated role for impaired Rac1-cofilin signaling in the aberrant spine morphology and spine density associated with FXS.
Collapse
Affiliation(s)
- Alexander Pyronneau
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Qionger He
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Morgan Porch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anis Contractor
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
45
|
Corticosteroid-induced dendrite loss and behavioral deficiencies can be blocked by activation of Abl2/Arg kinase. Mol Cell Neurosci 2017; 85:226-234. [PMID: 29107098 DOI: 10.1016/j.mcn.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
Stressor exposure induces neuronal remodeling in specific brain regions. Given the persistence of stress-related illnesses, key next steps in determining the contributions of neural structure to mental health are to identify cell types that fail to recover from stressor exposure and to identify "trigger points" and molecular underpinnings of stress-related neural degeneration. We evaluated dendrite arbor structure on hippocampal CA1 pyramidal neurons before, during, and following prolonged exposure to one key mediator of the stress response - corticosterone (cortisol in humans). Basal dendrite arbors progressively simplified during a 3-week exposure period, and failed to recover when corticosterone was withdrawn. Corticosterone exposure decreased levels of the dendrite stabilization factor Abl2/Arg nonreceptor tyrosine kinase and phosphorylation of its substrates p190RhoGAP and cortactin within 11days, suggesting that disruption of Arg-mediated signaling may trigger dendrite arbor atrophy and, potentially, behavioral abnormalities resulting from corticosterone exposure. To test this, we administered the novel, bioactive Arg kinase activator, 5-(1,3-diaryl-1H-pyrazol-4-yl)hydantoin, 5-[3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl]-2,4-imidazolidinedione (DPH), in conjunction with corticosterone. We found that repeated treatment corrected CA1 arbor structure, otherwise simplified by corticosterone. DPH also corrected corticosterone-induced errors in a hippocampal-dependent reversal learning task and anhedonic-like behavior. Thus, pharmacological compounds that target cytoskeletal regulators, rather than classical neurotransmitter systems, may interfere with stress-associated cognitive decline and mental health concerns.
Collapse
|
46
|
Pyk2 modulates hippocampal excitatory synapses and contributes to cognitive deficits in a Huntington's disease model. Nat Commun 2017; 8:15592. [PMID: 28555636 PMCID: PMC5459995 DOI: 10.1038/ncomms15592] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
The structure and function of spines and excitatory synapses are under the dynamic control of multiple signalling networks. Although tyrosine phosphorylation is involved, its regulation and importance are not well understood. Here we study the role of Pyk2, a non-receptor calcium-dependent protein-tyrosine kinase highly expressed in the hippocampus. Hippocampal-related learning and CA1 long-term potentiation are severely impaired in Pyk2-deficient mice and are associated with alterations in NMDA receptors, PSD-95 and dendritic spines. In cultured hippocampal neurons, Pyk2 has autophosphorylation-dependent and -independent roles in determining PSD-95 enrichment and spines density. Pyk2 levels are decreased in the hippocampus of individuals with Huntington and in the R6/1 mouse model of the disease. Normalizing Pyk2 levels in the hippocampus of R6/1 mice rescues memory deficits, spines pathology and PSD-95 localization. Our results reveal a role for Pyk2 in spine structure and synaptic function, and suggest that its deficit contributes to Huntington's disease cognitive impairments.
Collapse
|
47
|
Vogel Ciernia A, Kramár EA, Matheos DP, Havekes R, Hemstedt TJ, Magnan CN, Sakata K, Tran A, Azzawi S, Lopez A, Dang R, Wang W, Trieu B, Tong J, Barrett RM, Post RJ, Baldi P, Abel T, Lynch G, Wood MA. Mutation of neuron-specific chromatin remodeling subunit BAF53b: rescue of plasticity and memory by manipulating actin remodeling. Learn Mem 2017; 24:199-209. [PMID: 28416631 PMCID: PMC5397687 DOI: 10.1101/lm.044602.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53bΔSB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53bΔSB2 mice in an effort to rescue LTP and memory. BAF53bΔSB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, University of California, Davis, California 95656, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen 9712, The Netherlands
| | - Thekla J Hemstedt
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Christophe N Magnan
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Keith Sakata
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Ashley Tran
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Soraya Azzawi
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Alberto Lopez
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Richard Dang
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Weisheng Wang
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Brian Trieu
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697, USA
| | - Joyce Tong
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Ruth M Barrett
- Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Rebecca J Post
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| | - Ted Abel
- Departments of Molecular Physiology and Biophysics, Psychiatry, and Biochemistry, Iowa Neuroscience Institute, Iowa City, Iowa 50309, USA
| | - Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, Irvine, California, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, California 92697, USA
| |
Collapse
|
48
|
Shapiro LP, Parsons RG, Koleske AJ, Gourley SL. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res 2017; 95:1123-1143. [PMID: 27735056 PMCID: PMC5352542 DOI: 10.1002/jnr.23960] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/04/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
The prevalence of depression, anxiety, schizophrenia, and drug and alcohol use disorders peaks during adolescence. Further, up to 50% of "adult" mental health disorders emerge in adolescence. During adolescence, the prefrontal cortex (PFC) undergoes dramatic structural reorganization, in which dendritic spines and synapses are refined, pruned, and stabilized. Understanding the molecular mechanisms that underlie these processes should help to identify factors that influence the development of psychiatric illness. Here we briefly discuss the anatomical connections of the medial and orbital prefrontal cortex (mPFC and OFC, respectively). We then present original findings suggesting that dendritic spines on deep-layer excitatory neurons in the mouse mPFC and OFC prune at different adolescent ages, with later pruning in the OFC. In parallel, we used Western blotting to define levels of several cytoskeletal regulatory proteins during early, mid-, and late adolescence, focusing on tropomyosin-related kinase receptor B (TrkB) and β1-integrin-containing receptors and select signaling partners. We identified regional differences in the levels of several proteins in early and midadolescence that then converged in early adulthood. We also observed age-related differences in TrkB levels, both full-length and truncated isoforms, Rho-kinase 2, and synaptophysin in both PFC subregions. Finally, we identified changes in protein levels in the dorsal and ventral hippocampus that were distinct from those in the PFC. We conclude with a general review of the manner in which TrkB- and β1-integrin-mediated signaling influences neuronal structure in the postnatal brain. Elucidating the role of cytoskeletal regulatory factors throughout adolescence may identify critical mechanisms of PFC development. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lauren P Shapiro
- Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Ryan G Parsons
- Department of Psychology and Neuroscience Institute, Graduate Program in Integrative Neuroscience, Program in Neuroscience, Stony Brook University, Stony Brook, New York
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Department of Neurobiology, Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| |
Collapse
|
49
|
Wang X, Huang Y, Guo R, Liu Y, Qian Y, Liu D, Dai X, Wei Z, Jin F, Liu Y. Clinicopathological significance of ROCK1 and PIK3CA expression in nasopharyngeal carcinoma. Exp Ther Med 2017; 13:1064-1068. [PMID: 28450943 DOI: 10.3892/etm.2017.4076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/25/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the expression of rho-associated coiled-coil-containing protein kinase 1 (ROCK1) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) in nasopharyngeal carcinoma (NPC), and to assess the association between the expression of these proteins and the clinicopathological features of NPC. ROCK1 and PIK3CA expressions were assessed in a tissue microarray of sections prepared from the tumors of 81 patients with NPC using immunohistochemistry. Western blot analysis was used to detect ROCK1 and PIK3CA expression in NP69 and 5-8F cells. χ2 analysis revealed that upregulation of ROCK1 was significantly associated with advanced N stage (P=0.032) cancer and increased PIK3CA expression was significantly associated with advanced N stage (P=0.027) and TNM stage (P=0.019) cancer. Furthermore, ROCK1 expression was significantly positively correlated with PIK3CA expression (P=0.01). Western blot analysis demonstrated that levels of ROCK1 (P<0.001) and PIK3CA (P=0.015) were significantly higher in 5-8F cells compared with NP69 cells. The results of the present study indicate that high levels of ROCK1 and PIK3CA expression may be associated with advanced stages in NPC.
Collapse
Affiliation(s)
- Xuanyi Wang
- Rheumatology Department, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuxiang Huang
- Oncology Department, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongbiao Liu
- Department of Radiation Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yayun Qian
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dan Liu
- Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaojun Dai
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Zheng Wei
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Feng Jin
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yanqing Liu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
50
|
Kukalev A, Ng YM, Ju L, Saidi A, Lane S, Mondragon A, Dormann D, Walker SE, Grey W, Ho PWL, Stephens DN, Carr AM, Lamsa K, Tse E, Yu VPCC. Deficiency of Cks1 Leads to Learning and Long-Term Memory Defects and p27 Dependent Formation of Neuronal Cofilin Aggregates. Cereb Cortex 2017; 27:11-23. [PMID: 28365778 PMCID: PMC5939225 DOI: 10.1093/cercor/bhw354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/23/2016] [Indexed: 01/11/2023] Open
Abstract
In mitotic cells, the cyclin-dependent kinase (CDK) subunit protein CKS1 regulates S phase entry by mediating degradation of the CDK inhibitor p27. Although mature neurons lack mitotic CDKs, we found that CKS1 was actively expressed in post-mitotic neurons of the adult hippocampus. Interestingly, Cks1 knockout (Cks1-/-) mice exhibited poor long-term memory, and diminished maintenance of long-term potentiation in the hippocampal circuits. Furthermore, there was neuronal accumulation of cofilin-actin rods or cofilin aggregates, which are associated with defective dendritic spine maturation and synaptic loss. We further demonstrated that it was the increased p27 level that activated cofilin by suppressing the RhoA kinase-mediated inhibitory phosphorylation of cofilin, resulting in the formation of cofilin aggregates in the Cks1-/- neuronal cells. Consistent with reports that the peptidyl-prolyl-isomerase PIN1 competes with CKS1 for p27 binding, we found that inhibition of PIN1 diminished the formation of cofilin aggregates through decreasing p27 levels, thereby activating RhoA and increasing cofilin phosphorylation. Our results revealed that CKS1 is involved in normal glutamatergic synapse development and dendritic spine maturation in adult hippocampus through modulating p27 stability.
Collapse
Affiliation(s)
- Alexander Kukalev
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
- Current address:
Epigenetic Regulation and Chromatin Architecture Group
,
Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine
,
Robert-Rössle Strasse
,
Berlin-Buch 13125
,
Germany
| | - Yiu-Ming Ng
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
- Division of Haematology
,
Department of Medicine
,
The University of Hong Kong
,
Hong Kong
| | - Limei Ju
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Amal Saidi
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Sophie Lane
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Angeles Mondragon
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Dirk Dormann
- Microscopy Facility
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
| | - Sophie E. Walker
- School of Psychology
,
University of Sussex
,
Sussex, Brighton BN1 9QG
,
UK
| | - William Grey
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
| | - Philip Wing-Lok Ho
- Division of Neurology
,
Department of Medicine
,
University of Hong Kong
,
Hong Kong
| | - David N. Stephens
- School of Psychology
,
University of Sussex
,
Sussex, Brighton BN1 9QG
,
UK
| | - Antony M. Carr
- Genome Damage and Stability Centre
,
School of Life Sciences
,
University of Sussex
,
Falmer, Sussex BN1 9RQ
,
UK
| | - Karri Lamsa
- Department of Pharmacology
,
Oxford University
,
Oxford OX1 3QT
,
UK
- Current address:
Department of Physiology, Anatomy and Neuroscience
,
University of Szeged
,
Közép fasor 52
,
Szeged H-6726,Hungary
| | - Eric Tse
- Division of Haematology
,
Department of Medicine
,
The University of Hong Kong
,
Hong Kong
| | - Veronica P. C. C. Yu
- Eukaryotic Chromatin Dynamics Group
,
MRC Clinical Sciences Centre
,
Imperial College Hammersmith Campus
,
London W12 0NN
,
UK
- Department of Medical and Molecular Genetics
,
King's College London School of Medicine
,
Guy's Hospital
,
Great Maze Pond
,
London SE1 9RT
,
UK
| |
Collapse
|