1
|
Fitzgerald M. The Bayliss-Starling Prize Lecture: The developmental physiology of spinal cord and cortical nociceptive circuits. J Physiol 2024; 602:1003-1016. [PMID: 38426221 DOI: 10.1113/jp283994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
When do we first experience pain? To address this question, we need to know how the developing nervous system processes potential or real tissue-damaging stimuli in early life. In the newborn, nociception preserves life through reflex avoidance of tissue damage and engagement of parental help. Importantly, nociception also forms the starting point for experiencing and learning about pain and for setting the level of adult pain sensitivity. This review, which arose from the Bayliss-Starling Prize Lecture, focuses on the basic developmental neurophysiology of early nociceptive circuits in the spinal cord, brainstem and cortex that form the building blocks of our first pain experience.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
2
|
Abstract
The transition from childhood to adulthood represents the developmental time frame in which the majority of psychiatric disorders emerge. Recent efforts to identify risk factors mediating the susceptibility to psychopathology have led to a heightened focus on both typical and atypical trajectories of neural circuit maturation. Mounting evidence has highlighted the immense neural plasticity apparent in the developing brain. Although in many cases adaptive, the capacity for neural circuit alteration also induces a state of vulnerability to environmental perturbations, such that early-life experiences have long-lasting implications for cognitive and emotional functioning in adulthood. The authors outline preclinical and neuroimaging studies of normative human brain circuit development, as well as parallel efforts covered in this issue of the Journal, to identify brain circuit alterations in psychiatric disorders that frequently emerge in developing populations. Continued translational research into the interactive effects of neurobiological development and external factors will be crucial for identifying early-life risk factors that may contribute to the emergence of psychiatric illness and provide the key to optimizing treatments.
Collapse
Affiliation(s)
- Heidi C Meyer
- The Department of Psychiatry and the Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York
| | - Francis S Lee
- The Department of Psychiatry and the Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York
| |
Collapse
|
3
|
The lifetime impact of stress on fear regulation and cortical function. Neuropharmacology 2023; 224:109367. [PMID: 36464208 DOI: 10.1016/j.neuropharm.2022.109367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A variety of stressful experiences can influence the ability to form and subsequently inhibit fear memory. While nonsocial stress can impact fear learning and memory throughout the lifespan, psychosocial stressors that involve negative social experiences or changes to the social environment have a disproportionately high impact during adolescence. Here, we review converging lines of evidence that suggest that development of prefrontal cortical circuitry necessary for both social experiences and fear learning is altered by stress exposure in a way that impacts both social and fear behaviors throughout the lifespan. Further, we suggest that psychosocial stress, through its impact on the prefrontal cortex, may be especially detrimental during early developmental periods characterized by higher sociability. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
4
|
Iyasere OS, Durosaro SO, Oyeniran VJ, Daramola JO. Is an increase of glucocorticoid concentrations related to the degree of arousal or valence experienced by an animal to a stimulus? Domest Anim Endocrinol 2022; 81:106752. [PMID: 35868218 DOI: 10.1016/j.domaniend.2022.106752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
Animal welfare is the quality of life as perceived by the animal itself. It is also the state of an animal in its attempt to cope with its environment. Animal welfare has high ethics and economic importance. Thus the need to develop parameters for assessing animal welfare. An acute increase in glucocorticoid (GC) concentration is necessary for adaptation to a stressful situation. Glucocorticoids also play a significant role in metabolic, cardiovascular, and immune systems. Glucocorticoid enhances effective learning through the hippocampus and other normal body functions. That is why we remember events (either positive or negative) associated with strong emotions. Long-term secretion of GCs has catabolic effects. Thus, affecting animal health. Measuring GC is one of the ways of assessing animal welfare. But, high GC concentration does not only indicate pain or suffering. We report that stress and emotion trigger similar physiological responses. So, measuring GC levels cannot differentiate between positive and negative states. We conclude that GC shows circadian rhythms and episodic spikes in some species. Values from a single sample point are not reliable to make conclusions about a condition. Training animals for blood collection may reduce stress. Thus not causing bias in the GC concentration measured.
Collapse
Affiliation(s)
- O S Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State Nigeria.
| | - S O Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - V J Oyeniran
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State Nigeria
| | - J O Daramola
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State Nigeria
| |
Collapse
|
5
|
Schalbetter SM, von Arx AS, Cruz-Ochoa N, Dawson K, Ivanov A, Mueller FS, Lin HY, Amport R, Mildenberger W, Mattei D, Beule D, Földy C, Greter M, Notter T, Meyer U. Adolescence is a sensitive period for prefrontal microglia to act on cognitive development. SCIENCE ADVANCES 2022; 8:eabi6672. [PMID: 35235358 PMCID: PMC8890703 DOI: 10.1126/sciadv.abi6672] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain's resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development.
Collapse
Affiliation(s)
- Sina M. Schalbetter
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Anina S. von Arx
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Faculties of Medicine and Natural Sciences, Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Kara Dawson
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitaetsmedizin, Berlin, Germany
| | - Flavia S. Mueller
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Han-Yu Lin
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - René Amport
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Daniele Mattei
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitaetsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Csaba Földy
- Laboratory of Neural Connectivity, Faculties of Medicine and Natural Sciences, Brain Research Institute, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, Zürich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, UK
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland
- Neuroscience Center Zürich, Zürich, Switzerland
- Corresponding author.
| |
Collapse
|
6
|
Wei F, Zhang L, Ma B, Li W, Deng X, Zheng T, Wang X, Jing Y. Oxytocin system driven by experiences modifies social recognition and neuron morphology in female BALB/c mice. Peptides 2021; 146:170659. [PMID: 34571057 DOI: 10.1016/j.peptides.2021.170659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/20/2022]
Abstract
The oxytocin (OT) system, affected by life experiences, modulates neuron morphology in a sex-specific manner, leading to sex differences in social interactions. To date, few studies have focused on the OT system and social interactions of female mice. In this study, we used maternal deprivation (MD) and its possible treatment, environmental enrichment (EE), to affect social recognition in female BALB/c mice. We checked neuron morphology, synaptic connections, oxytocinergic (OTergic) neurons in the hypothalamus paraventricular nucleus (PVH), and OT receptor (OTR) in the basolateral amygdala (BLA) and layer II/III of the prelimbic cortex (PL). Our results showed that MD induced social recognition impairments, increased OTR levels in the BLA, and, meanwhile, reduced OTergic neurons in the magnocellular region of the PVH (mPVH). Decreased Nissl bodies, increased cell nuclei, and increased dendrites of projection neurons paralleled the increased OTR levels in the BLA of MD mice. EE restored MD-induced the impairments of novel object recognition and sociability; this effect paralleled a decrease in cell density in the PL and an increase in OTergic neurons in the parvocellular regions of the PVH and synaptic connections in the BLA and layer II/III of the PL. Our findings indicate that early life stress such as MD impairs social recognition, and meanwhile, remodels neuron morphology region-specifically in the female brain, apparently in the BLA but slightly in the PL; and EE could partially restore the deficits induced by MD. The results provide new insights into sex differences in the prevalence of psychological development disorders.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, PR China; Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Lang Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Bo Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Wenhao Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiao Deng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Tingjuan Zheng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiaohui Wang
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, Gansu Province, 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
7
|
Wei F, Li W, Ma B, Deng X, Zhang L, Zhao L, Zheng T, Jing Y. Experiences affect social behaviors via altering neuronal morphology and oxytocin system. Psychoneuroendocrinology 2021; 129:105247. [PMID: 33940517 DOI: 10.1016/j.psyneuen.2021.105247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Life experiences, such as maternal deprivation (MD) and environment enrichment (EE), affect social behaviors in the adult. But, the underlying mechanism remains unclear. In the present study, we determined whether neonatal MD induces social deficits, whether postweaning EE restores the deficits, and their effects on neuron morphology and oxytocin (OT)-oxytocin receptor (OTR) system. We found that MD induced repetitive behavior and deficits in novel object recognition and sociability, and EE alleviated these deficits. MD decreased oxytocinergic neurons in the magnocellular hypothalamic paraventricular nucleus (mPVH), which was parallel to the increased OTR levels and dendritic branches of projection neurons in the basolateral amygdala (BLA). EE increased the OTR levels in the prelimbic cortex (PL) and the oxytocinergic neurons in the parvocellular PVH (vPVH), which were parallel to the increased dendritic branches of small pyramidal neurons in the PL and synaptic connections marked with synaptophysin and postsynaptic density protein 95 in the BLA and PL. Together, the results suggest that postweaning EE alleviates the social impairments induced by neonatal MD and OT-OTR system are experience-dependent and associated with social behaviors and neuron morphology.
Collapse
Affiliation(s)
- Fengmei Wei
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Wenhao Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Bo Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Xiao Deng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Lang Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopedics, First Hospital of Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Tingjuan Zheng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu Province 730000, PR China.
| |
Collapse
|
8
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
9
|
Sabihi S, Goodpaster C, Maurer S, Leuner B. GABA in the medial prefrontal cortex regulates anxiety-like behavior during the postpartum period. Behav Brain Res 2021; 398:112967. [PMID: 33075397 PMCID: PMC7722033 DOI: 10.1016/j.bbr.2020.112967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/22/2023]
Abstract
The postpartum period is commonly accompanied by emotional changes, which for many new mothers includes a reduction in anxiety. Previous research in rodents has shown that the postpartum attenuation in anxiety is dependent on offspring contact and has further implicated enhanced GABAergic neurotransmission as an underlying mechanism. However, the specific brain regions where GABA acts to regulate the offspring-induced reduction in postpartum anxiety requires further investigation. Here, we test the hypothesis that offspring interactions suppress anxiety-like behavior in postpartum female rats via GABA signaling in the medial prefrontal cortex (mPFC). Our results show a postpartum reduction in anxiety-like behavior, an effect which was abolished by localized infusion of the GABAA receptor antagonist bicuculline in the mPFC. We also show that activation of GABAA receptors in the mPFC by the agonist muscimol was effective in restoring anxiolyisis in mothers separated from their pups. Lastly, we show that heightened anxiety-like behavior in pup-separated mothers was accompanied by a lower number and percentage of activated GABAergic neurons within the mPFC. Together, these results suggest that mother-offspring interactions reduce anxiety-like behavior in postpartum females via GABAA neurotransmission in the mPFC and in doing so provide insight into mechanisms that may become dysfunctional in mothers who experience high postpartum anxiety.
Collapse
Affiliation(s)
- Sara Sabihi
- Department of Psychology, The Ohio State University Columbus, OH 43210, USA
| | - Caitlin Goodpaster
- Department of Psychology, The Ohio State University Columbus, OH 43210, USA
| | - Skyler Maurer
- Department of Psychology, The Ohio State University Columbus, OH 43210, USA
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Manzano Nieves G, Bravo M, Baskoylu S, Bath KG. Early life adversity decreases pre-adolescent fear expression by accelerating amygdala PV cell development. eLife 2020; 9:55263. [PMID: 32692310 PMCID: PMC7413666 DOI: 10.7554/elife.55263] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Early life adversity (ELA) is associated with increased risk for stress-related disorders later in life. The link between ELA and risk for psychopathology is well established but the developmental mechanisms remain unclear. Using a mouse model of resource insecurity, limited bedding (LB), we tested the effects of LB on the development of fear learning and neuronal structures involved in emotional regulation, the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). LB delayed the ability of peri-weanling (21 days old) mice to express, but not form, an auditory conditioned fear memory. LB accelerated the developmental emergence of parvalbumin (PV)-positive cells in the BLA and increased anatomical connections between PL and BLA. Fear expression in LB mice was rescued through optogenetic inactivation of PV-positive cells in the BLA. The current results provide a model of transiently blunted emotional reactivity in early development, with latent fear-associated memories emerging later in adolescence.
Collapse
Affiliation(s)
| | - Marilyn Bravo
- Department of Neuroscience, Brown University, Providence, United States
| | - Saba Baskoylu
- Department of Neuroscience, Brown University, Providence, United States
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, United States
| |
Collapse
|
11
|
Victoriano G, Santos-Costa N, Mascarenhas DC, Nunes-de-Souza RL. Inhibition of the left medial prefrontal cortex (mPFC) prolongs the social defeat-induced anxiogenesis in mice: Attenuation by NMDA receptor blockade in the right mPFC. Behav Brain Res 2020; 378:112312. [PMID: 31629003 DOI: 10.1016/j.bbr.2019.112312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Chemical inhibition and nitrergic stimulation of the left and right medial prefrontal cortex (L and RmPFC), respectively, provoke anxiety in mice. Moreover, LmPFC inhibition immediately followed by a single social defeat stress (SDS) led to anxiogenesis in mice exposed to the elevated plus maze (EPM) 24 h later. Given that glutamate NMDA (N-methyl-D-aspartate) receptors are densely present in the mPFC, we investigated (i) the time course of LmPFC inhibition + SDS-induced anxiogenesis and (ii) the effects of intra-RmPFC injection of AP-7 (a NMDA receptor antagonist) on this long-lasting anxiety. Male Swiss mice received intra-LmPFC injection of CoCl2 (1 mM) and 10 min later were subjected to a single SDS episode and then (i) exposed to the EPM 2, 5, or 10 days later or (ii) 2 days later, received intra-RmPFC injection of AP-7 (0.05 nmol) and were exposed to the EPM to observe the percentage of open arm entries and time (%OE; %OT) and frequency of closed arm entries (CE). Dorsal but not ventral LmPFC inhibition + SDS reduced open arm exploration 2, 5, and 10 days later relative to that of saline-treated or non-defeated mice. Moreover, this effect is not due to locomotor impairment as assessed using the general activity. Intra-RmPFC AP-7 injection 2 days after LmPFC inhibition + SDS prevented this type of anxiogenesis. These results suggest that the integrity of the LmPFC is important for mice to properly cope with SDS, and that NMDA receptor blockade in the RmPFC facilitates resilience to SDS-induced anxiogenesis in mice.
Collapse
Affiliation(s)
- Gabriel Victoriano
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Nathália Santos-Costa
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Diego Cardozo Mascarenhas
- School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Pickel VM, Bourie F, Chan J, Mackie K, Lane DA, Wang G. Chronic adolescent exposure to ∆9-tetrahydrocannabinol decreases NMDA current and extrasynaptic plasmalemmal density of NMDA GluN1 subunits in the prelimbic cortex of adult male mice. Neuropsychopharmacology 2020; 45:374-383. [PMID: 31323660 PMCID: PMC6901492 DOI: 10.1038/s41386-019-0466-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
Abstract
Adolescence is a vulnerable period of development when limbic connection of the prefrontal cortex (PFC) involved in emotional processing may be rendered dysfunctional by chronic exposure to delta-9-tetrahydrocannabinol (∆9-THC), the major psychoactive compound in marijuana. Cannabinoid-1 receptors (CB1Rs) largely mediate the central neural effects of ∆9-THC and endocannabinoids that regulate NMDA receptor-dependent synaptic plasticity of glutamatergic synapses in the prelimbic prefrontal cortex (PL-PFC). Thus, chronic occupancy of CB1Rs by ∆9-THC during adolescence may competitively decrease the functional expression and activity of NMDA receptors in the mature PL-PFC. We used a multidisciplinary approach to test this hypothesis in adult C57BL/6J male mice that received vehicle or ∆9-THC in escalating doses (2.5-10 mg/kg/ip) through adolescence (postnatal day 29-43). In comparison with vehicle, the mice receiving ∆9-THC showed a hyperpolarized resting membrane potential, decreased spontaneous firing rate, increased current-induced firing threshold, and decreased depolarizing response to NMDA in deep-layer PL-PFC neurons analyzed by current-clamp recordings. Electron microscopic immunolabeling in the PL-PFC of adult mice that had received Δ9-THC only during adolescence showed a significant (1) decrease in the extrasynaptic plasmalemmal density of obligatory GluN1-NMDA subunits in dendrites of all sizes and (2) a shift from cytoplasmic to plasmalemmal distribution of GluN1 in large dendrites receiving mainly inhibitory-type synapses from CB1R-labeled terminals. From these results and concomitant behavioral studies, we conclude that social dysfunctions resulting from excessive intake of ∆9-THC in the increasingly available marijuana products used by male teens may largely reflect circuit defects in PL-PFC networks communicating through endocannabinoid-regulated NMDA receptors.
Collapse
Affiliation(s)
- Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Faye Bourie
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ken Mackie
- Linda and Jack Gill Center for Biomolecular Science, Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47404, USA
| | - Diane A Lane
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
13
|
Arakawa H. Sensorimotor developmental factors influencing the performance of laboratory rodents on learning and memory. Behav Brain Res 2019; 375:112140. [PMID: 31401145 PMCID: PMC6741784 DOI: 10.1016/j.bbr.2019.112140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Behavioral studies in animal models have advanced our knowledge of brain function and the neural mechanisms of human diseases. Commonly used laboratory rodents, such as mice and rats, provide a useful tool for studying the behaviors and mechanisms associated with learning and memory processes which are cooperatively regulated by multiple underlying factors, including sensory and motor performance and emotional/defense innate components. Each of these factors shows unique ontogeny and governs the sustainment of behavioral performance in learning tasks, and thus, understanding the integrative processes of behavioral development are crucial in the accurate interpretation of the functional meaning of learning and memory behaviors expressed in commonly employed behavioral test paradigms. In this review, we will summarize the major findings in the developmental processes of rodent behavior on the basis of the emergence of fundamental components for sustaining learning and memory behaviors. Briefly, most sensory modalities (except for vision) and motor abilities are functional at the juvenile stage, in which several defensive components, including active and passive defensive strategies and risk assessment behavior, emerge. Sex differences are detectable from the juvenile stage through adulthood and are considerable factors that influence behavioral tests. The test paradigms addressed in this review include associative learning (with an emphasis on fear conditioning), spatial learning, and recognition. This basic background information will aid in accurately performing behavioral studies in laboratory rodents and will therefore contribute to reducing inappropriate interpretations of behavioral data and further advance research on learning and memory in rodent models.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St. HSF2/S251, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Junod A, Opendak M, LeDoux JE, Sullivan RM. Development of Threat Expression Following Infant Maltreatment: Infant and Adult Enhancement but Adolescent Attenuation. Front Behav Neurosci 2019; 13:130. [PMID: 31293397 PMCID: PMC6603125 DOI: 10.3389/fnbeh.2019.00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Early life maltreatment by the caregiver constitutes a major risk factor for the development of later-life psychopathologies, including fear-related pathologies. Here, we used an animal model of early life maltreatment induced by the Scarcity-Adversity Model of low bedding (LB) where the mother is given insufficient bedding for nest building while rat pups were postnatal days (PN) 8-12. To assess effects of maltreatment on the expression of threat-elicited defensive behaviors, animals underwent odor-shock threat conditioning at three developmental stages: late infancy (PN18), adolescence (PN45) or adulthood (>PN75) and tested the next day with odor only presentations (cue test). Results showed that in typically developing rats, the response to threat increases with maturation, although experience with maltreatment in early infancy produced enhanced responding to threat in infancy and adulthood, but a decrease in maltreated adolescents. To better understand the unique features of this decreased threat responding in adolescence, c-Fos expression was assessed within the amygdala and ventromedial prefrontal cortex (vmPFC) associated with the cued expression of threat learning. Fos counts across amygdala subregions were lower in LB rats compared to controls, while enhanced c-Fos expression was observed in the vmPFC prelimbic cortex (PL). Correlational analysis between freezing behavior and Fos revealed freezing levels were correlated with CeA in controls, although more global correlations were detected in LB-reared rats, including the BA, LA, and CeA. Functional connectivity analysis between brain regions showed that LB reared rats exhibited more diffuse interconnectivity across amygdala subnuclei, compared the more heterogeneous patterns observed in controls. In addition, functional connectivity between the IL and LA switched from positive to negative in abused adolescents. Overall, these results suggest that in adolescence, the unique developmental decrease in fear expression following trauma is associated with distinct changes in regional function and long-range connectivity, reminiscent of pathological brain function. These results suggest that early life maltreatment from the caregiver perturbs the developmental trajectory of threat-elicited behavior. Indeed, it is possible that this form of trauma, where the infant's safety signal or "safe haven" (the caregiver) is actually the source of the threat, produces distinct outcomes across development.
Collapse
Affiliation(s)
- Anouchka Junod
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Joseph E. LeDoux
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
15
|
Robinson-Drummer PA, Opendak M, Blomkvist A, Chan S, Tan S, Delmer C, Wood K, Sloan A, Jacobs L, Fine E, Chopra D, Sandler C, Kamenetzky G, Sullivan RM. Infant Trauma Alters Social Buffering of Threat Learning: Emerging Role of Prefrontal Cortex in Preadolescence. Front Behav Neurosci 2019; 13:132. [PMID: 31293398 PMCID: PMC6598593 DOI: 10.3389/fnbeh.2019.00132] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Within the infant-caregiver attachment system, the primary caregiver holds potent reward value to the infant, exhibited by infants' strong preference for approach responses and proximity-seeking towards the mother. A less well-understood feature of the attachment figure is the caregiver's ability to reduce fear via social buffering, commonly associated with the notion of a "safe haven" in the developmental literature. Evidence suggests this infant system overlaps with the neural network supporting social buffering (attenuation) of fear in the adults of many species, a network known to involve the prefrontal cortex (PFC). Here, using odor-shock conditioning in young developing rats, we assessed when the infant system transitions to the adult-like PFC-dependent social buffering of threat system. Rat pups were odor-shock conditioned (0.55 mA-0.6 mA) at either postnatal day (PN18; dependent on mother) or 28 (newly independent, weaned at PN23). Within each age group, the mother was present or absent during conditioning, with PFC assessment following acquisition using 14C 2-DG autoradiography and cue testing the following day. Since the human literature suggests poor attachment attenuates the mother's ability to socially buffer the infants, half of the pups at each age were reared with an abusive mother from PN8-12. The results showed that for typical control rearing, the mother attenuated fear in both PN18 and PN28 pups, although the PFC [infralimbic (IL) and ventral prelimbic (vPL) cortices] was only engaged at PN28. Abuse rearing completely disrupted social buffering of pups by the mother at PN18. The results from PN28 pups showed that while the mother modulated learning in both control and abuse-reared pups, the behavioral and PFC effects were attenuated after maltreatment. Our data suggest that pups transition to the adult-like PFC social support circuit after independence from the mother (PN28), and this circuit remains functional after early-life trauma, although its effectiveness appears reduced. This is in sharp contrast to the effects of early life trauma during infancy, where social buffering of the infant is more robustly impacted. We suggest that the infant social buffering circuit is disengaged by early-life trauma, while the adolescent PFC-dependent social buffering circuit may use a safety signal with unreliable safety value.
Collapse
Affiliation(s)
- Patrese A. Robinson-Drummer
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| | - Anna Blomkvist
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Stephanie Chan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Stephen Tan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Cecilia Delmer
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Kira Wood
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Aliza Sloan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Lily Jacobs
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Eliana Fine
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Divija Chopra
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Chaim Sandler
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Giselle Kamenetzky
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Instituto de Investigaciones Médicas A Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Cowan CSM, Richardson R. A Brief Guide to Studying Fear in Developing Rodents: Important Considerations and Common Pitfalls. ACTA ACUST UNITED AC 2019; 83:e44. [PMID: 30040208 DOI: 10.1002/cpns.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development is a time of rapid change that sets the pathway to adult functioning across all aspects of physical and mental health. Developmental studies can therefore offer insight into the unique needs of individuals at different stages of normal development as well as the etiology of various disease states. The aim of this overview is to provide an introduction to the practical implementation of developmental studies in rats and mice, with an emphasis on the study of learned fear. We first discuss how developmental factors may influence experimental outcomes for any study. This is followed by a discussion of methodological issues to consider when conducting studies of developing rodents, highlighting examples from the literature on learned fear. Throughout, we offer some recommendations to guide researchers on best practice in developmental studies. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Rick Richardson
- School of Psychology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Cowan CSM, Stylianakis AA, Richardson R. Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Dev Cogn Neurosci 2019; 37:100627. [PMID: 30981894 PMCID: PMC6969299 DOI: 10.1016/j.dcn.2019.100627] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Early-life stress has pervasive, typically detrimental, effects on physical and mental health across the lifespan. In rats, maternal-separation stress results in premature expression of an adult-like profile of fear regulation that predisposes stressed rats to persistent fear, one of the hallmarks of clinical anxiety. Probiotic treatment attenuates the effects of maternal separation on fear regulation. However, the neural pathways underlying these behavioral changes are unknown. Here, we examined the neural correlates of stress-induced alterations in fear behavior and their reversal by probiotic treatment. Male Sprague-Dawley rats were exposed to either standard rearing conditions or maternal-separation stress (postnatal days [P] 2–14). Some maternally-separated (MS) animals were also exposed to probiotics (Lactobacillus rhamnosus and L. helveticus) via the maternal drinking water during the period of stress. Using immunohistochemistry, we demonstrated that stressed rat pups prematurely exhibit adult-like engagement of the medial prefrontal cortex during fear regulation, an effect that can be prevented using a probiotic treatment. The present results add to the cross-species evidence that early adversity hastens maturation in emotion-related brain circuits. Importantly, our results also demonstrate that the precocious neural maturation in stressed infants is prevented by a non-invasive probiotic treatment.
Collapse
Affiliation(s)
- Caitlin S M Cowan
- School of Psychology, The University of New South Wales, Sydney, Australia.
| | | | - Rick Richardson
- School of Psychology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Abstract
The transition from childhood to adulthood represents the developmental time frame in which the majority of psychiatric disorders emerge. Recent efforts to identify risk factors mediating the susceptibility to psychopathology have led to a heightened focus on both typical and atypical trajectories of neural circuit maturation. Mounting evidence has highlighted the immense neural plasticity apparent in the developing brain. Although in many cases adaptive, the capacity for neural circuit alteration also induces a state of vulnerability to environmental perturbations, such that early-life experiences have long-lasting implications for cognitive and emotional functioning in adulthood. The authors outline preclinical and neuroimaging studies of normative human brain circuit development, as well as parallel efforts covered in this issue of the Journal, to identify brain circuit alterations in psychiatric disorders that frequently emerge in developing populations. Continued translational research into the interactive effects of neurobiological development and external factors will be crucial for identifying early-life risk factors that may contribute to the emergence of psychiatric illness and provide the key to optimizing treatments.
Collapse
Affiliation(s)
- Heidi C Meyer
- The Department of Psychiatry and the Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York
| | - Francis S Lee
- The Department of Psychiatry and the Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York
| |
Collapse
|
19
|
Patrick F, Kempton MJ, Marwood L, Williams SCR, Young AH, Perkins AM. Brain activation during human defensive behaviour: A systematic review and preliminary meta-analysis. Neurosci Biobehav Rev 2019; 98:71-84. [PMID: 30611801 DOI: 10.1016/j.neubiorev.2018.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
The neural underpinnings of defensive behaviour have implications for both basic research and clinical translation. This review systematically collates published research on neural response during simple avoidance of threat and approach-avoidance behaviour during goal-conflicting situations and presents an exploratory meta-analysis of available whole-brain data. Scopus, PsychInfo and Web of Science databases were searched for the period up to March 2018. 1348 simple avoidance and 1910 goal-conflict publications were initially identified; following review, 8 simple avoidance and 11 goal-conflict studies were included, with 5 datasets used in a preliminary meta-analysis. A move from forebrain-to-midbrain activation as threat becomes more pertinent was noted, indicating support for the Reinforcement Sensitivity Theory of behaviour and general compatibility with animal work. However, these findings were not reflected in the subsequent preliminary meta-analysis. This review highlights the considerable heterogeneity in currently available defensive behaviour paradigms and the lack of research in clinically relevant populations.
Collapse
Affiliation(s)
- Fiona Patrick
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Lindsey Marwood
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| | - Adam M Perkins
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research, Biomedical Research Centre, South London & Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Gee DG, Bath KG, Johnson CM, Meyer HC, Murty VP, van den Bos W, Hartley CA. Neurocognitive Development of Motivated Behavior: Dynamic Changes across Childhood and Adolescence. J Neurosci 2018; 38:9433-9445. [PMID: 30381435 PMCID: PMC6209847 DOI: 10.1523/jneurosci.1674-18.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The ability to anticipate and respond appropriately to the challenges and opportunities present in our environments is critical for adaptive behavior. Recent methodological innovations have led to substantial advances in our understanding of the neurocircuitry supporting such motivated behavior in adulthood. However, the neural circuits and cognitive processes that enable threat- and reward-motivated behavior undergo substantive changes over the course of development, and these changes are less well understood. In this article, we highlight recent research in human and animal models demonstrating how developmental changes in prefrontal-subcortical neural circuits give rise to corresponding changes in the processing of threats and rewards from infancy to adulthood. We discuss how these developmental trajectories are altered by experiential factors, such as early-life stress, and highlight the relevance of this research for understanding the developmental onset and treatment of psychiatric disorders characterized by dysregulation of motivated behavior.
Collapse
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT 06520,
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Carolyn M Johnson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA 19122
| | - Wouter van den Bos
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands, and
| | | |
Collapse
|
21
|
Arakawa H, Iguchi Y. Ethological and multi-behavioral analysis of learning and memory performance in laboratory rodent models. Neurosci Res 2018; 135:1-12. [DOI: 10.1016/j.neures.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022]
|
22
|
Prefrontal cortex-dependent innate behaviors are altered by selective knockdown of Gad1 in neuropeptide Y interneurons. PLoS One 2018; 13:e0200809. [PMID: 30024942 PMCID: PMC6053188 DOI: 10.1371/journal.pone.0200809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/09/2018] [Indexed: 12/23/2022] Open
Abstract
GABAergic dysfunction has been implicated in a variety of neurological and psychiatric disorders, including anxiety disorders. Anxiety disorders are the most common type of psychiatric disorder during adolescence. There is a deficiency of GABAergic transmission in anxiety, and enhancement of GABA transmission through pharmacological means reduces anxiety behaviors. GAD67—the enzyme responsible for GABA production–has been linked to anxiety disorders. One class of GABAergic interneurons, Neuropeptide Y (NPY) expressing cells, is abundantly found in brain regions associated with anxiety and fear learning, including prefrontal cortex, hippocampus and amygdala. Additionally, NPY itself has been shown to have anxiolytic effects, and loss of NPY+ interneurons enhances anxiety behaviors. A previous study showed that knockdown of Gad1 from NPY+ cells led to reduced anxiety behaviors in adult mice. However, the role of GABA release from NPY+ interneurons in adolescent anxiety is unclear. Here we used a transgenic mouse that reduces GAD67 in NPY+ cells (NPYGAD1-TG) through Gad1 knockdown and tested for effects on behavior in adolescent mice. Adolescent NPYGAD1-TG mice showed enhanced anxiety-like behavior and sex-dependent changes in locomotor activity. We also found enhancement in two other innate behavioral tasks, nesting construction and social dominance. In contrast, fear learning was unchanged. Because we saw changes in behavioral tasks dependent upon prefrontal cortex and hippocampus, we investigated the extent of GAD67 knockdown in these regions. Immunohistochemistry revealed a 40% decrease in GAD67 in NPY+ cells in prefrontal cortex, indicating a significant but incomplete knockdown of GAD67. In contrast, there was no decrease in GAD67 in NPY+ cells in hippocampus. Consistent with this, there was no change in inhibitory synaptic transmission in hippocampus. Our results show the behavioral impact of cell-specific interneuron dysfunction and suggest that GABA release by NPY+ cells is important for regulating innate prefrontal cortex-dependent behavior in adolescents.
Collapse
|
23
|
Carlisi CO, Robinson OJ. The role of prefrontal-subcortical circuitry in negative bias in anxiety: Translational, developmental and treatment perspectives. Brain Neurosci Adv 2018; 2:2398212818774223. [PMID: 30167466 PMCID: PMC6097108 DOI: 10.1177/2398212818774223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Anxiety disorders are the most common cause of mental ill health in the developed world, but our understanding of symptoms and treatments is not presently grounded in knowledge of the underlying neurobiological mechanisms. In this review, we discuss accumulating work that points to a role for prefrontal-subcortical brain circuitry in driving a core psychological symptom of anxiety disorders - negative affective bias. Specifically, we point to converging work across humans and animal models, suggesting a reciprocal relationship between dorsal and ventral prefrontal-amygdala circuits in promoting and inhibiting negative bias, respectively. We discuss how the developmental trajectory of these circuits may lead to the onset of anxiety during adolescence and, moreover, how effective pharmacological and psychological treatments may serve to shift the balance of activity within this circuitry to ameliorate negative bias symptoms. Together, these findings may bring us closer to a mechanistic, neurobiological understanding of anxiety disorders and their treatment.
Collapse
Affiliation(s)
- Christina O. Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Oliver J. Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
24
|
Garcia R. Neurobiology of fear and specific phobias. ACTA ACUST UNITED AC 2017; 24:462-471. [PMID: 28814472 PMCID: PMC5580526 DOI: 10.1101/lm.044115.116] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
Fear, which can be expressed innately or after conditioning, is triggered when a danger or a stimulus predicting immediate danger is perceived. Its role is to prepare the body to face this danger. However, dysfunction in fear processing can lead to psychiatric disorders in which fear outweighs the danger or possibility of harm. Although recognized as highly debilitating, pathological fear remains insufficiently treated, indicating the importance of research on fear processing. The neurobiological basis of normal and pathological fear reactions is reviewed in this article. Innate and learned fear mechanisms, particularly those involving the amygdala, are considered. These fear mechanisms are also distinguished in specific phobias, which can indeed be nonexperiential (implicating innate, learning-independent mechanisms) or experiential (implicating learning-dependent mechanisms). Poor habituation and poor extinction are presented as dysfunctional mechanisms contributing to persistence of nonexperiential and experiential phobias, respectively.
Collapse
Affiliation(s)
- René Garcia
- Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université & Centre National de la Recherche Scientifique, 13385 Marseille, France
| |
Collapse
|
25
|
Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats. J Neurosci 2017; 36:6634-50. [PMID: 27335397 DOI: 10.1523/jneurosci.0632-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A major component of perception is hedonic valence: perceiving stimuli as pleasant or unpleasant. Here, we used early olfactory experiences that shape odor preferences and aversions to explore developmental plasticity in circuits mediating odor hedonics. We used 2-deoxyglucose autoradiographic mapping of neural activity to identify circuits differentially activated by biologically relevant preferred and avoided odors across rat development. We then further probed this system by increasing or decreasing hedonic value. Using both region of interest and functional connectivity analyses, we identified regions within primary olfactory, amygdala/hippocampal, and prefrontal cortical networks that were activated differentially by maternal and male odors. Although some activated regions remained stable across development (postnatal days 7-23), there was a developmental emergence of others that resulted in an age-dependent elaboration of hedonic-response-specific circuitry despite stable behavioral responses (approach/avoidance) to the odors across age. Hedonic responses to these biologically important odors were modified through diet suppression of the maternal odor and co-rearing with a male. This allowed assessment of hedonic circuits in isolation of the specific odor quality and/or intensity. Early experience significantly modified odor-evoked circuitry in an age-dependent manner. For example, co-rearing with a male, which induced pup attraction to male odor, reduced activity in amygdala regions normally activated by the unfamiliar avoided male odor, making this region more consistent with maternal odor. Understanding the development of odor hedonics, particularly within the context of altered early life experience, provides insight into the development of sensory processes, food preferences, and the formation of social affiliations, among other behaviors. SIGNIFICANCE STATEMENT Odor hedonic valence controls approach-avoidance behaviors, but also modulates ongoing behaviors ranging from food preferences and social affiliation with the caregiver to avoidance of predator odors. Experiences can shape hedonic valence. This study explored brain circuitry involved in odor hedonic encoding throughout development using maternal and predator odors and assessed the effects of early life experience on odor hedonic encoding by increasing/decreasing the hedonic value of these odors. Understanding the role of changing brain circuitry during development and its impact on behavioral function is critical for understanding sensory processing across development. These data converge with exciting literature on the brain's hedonic network and highlight the significant role of early life experience in shaping the neural networks of highly biologically relevant stimuli.
Collapse
|
26
|
Vergara MD, Keller VN, Fuentealba JA, Gysling K. Activation of type 4 dopaminergic receptors in the prelimbic area of medial prefrontal cortex is necessary for the expression of innate fear behavior. Behav Brain Res 2017; 324:130-137. [PMID: 28212942 DOI: 10.1016/j.bbr.2017.01.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 11/25/2022]
Abstract
The prelimbic area (PL) of the medial Prefrontal cortex (mPFC) is involved in the acquisition and expression of conditioned and innate fear. Both types of fear share several neuronal pathways. It has been documented that dopamine (DA) plays an important role in the regulation of aversive memories in the mPFC. The exposure to an aversive stimulus, such as the smell of a predator odor or the exposure to footshock stress is accompanied by an increase in mPFC DA release. Evidence suggests that the type 4 dopaminergic receptor (D4R) is the molecular target through which DA modulates fear expression. In fact, the mPFC is the brain region with the highest expression of D4R; however, the role of D4R in the expression of innate fear has not been fully elucidated. Therefore, the principal objective of this work was to evaluate the participation of mPFC D4R in the expression of innate fear. Rats were exposed to the elevated plus-maze (EPM) and to the cat odor paradigm after the intra PL injection of L-745,870, selective D4R antagonist, to measure the expression of fear-related behaviors. Intra PL injection of L-745,870 increased the time spent in the EPM open arms and decreased freezing behavior in the cat odor paradigm. Our results also showed that D4R is expressed in GABAergic and pyramidal neurons in the PL region of PFC. Thus, D4R antagonism in the PL decreases the expression of innate fear-behavior indicating that the activation of D4R in the PL is necessary for the expression of innate fear-behavior.
Collapse
Affiliation(s)
- Macarena D Vergara
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victor N Keller
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José A Fuentealba
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
27
|
Shirayama Y, Hashimoto K. Effects of a single bilateral infusion of R-ketamine in the rat brain regions of a learned helplessness model of depression. Eur Arch Psychiatry Clin Neurosci 2017; 267:177-182. [PMID: 27480092 DOI: 10.1007/s00406-016-0718-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/23/2016] [Indexed: 01/08/2023]
Abstract
Effects of a single bilateral infusion of R-enantiomer of ketamine in rat brain regions of learned helplessness model of depression were examined. A single bilateral infusion of R-ketamine into infralimbic (IL) portion of medial prefrontal cortex (mPFC), CA3 and dentate gyrus (DG) of the hippocampus showed antidepressant effects. By contrast, a single bilateral infusion of R-ketamine into prelimbic (PL) portion of mPFC, shell and core of nucleus accumbens, basolateral amygdala and central nucleus of the amygdala had no effect. This study suggests that IL of mPFC, CA3 and DG of hippocampus might be involved in the antidepressant actions of R-ketamine.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Chiba, Japan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
28
|
Tilbrook AJ, Ralph CR. Neurophysiological assessment of animal welfare. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Livestock industries such as the pork industry are striving to continuously improve the welfare of animals. Inherent to the success of this is the ability to rigorously assess the welfare of animals in the field. While much progress has been made towards the development of methodology to assess the welfare of animals, there have been major challenges to establishing practical and definitive procedures to assess the welfare of animals. These include, but are not limited to, establishing a universally accepted definition of animal welfare and the choice of measures that are taken from the animal to assess its welfare. Measures of biological functioning and affective (emotional) state of the animal have been common, but there have been many limitations in terms of practical application. Some of the reasons for this include the choice of physiological measures, which are often restrictive in providing information about welfare, affective measures being restricted to specific behavioural measures and the biological-functioning and affective-states approaches being undertaken in isolation. Biological and affective functioning are integrated and controlled by the brain. Many of the regions of the brain involved in the regulation of biological and emotional functioning have been identified. Furthermore, there is considerable knowledge about the roles and interactions among the neurophysiological systems in these brain regions. We propose a strategy to use this knowledge to develop procedures to assess animal welfare. The initial phase is to identify the neural pathways that regulate the physiological and emotional processes that allow animals to adapt and cope. The next phase is to determine the activity of these pathways in conscious animals in the field. This requires the identification of biomarkers of specific neuronal activity that can be measured in the conscious animal in the field. Emerging technologies are offering promise in the identification of such biomarkers and some of these are already applicable to the pig. There is now the opportunity to apply this strategy within the pork industry to assess the welfare of pigs throughout the value chain.
Collapse
|
29
|
Barr GA, Wang S, Weisshaar CL, Winkelstein BA. Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat. Front Neurol 2016; 7:223. [PMID: 28018284 PMCID: PMC5156703 DOI: 10.3389/fneur.2016.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a “switch” during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal days 21–28 (PN21–PN28), linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21, or 28 days of age) to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short-term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia 1 day after compression injury when performed at PN14, 21, or 28. Thermal withdrawal latencies returned to near baseline by 7 days postsurgery when the injuries were at PN14, and lasted up to 14 days when the injury was imposed at PN28. There was mechanical allodynia following injury at 1 day postinjury and at 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7, and 14 days postinjury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus, we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21. This may be due to the use of a transient, and not sustained, compression ligation model.
Collapse
Affiliation(s)
- Gordon A Barr
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Shaoning Wang
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Christine L Weisshaar
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| | - Beth A Winkelstein
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
30
|
Ralph CR, Tilbrook AJ. INVITED REVIEW: The usefulness of measuring glucocorticoids for assessing animal welfare. J Anim Sci 2016; 94:457-70. [PMID: 27065116 DOI: 10.2527/jas.2015-9645] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids (corticosterone in birds and rodents and cortisol in all other mammals) are glucoregulatory hormones that are synthesized in response to a range of stimuli including stress and are regularly measured in the assessment of animal welfare. Glucocorticoids have many normal or non-stress-related functions, and glucocorticoid synthesis can increase in response to pleasure, excitement, and arousal as well as fear, anxiety, and pain. Often, when assessing animal welfare, little consideration is given to normal non-stress-related glucocorticoid functions or the complex mechanisms that regulate the effects of glucocorticoids on physiology. In addition, it is rarely acknowledged that increased glucocorticoid synthesis can indicate positive welfare states or that a stress response can increase fitness and improve the welfare of an animal. In this paper, we review how and when glucocorticoid synthesis increases, the actions mediated through type I and type II glucocorticoid receptors, the importance of corticosteroid-binding globulin, the role of 11 β-hydroxysteroid dehydrogenase, and the key aspects of neurophysiology relevant to activating the hypothalamo-pituitary-adrenal axis. This is discussed in the context of animal welfare assessment, particularly under the biological functioning and affective states frameworks. We contend that extending the assessment of animal welfare to key brain regions afferent to the hypothalamus and incorporating the aspects of glucocorticoid physiology that affect change in target tissue will advance animal welfare science and inspire more comprehensive assessment of the welfare of animals.
Collapse
|
31
|
Oliver CF, Kabitzke P, Serrano P, Egan LJ, Barr GA, Shair HN, Wiedenmayer C. Repeated recall and PKMζ maintain fear memories in juvenile rats. Learn Mem 2016; 23:710-713. [PMID: 27918276 PMCID: PMC5110988 DOI: 10.1101/lm.042549.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/20/2016] [Indexed: 11/24/2022]
Abstract
We examined the neural substrates of fear memory formation and maintenance when repeated recall was used to prevent forgetting in young animals. In contrast to adult rats, juveniles failed to show contextual fear responses at 4 d post-fear conditioning. Reconsolidation sessions 3 and 6 d after conditioning restored contextual fear responses in juveniles 7 d after initial training. In juveniles that received reconsolidation sessions, protein kinase M zeta (PKMζ) increased in the amygdala, but not in the hippocampus. These data suggest that repeated reminders and increased PKMζ maintain fear responses in juvenile animals that otherwise would not exhibit this behavior.
Collapse
Affiliation(s)
- Chicora F Oliver
- Department of Psychology, Brain and Cognitive Sciences, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | - Peter Serrano
- The Graduate Center of CUNY, New York, New York 10016, USA
- Department of Psychology, Hunter College, New York, New York 10065, USA
| | - Laura J Egan
- Department of Psychology, Queens College, New York, New York 11367, USA
| | - Gordon A Barr
- Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Harry N Shair
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York 10032, USA
| | - Christoph Wiedenmayer
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
32
|
Reichelt AC. Adolescent Maturational Transitions in the Prefrontal Cortex and Dopamine Signaling as a Risk Factor for the Development of Obesity and High Fat/High Sugar Diet Induced Cognitive Deficits. Front Behav Neurosci 2016; 10:189. [PMID: 27790098 PMCID: PMC5061823 DOI: 10.3389/fnbeh.2016.00189] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
Adolescence poses as both a transitional period in neurodevelopment and lifestyle practices. In particular, the developmental trajectory of the prefrontal cortex (PFC), a critical region for behavioral control and self-regulation, is enduring, not reaching functional maturity until the early 20 s in humans. Furthermore, the neurotransmitter dopamine is particularly abundant during adolescence, tuning the brain to rapidly learn about rewards and regulating aspects of neuroplasticity. Thus, adolescence is proposed to represent a period of vulnerability towards reward-driven behaviors such as the consumption of palatable high fat and high sugar diets. This is reflected in the increasing prevalence of obesity in children and adolescents as they are the greatest consumers of “junk foods”. Excessive consumption of diets laden in saturated fat and refined sugars not only leads to weight gain and the development of obesity, but experimental studies with rodents indicate they evoke cognitive deficits in learning and memory process by disrupting neuroplasticity and altering reward processing neurocircuitry. Consumption of these high fat and high sugar diets have been reported to have a particularly pronounced impact on cognition when consumed during adolescence, demonstrating a susceptibility of the adolescent brain to enduring cognitive deficits. The adolescent brain, with heightened reward sensitivity and diminished behavioral control compared to the mature adult brain, appears to be a risk for aberrant eating behaviors that may underpin the development of obesity. This review explores the neurodevelopmental changes in the PFC and mesocortical dopamine signaling that occur during adolescence, and how these potentially underpin the overconsumption of palatable food and development of obesogenic diet-induced cognitive deficits.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Health and Biomedical Sciences, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
33
|
Connor DA, Gould TJ. The role of working memory and declarative memory in trace conditioning. Neurobiol Learn Mem 2016; 134 Pt B:193-209. [PMID: 27422017 PMCID: PMC5755400 DOI: 10.1016/j.nlm.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/18/2023]
Abstract
Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
34
|
Ferri SL, Kreibich AS, Torre M, Piccoli CT, Dow H, Pallathra AA, Li H, Bilker WB, Gur RC, Abel T, Brodkin ES. Activation of basolateral amygdala in juvenile C57BL/6J mice during social approach behavior. Neuroscience 2016; 335:184-94. [PMID: 27520082 DOI: 10.1016/j.neuroscience.2016.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022]
Abstract
There is a strong need to better understand the neurobiology of juvenile sociability (tendency to seek social interaction), a phenotype of central relevance to autism spectrum disorders (ASD). Although numerous genetic mouse models of ASD showing reduced sociability have been reported, and certain brain regions, such as the amygdala, have been implicated in sociability, there has been little emphasis on delineating brain structures and circuits activated during social interactions in the critical juvenile period of the mouse strain that serves as the most common genetic background for these models-the highly sociable C57BL/6J (B6) strain. We measured expression of the immediate early genes Fos and Egr-1 to map activation of brain regions following the Social Approach Test (SAT) in juvenile male B6 mice. We hypothesized that juvenile B6 mice would show activation of the amygdala during social interactions. The basolateral amygdala (BLA) was activated by social exposure in highly sociable, 4-week-old B6 mice. In light of these data, and the many lines of evidence indicating alteration of amygdala circuits in human ASD, future studies are warranted to assess structural and functional alterations in the BLA, particularly at BLA synapses, in various mouse models of ASD.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-6168, USA
| | - Arati S Kreibich
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Matthew Torre
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Cara T Piccoli
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Holly Dow
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Ashley A Pallathra
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA
| | - Warren B Bilker
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 10 Gates Pavilion, Philadelphia, PA 19104-4283, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-6168, USA
| | - Edward S Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA.
| |
Collapse
|
35
|
The infralimbic and prelimbic medial prefrontal cortices have differential functions in the expression of anxiety-like behaviors in mice. Behav Brain Res 2016; 304:120-4. [DOI: 10.1016/j.bbr.2016.01.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 11/17/2022]
|
36
|
Abstract
Over-generalization of dangerous stimuli is a possible etiological account of anxiety. Recently, we demonstrated it could result from alterations in early perceptual mechanisms, i.e., a fundamental change in the way the stimulus is perceived. Yet it is still unclear if these mechanisms already exist in youth, or develop only later. The purpose of this study was therefore to explore the mechanism of generalization in youth suffering from anxiety disorders. Children and adolescents with anxiety disorders and age-matched control participants underwent a conditioning task where a loss or gain outcome was associated with two well-separated tones. A generalization probe then followed in which different surrounding tones were presented and classified. Generalization curves and changes in discrimination abilities were compared between groups and according to the background variables. We found that patients had lower perceptual discrimination thresholds after conditioning, and tended to have wider generalization curve. Relative enhanced generalization was observed in adolescents with anxiety, in males, and as the level of anxiety rose. Our results suggest that over-generalization in anxiety can start already during adolescence, and may suggest that an early perceptual source can give rise to later more cognitive over-generalization during adult anxiety.
Collapse
Affiliation(s)
- Nurit El-Bar
- a Child and Adolescent Psychiatric Outpatient Clinic , Ness Ziona mental health center , Ness Ziona , Israel
| | - Offir Laufer
- b Department of Neurobiology , Weizmann Institute of science , Rehovot , Israel
| | - Roni Yoran-Hegesh
- a Child and Adolescent Psychiatric Outpatient Clinic , Ness Ziona mental health center , Ness Ziona , Israel
| | - Rony Paz
- b Department of Neurobiology , Weizmann Institute of science , Rehovot , Israel
| |
Collapse
|
37
|
Bentefour Y, Rakibi Y, Bennis M, Ba-M'hamed S, Garcia R. Paroxetine treatment, following behavioral suppression of PTSD-like symptoms in mice, prevents relapse by activating the infralimbic cortex. Eur Neuropsychopharmacol 2016; 26:195-207. [PMID: 26706692 DOI: 10.1016/j.euroneuro.2015.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022]
Abstract
Clinical studies have shown that post-traumatic stress disorder (PTSD) remission, induced by selective serotonin reuptake inhibitor (SSRI) treatment, is associated with increased prefrontal activation during post-treatment symptom provocation. Other studies have shown that continuation SSRI treatment after remitting from PTSD reduces the rate of relapse. The aim of the present preclinical study was to investigate the relationship between post-treatment prefrontal changes and PTSD relapse prevention. Avoidance conditioning (with a 1.5-mA foot-shock), avoidance extinction and a trauma priming exposure (with a 0.3-mA foot-shock) were used in mice to induce, suppress and reactivate PTSD-like symptoms (including avoidance, fear sensitization, enhanced contextual fear, and anxiety-like behavior), respectively. Paroxetine, injected at 8 mg/kg/day (7 days), was used as SSRI treatment. PTSD-like symptoms were present for at least 30 days and resistant to paroxetine treatment. However, after extinction training (suppressing all PTSD-like symptoms), paroxetine treatment prevented symptom reactivation. Paroxetine treatment also induced infralimbic neuronal activation. However, infralimbic functional tetrodotoxin inactivation abolished the preventive effect of paroxetine treatment on symptom reactivation. The data reveal a potential ability of treatments inducing infralimbic activation to provide prophylactic protection against PTSD relapse.
Collapse
Affiliation(s)
- Yassine Bentefour
- Laboratoire de Pharmacologie, Neurobiologie et Comportement, Centre National de la Recherche Scientifique et Technique, URAC 37, Cadi Ayyad Université, Marrakech, Maroc
| | - Youness Rakibi
- Laboratoire de Pharmacologie, Neurobiologie et Comportement, Centre National de la Recherche Scientifique et Technique, URAC 37, Cadi Ayyad Université, Marrakech, Maroc
| | - Mohamed Bennis
- Laboratoire de Pharmacologie, Neurobiologie et Comportement, Centre National de la Recherche Scientifique et Technique, URAC 37, Cadi Ayyad Université, Marrakech, Maroc
| | - Saadia Ba-M'hamed
- Laboratoire de Pharmacologie, Neurobiologie et Comportement, Centre National de la Recherche Scientifique et Technique, URAC 37, Cadi Ayyad Université, Marrakech, Maroc
| | - René Garcia
- Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université & Centre National de la Recherche Scientifique, 13385 Marseille, France.
| |
Collapse
|
38
|
Schayek R, Maroun M. Differences in stress-induced changes in extinction and prefrontal plasticity in postweanling and adult animals. Biol Psychiatry 2015; 78:159-66. [PMID: 25434484 DOI: 10.1016/j.biopsych.2014.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/10/2014] [Accepted: 10/07/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Postweaning is a critical developmental stage during which the medial prefrontal cortex (mPFC) undergoes major changes and the brain is vulnerable to the effects of stress. Surprisingly, the engagement of the mPFC in extinction of fear was reported to be identical in postweanling (PW) and adult animals. Here, we examined whether the effect of stress on extinction and mPFC plasticity would be similar in PW and adult animals. METHODS PW and adult animals were fear conditioned and exposed to the elevated platform stress paradigm, and extinction and long-term potentiation were examined. The dependency of stress-induced modulation of extinction and plasticity on N-methyl-D-aspartate receptors was examined as well. RESULTS We show that exposure to stress is associated with reduction of fear and enhanced induction of long-term potentiation (LTP) in PW pups, in contrast to its effects in adult animals. Furthermore, we report opposite effects in the occlusion of LTP following the enhanced or impaired extinction in the two age groups and that the reversal of the effects of stress is independent of N-methyl-D-aspartate receptor activation in PW animals. CONCLUSIONS Our results show that qualitatively different mechanisms control the modulatory effects of stress on extinction and plasticity in postweanling pups compared with adult rats. Our results point to significant differences between young and adult brains, which may have potential implications for the treatment of anxiety and stress disorders across development.
Collapse
Affiliation(s)
- Rachel Schayek
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa Israel..
| |
Collapse
|
39
|
Bi LL, Chen M, Pei L, Shu S, Jin HJ, Yan HL, Wei N, Wang S, Yang X, Yan HH, Xu MM, Yao CY, Li N, Tang N, Wu JH, Zhu HZ, Li H, Cai Y, Guo Y, Shi Y, Tian Q, Zhu LQ, Lu YM. Infralimbic Endothelin1 Is Critical for the Modulation of Anxiety-Like Behaviors. Mol Neurobiol 2015; 53:2054-2064. [PMID: 25899174 DOI: 10.1007/s12035-015-9163-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Endothelin1 (ET1) is a potent vasoconstrictor that is also known to be a neuropeptide that is involved in neural circuits. We examined the role of ET1 that has been implicated in the anxiogenic process. We found that infusing ET1 into the IL cortex increased anxiety-like behaviors. The ET(A) receptor (ET(A)R) antagonist (BQ123) but not the ET(B) receptor (ET(B)R) antagonist (BQ788) alleviated ET1-induced anxiety. ET1 had no effect on GABAergic neurotransmission or NMDA receptor (NMDAR)-mediated neurotransmission, but increased AMPA receptor (AMPAR)-mediated excitatory synaptic transmission. The changes in AMPAR-mediated excitatory postsynaptic currents were due to presynaptic mechanisms. Finally, we found that the AMPAR antagonists (CNQX) and BQ123 reversed ET1's anxiogenic effect, with parallel and corresponding electrophysiological changes. Moreover, infusing CNQX + BQ123 into the IL had no additional anxiolytic effect compared to CNQX treatment alone. Altogether, our findings establish a previously unknown anxiogenic action of ET1 in the IL cortex. AMPAR-mediated glutamatergic neurotransmission may underlie the mechanism of ET1-ET(A)R signaling pathway in the regulation of anxiety.
Collapse
Affiliation(s)
- Lin-Lin Bi
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Pei
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Shu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Lin Yan
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wei
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Wang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Huan-Huan Yan
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Meng Xu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Ye Yao
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Hua Wu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Ze Zhu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You Cai
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Guo
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shi
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You-Ming Lu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Chocyk A, Majcher-Maślanka I, Dudys D, Przyborowska A, Wędzony K. Impact of early-life stress on the medial prefrontal cortex functions - a search for the pathomechanisms of anxiety and mood disorders. Pharmacol Rep 2014; 65:1462-70. [PMID: 24552993 DOI: 10.1016/s1734-1140(13)71506-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/03/2013] [Indexed: 01/21/2023]
Abstract
Although anxiety and mood disorders (MDs) are the most common mental diseases, the etiologies and mechanisms of these psychopathologies are still a matter of debate. The medial prefrontal cortex (mPFC) is a brain structure that is strongly implicated in the pathophysiology of these disorders. A growing number of epidemiological and clinical studies show that early-life stress (ELS) during the critical period of brain development may increase the risk for anxiety and MDs. Neuroimaging analyses in humans and numerous reports from animal models clearly demonstrate that ELS affects behaviors that are dependent on the mPFC, as well as neuronal activity and synaptic plasticity within the mPFC. The mechanisms engaged in ELS-induced changes in mPFC function involve alterations in the developmental trajectory of the mPFC and may be responsible for the emergence of both early-onset (during childhood and adolescence) and adulthood-onset anxiety and MDs. ELS-evoked changes in mPFC synaptic plasticity may constitute an example of metaplasticity. ELS may program brain functions by affecting glucocorticoid levels. On the molecular level, ELS-induced programming is registered by epigenetic mechanisms, such as changes in DNA methylation pattern, histone acetylation and microRNA expression. Vulnerability and resilience to ELS-related anxiety and MDs depend on the interaction between individual genetic predispositions, early-life experiences and later-life environment. In conclusion, ELS may constitute a significant etiological factor for anxiety and MDs, whereas animal models of ELS are helpful tools for understanding the pathomechanisms of these disorders.
Collapse
Affiliation(s)
- Agnieszka Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
41
|
Bukalo O, Pinard CR, Holmes A. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 2014; 171:4690-718. [PMID: 24835117 DOI: 10.1111/bph.12779] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022] Open
Abstract
The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | | |
Collapse
|
42
|
Kabitzke PA, Barr GA, Chan T, Shair HN, Wiedenmayer CP. Medial prefrontal cortex processes threatening stimuli in juvenile rats. Neuropsychopharmacology 2014; 39:1924-32. [PMID: 24553733 PMCID: PMC4059901 DOI: 10.1038/npp.2014.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/26/2014] [Accepted: 02/03/2014] [Indexed: 11/08/2022]
Abstract
To survive, all mammalian species must recognize and respond appropriately to threatening stimuli. In adults, the prelimbic medial prefrontal cortex (mPFC) appears to be involved in fear expression, whereas the infralimbic mPFC mediates fear extinction. In juvenile rats (PN26), the mPFC receives information on potential predators but does not act on it. To test whether the prefrontal cortex is capable of fear regulation in the young organism, we exposed juvenile rats to a threatening or nonthreatening stimulus and assessed fear and brain Fos activation of the mPFC subdivisions, amygdala and periaqueductal gray (PAG). In response to the threat, juveniles froze more, spent more time far from the threat, and had elevated numbers of Fos-positive cells in the prelimbic mPFC, the medial amygdala, and ventral PAG. To test the hypothesis that the mPFC has a dual role in modulating the amygdala and PAG in juveniles, we pharmacologically disinhibited each of the two subdivisions of the mPFC and assessed freezing and downstream activation to the threat. Juvenile rats infused with picrotoxin into the prelimbic mPFC and exposed to a threatening stimulus froze less, spent less time far from the threat, and increased Fos expression. Infusion of picrotoxin into the infralimbic mPFC also reduced fear responding to the threatening stimulus but had no effect on Fos expression. In sum, it appears that the mPFC can process threatening stimuli in juveniles at this age, even though it is normally not involved in the fear responses.
Collapse
Affiliation(s)
- Patricia A Kabitzke
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Thomas Chan
- Claremont Graduate University, Claremont, CA, USA
| | - Harry N Shair
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Christoph P Wiedenmayer
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
43
|
Ganella DE, Kim JH. Developmental rodent models of fear and anxiety: from neurobiology to pharmacology. Br J Pharmacol 2014; 171:4556-74. [PMID: 24527726 DOI: 10.1111/bph.12643] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/21/2014] [Accepted: 02/06/2014] [Indexed: 01/15/2023] Open
Abstract
Anxiety disorders pose one of the biggest threats to mental health in the world, and they predominantly emerge early in life. However, research of anxiety disorders and fear-related memories during development has been largely neglected, and existing treatments have been developed based on adult models of anxiety. The present review describes animal models of anxiety disorders across development and what is currently known of their pharmacology. To summarize, the underlying mechanisms of intrinsic 'unlearned' fear are poorly understood, especially beyond the period of infancy. Models using 'learned' fear reveal that through development, rats exhibit a stress hyporesponsive period before postnatal day 10, where they paradoxically form odour-shock preferences, and then switch to more adult-like conditioned fear responses. Juvenile rats appear to forget these aversive associations more easily, as is observed with the phenomenon of infantile amnesia. Juvenile rats also undergo more robust extinction, until adolescence where they display increased resistance to extinction. Maturation of brain structures, such as the amygdala, prefrontal cortex and hippocampus, along with the different temporal recruitment and involvement of various neurotransmitter systems (including NMDA, GABA, corticosterone and opioids) are responsible for these developmental changes. Taken together, the studies described in this review highlight that there is a period early in development where rats appear to be more robust in overcoming adverse early life experience. We need to understand the fundamental pharmacological processes underlying anxiety early in life in order to take advantage of this period for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Despina E Ganella
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
44
|
Saitoh A, Ohashi M, Suzuki S, Tsukagoshi M, Sugiyama A, Yamada M, Oka JI, Inagaki M, Yamada M. Activation of the prelimbic medial prefrontal cortex induces anxiety-like behaviors via N-Methyl-D-aspartate receptor-mediated glutamatergic neurotransmission in mice. J Neurosci Res 2014; 92:1044-53. [DOI: 10.1002/jnr.23391] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Akiyoshi Saitoh
- Department of Neuropsychopharmacology; National Institute of Mental Health, National Center of Neurology and Psychiatry; Tokyo Japan
| | - Masanori Ohashi
- Department of Neuropsychopharmacology; National Institute of Mental Health, National Center of Neurology and Psychiatry; Tokyo Japan
- Laboratory of Pharmacology; Faculty of Pharmaceutical Sciences; Tokyo University of Science; Chiba Japan
| | - Satoshi Suzuki
- Department of Neuropsychopharmacology; National Institute of Mental Health, National Center of Neurology and Psychiatry; Tokyo Japan
- Laboratory of Pharmacology; Faculty of Pharmaceutical Sciences; Tokyo University of Science; Chiba Japan
| | - Mai Tsukagoshi
- Department of Neuropsychopharmacology; National Institute of Mental Health, National Center of Neurology and Psychiatry; Tokyo Japan
- Laboratory of Pharmacology; Faculty of Pharmaceutical Sciences; Tokyo University of Science; Chiba Japan
| | - Azusa Sugiyama
- Department of Neuropsychopharmacology; National Institute of Mental Health, National Center of Neurology and Psychiatry; Tokyo Japan
- Laboratory of Pharmacology; Faculty of Pharmaceutical Sciences; Tokyo University of Science; Chiba Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology; National Institute of Mental Health, National Center of Neurology and Psychiatry; Tokyo Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology; Faculty of Pharmaceutical Sciences; Tokyo University of Science; Chiba Japan
| | - Masatoshi Inagaki
- Department of Neuropsychiatry; Okayama University Hospital; Okayama Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology; National Institute of Mental Health, National Center of Neurology and Psychiatry; Tokyo Japan
| |
Collapse
|
45
|
Post RJ, Dahlborg KM, O'Loughlin LE, Bloom CM. Effects of juvenile exposure to predator odor on adolescent and adult anxiety and pain nociception. Physiol Behav 2014; 131:57-61. [PMID: 24732419 DOI: 10.1016/j.physbeh.2014.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/11/2014] [Accepted: 04/04/2014] [Indexed: 01/07/2023]
Abstract
Clinical researchers have tracked patients with early life trauma and noted generalized anxiety disorder, unipolar depression, and risk-taking behaviors developing in late adolescence and into early adulthood. Animal models provide an opportunity to investigate the neural and developmental processes that underlie the relationship between early stress and later abnormal behavior. The present model used repeated exposure to 2,3,5-trimethyl-3-thiazoline (TMT), a component of fox feces, as an unconditioned fear-eliciting stimulus in order to induce stress in juvenile rats aged postnatal day (PND) 23 through 27. After further physical maturation characteristic of the adolescent stage (PND 42), animals were tested using an elevated plus maze (EPM) for anxiety and plantar test (Hargreaves method) for pain to assess any lingering effects of the juvenile stress. To assess how an additional stress later in life affects anxiety and pain nociception, PND 43 rats were exposed to inescapable shock (0.8mA) and again tested on EPM and plantar test. A final testing period was conducted in the adult (PND 63) rats to assess resulting changes in adult behaviors. TMT-exposed rats were significantly more anxious in adolescence than controls, but this difference disappeared after exposure to the secondary stressor. In adulthood, but not in adolescence, TMT-exposed rats demonstrated lower pain sensitivity than controls. These results suggest that early life stress can play a significant role in later anxiety and pain nociception, and offer insight into the development and manifestation of anxiety- and trauma-related disorders.
Collapse
Affiliation(s)
- Ryan J Post
- Providence College, 1 Cunningham Sq., Providence, RI 02918, USA
| | | | | | | |
Collapse
|
46
|
Takahashi LK. Olfactory systems and neural circuits that modulate predator odor fear. Front Behav Neurosci 2014; 8:72. [PMID: 24653685 PMCID: PMC3949219 DOI: 10.3389/fnbeh.2014.00072] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/20/2014] [Indexed: 11/13/2022] Open
Abstract
When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate fear.
Collapse
Affiliation(s)
- Lorey K Takahashi
- Department of Psychology, University of Hawaii at Manoa Honolulu, HI, USA
| |
Collapse
|
47
|
Abstract
Adolescence represents a uniquely sensitive developmental stage in the transition from childhood to adulthood. During this transition, neuronal circuits are particularly susceptible to modification by experience. In addition, adolescence is a stage in which the incidence of anxiety disorders peaks in humans and over 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents. While postnatal critical periods of plasticity for primary sensory processes, such as in the visual system are well established, less is known about potential critical or sensitive periods for fear learning and memory. Here, we review the non-linear developmental aspects of fear learning and memory during a transition period into and out of adolescence. We also review the literature on the non-linear development of GABAergic neurotransmission, a key regulator of critical period plasticity. We provide a model that may inform improved treatment strategies for children and adolescents with fear-related disorders.
Collapse
|
48
|
Baltazar RM, Coolen LM, Webb IC. Medial prefrontal cortex inactivation attenuates the diurnal rhythm in amphetamine reward. Neuroscience 2013; 258:204-10. [PMID: 24239716 DOI: 10.1016/j.neuroscience.2013.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Psychostimulant reward, as assessed via the conditioned place preference (CPP) paradigm, exhibits a daily rhythm with peaks in the late dark and early light periods, and a nadir near the light-to-dark transition. While this diurnal rhythm is correlated with neural activity in several corticolimbic structures, the brain regions mediating this behavioral rhythm remain unknown. Here, we examine the role of the ventral medial prefrontal cortex (mPFC). The effects of excitotoxic mPFC lesions on daily rhythms in amphetamine CPP were examined at previously observed peak (zeitgeber time [ZT] 23) and nadir times (ZT11). mPFC lesions encompassing the prelimbic and infralimbic subregions increased the CPP for amphetamine at the nadir time, thereby eliminating the daily rhythm in amphetamine reward. To examine the effects of transient mPFC inactivation, rats received intra-mPFC infusions of GABA receptor agonists during the acquisition or expression phases of CPP testing. Inactivation of the ventral mPFC at either of these phases also eliminated the daily rhythm in amphetamine-induced CPP via an increase in drug-paired chamber dwell time at the baseline nadir. Together, these results indicate that the ventral mPFC plays a critical role in mediating the diurnal rhythm in amphetamine CPP during both the acquisition and expression of learned reward-context associations. Moreover, as the loss of rhythmicity occurs via an increase at the nadir point, these results suggest that excitatory output from the ventral mPFC normally inhibits context-elicited reward seeking prior to the light-to-dark transition.
Collapse
Affiliation(s)
- R M Baltazar
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - L M Coolen
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - I C Webb
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
49
|
King EC, Pattwell SS, Sun A, Glatt CE, Lee FS. Nonlinear developmental trajectory of fear learning and memory. Ann N Y Acad Sci 2013; 1304:62-9. [PMID: 24176014 DOI: 10.1111/nyas.12280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transition into and out of adolescence is a unique developmental period during which neuronal circuits are particularly susceptible to modification by experience. Adolescence is associated with an increased incidence of anxiety disorders in humans, and an estimated 75% of adults with fear-related disorders met diagnostic criteria as children and adolescents. Conserved neural circuitry of rodents and humans has facilitated neurodevelopmental studies of behavioral and molecular processes associated with fear learning and memory that lie at the heart of many anxiety disorders. Here, we review the nonlinear developmental aspects of fear learning and memory during a transition period into and out of adolescence and provide a discussion of the molecular mechanisms that may underlie these alterations in behavior. We provide a model that may help to inform novel treatment strategies for children and adolescents with fear-related disorders.
Collapse
Affiliation(s)
- Elizabeth C King
- Departments of Pharmacology; Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York
| | | | | | | | | |
Collapse
|
50
|
Hayes DJ, Duncan NW, Wiebking C, Pietruska K, Qin P, Lang S, Gagnon J, BIng PG, Verhaeghe J, Kostikov AP, Schirrmacher R, Reader AJ, Doyon J, Rainville P, Northoff G. GABAA receptors predict aversion-related brain responses: an fMRI-PET investigation in healthy humans. Neuropsychopharmacology 2013; 38:1438-50. [PMID: 23389691 PMCID: PMC3682137 DOI: 10.1038/npp.2013.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The perception of aversive stimuli is essential for human survival and depends largely on environmental context. Although aversive brain processing has been shown to involve the sensorimotor cortex, the neural and biochemical mechanisms underlying the interaction between two independent aversive cues are unclear. Based on previous work indicating ventromedial prefrontal cortex (vmPFC) involvement in the mediation of context-dependent emotional effects, we hypothesized a central role for the vmPFC in modulating sensorimotor cortex activity using a GABAergic mechanism during an aversive-aversive stimulus interaction. This approach revealed differential activations within the aversion-related network (eg, sensorimotor cortex, midcingulate, and insula) for the aversive-aversive, when compared with the aversive-neutral, interaction. Individual differences in sensorimotor cortex signal changes during the aversive-aversive interaction were predicted by GABAA receptors in both vmPFC and sensorimotor cortex. Together, these results demonstrate the central role of GABA in mediating context-dependent effects in aversion-related processing.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, Royal Ottawa Health Care Group, University of Ottawa, Ottawa, ON, Canada.
| | - Niall W Duncan
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, Royal Ottawa Health Care Group, University of Ottawa, Ottawa, ON, Canada,Department of Biology, University of Carleton, Ottawa, ON, Canada
| | - Christine Wiebking
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, Royal Ottawa Health Care Group, University of Ottawa, Ottawa, ON, Canada,Department of Biology, Freie Universität, Berlin, Germany
| | - Karin Pietruska
- Faculté de médecine dentaire, Université de Montréal, Pavillon Paul G. Desmarais, Montréal, QC, Canada
| | - Pengmin Qin
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, Royal Ottawa Health Care Group, University of Ottawa, Ottawa, ON, Canada
| | - Stefan Lang
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, Royal Ottawa Health Care Group, University of Ottawa, Ottawa, ON, Canada
| | - Jean Gagnon
- Centre de réadaptation Lucie-Bruneau, Université de Montréal, Montréal, QC, Canada
| | - Paul Gravel BIng
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Montreal, Montréal, QC, Canada
| | - Jeroen Verhaeghe
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Montreal, Montréal, QC, Canada
| | - Alexey P Kostikov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Montreal, Montréal, QC, Canada
| | - Ralf Schirrmacher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Montreal, Montréal, QC, Canada
| | - Andrew J Reader
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Montreal, Montréal, QC, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Pierre Rainville
- Faculté de médecine dentaire, Université de Montréal, Pavillon Paul G. Desmarais, Montréal, QC, Canada,Functional Neuroimaging Unit, Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, Royal Ottawa Health Care Group, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|