1
|
Wei C, Zhang G, Fu X, Zhao M, Zhai W, Shen Y, Sun L. Correlation of peripheral olfactomedin 1 with Alzheimer's disease and cognitive functions. Transl Psychiatry 2025; 15:146. [PMID: 40221403 PMCID: PMC11993663 DOI: 10.1038/s41398-025-03373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/05/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Olfactomedin 1 (OLFM1) is thought to be involved in neuronal development, synaptic structure and function. However, the expression level of peripheral OLFM1 in Alzheimer's disease (AD) and its role in AD are unclear. The present study was conducted to assess the relationship of serum OLFM1 with AD and cognitive function. This study comprised 120 patients with AD and 118 healthy controls (HC). Serum OLFM1 levels, cognitive functions, and brain region volumes were evaluated in all participants. The results demonstrated a significant reduction in serum OLFM1 levels in AD patients (749.8 ± 42.3 pg/mL) compared to HC (804.4 ± 45.7 pg/mL). Among participants carrying the APOE ε4 allele, a significant positive correlation was observed between OLFM1 levels and cognitive assessments, including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Memory and Executive Screening (MES). Furthermore, reduced OLFM1 levels were significantly associated with hippocampus (β = 0.005, 95% CI = 0.001-0.011, p = 0.042) and angular gyrus (β = 0.012, 95% CI = 0.001-0.022, p = 0.025) atrophy. The integration of serum OLFM1 with basic clinical characteristics exhibited robust discriminatory power in differentiating AD patients from HC, evidenced by an area under the curve of 0.881 (95% CI = 0.834-0.926). In summary, serum OLFM1 is a potential peripheral biomarker for AD, that correlates with cognitive function and specific brain volumes. In addition, APOE ε4 may modulate the influence of OLFM1 on cognitive function.
Collapse
Affiliation(s)
- Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weijie Zhai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China.
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Zeng T, Yang YQ, He J, Si DL, Zhang H, Wang X, Xie M. [Mechanism of WAVE1 regulation of lipopolysaccharide-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1341-1351. [PMID: 39725399 DOI: 10.7499/j.issn.1008-8830.2408083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVES To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages. METHODS Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses. The experiment consisted of two parts. The first part included control, LPS, vector (LPS+oe-NC), WAVE1 overexpression (LPS+oe-WAVE1) groups. The second part included LPS, LPS+oe-NC, LPS+oe-WAVE1 and exogenous high mobility group box-1 (HMGB1) intervention (LPS+oe-WAVE1+HMGB1) groups. RT-PCR was used to measure mitochondrial DNA content, and RT-qPCR was used to detect the mRNA expression levels of WAVE1, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Western blot was performed to measure the protein expression of WAVE1, hexokinase 2, and pyruvate kinase M2. ELISA was utilized to detect the levels of TNF-α, IL-1β, IL-6, and HMGB1. JC-1 staining was used to assess mitochondrial membrane potential. Seahorse XP96 was used to evaluate oxygen consumption rate and extracellular acidification rate. MitoSOX probe was employed to measure mitochondrial reactive oxygen species levels, and 2-NBDG method was used to assess glucose uptake. Kits were used to measure pyruvate kinase activity, lactate, adenosine triphosphate (ATP), and HMGB1 levels. RESULTS Compared with the control group, the LPS group showed lower levels of WAVE1 protein and mRNA expression, mitochondrial membrane potential, oxygen consumption rate, and mitochondrial DNA content (P<0.05), while TNF-α, IL-1β, IL-6 levels and mRNA expression, mitochondrial reactive oxygen species, glucose uptake, lactate, ATP, hexokinase 2, and pyruvate kinase M2 protein expression levels as well as extracellular acidification rate, pyruvate kinase activity, and HMGB1 release were significantly increased (P<0.05). Compared with the LPS+oe-NC group, the LPS+oe-WAVE1 group showed increased WAVE1 protein and mRNA expression, mitochondrial membrane potential, oxygen consumption rate, and mitochondrial DNA content (P<0.05), while TNF-α, IL-1β, IL-6 levels and mRNA expression, mitochondrial reactive oxygen species, glucose uptake, lactate, ATP, hexokinase 2, and pyruvate kinase M2 protein expressions, as well as extracellular acidification rate, pyruvate kinase activity, and HMGB1 release were decreased (P<0.05). Compared with the LPS+oe-WAVE1 group, the LPS+oe-WAVE1+HMGB1 group exhibited increased glucose uptake, lactate, ATP levels, and extracellular acidification rate (P<0.05). CONCLUSIONS WAVE1 participates in the regulation of LPS-induced inflammatory responses in macrophages by modulating the release of inflammatory factors, mitochondrial metabolism, and HMGB1 release.
Collapse
Affiliation(s)
- Ting Zeng
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yue-Qian Yang
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jian He
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dao-Lin Si
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Zhang
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xia Wang
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Min Xie
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
5
|
Fung TS, Chakrabarti R, Higgs HN. The multiple links between actin and mitochondria. Nat Rev Mol Cell Biol 2023; 24:651-667. [PMID: 37277471 PMCID: PMC10528321 DOI: 10.1038/s41580-023-00613-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
6
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
7
|
Yang S, Tang Y, Liu Y, Brown AJ, Schaks M, Ding B, Kramer DA, Mietkowska M, Ding L, Alekhina O, Billadeau DD, Chowdhury S, Wang J, Rottner K, Chen B. Arf GTPase activates the WAVE regulatory complex through a distinct binding site. SCIENCE ADVANCES 2022; 8:eadd1412. [PMID: 36516255 PMCID: PMC9750158 DOI: 10.1126/sciadv.add1412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 06/02/2023]
Abstract
Cross-talk between Rho- and Arf-family guanosine triphosphatases (GTPases) plays an important role in linking the actin cytoskeleton to membrane protrusions, organelle morphology, and vesicle trafficking. The central actin regulator, WAVE regulatory complex (WRC), integrates Rac1 (a Rho-family GTPase) and Arf signaling to promote Arp2/3-mediated actin polymerization in many processes, but how WRC senses Arf signaling is unknown. Here, we have reconstituted a direct interaction between Arf and WRC. This interaction is greatly enhanced by Rac1 binding to the D site of WRC. Arf1 binds to a previously unidentified, conserved surface on the Sra1 subunit of WRC, which, in turn, drives WRC activation using a mechanism distinct from that of Rac1. Mutating the Arf binding site abolishes Arf1-WRC interaction, disrupts Arf1-mediated WRC activation, and impairs lamellipodia formation and cell migration. This work uncovers a new mechanism underlying WRC activation and provides a mechanistic foundation for studying how WRC-mediated actin polymerization links Arf and Rac signaling in cells.
Collapse
Affiliation(s)
- Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Yubo Tang
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Yijun Liu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Abbigale J. Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Olga Alekhina
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Daniel D. Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Saikat Chowdhury
- Department of Biochemistry and Cell Biology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- CSIR–Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261, USA
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| |
Collapse
|
8
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|
9
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Ben Amar D, Thoinet K, Villalard B, Imbaud O, Costechareyre C, Jarrosson L, Reynaud F, Novion Ducassou J, Couté Y, Brunet JF, Combaret V, Corradini N, Delloye-Bourgeois C, Castellani V. Environmental cues from neural crest derivatives act as metastatic triggers in an embryonic neuroblastoma model. Nat Commun 2022; 13:2549. [PMID: 35538114 PMCID: PMC9091272 DOI: 10.1038/s41467-022-30237-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Embryonic malignant transformation is concomitant to organogenesis, often affecting multipotent and migratory progenitors. While lineage relationships between malignant cells and their physiological counterparts are extensively investigated, the contribution of exogenous embryonic signals is not fully known. Neuroblastoma (NB) is a childhood malignancy of the peripheral nervous system arising from the embryonic trunk neural crest (NC) and characterized by heterogeneous and interconvertible tumor cell identities. Here, using experimental models mimicking the embryonic context coupled to proteomic and transcriptomic analyses, we show that signals released by embryonic sympathetic ganglia, including Olfactomedin-1, induce NB cells to shift from a noradrenergic to mesenchymal identity, and to activate a gene program promoting NB metastatic onset and dissemination. From this gene program, we extract a core signature specifically shared by metastatic cancers with NC origin. This reveals non-cell autonomous embryonic contributions regulating the plasticity of NB identities and setting pro-dissemination gene programs common to NC-derived cancers.
Collapse
Affiliation(s)
- Dounia Ben Amar
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | - Karine Thoinet
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | - Benjamin Villalard
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | - Olivier Imbaud
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | | | | | - Florie Reynaud
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | - Julia Novion Ducassou
- University Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble, France
| | - Jean-François Brunet
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Valérie Combaret
- Laboratory of Translational Research, Léon Bérard Centre, Lyon, France
| | - Nadège Corradini
- Departments of Oncology and Clinical Research, Centre Léon Berard and Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France
| | - Céline Delloye-Bourgeois
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller.
| | - Valérie Castellani
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller.
| |
Collapse
|
11
|
Timmers PRHJ, Tiys ES, Sakaue S, Akiyama M, Kiiskinen TTJ, Zhou W, Hwang SJ, Yao C, Deelen J, Levy D, Ganna A, Kamatani Y, Okada Y, Joshi PK, Wilson JF, Tsepilov YA. Mendelian randomization of genetically independent aging phenotypes identifies LPA and VCAM1 as biological targets for human aging. NATURE AGING 2022; 2:19-30. [PMID: 37118362 DOI: 10.1038/s43587-021-00159-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/25/2021] [Indexed: 04/30/2023]
Abstract
Length and quality of life are important to us all, yet identification of promising drug targets for human aging using genetics has had limited success. In the present study, we combine six European-ancestry genome-wide association studies of human aging traits-healthspan, father and mother lifespan, exceptional longevity, frailty index and self-rated health-in a principal component framework that maximizes their shared genetic architecture. The first principal component (aging-GIP1) captures both length of life and indices of mental and physical wellbeing. We identify 27 genomic regions associated with aging-GIP1, and provide additional, independent evidence for an effect on human aging for loci near HTT and MAML3 using a study of Finnish and Japanese survival. Using proteome-wide, two-sample, Mendelian randomization and colocalization, we provide robust evidence for a detrimental effect of blood levels of apolipoprotein(a) and vascular cell adhesion molecule 1 on aging-GIP1. Together, our results demonstrate that combining multiple aging traits using genetic principal components enhances the power to detect biological targets for human aging.
Collapse
Affiliation(s)
- Paul R H J Timmers
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Evgeny S Tiys
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Saori Sakaue
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tuomo T J Kiiskinen
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chen Yao
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Ganna
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yakov A Tsepilov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, Russia
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, Russia
| |
Collapse
|
12
|
The actin nucleation factors JMY and WHAMM enable a rapid Arp2/3 complex-mediated intrinsic pathway of apoptosis. PLoS Genet 2021; 17:e1009512. [PMID: 33872315 PMCID: PMC8084344 DOI: 10.1371/journal.pgen.1009512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/29/2021] [Accepted: 03/28/2021] [Indexed: 01/02/2023] Open
Abstract
The actin cytoskeleton is a well-known player in most vital cellular processes, but comparably little is understood about how the actin assembly machinery impacts programmed cell death pathways. In the current study, we explored roles for the human Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation factors in DNA damage-induced apoptosis. Inactivation of each WASP-family gene revealed that two of them, JMY and WHAMM, are necessary for rapid apoptotic responses. JMY and WHAMM participate in a p53-dependent cell death pathway by enhancing mitochondrial permeabilization, initiator caspase cleavage, and executioner caspase activation. JMY-mediated apoptosis requires actin nucleation via the Arp2/3 complex, and actin filaments are assembled in cytoplasmic territories containing clusters of cytochrome c and active caspase-3. The loss of JMY additionally results in significant changes in gene expression, including upregulation of the WHAMM-interacting G-protein RhoD. Depletion or deletion of RHOD increases cell death, suggesting that RhoD normally contributes to cell survival. These results give rise to a model in which JMY and WHAMM promote intrinsic cell death responses that can be opposed by RhoD.
Collapse
|
13
|
Ren W, Zhao W, Cao L, Huang J. Involvement of the Actin Machinery in Programmed Cell Death. Front Cell Dev Biol 2021; 8:634849. [PMID: 33634110 PMCID: PMC7900405 DOI: 10.3389/fcell.2020.634849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) depicts a genetically encoded and an orderly mode of cellular mortality. When triggered by internal or external stimuli, cells initiate PCDs through evolutionary conserved regulatory mechanisms. Actin, as a multifunctional cytoskeleton protein that forms microfilament, its integrity and dynamics are essential for a variety of cellular processes (e.g., morphogenesis, membrane blebbing and intracellular transport). Decades of work have broadened our knowledge about different types of PCDs and their distinguished signaling pathways. However, an ever-increasing pool of evidences indicate that the delicate relationship between PCDs and the actin cytoskeleton is beginning to be elucidated. The purpose of this article is to review the current understanding of the relationships between different PCDs and the actin machinery (actin, actin-binding proteins and proteins involved in different actin signaling pathways), in the hope that this attempt can shed light on ensuing studies and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Weida Ren
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wanyu Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lingbo Cao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Hamrick MW, Stranahan AM. Metabolic regulation of aging and age-related disease. Ageing Res Rev 2020; 64:101175. [PMID: 32971259 DOI: 10.1016/j.arr.2020.101175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022]
Abstract
Inquiry into relationships between energy metabolism and brain function requires a uniquely interdisciplinary mindset, and implementation of anti-aging lifestyle strategies based on this work also involves consistent mental and physical discipline. Dr. Mark P. Mattson embodies both of these qualities, based on the breadth and depth of his work on neurobiological responses to energetic stress, and on his own diligent practice of regular exercise and caloric restriction. Dr. Mattson created a neurotrophic niche in his own laboratory, allowing trainees to grow their skills, form new connections, and eventually migrate, forming their own labs while remaining part of the extended lab family. In this historical review, we highlight Dr. Mattson's many contributions to understanding neurobiological responses to physical exercise and dietary restriction, with an emphasis on the mechanisms that may underlie neuroprotection in ageing and age-related disease. On the occasion of Dr. Mattson's retirement from the National Institute on Aging, we highlight his foundational work on metabolism and neuroplasticity by reviewing the context for these findings and considering their impact on future research on the neuroscience of aging.
Collapse
|
16
|
Pronker MF, van den Hoek H, Janssen BJC. Design and structural characterisation of olfactomedin-1 variants as tools for functional studies. BMC Mol Cell Biol 2019; 20:50. [PMID: 31726976 PMCID: PMC6857237 DOI: 10.1186/s12860-019-0232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactomedin-1 (Olfm1; also known as Noelin or Pancortin) is a highly-expressed secreted brain and retina protein and its four isoforms have different roles in nervous system development and function. Structural studies showed that the long Olfm1 isoform BMZ forms a disulfide-linked tetramer with a V-shaped architecture. The tips of the Olfm1 "V" each consist of two C-terminal β-propeller domains that enclose a calcium binding site. Functional characterisation of Olfm1 may be aided by new biochemical tools derived from these core structural elements. RESULTS Here we present the production, purification and structural analysis of three novel monomeric, dimeric and tetrameric forms of mammalian Olfm1 for functional studies. We characterise these constructs structurally by high-resolution X-ray crystallography and small-angle X-ray scattering. The crystal structure of the Olfm1 β-propeller domain (to 1.25 Å) represents the highest-resolution structure of an olfactomedin family member to date, revealing features such as a hydrophilic tunnel containing water molecules running into the core of the domain where the calcium binding site resides. The shorter Olfactomedin-1 isoform BMY is a disulfide-linked tetramer with a shape similar to the corresponding region in the longer BMZ isoform. CONCLUSIONS These recombinantly-expressed protein tools should assist future studies, for example of biophysical, electrophysiological or morphological nature, to help elucidate the functions of Olfm1 in the mature mammalian brain. The control over the oligomeric state of Olfm1 provides a firm basis to better understand the role of Olfm1 in the (trans-synaptic) tethering or avidity-mediated clustering of synaptic receptors such as post-synaptic AMPA receptors and pre-synaptic amyloid precursor protein. In addition, the variation in domain composition of these protein tools provides a means to dissect the Olfm1 regions important for receptor binding.
Collapse
Affiliation(s)
- Matti F Pronker
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Hugo van den Hoek
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Molecular Structural Biology, Max Planck institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Bert J C Janssen
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Liu W, Liu Y, Li H, Rodgers GP. Olfactomedin 4 contributes to hydrogen peroxide-induced NADPH oxidase activation and apoptosis in mouse neutrophils. Am J Physiol Cell Physiol 2018; 315:C494-C501. [PMID: 29949402 DOI: 10.1152/ajpcell.00336.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neutrophils increase production of reactive oxygen species, including superoxide, hydrogen peroxide (H2O2), and hydroxyl radical, to destroy invading microorganisms under pathological conditions. Conversely, oxidative stress conditions, such as the presence of H2O2, induce neutrophil apoptosis, which helps to remove neutrophils after inflammation. However, the detailed molecular mechanisms that are involved in the latter process have not been elucidated. In this study, we investigated the potential role of olfactomedin 4 (Olfm4) in H2O2-induced superoxide production and apoptosis in mouse neutrophils. We have demonstrated that Olfm4 is not required for maximal-dosage PMA- and Escherichia coli bacteria-induced superoxide production, but Olfm4 contributes to suboptimal-dosage PMA- and H2O2-induced superoxide production. Using an NADPH oxidase inhibitor and gp91phox-deficient mouse neutrophils, we found that NAPDH oxidase was required for PMA-stimulated superoxide production and that Olfm4 mediated H2O2-induced superoxide production through NADPH oxidase, in mouse neutrophils. We have shown that neutrophils from Olfm4-deficient mice exhibited reduced H2O2-induced apoptosis compared with neutrophils from wild-type mice. We also demonstrated that neutrophils from Olfm4-deficient mice exhibited reduced H2O2-stimulated mitochondrial damage and membrane permeability, and as well as reduced caspase-3 and caspase-9 activity, compared with neutrophils from wild-type mice. Moreover, the cytoplasmic translocation of the proapoptotic mitochondrial proteins Omi/HtrA2 and Smac/DIABLO in response to H2O2 was reduced in neutrophils from Olfm4-deficient mice compared with neutrophils from wild-type mice. Our study demonstrates that Olfm4 contributes to H2O2-induced NADPH oxidase activation and apoptosis in mouse neutrophils. Olfactomedin 4 might prove to be a potential target for future studies on inflammatory neutrophil biology and for inflammatory disease treatment.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
18
|
The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells. Biochim Biophys Acta Rev Cancer 2018; 1869:293-302. [PMID: 29673970 DOI: 10.1016/j.bbcan.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.
Collapse
|
19
|
Abstract
Mitochondria are the cell's power plant that must be in a proper functional state in order to produce the energy necessary for basic cellular functions, such as proliferation. Mitochondria are 'dynamic' in that they are constantly undergoing fission and fusion to remain in a functional state throughout the cell cycle, as well as during other vital processes such as energy supply, cellular respiration and programmed cell death. The mitochondrial fission/fusion machinery is involved in generating young mitochondria, while eliminating old, damaged and non-repairable ones. As a result, the organelles change in shape, size and number throughout the cell cycle. Such precise and accurate balance is maintained by the cytoskeletal transporting system via microtubules, which deliver the mitochondrion from one location to another. During the gap phases G1 and G2, mitochondria form an interconnected network, whereas in mitosis and S-phase fragmentation of the mitochondrial network will take place. However, such balance is lost during neoplastic transformation and autoimmune disorders. Several proteins, such as Drp1, Fis1, Kif-family proteins, Opa1, Bax and mitofusins change in activity and might link the mitochondrial fission/fusion events with processes such as alteration of mitochondrial membrane potential, apoptosis, necrosis, cell cycle arrest, and malignant growth. All this indicates how vital proper functioning of mitochondria is in maintaining cell integrity and preventing carcinogenesis.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada.
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
20
|
Nakaya N, Sultana A, Tomarev SI. Impaired AMPA receptor trafficking by a double knockout of zebrafish olfactomedin1a/b. J Neurochem 2017; 143:635-644. [PMID: 28975619 DOI: 10.1111/jnc.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 01/06/2023]
Abstract
The olfm1a and olfm1b genes in zebrafish encode conserved secreted glycoproteins. These genes are preferentially expressed in the brain and retina starting from 16 h post-fertilization until adulthood. Functions of the Olfm1 gene is still unclear. Here, we produced and analyzed a null zebrafish mutant of both olfm1a and olfm1b genes (olfm1 null). olfm1 null fish were born at a normal Mendelian ratio and showed normal body shape and fertility as well as no visible defects from larval stages to adult. Olfm1 proteins were preferentially localized in the synaptosomes of the adult brain. Olfm1 co-immunoprecipitated with GluR2 and soluble NSF attachment protein receptor complexes indicating participation of Olfm1 in both pre- and post-synaptic events. Phosphorylation of GluR2 was not changed while palmitoylation of GluR2 was decreased in the brain synaptosomal membrane fraction of olfm1 null compared with wt fish. The levels of GluR2, SNAP25, flotillin1, and VAMP2 were markedly reduced in the synaptic microdomain of olfm1 null brain compared with wt. The internalization of GluR2 in retinal cells and the localization of VAMP2 in brain synaptosome were modified by olfm1 null mutation. This indicates that Olfm1 may regulate receptor trafficking from the intracellular compartments to the synaptic membrane microdomain, partly through the alteration of post-translational GluR2 modifications such as palmitoylation. Olfm1 may be considered a novel regulator of the composition and function of the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor complex.
Collapse
Affiliation(s)
- Naoki Nakaya
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Afia Sultana
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Stanislav I Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Mutated olfactomedin 1 in the interphotoreceptor matrix of the mouse retina causes functional deficits and vulnerability to light damage. Histochem Cell Biol 2016; 147:453-469. [PMID: 27787612 DOI: 10.1007/s00418-016-1510-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 12/24/2022]
Abstract
Olfactomedin 1 (OLFM1) is a secreted glycoprotein and member of the olfactomedin protein family, which is preferentially expressed in various areas throughout the central nervous system. To learn about the functional properties of OLFM1 in the eye, we investigated its localization in the mouse and pig eye. In addition, we analyzed the ocular phenotype of Olfm1 mutant mice in which 52 amino acids were deleted in the central part (M2 region) of OLFM1. OLFM1 was detected in cornea, sclera, retina, and optic nerve of both wild-type and Olfm1 mutant littermates. By immunohistochemistry and double labeling with the lectin peanut agglutinin, OLFM1 was found in the interphotoreceptor matrix (IPM) of mouse and pig retina where it was directly localized to the inner segments of photoreceptors. Western blotting confirmed the presence of the OLFM1 isoforms pancortin 1 (BMY) and pancortin 2 (BMZ) in the IPM. The retinal phenotype of Olfm1 mutant mice did not obviously differ from that of wild-type littermates. In addition, outer nuclear layer (ONL) and total retinal thickness were not different, and the same was true for the area of the optic nerve in cross sections. Functional changes were observed though by electroretinography, which showed significantly lower a- and b-wave amplitudes in Olfm1 mutant mice when compared to age-matched wild-type mice. When light damage experiments were performed as an experimental paradigm of photoreceptor apoptosis, significantly more TUNEL-positive cells were observed in Olfm1 mutant mice 30 h after light exposure. One week after light exposure, the ONL was significantly thinner in Olfm1 mutant mice than in wild-type littermates indicating increased photoreceptor loss. No differences were observed when rhodopsin turnover or ERK1/2 signaling was investigated. We conclude that OLFM1 is a newly identified IPM molecule that serves an important role for photoreceptor homeostasis, which is significantly compromised in the eyes of Olfm1 mutant mice.
Collapse
|
22
|
Li R, Diao H, Zhao F, Xiao S, El Zowalaty AE, Dudley EA, Mattson MP, Ye X. Olfactomedin 1 Deficiency Leads to Defective Olfaction and Impaired Female Fertility. Endocrinology 2015; 156:3344-57. [PMID: 26107991 PMCID: PMC4541623 DOI: 10.1210/en.2015-1389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Olfactomedin 1 (OLFM1) is a glycoprotein highly expressed in the brain. Olfm1(-/-) female mice were previously reported to have reduced fertility. Previous microarray analysis revealed Olfm1 among the most highly upregulated genes in the uterine luminal epithelium upon embryo implantation, which was confirmed by in situ hybridization. We hypothesized that Olfm1 deficiency led to defective embryo implantation and thus impaired fertility. Indeed, Olfm1(-/-) females had defective embryo implantation. However, Olfm1(-/-) females rarely mated and those that mated rarely became pregnant. Ovarian histology indicated the absence of corpora lutea in Olfm1(-/-) females, indicating defective ovulation. Superovulation using equine chorionic gonadotropin-human chorionic gonadotropin rescued mating, ovulation, and pregnancy, and equine chorionic gonadotropin alone rescued ovulation in Olfm1(-/-) females. Olfm1(-/-) females had a 13% reduction of hypothalamic GnRH neurons but comparable basal serum LH levels and GnRH-induced LH levels compared with wild-type controls. These results indicated no obvious local defects in the female reproductive system and a functional hypothalamic-pituitary-gonadal axis. Olfm1(-/-) females were unresponsive to the effects of male bedding stimulation on pubertal development and estrous cycle. There were 41% fewer cFos-positive cells in the mitral cell layer of accessory olfactory bulb upon male urine stimulation for 90 minutes. OLFM1 was expressed in the main and accessory olfactory systems including main olfactory epithelium, vomeronasal organ, main olfactory bulb, and accessory olfactory bulb, with the highest expression detected in the axon bundles of olfactory sensory neurons. These data demonstrate that defective fertility in Olfm1(-/-) females is most likely a secondary effect of defective olfaction.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Honglu Diao
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Fei Zhao
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Shuo Xiao
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Ahmed E El Zowalaty
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Elizabeth A Dudley
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Mark P Mattson
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology (R.L., H.D., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), College of Veterinary Medicine, and Interdisciplinary Toxicology Program (R.L., F.Z., S.X., A.E.E.Z., E.A.D., X.Y.), University of Georgia, Athens, Georgia 30602; and Laboratory of Neurosciences (M.P.M.), National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| |
Collapse
|
23
|
Hill SE, Donegan RK, Nguyen E, Desai TM, Lieberman RL. Molecular Details of Olfactomedin Domains Provide Pathway to Structure-Function Studies. PLoS One 2015; 10:e0130888. [PMID: 26121352 PMCID: PMC4488277 DOI: 10.1371/journal.pone.0130888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/26/2015] [Indexed: 11/18/2022] Open
Abstract
Olfactomedin (OLF) domains are found within extracellular, multidomain proteins in numerous tissues of multicellular organisms. Even though these proteins have been implicated in human disorders ranging from cancers to attention deficit disorder to glaucoma, little is known about their structure(s) and function(s). Here we biophysically, biochemically, and structurally characterize OLF domains from H. sapiens olfactomedin-1 (npoh-OLF, also called noelin, pancortin, OLFM1, and hOlfA), and M. musculus gliomedin (glio-OLF, also called collomin, collmin, and CRG-L2), and compare them with available structures of myocilin (myoc-OLF) recently reported by us and R. norvegicus glio-OLF and M. musculus latrophilin-3 (lat3-OLF) by others. Although the five-bladed β-propeller architecture remains unchanged, numerous physicochemical characteristics differ among these OLF domains. First, npoh-OLF and glio-OLF exhibit prominent, yet distinct, positive surface charges and copurify with polynucleotides. Second, whereas npoh-OLF and myoc-OLF exhibit thermal stabilities typical of human proteins near 55°C, and most myoc-OLF variants are destabilized and highly prone to aggregation, glio-OLF is nearly 20°C more stable and significantly more resistant to chemical denaturation. Phylogenetically, glio-OLF is most similar to primitive OLFs, and structurally, glio-OLF is missing distinguishing features seen in OLFs such as the disulfide bond formed by N- and C- terminal cysteines, the sequestered Ca2+ ion within the propeller central hydrophilic cavity, and a key loop-stabilizing cation-π interaction on the top face of npoh-OLF and myoc-OLF. While deciphering the explicit biological functions, ligands, and binding partners for OLF domains will likely continue to be a challenging long-term experimental pursuit, we used structural insights gained here to generate a new antibody selective for myoc-OLF over npoh-OLF and glio-OLF as a first step in overcoming the impasse in detailed functional characterization of these biomedically important protein domains.
Collapse
Affiliation(s)
- Shannon E. Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Rebecca K. Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Elaine Nguyen
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Tanay M. Desai
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bertelsen B, Melchior L, Jensen LR, Groth C, Nazaryan L, Debes NM, Skov L, Xie G, Sun W, Brøndum-Nielsen K, Kuss AW, Chen W, Tümer Z. A t(3;9)(q25.1;q34.3) translocation leading to OLFM1 fusion transcripts in Gilles de la Tourette syndrome, OCD and ADHD. Psychiatry Res 2015; 225:268-75. [PMID: 25595337 DOI: 10.1016/j.psychres.2014.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023]
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder with a strong genetic etiology; however, finding of candidate genes is hampered by its genetic heterogeneity and the influence of non-genetic factors on disease pathogenesis. We report a case of a male patient with GTS, obsessive compulsive disorder, attention-deficit/hyperactivity-disorder, as well as other comorbidities, and a translocation t(3;9)(q25.1;q34.3) inherited from a mother with tics. Mate-pair sequencing revealed that the translocation breakpoints truncated the olfactomedin 1 (OLFM1) gene and two uncharacterized transcripts. Reverse-transcription PCR identified several fusion transcripts in the carriers, and OLFM1 expression was found to be high in GTS-related human brain regions. As OLFM1 plays a role in neuronal development it is a likely candidate gene for neuropsychiatric disorders and haploinsufficiency of OLFM1 could be a contributing risk factor to the phenotype of the carriers. In addition, one of the fusion transcripts may exert a dominant-negative or gain-of-function effect. OLFM1 is unlikely to be a major GTS susceptibility gene as no point mutations or copy number variants affecting OLFM1 were identified in 175 additional patients. The translocation described is thus a unique event, but further studies in larger cohorts are required to elucidate involvement of OLFM1 in GTS pathogenesis.
Collapse
Affiliation(s)
- Birgitte Bertelsen
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Linea Melchior
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Lars Riff Jensen
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Camilla Groth
- Tourette Clinic, Department of Pediatrics, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Lusine Nazaryan
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Nanette Mol Debes
- Tourette Clinic, Department of Pediatrics, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Liselotte Skov
- Tourette Clinic, Department of Pediatrics, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Gangcai Xie
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Wei Sun
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Karen Brøndum-Nielsen
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Andreas Walter Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Zeynep Tümer
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
25
|
Sultana A, Nakaya N, Dong L, Abu-Asab M, Qian H, Tomarev SI. Deletion of olfactomedin 2 induces changes in the AMPA receptor complex and impairs visual, olfactory, and motor functions in mice. Exp Neurol 2014; 261:802-11. [PMID: 25218043 DOI: 10.1016/j.expneurol.2014.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
Olfactomedin 2 (Olfm2) is a secretory glycoprotein belonging to the family of olfactomedin domain-containing proteins. A previous study has shown that a mutation in OLFM2 is associated with primary open angle glaucoma in Japanese patients. In the present study, we generated Olfm2 deficient mice by replacing the Olfm2 gene with the LacZ gene. The loss of Olfm2 resulted in no gross abnormalities. However, Olfm2 null mice showed reduced exploration, locomotion, olfactory sensitivity, abnormal motor coordination, and anxiety related behavior. The pattern of the Olfm2 gene expression was studied in the brain and eye using β-galactosidase staining. In the brain, Olfm2 was mainly expressed in the olfactory bulb, cortex, piriform cortex, olfactory trabeculae, and inferior and superior colliculus. In the eye expression was detected mainly in retinal ganglion cells. In Olfm2 null mice, the amplitude of the first negative wave in the visual evoked potential test was significantly reduced as compared with wild-type littermates. Olfm2, similar to Olfm1, interacted with the GluR2 subunit of the AMPAR complexes and Olfm2 co-segregated with the AMPA receptor subunit GluR2 and other synaptic proteins in the synaptosomal membrane fraction upon biochemical fractionation of the adult mice cortex and retina. Immunoprecipitation from the synaptosomal membrane fraction of the Olfm2 null mouse brain cortex using the GluR2 antibody showed reduced levels of several components of the AMPAR complex in the immunoprecipitates including Olfm1, PSD95 and CNIH2. These results suggest that heterodimers of Olfm1 and Olfm2 interact with AMPAR more efficiently than Olfm2 homodimers and that Olfm2 plays a role in the organization of the AMPA receptor complexes.
Collapse
Affiliation(s)
- Afia Sultana
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Naoki Nakaya
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mones Abu-Asab
- Histopathology Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stanislav I Tomarev
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Deletion in the N-terminal half of olfactomedin 1 modifies its interaction with synaptic proteins and causes brain dystrophy and abnormal behavior in mice. Exp Neurol 2013; 250:205-18. [PMID: 24095980 DOI: 10.1016/j.expneurol.2013.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 11/24/2022]
Abstract
Olfactomedin 1 (Olfm1) is a secreted glycoprotein that is preferentially expressed in neuronal tissues. Here we show that deletion of exons 4 and 5 from the Olfm1 gene, which encodes a 52 amino acid long region in the N-terminal part of the protein, increased neonatal death and reduced body weight of surviving homozygous mice. Magnetic resonance imaging analyses revealed reduced brain volume and attenuated size of white matter tracts such as the anterior commissure, corpus callosum, and optic nerve. Adult Olfm1 mutant mice demonstrated abnormal behavior in several tests including reduced marble digging, elevated plus maze test, nesting activity and latency on balance beam tests as compared with their wild-type littermates. The olfactory system was both structurally and functionally disturbed by the mutation in the Olfm1 gene as shown by functional magnetic resonance imaging analysis and a smell test. Deficiencies of the olfactory system may contribute to the neonatal death and loss of body weight of Olfm1 mutant. Shotgun proteomics revealed 59 candidate proteins that co-precipitated with wild-type or mutant Olfm1 proteins in postnatal day 1 brain. Olfm1-binding targets included GluR2, Cav2.1, teneurin-4 and Kidins220. Modified interaction of Olfm1 with binding targets led to an increase in intracellular Ca(2+) concentration and activation of ERK1/2, MEK1 and CaMKII in the hippocampus and olfactory bulb of Olfm1 mutant mice compared with their wild-type littermates. Excessive activation of the CaMKII and Ras-ERK pathways in the Olfm1 mutant olfactory bulb and hippocampus by elevated intracellular calcium may contribute to the abnormal behavior and olfactory activity of Olfm1 mutant mice.
Collapse
|
27
|
Lencinas A, Chhun DC, Dan KP, Ross KD, Hoover EA, Antin PB, Runyan RB. Olfactomedin-1 activity identifies a cell invasion checkpoint during epithelial-mesenchymal transition in the chick embryonic heart. Dis Model Mech 2012; 6:632-42. [PMID: 23264563 PMCID: PMC3634647 DOI: 10.1242/dmm.010595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endothelia in the atrioventricular (AV) canal of the developing heart undergo a prototypical epithelial mesenchymal transition (EMT) to begin heart valve formation. Using an in vitro invasion assay, an extracellular matrix protein, Olfactomedin-1 (OLFM1), was found to increase mesenchymal cell numbers in AV canals from embryonic chick hearts. Treatment with both anti-OLFM1 antibody and siRNA targeting OLFM1 inhibits mesenchymal cell formation. OLFM1 does not alter cell proliferation, migration or apoptosis. Dispersion, but lack of invasion in the presence of inhibiting antibody, identifies a specific role for OLFM1 in cell invasion during EMT. This role is conserved in other epithelia, as OLFM1 similarly enhances invasion by MDCK epithelial cells in a transwell assay. Synergy is observed when TGFβ2 and OLFM1 are added to MDCK cell cultures, indicating that OLFM-1 activity is cooperative with TGFβ. Inhibition of both OLFM1 and TGFβ in heart invasion assays shows a similar cooperative role during development. To explore OLFM1 activity during EMT, representative EMT markers were examined. Effects of OLFM1 protein and anti-OLFM1 on transcripts of cell-cell adhesion molecules and the transcription factors Snail-1, Snail-2, Twist1 and Sox-9 argue that OLFM1 does not initiate EMT. Rather, regulation of transcripts of Zeb1 and Zeb2, secreted proteases and mesenchymal cell markers by both OLFM1 and anti-OLFM1 is consistent with regulation of the cell invasion step of EMT. We conclude that OLFM1 is present and necessary during EMT in the embryonic chick heart. Its role in cell invasion and mesenchymal cell gene regulation suggests an invasion checkpoint in EMT where OLFM1 acts to promote cell invasion into the three-dimensional matrix.
Collapse
Affiliation(s)
- Alejandro Lencinas
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Rice HC, Townsend M, Bai J, Suth S, Cavanaugh W, Selkoe DJ, Young-Pearse TL. Pancortins interact with amyloid precursor protein and modulate cortical cell migration. Development 2012; 139:3986-96. [PMID: 22992957 DOI: 10.1242/dev.082909] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal precursor cell migration in the developing mammalian brain is a complex process requiring the coordinated interaction of numerous proteins. We have recently shown that amyloid precursor protein (APP) plays a role in migration into the cortical plate through its interaction with two cytosolic signaling proteins, disabled 1 (DAB1) and disrupted in schizophrenia 1 (DISC1). In order to identify extracellular factors that may signal through APP to regulate migration, we performed an unbiased mass spectrometry-based screen for factors that bind to the extracellular domain of APP in the rodent brain. Through this screen, we identified an interaction between APP and pancortins, proteins expressed throughout the developing and mature cerebral cortex. Via co-immunoprecipitation, we show that APP interacts with all four of the mammalian pancortin isoforms (AMY, AMZ, BMY, BMZ). We demonstrate that the BMZ and BMY isoforms of pancortin can specifically reduce β-secretase- but not α-secretase-mediated cleavage of endogenous APP in cell culture, suggesting a biochemical consequence of the association between pancortins and APP. Using in utero electroporation to overexpress and knock down specific pancortin isoforms, we reveal a novel role for pancortins in migration into the cortical plate. Interestingly, we observe opposing roles for alternate pancortin isoforms, with AMY overexpression and BMZ knock down both preventing proper migration of neuronal precursor cells. Finally, we show that BMZ can partially rescue a loss of APP expression and that APP can rescue effects of AMY overexpression, suggesting that pancortins act in conjunction with APP to regulate entry into the cortical plate. Taken together, these results suggest a biochemical and functional interaction between APP and pancortins, and reveal a previously unidentified role for pancortins in mammalian cortical development.
Collapse
Affiliation(s)
- Heather C Rice
- Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Nakaya N, Sultana A, Lee HS, Tomarev SI. Olfactomedin 1 interacts with the Nogo A receptor complex to regulate axon growth. J Biol Chem 2012; 287:37171-84. [PMID: 22923615 DOI: 10.1074/jbc.m112.389916] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and retinal ganglion cells in embryonic and postnatal mice. Olfm1 specifically binds to NgR1, as judged by alkaline phosphatase assay and coimmunoprecipitation. The addition of Olfm1 inhibited the growth cone collapse of dorsal root ganglia neurons induced by myelin-associated inhibitors, indicating that Olfm1 attenuates the NgR1 receptor functions. Olfm1 caused the inhibition of NgR1 signaling by interfering with interaction between NgR1 and its coreceptors p75NTR or LINGO-1. In zebrafish, inhibition of optic nerve extension by olfm1 morpholino oligonucleotides was partially rescued by dominant negative ngr1 or lingo-1. These data introduce Olfm1 as a novel NgR1 ligand that may modulate the functions of the NgR1 complex in axonal growth.
Collapse
Affiliation(s)
- Naoki Nakaya
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0606, USA
| | | | | | | |
Collapse
|
30
|
Beverly LJ. Regulation of anti-apoptotic BCL2-proteins by non-canonical interactions: the next step forward or two steps back? J Cell Biochem 2012; 113:3-12. [PMID: 21898539 DOI: 10.1002/jcb.23335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All aspects of cellular biology affect the process of regulated cell death, or apoptosis, and disruption of this process is a causative event in many diseases. Therefore, a comprehensive understanding of all pathways that regulate apoptosis would increase our knowledge of basic cellular functions, as well as the etiologies of many diseases. In turn, we may be able to use this knowledge to better treat patients with diseases, including cancer. Although the basic signaling pathway that regulates apoptosis has been known for over 10 years, we still have much to learn about the upstream signaling components that can directly regulate the core apoptosis machinery. The focus of this review will be to direct attention to non-canonical regulators of the BCL2-family of proteins, especially our void of understanding of such interactions, and the controversy that surrounds some such interactions.
Collapse
Affiliation(s)
- Levi J Beverly
- Division of Hematology and Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
31
|
Sultana A, Nakaya N, Senatorov VV, Tomarev SI. Olfactomedin 2: expression in the eye and interaction with other olfactomedin domain-containing proteins. Invest Ophthalmol Vis Sci 2011; 52:2584-92. [PMID: 21228389 DOI: 10.1167/iovs.10-6356] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Olfactomedin 2 (OLFM2) belongs to the family of olfactomedin domain-containing proteins. Genetic data suggest its association with glaucoma in Japanese patients. However, its functions are still elusive. In this study, the properties of mammalian OLFM2 were investigated. METHODS Expression of the rat and mouse Olfm2 gene was studied by using real-time PCR and in situ hybridization. Substitutions were introduced into OLFM2 by mutagenesis in vitro. Intracellular localization of OLFM2 was studied by confocal microscopy after transient transfection in HEK293 cells. Interaction of OLFM2 with olfactomedin 1 (Olfm1), olfactomedin 3 (Olfm3), myocilin, and gliomedin was studied by using co-immunoprecipitation. RESULTS Two major human OLFM2 mRNAs encode secreted proteins with a length of 454 and 478 amino acids. OLFM2 is more closely related to OLFM1 and -3 than to any other family members. Olfm2 showed the most dynamic expression pattern compared with Olfm1 and -3 during mouse eye development and was expressed preferentially in the developing retinal ganglion cell layer. Among three OLFM2 substitutions tested (T86M, R144Q, and L420S), only L420S completely blocked secretion of the protein. OLFM2 interacted with Olfm1 and -3, but not with myocilin and gliomedin. Co-transfection of the L420S mutant with wild-type Olfm1 and -3 significantly inhibited secretion of Olfm1 and -3. CONCLUSIONS Highly conserved OLFM2 protein may play an important role in the course of retinal and eye development. Severe mutations in one of the closely related olfactomedin domain-containing proteins (Olfm1-3) may block the secretion and probably the activity of all three family members, leading to more pronounced diseases of the retina than the knockout of individual genes.
Collapse
Affiliation(s)
- Afia Sultana
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
32
|
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6:11. [PMID: 21266064 PMCID: PMC3037909 DOI: 10.1186/1750-1326-6-11] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/25/2011] [Indexed: 01/02/2023] Open
Abstract
Stroke is the world's second leading cause of mortality, with a high incidence of severe morbidity in surviving victims. There are currently relatively few treatment options available to minimize tissue death following a stroke. As such, there is a pressing need to explore, at a molecular, cellular, tissue, and whole body level, the mechanisms leading to damage and death of CNS tissue following an ischemic brain event. This review explores the etiology and pathogenesis of ischemic stroke, and provides a general model of such. The pathophysiology of cerebral ischemic injury is explained, and experimental animal models of global and focal ischemic stroke, and in vitro cellular stroke models, are described in detail along with experimental strategies to analyze the injuries. In particular, the technical aspects of these stroke models are assessed and critically evaluated, along with detailed descriptions of the current best-practice murine models of ischemic stroke. Finally, we review preclinical studies using different strategies in experimental models, followed by an evaluation of results of recent, and failed attempts of neuroprotection in human clinical trials. We also explore new and emerging approaches for the prevention and treatment of stroke. In this regard, we note that single-target drug therapies for stroke therapy, have thus far universally failed in clinical trials. The need to investigate new targets for stroke treatments, which have pleiotropic therapeutic effects in the brain, is explored as an alternate strategy, and some such possible targets are elaborated. Developing therapeutic treatments for ischemic stroke is an intrinsically difficult endeavour. The heterogeneity of the causes, the anatomical complexity of the brain, and the practicalities of the victim receiving both timely and effective treatment, conspire against developing effective drug therapies. This should in no way be a disincentive to research, but instead, a clarion call to intensify efforts to ameliorate suffering and death from this common health catastrophe. This review aims to summarize both the present experimental and clinical state-of-the art, and to guide future research directions.
Collapse
Affiliation(s)
- Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Bohr DC, Koch M, Kritzenberger M, Fuchshofer R, Tamm ER. Increased expression of olfactomedin-1 and myocilin in podocytes during puromycin aminonucleoside nephrosis. Nephrol Dial Transplant 2010; 26:83-92. [PMID: 20595200 DOI: 10.1093/ndt/gfq366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The olfactomedin domain proteins Olfm-1 and myocilin are expressed in podocytes. Myocilin stimulates the formation of focal contacts and actin stress fibres in podocytes and other cell types, effects that are mediated through the Wnt signalling pathway. Here, we tested if the expression of both proteins is modified during puromycin aminonucleoside (PAN) nephrosis, which leads to structural changes in the actin cytoskeleton of podocytes. METHODS Rats were treated with PAN, and the effectiveness of treatment was analysed by electron microscopy of podocytes and protein detection in the urine. The expression of Olfm-1 and myocilin was studied by immunohistochemistry, western blot analysis of glomerular proteins and real-time RT-PCR of glomerular proteins. In parallel experiments, the expression of Olfm-1 was studied in cultured podocytes treated with dexamethasone, TGF-β, TNF-α and PAN. RESULTS Between Days 5 and 22 after treatment, the amounts of the BMZ and BMY splice variants of Olfm-1 and their mRNA were markedly elevated in proteins and mRNA from isolated glomeruli. Immunohistochemistry showed that the expression of Olfm-1 was confined to podocytes. Essentially, comparable results were obtained for myocilin. The BMZ variant of Olfm-1 appeared to be secreted from podocytes and was found in high amounts in urine of treated animals. Treatment of cultured podocytes with dexamethasone and PAN caused an increase in Olfm-1 expression, while treatment with recombinant Olfm-1 increased the formation of actin stress fibres. CONCLUSIONS Olfm-1 and myocilin are markedly induced in podocytes during PAN nephrosis and appear to be involved in the processes that govern the reorganization of the actin cytoskeleton during podocyte repair.
Collapse
Affiliation(s)
- Daniela C Bohr
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proc Natl Acad Sci U S A 2010; 107:11056-61. [PMID: 20534456 DOI: 10.1073/pnas.1001269107] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Olfactomedin 4 (OLFM4) is a glycoprotein that has been found to be up-regulated in inflammatory bowel diseases and Helicobacter pylori infected patients. However, its role in biological processes such as inflammation or other immune response is not known. In this study, we generated OLFM4 KO mice to investigate potential role(s) of OLFM4 in gastric mucosal responses to H. pylori infection. H. pylori colonization in the gastric mucosa of OLFM4 KO mice was significantly lower compared with WT littermates. The reduced bacterial load was associated with enhanced infiltration of inflammatory cells in gastric mucosa. Production and expression of proinflammatory cytokines/chemokines such as IL-1beta, IL-5, IL-12 p70, and MIP-1alpha was increased in OLFM4 KO mice compared with infected controls. Furthermore, we found that OLFM4 is a target gene of NF--kappaB pathway and has a negative feedback effect on NF-kappaB activation induced by H. pylori infection through a direct association with nucleotide oligomerization domain-1 (NOD1) and -2 (NOD2). Together these observations indicate that OLFM4 exerts considerable influence on the host defense against H. pylori infection acting through NOD1 and NOD2 mediated NF-kappaB activation and subsequent cytokines and chemokines production, which in turn inhibit host immune response and contribute to persistence of H. pylori colonization.
Collapse
|
35
|
Wang G, Zhou D, Wang C, Gao Y, Zhou Q, Qian G, DeCoster MA. Hypoxic preconditioning suppresses group III secreted phospholipase A2-induced apoptosis via JAK2-STAT3 activation in cortical neurons. J Neurochem 2010; 114:1039-48. [PMID: 20492356 DOI: 10.1111/j.1471-4159.2010.06817.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our previous studies show that group III secreted phospholipases A(2) (sPLA(2)s III) induces extensive neuronal apoptosis in brain cortical cultures. However, the molecular mechanisms underlying sPLA(2) III-induced neuronal injury/death are still unknown. Also it is not clear whether hypoxic pre-conditioning (HPC) is able to protect neurons from the sPLA(2) III insult. In this report, we demonstrate that sPLA(2) III significantly decreased production of Bcl-xl and the ratio of Bcl-xl/Bax, and increased expression of Bax, cleaved caspase 3, and cleaved alpha-Fodrin in primary neuronal culture. HPC prevented the sPLA(2) III-induced decreases in production of Bcl-xl and the ratio of Bcl-xl/Bax, and increases in expression of Bax, cleaved caspase 3, and alpha-Fodrin. However, the HPC-produced neuronal protection was eliminated or attenuated by AG490, rapamycin, and STAT3 shRNA. Our results suggest that sPLA(2) III-induced neuronal apoptosis is likely because of its alterations in expression and activity of Bcl-xl, Bax, caspase 3, and its target gene fodrin; and that HPC-produced neuroprotection against the sPLA(2) III toxicity is mediated via JAK-STAT signal pathways that regulate the expression of Bcl-xl, Bax, and cleaved caspase 3 in cultured cortical neurons.
Collapse
Affiliation(s)
- Guansong Wang
- Institute of Respiratory Diseases in Second affiliated Hospital, The Third Military Medical University of China, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ceglia I, Kim Y, Nairn AC, Greengard P. Signaling pathways controlling the phosphorylation state of WAVE1, a regulator of actin polymerization. J Neurochem 2010; 114:182-90. [PMID: 20403076 DOI: 10.1111/j.1471-4159.2010.06743.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous protein 1 (WAVE1) is a key regulator of Arp (actin-related protein) 2/3 complex-mediated actin polymerization. We have established previously that the state of phosphorylation of WAVE1 at three distinct residues controls its ability to regulate actin polymerization and spine morphology. Cyclin-dependent kinase 5 phosphorylates WAVE1 at Ser310, Ser397 and Ser441 to a high basal stoichiometry, resulting in inhibition of WAVE1 activity. Our previous and current studies show that WAVE1 can be dephosphorylated at all three sites and thereby activated upon stimulation of the D1 subclass of dopamine receptors and of the NMDA subclass of glutamate receptors, acting through cAMP and Ca(2+) signaling pathways, respectively. Specifically, we have identified protein phosphatase-2A and protein phosphatase-2B as the effectors for these second messengers. These phosphatases act on different sites to mediate receptor-induced signaling pathways, which would lead to activation of WAVE1.
Collapse
Affiliation(s)
- Ilaria Ceglia
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Bcl-2 proteins are over-expressed in many tumors and are critically important for cell survival. Their anti-apoptotic activities are determined by intracellular localization and post-translational modifications (such as phosphorylation). Here, we showed that WAVE1, a member of the Wiskott-Aldrich syndrome protein family, was over-expressed in blood cancer cell lines, and functioned as a negative regulator of apoptosis. Further enhanced expression of WAVE1 by gene transfection rendered leukemia cells more resistant to anti-cancer drug-induced apoptosis; whereas suppression of WAVE1 expression by RNA interference restored leukemia cells' sensitivity to anti-drug-induced apoptosis. WAVE1 was found to be associated with mitochondrial Bcl-2, and its depletion led to mitochondrial release of Bcl-2, and phosphorylation of ASK1/JNK and Bcl-2. Furthermore, depletion of WAVE1 expression increased anti-cancer drug-induced production of reactive oxygen species in leukemia cells. Taken together, these results suggest WAVE1 as a novel regulator of apoptosis, and potential drug target for therapeutic intervention of leukemia.
Collapse
|
38
|
Gürer G, Gursoy-Ozdemir Y, Erdemli E, Can A, Dalkara T. Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathol 2009; 19:630-41. [PMID: 18947334 DOI: 10.1111/j.1750-3639.2008.00226.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Several recent reports proposed that astrocyte death might precede neuronal demise after focal ischemia, contrary to the conventional view that astrocytes are more resistant to injury than neurons. Interestingly, there are findings supporting each of these opposing views. To clarify these controversies, we assessed astrocyte viability after 2-h middle cerebral artery occlusion in mice. In contrast to neighboring neurons, astrocytes were alive and contained glycogen across the ischemic area 6 h after reperfusion, and at the expanding outer border of the infarct at later time points. These glycogen-positive astrocytes had intact plasma membranes. Astrocytes lost plasmalemma integrity much later than neurons: 19 +/- 22 (mean +/- standard deviation), 58 +/- 14 and 69 +/- 3% of astrocytes in the perifocal region became permeable to propidium iodide (PI) at 6, 24, 72 h after ischemia, respectively, in contrast to 81 +/- 2, 96 +/- 3, 97 +/- 2% of neurons. Although more astrocytes in the cortical and subcortical core regions were PI-positive, their numbers were considerably less than those of neurons. Lysosomal rupture (monitored by deoxyribonuclease II immunoreactivity) followed a similar time course. Cytochrome-c immunohistochemistry showed that astrocytes maintained mitochondrial integrity longer than neurons. EM confirmed that astrocyte ultrastructure including mitochondria and lysosomes disintegrated much later than that of neurons. We also found that astrocytes died by a delayed necrosis without significantly activating apoptotic mechanisms although they rapidly swelled at the onset of ischemia.
Collapse
Affiliation(s)
- Günfer Gürer
- Institute of Neurological Sciences & Psychiatry and Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
39
|
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2009; 60:748-66. [PMID: 19081372 DOI: 10.1016/j.neuron.2008.10.010] [Citation(s) in RCA: 795] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 12/12/2022]
Abstract
Mitochondrial electron transport generates the ATP that is essential for the excitability and survival of neurons, and the protein phosphorylation reactions that mediate synaptic signaling and related long-term changes in neuronal structure and function. Mitochondria are highly dynamic organelles that divide, fuse, and move purposefully within axons and dendrites. Major functions of mitochondria in neurons include the regulation of Ca(2+) and redox signaling, developmental and synaptic plasticity, and the arbitration of cell survival and death. The importance of mitochondria in neurons is evident in the neurological phenotypes in rare diseases caused by mutations in mitochondrial genes. Mitochondria-mediated oxidative stress, perturbed Ca(2+) homeostasis, and apoptosis may also contribute to the pathogenesis of prominent neurological diseases including Alzheimer's, Parkinson's, and Huntington's diseases; stroke; amyotrophic lateral sclerosis; and psychiatric disorders. Advances in understanding the molecular and cell biology of mitochondria are leading to novel approaches for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
40
|
Atif F, Yousuf S, Agrawal SK. S-allyl L-cysteine diminishes cerebral ischemia-induced mitochondrial dysfunctions in hippocampus. Brain Res 2009; 1265:128-37. [PMID: 19401183 DOI: 10.1016/j.brainres.2008.12.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/25/2008] [Accepted: 12/29/2008] [Indexed: 12/25/2022]
Abstract
Ischemic brain is highly vulnerable to free radicals mediated secondary neuronal damage especially mitochondrial dysfunctions. Present study investigated the neuroprotective effect of S-allyl L-cysteine (SAC), a water soluble compound from garlic, against cerebral ischemia/reperfusion (I/R)-induced mitochondrial dysfunctions in hippocampus (HIP). We used transient rat middle cerebral artery occlusion (MCAO) model of brain ischemia. SAC (300 mg/kg) was given twice intraperitoneally: 15 min pre-occlusion and 2 h post-occlusion at the time of reperfusion. SAC significantly restored ATP content and the activity of mitochondrial respiratory complexes in SAC treated group which were severely altered in MCAO group. A marked decrease in calcium swelling was observed as a result of SAC treatment. Western blot analysis showed a marked decrease in cytochrome c release as a result of SAC treatment. The status of mitochondrial glutathione (GSH) and glucose 6-phosphate dehydrogenase (G6-PD) was restored by SAC treatment with a significant decrease in mitochondrial lipid peroxidation (LPO), protein carbonyl (PC) and H2O2 content. SAC significantly improved neurological deficits assessed by different scoring methods as compared to MCAO group. Also, the brain edema was significantly reduced. The findings of this study suggest the ability of SAC in functional preservation of ischemic neurovascular units and its therapeutic relevance in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Fahim Atif
- Department of Surgery, Section of Neurosurgery, 6009 Poynter Hall, University of Nebraska Medical Center, Omaha, Nebraska 68198-6250, USA.
| | | | | |
Collapse
|
41
|
Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 2008; 1250:242-53. [PMID: 19027723 DOI: 10.1016/j.brainres.2008.10.068] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 12/24/2022]
Abstract
Free radicals are known to cause secondary neuronal damage in cerebral ischemia/reperfusion (I/R). We investigated here the neuroprotective effect of resveratrol, a potent antioxidant present in grape seed, against cerebral I/R-induced mitochondrial dysfunctions in hippocampus. Transient rat middle cerebral artery occlusion (MCAO) model of brain ischemia was used to induce brain infarction. Resveratrol (10(-7) g/kg) was given twice intravenously: 15 min pre-occlusion and at the time of reperfusion (2 h post-occlusion). Resveratrol significantly restored ATP content and the activity of mitochondrial respiratory complexes in resveratrol treated group which were severely altered in MCAO group. Western blot analysis showed a marked decrease in cytochrome c release as a result of resveratrol treatment. Electrophoretic migration of hippocampal genomic DNA showed a marked decrease in DNA fragmentation after resveratrol treatment. Notably, expression of Hsp70 and metallothionein (MT) was significantly higher in MCAO group but their expression was more significant in resveratrol treated group. The status of mitochondrial glutathione (GSH), glucose 6-phosphate dehydrogenase (G6-PD) and serum lactate dehydrogenase (LDH) was restored by resveratrol treatment with a significant decrease in mitochondrial lipid peroxidation (LPO), protein carbonyl and intracellular H(2)O(2) content. Resveratrol significantly improved neurological deficits assessed by different scoring methods. Also, the brain infarct volume and brain edema were significantly reduced. Histological analysis of CA1 hippocampal region revealed that resveratrol treatment diminished intercellular and pericellular edema and glial cell infiltration. The findings of this study highlight the ability of resveratrol in anatomical and functional preservation of ischemic neurovascular units and its relevance in the treatment of ischemic stroke.
Collapse
|
42
|
Zebrafish olfactomedin 1 regulates retinal axon elongation in vivo and is a modulator of Wnt signaling pathway. J Neurosci 2008; 28:7900-10. [PMID: 18667622 DOI: 10.1523/jneurosci.0617-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Olfactomedin 1 (Olfm1) is a secreted glycoprotein belonging to a family of olfactomedin domain-containing proteins. It is involved in the regulation of neural crest production in chicken and promotes neuronal differentiation in Xenopus. Here, we investigate the functions of Olfm1 in zebrafish eye development. Overexpression of full-length Olfm1, and especially its BMY form lacking the olfactomedin domain, increased the thickness of the optic nerve and produced a more extended projection field in the optic tectum compared with control embryos. In contrast, injection of olfm1-morpholino oligonucleotide (Olfm1-MO) reduced the eye size, inhibited optic nerve extension, and increased the number of apoptotic cells in the retinal ganglion cell and inner nuclear layers. Overexpression of full-length Olfm1 increased the lateral separation of the expression domains of eye-field markers, rx3 and six3. The Olfm1-MO had the opposite effect. These data suggest that zebrafish Olfm1 may play roles in the early eye determination, differentiation, optic nerve extension, and branching of the retinal ganglion cell axon terminals, with the N-terminal region of Olfm1 being critical for these effects. Injection of RNA encoding WIF-1, a secreted inhibitor of Wnt signaling, caused changes in the expression pattern of rx3 similar to those observed after Olfm1-MO injection. Simultaneous overexpression of WIF-1 and Olfm1 abolished the WIF-1 effect. Physical interaction of WIF-1 and Olfm1 was demonstrated by coimmunoprecipitation experiments. We concluded that Olfm1 serves as a modulator of Wnt signaling.
Collapse
|
43
|
Soubannier V, McBride HM. Positioning mitochondrial plasticity within cellular signaling cascades. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:154-70. [PMID: 18694785 DOI: 10.1016/j.bbamcr.2008.07.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 01/06/2023]
Abstract
Mitochondria evolved from alpha-proteobacteria captured within a host between two and three billion years ago. This origin resulted in the formation of a double-layered organelle resulting in four distinct sub-compartments: the outer membrane, the intermembrane space, the inner membrane and the matrix. The inner membrane is organized in cristae, harboring the respiratory chain and ATP synthase complexes responsible of the oxidative phosphorylation, the main energy-generating system of the cell. It is generally considered that the ultrastructure of the inner membrane provides a large variety of morphologies that facilitate metabolic output. This classical view of mitochondria as bean-shaped organelles was static until in the last decade when new imaging studies and genetic screens provided a more accurate description of a dynamic mitochondrial reticulum that fuse and divide continuously. Since then significant findings have been made in the study of machineries responsible for fusion, fission and motility, however the mechanisms and signals that regulate mitochondrial dynamics are only beginning to emerge. A growing body of evidence indicates that metabolic and cellular signals influence mitochondrial dynamics, leading to a new understanding of how changes in mitochondrial shape can have a profound impact on the functional output of the organelle. The mechanisms that regulate mitochondrial morphology are incompletely understood, but evidence to date suggests that the morphology machinery is modulated through the use of post-translational modifications, including nucleotide-binding proteins, phosphorylation, ubiquitination, SUMOylation, and changes in the lipid environment. This review focuses on the molecular switches that control mitochondrial dynamics and the integration of mitochondrial morphology within cellular signaling cascades.
Collapse
Affiliation(s)
- Vincent Soubannier
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada K1Y 4W7
| | | |
Collapse
|
44
|
WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines. Proc Natl Acad Sci U S A 2008; 105:3112-6. [PMID: 18287015 DOI: 10.1073/pnas.0712180105] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial fission and trafficking to dendritic protrusions have been implicated in dendritic spine development. Here, we show that Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous protein 1 (WAVE1) controls depolarization-induced mitochondrial movement into dendritic spines and filopodia and regulates spine morphogenesis. Depolarization-induced degradation of the p35 regulatory subunit of cyclin-dependent kinase 5 (Cdk5), with the resultant decreased inhibitory phosphorylation on WAVE1, depend on NMDA receptor activation. Thus, WAVE1 dephosphorylation and activation are likely associated with mitochondrial redistribution and spine morphogenesis.
Collapse
|
45
|
Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. J Neurosci 2008; 28:50-9. [PMID: 18171922 DOI: 10.1523/jneurosci.3474-07.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic tolerance is an endogenous neuroprotective mechanism in brain and other organs, whereby prior exposure to brief ischemia produces resilience to subsequent normally injurious ischemia. Although many molecular mechanisms mediate delayed (gene-mediated) ischemic tolerance, the mechanisms underlying rapid (protein synthesis-independent) ischemic tolerance are relatively unknown. Here we describe a novel mechanism for the induction of rapid ischemic tolerance mediated by the ubiquitin-proteasome system. Rapid ischemic tolerance is blocked by multiple proteasome inhibitors [carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132), MG115 (carbobenzoxy-L-leucyl-L-leucyl-L-norvalinal), and clasto-lactacystin-beta-lactone]. A proteomics strategy was used to identify ubiquitinated proteins after preconditioning ischemia. We focused our studies on two actin-binding proteins of the postsynaptic density that were ubiquitinated after rapid preconditioning: myristoylated, alanine-rich C-kinase substrate (MARCKS) and fascin. Immunoblots confirm the degradation of MARCKS and fascin after preconditioning ischemia. The loss of actin-binding proteins promoted actin reorganization in the postsynaptic density and transient retraction of dendritic spines. This rapid and reversible synaptic remodeling reduced NMDA-mediated electrophysiological responses and renders the cells refractory to NMDA receptor-mediated toxicity. The dendritic spine retraction and NMDA neuroprotection after preconditioning ischemia are blocked by actin stabilization with jasplakinolide, as well as proteasome inhibition with MG132. Together these data suggest that rapid tolerance results from changes to the postsynaptic density mediated by the ubiquitin-proteasome system, rendering neurons resistant to excitotoxicity.
Collapse
|
46
|
Nakaya N, Tomarev S. Expression patterns of alternative transcripts of the zebrafish olfactomedin 1 genes. Gene Expr Patterns 2007; 7:723-9. [PMID: 17681890 PMCID: PMC2081154 DOI: 10.1016/j.modgep.2007.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/06/2007] [Accepted: 06/22/2007] [Indexed: 11/19/2022]
Abstract
Olfactomedin 1 (Olfm1) is a founding member of the family of olfactomedin domain-containing proteins. It is a secreted protein that performs different roles in different species. Although the molecular mechanisms of Olfm1 action are not known, its possible roles include the regulation of neural crest cell production, neuronal differentiation, and ischemic neuronal death in adult. Two zebrafish olfm1 genes (olfm1a and olfm1b) located on chromosomes 5 and 21 were identified in zebrafish genome. Four different transcripts are produced from each olfm1 gene. The distribution of these transcripts in the course of zebrafish early development was studied by in situ hybridization and quantitative RT-PCR. Different variants of olfm1 mRNA were present mainly in neurogenic tissues and demonstrated overlapping expression patterns.
Collapse
Affiliation(s)
| | - Stanislav Tomarev
- *Corresponding author. Tel.: +1 301 496 8524. FAX.: +1 301 496 8760. E-mail address:
| |
Collapse
|
47
|
Tomarev SI, Nakaya N. In-vitro study of the activity of ciprofloxacin alone and in combination against strains of Pseudomonas aeruginosa with multiple antibiotic resistance. J Antimicrob Chemother 1986; 40:122-38. [PMID: 19554483 DOI: 10.1007/s12035-009-8076-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/14/2009] [Indexed: 01/25/2023] Open
Abstract
Ciprofloxacin appears to have useful activity against Pseudomonas aeruginosa. We have studied its in-vitro activity against ten strains of Ps. aeruginosa with multiple antibiotic resistance. We have confirmed that ciprofloxacin is very active against Ps. aeruginosa with minimal inhibitory concentrations ranging from 0.07 to 0.7 mg/l. Killing curves show ciprofloxacin to be rapidly bactericidal with no regrowth after 24 h. Checkerboard studies with ciprofloxacin in combination with gentamicin, azlocillin and ceftazidime show no consistent interaction. These studies suggest that ciprofloxacin should prove a useful antibiotic in treating infections caused by multiresistant Ps. aeruginosa.
Collapse
Affiliation(s)
- Stanislav I Tomarev
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, 5635 Fishers Lane, Room 1124, Bethesda, MD, 20892, USA.
| | | |
Collapse
|