1
|
Zuo Y, Xue J, Wen H, Zhan L, Chen M, Sun W, Xu E. Inhibition of SCF KDM2A/USP22-dependent nuclear β-catenin ubiquitylation mediates cerebral ischemic tolerance. Commun Biol 2025; 8:214. [PMID: 39934243 PMCID: PMC11814243 DOI: 10.1038/s42003-025-07644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Hypoxic postconditioning (HPC) was reported to stabilize nuclear β-catenin by inhibiting lysine (K)-specific demethylase 2 A (KDM2A) in hippocampal CA1 against transient global cerebral ischemia (tGCI). Herein we investigate how HPC inhibits the K48-linked poly-ubiquitination (K48-Ub)-related degradation of nuclear β-catenin in CA1 after tGCI. We confirmed that SCFKDM2A complex targets nuclear β-catenin for degradation via ubiquitin proteasome pathway in vitro. HPC reduced SCFKDM2A complex and the K48-Ub of β-catenin, and increased ubiquitin-specific peptidase 22 (USP22) in nucleus after tGCI. Furthermore, KDM2A knockdown decreased the K48-Ub of nuclear β-catenin and nuclear β-catenin-SCFKDM2A complex interaction after tGCI. Moreover, β-catenin knockdown suppressed nuclear survivin expression and attenuated neuroprotection induced by HPC. In contrast, the overexpression of USP22 promoted nuclear β-catenin deubiquitination and enhanced the neuroprotective effects offered by HPC. Taken together, this study supports that HPC downregulated the K48-Ub of nuclear β-catenin through suppressing SCFKDM2A and increasing USP22, thereby inducing cerebral ischemic tolerance.
Collapse
Affiliation(s)
- Yunyan Zuo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Neurology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jiahui Xue
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Wen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meiyan Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Wu X, Liu J, Tian D, Chen J, Li H. Associations of serum Dickkopf-1 levels with disease severity and 90-day Prognosis after spontaneous intracerebral hemorrhage: results from the prospective cohort study. Neurosurg Rev 2024; 47:528. [PMID: 39227406 DOI: 10.1007/s10143-024-02755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Dickkopf-1 (DKK-1) may be involved in inflammatory response and secondary brain injury after acute brain injury. We gauged serum DKK-1 levels and further assessed its correlation with disease severity and investigated its predictive value for 90-day prognosis in patients with spontaneous intracerebral hemorrhage (sICH). Serum DKK-1 levels were measured in 128 sICH patients and 128 healthy controls. The severity of sICH was assessed using the Glasgow Coma Scale (GCS) scores and hematoma volumes. Poor prognosis was referred to as a Glasgow Outcome Scale (GOS) score of 1-3 at 90 days after stroke. Multivariate analysis was performed to identify associations of serum DKK-1 levels with disease severity, early neurological deterioration (END) and poor prognosis. Receiver operating characteristic curve (ROC) was built to investigate the prognostic predictive capability. The serum DKK-1 levels of patients were significantly higher than those of controls (median, 4.74 ng/mL versus 1.98 ng/mL; P < 0.001), and were independently correlated with hematoma volumes (ρ = 0.567, P < 0.001; t = 3.444, P = 0.001) and GCS score (ρ = -0.612, P < 0.001; t = -2.048, P = 0.043). Serum DKK-1 significantly differentiated patients at risk of END (area under ROC curve (AUC), 0.850; 95% confidence interval (CI), 0.777-0.907; P < 0.001) and poor prognosis (AUC, 0.830; 95% CI, 0.753-0.890; P < 0.001), which had similar prognostic ability, as compared to GCS scores and hematoma volumes. Subsequent Logistic regression model affirmed that GCS score, hematoma volume, and serum DKK-1 levels were independently associated with END and poor prognosis at 90 days after sICH. The models, which contained them, performed well using ROC curve analysis and calibration curve analysis. Serum DKK-1 levels are markedly associated with disease severity, END and 90-day poor prognosis in sICH. Hence, serum DKK-1 is presumed to be used as a potential prognostic biomarker of sICH.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Jin Liu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Da Tian
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Junxia Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Huguang Li
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15 Dazhong Road, Lishui, 323000, China.
- Department of Neurosurgery, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China.
| |
Collapse
|
3
|
González-Fernández C, González P, Maqueda A, Pérez V, Rodríguez FJ. Enhancing motor functional recovery in spinal cord injury through pharmacological inhibition of Dickkopf-1 with BHQ880 antibody. Biomed Pharmacother 2024; 176:116792. [PMID: 38795645 DOI: 10.1016/j.biopha.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Mounting experimental evidence has underscored the remarkable role played by the Wnt family of proteins in the spinal cord functioning and therapeutic potential in spinal cord injury (SCI). We aim to provide a therapeutic prospect associated with the modulation of canonical Wnt signaling, examining the spatio-temporal expression pattern of Dickkopf-1 (Dkk1) and its neutralization after SCI. We employ an intraparenchymal injection of the clinically validated Dkk1-blocking antibody, BHQ880, to elucidate its effects in SCI. METHODS A rat model of contusion SCI was used. Histological analyses were performed, wherein Dkk1 protein was sought, and ELISA analyses were employed for Dkk1 detection in cerebrospinal fluid and serum. To ascertain the BHQ880 therapeutic effect, rats were subjected to SCI and then injected with the antibody in the lesion epicenter 24 hours post-injury (hpi). Subsequent evaluation of motor functional recovery extended up to 56 days post-injury (dpi). qRT-PCR and histological analyses were conducted. RESULTS We demonstrate the presence of Dkk1 in the healthy rat spinal cord, with pronounced alterations observed following injury, primarily concentrated in the epicenter regions. Notably, a significative upregulation of Dkk1 was detected at 24 hpi, peaking at 3 dpi and remaining elevated until 42 dpi. Moreover, we revealed that early administration of BHQ880 considerably improved motor functional recovery, promoted preservation of myelinated tissue, and reduced astroglial and microglia/macrophage reactivity. Furthermore, there was a decrease in the acute expression of different inflammatory genes. CONCLUSIONS Collectively, our findings highlight the therapeutic potential of BHQ880 treatment in the context of SCI.
Collapse
Affiliation(s)
- Carlos González-Fernández
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| | - Pau González
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| |
Collapse
|
4
|
Gautam V, Rawat K, Sandhu A, Kumar A, Kharbanda PS, Medhi B, Bhatia A, Saha L. Exploring the effect of 6-BIO and sulindac in modulation of Wnt/β-catenin signaling pathway in chronic phase of temporal lobe epilepsy. Neuropharmacology 2024; 251:109931. [PMID: 38570067 DOI: 10.1016/j.neuropharm.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
The prospective involvement of the Wnt/β-catenin signaling pathway in epilepsy, with the proposed therapeutic uses of its modulators, has been suggested; however, comprehensive knowledge in this regard is currently limited. Despite postulations about the pathway's significance and treatment potential, a systematic investigation is required to better understand its implications in chronic epilepsy. We investigated the role of key proteins like β-catenin, GSK-3β, and their modulators sulindac and 6-BIO, in Wnt/β-catenin pathway during chronic phase of temporal lobe epilepsy. We also evaluated the role of modulators in seizure score, seizure frequency and neurobehavioral parameters in temporal lobe epilepsy. We developed status epilepticus model using lithium-pilocarpine. The assessment of neurobehavioral parameters was done followed by histopathological examination and immunohistochemistry staining of hippocampus as well as RT-qPCR and western blotting to analyse gene and protein expression. In SE rats, seizure score and frequency were significantly high compared to control rats, with notable changes in neurobehavioral parameters and neuronal damage observed in hippocampus. Our study also revealed a substantial upregulation of the Wnt/β-catenin pathway in chronic epilepsy, as evidenced by gene and protein expression studies. Sulindac emerged as a potent modulator, reducing seizure score, frequency, neuronal damage, apoptosis, and downregulating the Wnt/β-catenin pathway when compared to 6-BIO. Our findings emphasize the potential of GSK-3β and β-catenin as promising drug targets for chronic temporal lobe epilepsy, offering valuable treatment options for chronic epilepsy. The promising outcomes with sulindac encourages further exploration in clinical trials to assess its therapeutic potential.
Collapse
Affiliation(s)
- Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Parampreet Singh Kharbanda
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
5
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
6
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
7
|
Jia YR, Guo ZQ, Guo Q, Wang XC. Glycogen Synthase Kinase-3β, NLRP3 Inflammasome, and Alzheimer's Disease. Curr Med Sci 2023; 43:847-854. [PMID: 37721665 DOI: 10.1007/s11596-023-2788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia worldwide. Because of the progressive neurodegeneration, individual cognitive and behavioral functions are impaired, affecting the quality of life of millions of people. Although the exact pathogenesis of AD has not been fully elucidated, amyloid plaques, neurofibrillary tangles (NFTs), and sustaining neuroinflammation dominate its characteristics. As one of the major tau kinases leading to hyperphosphorylation and aggregation of tau, glycogen synthase kinase-3β (GSK-3β) has been drawing great attention in various AD studies. Another research focus of AD in recent years is the inflammasome, a multiprotein complex acting as a regulator in immunological reactions to exogenous and endogenous danger signals, of which the Nod-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome has been studied mostly in AD and proven to play a significant role in AD development by its activation and downstream effects such as caspase-1 maturation and interleukin (IL)-1β release. Studies have shown that the NLRP3 inflammasome is activated in a GSK-3β-dependent way and that inhibition of the NLRP3 inflammasome downregulates GSK-3β, suggesting that these two important proteins are closely related. This article reviews the respective roles of GSK-3β and the NLRP3 inflammasome in AD as well as their relationship and interaction.
Collapse
Affiliation(s)
- Yue-Ran Jia
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zi-Qing Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Zhang H, Du D, Gao X, Tian X, Xu Y, Wang B, Yang S, Liu P, Li Z. PFT-α protects the blood-brain barrier through the Wnt/β-catenin pathway after acute ischemic stroke. Funct Integr Genomics 2023; 23:314. [PMID: 37777676 DOI: 10.1007/s10142-023-01237-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
The dysfunction of blood-brain barrier (BBB) plays a pivotal role in brain injury and subsequent neurological deficits of ischemic stroke. The current study aimed to examine the potential correlation between p53 inhibition and the neuroprotective effect of on the BBB. Rat middle cerebral artery occlusion and reperfusion model (MCAO/R) and oxygen-glucose deprivation/re-oxygenation model (OGD/R) were employed to simulate cerebral ischemia-reperfusion (CI/R) injury occurrence in vivo and in vitro. mNSS and TTC staining were applied to evaluate neurological deficits and brain infarct volumes. Evans blue (EB) staining was carried out to examine the permeability of BBB. RT-qPCR and Western blot to examine the mRNA and protein levels. Cell viabilities were detected by CCK-8. Flow cytometry and ELISA assay were employed to examine apoptosis and neuroinflammation levels. TEER value and sodium fluorescein were carried out to explore the permeability of HBMEC cells. PFT-α inhibited P53 and promoted the expression of β-catenin and cyclin D1, which were reversed by DKK1. PFT-α inhibited neurological deficits, brain infarct volume, neuroinflammation, apoptosis, and BBB integrity than the MCAO/R rats; however, this inhibition was reversed by DKK1. PFT-α promoted OGD/R-induced cell viability in NSCs, and suppressed inflammation and apoptosis, but DKK1 weakened the effect of PFT-α. PFT-α increased OGD/R-induced TEER values in cerebrovascular endothelial cells, inhibited sodium fluorescein permeability, and increased the mRNA levels of tight junction protein, but they were all attenuated by DKK1. PFT-α protects the BBB after acute ischemic stroke via the Wnt/β-catenin pathway, which in turn improves neurological function.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Deyong Du
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Xiaoning Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Xiaoling Tian
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Yongqiang Xu
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Bo Wang
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China
| | - Shoujuan Yang
- Department of Cardiology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| | - Pengfei Liu
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| | - Zefu Li
- Department of Neurosurgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, 256603, China.
| |
Collapse
|
9
|
Zuo Y, Zhan L, Wen H, Xue J, Tan Y, Sun W, Xu E. Stabilization of nuclear β-catenin by inhibiting KDM2A mediates cerebral ischemic tolerance. FASEB J 2023; 37:e22796. [PMID: 36723950 DOI: 10.1096/fj.202201657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023]
Abstract
Hypoxic postconditioning (HPC) with 8% oxygen increases nuclear accumulation of β-catenin through activating the classical Wnt pathway, thereby alleviating transient global cerebral ischemia (tGCI)-induced neuronal damage in the hippocampal CA1 subregion of adult rats. However, little is understood about the regulatory mechanism of nuclear β-catenin in HPC-mediated cerebral ischemic tolerance. Although lysine(K)-specific demethylase 2A (KDM2A) has been known as a crucial regulator of nuclear β-catenin destabilization, whether it plays an important role through modulating nuclear β-catenin in cerebral ischemic tolerance induced by HPC remains unknown. In this study, we explored the molecular mechanism of stabilizing nuclear β-catenin by inhibiting KDM2A-mediated demethylation in the HPC-offered neuroprotection against tGCI. In addition, we confirmed that nuclear methylated-β-catenin in CA1 decreased and nuclear β-catenin turnover increased after tGCI, which were reversed by HPC. The administration with methyltransferase inhibitor AdOx abrogated HPC-induced methylation and stabilization of nuclear β-catenin in CA1, as well as the neuroprotection against tGCI. Notably, HPC downregulated the expression of KDM2A in CA1 and reduced the interaction between KDM2A and β-catenin in the nucleus after tGCI. The knockdown of KDM2A with small-interfering RNA could upregulate nuclear methylated-β-catenin and stabilize β-catenin, thereby increasing survivin in CA1 and improving the cognitive function of rats after tGCI. Opposite results were observed by the administration of KDM2A-carried adenovirus vector. Furthermore, we demonstrated that KDM2A mediates the demethylation of nuclear β-catenin through jumonji C (JmjC) domain of KDM2A in HEK-293T and SH-SY5Y cells. Our data support that the inhibition of KDM2A-mediated demethylation of nuclear β-catenin contributes to HPC-induced neuroprotection against tGCI.
Collapse
Affiliation(s)
- Yunyan Zuo
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wen
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiahui Xue
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yafu Tan
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neurosciences, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N. Integrated network-based multiple computational analyses for identification of co-expressed candidate genes associated with neurological manifestations of COVID-19. Sci Rep 2022; 12:17141. [PMID: 36229517 PMCID: PMC9558001 DOI: 10.1038/s41598-022-21109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023] Open
Abstract
'Tripartite network' (TN) and 'combined gene network' (CGN) were constructed and their hub-bottleneck and driver nodes (44 genes) were evaluated as 'target genes' (TG) to identify 21 'candidate genes' (CG) and their relationship with neurological manifestations of COVID-19. TN was developed using neurological symptoms of COVID-19 found in literature. Under query genes (TG of TN), co-expressed genes were identified using pair-wise mutual information to genes available in RNA-Seq autopsy data of frontal cortex of COVID-19 victims. CGN was constructed with genes selected from TN and co-expressed in COVID-19. TG and their connecting genes of respective networks underwent functional analyses through findings of their enrichment terms and pair-wise 'semantic similarity scores' (SSS). A new integrated 'weighted harmonic mean score' was formulated assimilating values of SSS and STRING-based 'combined score' of the selected TG-pairs, which provided CG-pairs with properties of CGs as co-expressed and 'indispensable nodes' in CGN. Finally, six pairs sharing seven 'prevalent CGs' (ADAM10, ADAM17, AKT1, CTNNB1, ESR1, PIK3CA, FGFR1) showed linkages with the phenotypes (a) directly under neurodegeneration, neurodevelopmental diseases, tumour/cancer and cellular signalling, and (b) indirectly through other CGs under behavioural/cognitive and motor dysfunctions. The pathophysiology of 'prevalent CGs' has been discussed to interpret neurological phenotypes of COVID-19.
Collapse
Affiliation(s)
- Suvojit Hazra
- CPEPA-UGC Centre for "Electro-Physiological and Neuro-Imaging Studies Including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.
| | - Nilkanta Chakrabarti
- CPEPA-UGC Centre for "Electro-Physiological and Neuro-Imaging Studies Including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India.
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
11
|
Zhang K, Zhu Z, Shi M, Guo D, Liu Y, Bu X, Che B, Xu T, Yang P, Chen J, Xu T, He J, Zhang Y. Serum Dickkopf-1 levels and poststroke depression in ischemic stroke patients. J Affect Disord 2022; 310:337-342. [PMID: 35561890 DOI: 10.1016/j.jad.2022.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Serum Dickkopf-1 (Dkk-1) levels are associated with poor ischemic stroke prognosis, although their impact on poststroke depression (PSD) remains unclear. This study aimed to examine the association between serum Dkk-1 levels and PSD. METHODS Serum Dkk-1 levels were measured in 564 patients with ischemic stroke who participated in the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS). The patients' depression status at 3 months after stroke was assessed using the Hamilton Rating Scale for Depression (HRSD-24). The HRSD score cutoff point for the diagnosis of depression was ≥8. RESULTS A total of 224 (39.72%) patients were categorized as having PSD 3 months after ischemic stroke. After adjusting for potential confounders, including age, sex, and other important covariates, elevated Dkk-1 levels were associated with an increased risk of PSD (odds ratio [OR], 1.92; 95% confidence interval [CI], 1.14-3.22; Ptrend = 0.037). Similarly, each standard deviation (SD) increase in log-transformed Dkk-1 levels was associated with a 24% increased risk of PSD (OR, 1.24; 95% CI, 1.03-1.49; P = 0.025). Subgroup analyses further confirmed the significant associations between Dkk-1 levels and PSD. CONCLUSION Higher serum Dkk-1 levels at baseline are independently associated with an increased risk of PSD at 3 months after stroke, suggesting that Dkk-1 levels may be a promising prognostic biomarker for PSD. LIMITATIONS This study measured serum Dkk-1 levels only in the acute phase of stroke not in different phases; therefore, the relationship between dynamic changes in Dkk-1 levels and PSD could not be evaluated.
Collapse
Affiliation(s)
- Kaixin Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yang Liu
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Tian Xu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Mo Z, Zeng Z, Liu Y, Zeng L, Fang J, Ma Y. Activation of Wnt/Beta-Catenin Signaling Pathway as a Promising Therapeutic Candidate for Cerebral Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:914537. [PMID: 35668927 PMCID: PMC9163667 DOI: 10.3389/fphar.2022.914537] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Stroke is one of the leading causes of mortality, and survivors experience serious neurological and motor behavioral deficiencies. Following a cerebral ischemic event, substantial alterations in both cellular and molecular activities occur because of ischemia/reperfusion injury. Wnt signaling is an evolutionarily conserved signaling pathway that has been manifested to play a key role in embryo development and function maintenance in adults. Overactivation of Wnt signaling has previously been investigated in cancer-based research studies. Recently, abnormal Wnt signaling activity has been observed in ischemic stroke, which is accompanied by massive blood–brain barrier (BBB) disruption, neuronal apoptosis, and neuroinflammation within the central nervous system (CNS). Significant therapeutic effects were observed after reactivating the adynamic signaling activity of canonical Wnt signaling in different cell types. To better understand the therapeutic potential of Wnt as a novel target for stroke, we reviewed the role of Wnt signaling in the pathogenesis of stroke in different cell types, including endothelial cells, neurons, oligodendrocytes, and microglia. A comprehensive understanding of Wnt signaling among different cells may help to evaluate its potential value for the development of novel therapeutic strategies based on Wnt activation that can ameliorate complications and improve functional rehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhongyi Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuxiang Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Linsheng Zeng
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jiansong Fang, ; Yinzhong Ma,
| | - Yinzhong Ma
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Jiansong Fang, ; Yinzhong Ma,
| |
Collapse
|
13
|
Jean WH, Huang CT, Hsu JH, Chiu KM, Lee MY, Shieh JS, Lin TY, Wang SJ. Anticonvulsive and Neuroprotective Effects of Eupafolin in Rats Are Associated with the Inhibition of Glutamate Overexcitation and Upregulation of the Wnt/β-Catenin Signaling Pathway. ACS Chem Neurosci 2022; 13:1594-1603. [PMID: 35500294 DOI: 10.1021/acschemneuro.2c00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several plant compounds have been found to possess neuroactive properties. The aim of this study was to investigate the anticonvulsant effect of eupafolin, a major active component extracted from Salvia plebeia, a herb used in traditional medicine for its anti-inflammatory properties. To this end, we assessed the anticonvulsant effects of eupafolin in rats intraperitoneally (i.p.) injected with kainic acid (KA) to elucidate this mechanism. Treatment with eupafolin (i.p.) for 30 min before KA administration significantly reduced behavioral and electrographic seizures induced by KA, similar to carbamazepine (i.p.), a widely used antiepileptic drug. Eupafolin treatment also significantly decreased KA seizure-induced neuronal cell death and glutamate elevation in the hippocampus. In addition, eupafolin notably reversed KA seizure-induced alterations in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluR2, glutamate decarboxylase 67 (GAD67, GABAergic enzyme), and Wnt signaling-related proteins, including porcupine, Wnt1, phosphorylated-glycogen synthase kinase-3β, β-catenin, and Bcl-2 in the hippocampus. Furthermore, the increased level of Dickkopf-related protein 1 (Dkk-1, a Wnt signaling antagonist) and the decreased level of Disheveled1 (Dvl-1, a Wnt signaling activator) in the hippocampus of KA-treated rats were reversed by eupafolin. This study provides evidence of the anticonvulsant and neuroprotective properties of eupafolin and of the involvement of regulation of glutamate overexcitation and Wnt signaling in the mechanisms of these properties. These findings support the benefits of eupafolin in treating epilepsy.
Collapse
Affiliation(s)
- Wei-Horng Jean
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chih-Ta Huang
- Department of Neurosurgery, Cathay General Hospital, Taipei City 106, Taiwan
| | - Jung-Hsuan Hsu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Jiann-Shing Shieh
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
14
|
Jiang H, Zhang Z, Yu Y, Chu HY, Yu S, Yao S, Zhang G, Zhang BT. Drug Discovery of DKK1 Inhibitors. Front Pharmacol 2022; 13:847387. [PMID: 35355709 PMCID: PMC8959454 DOI: 10.3389/fphar.2022.847387] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/β-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the β-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/β-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Yin Chu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Sifan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Yao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
15
|
Bonnet C, Brahmbhatt A, Deng SX, Zheng JJ. Wnt signaling activation: targets and therapeutic opportunities for stem cell therapy and regenerative medicine. RSC Chem Biol 2021; 2:1144-1157. [PMID: 34458828 PMCID: PMC8341040 DOI: 10.1039/d1cb00063b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Wnt proteins are secreted morphogens that play critical roles in embryonic development, stem cell proliferation, self-renewal, tissue regeneration and remodeling in adults. While aberrant Wnt signaling contributes to diseases such as cancer, activation of Wnt/β-catenin signaling is a target of interest in stem cell therapy and regenerative medicine. Recent high throughput screenings from chemical and biological libraries, combined with improved gene expression reporter assays of Wnt/β-catenin activation together with rational drug design, led to the development of a myriad of Wnt activators, with different mechanisms of actions. Among them, Wnt mimics, antibodies targeting Wnt inhibitors, glycogen-synthase-3β inhibitors, and indirubins and other natural product derivatives are emerging modalities to treat bone, neurodegenerative, eye, and metabolic disorders, as well as prevent ageing. Nevertheless, the creation of Wnt-based therapies has been hampered by challenges in developing potent and selective Wnt activators without off-target effects, such as oncogenesis. On the other hand, to avoid these risks, their use to promote ex vivo expansion during tissue engineering is a promising application.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Paris University, Centre de Recherche des Cordeliers, and Cornea Departement, Cochin Hospital, AP-HP F-75014 Paris France
| | - Anvi Brahmbhatt
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| | - Jie J Zheng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| |
Collapse
|
16
|
Butler-Ryan R, Wood IC. The functions of repressor element 1-silencing transcription factor in models of epileptogenesis and post-ischemia. Metab Brain Dis 2021; 36:1135-1150. [PMID: 33813634 PMCID: PMC8272694 DOI: 10.1007/s11011-021-00719-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Epilepsy is a debilitating neurological disorder characterised by recurrent seizures for which 30% of patients are refractory to current treatments. The genetic and molecular aetiologies behind epilepsy are under investigation with the goal of developing new epilepsy medications. The transcriptional repressor REST (Repressor Element 1-Silencing Transcription factor) is a focus of interest as it is consistently upregulated in epilepsy patients and following brain insult in animal models of epilepsy and ischemia. This review analyses data from different epilepsy models and discusses the contribution of REST to epileptogenesis. We propose that in healthy brains REST acts in a protective manner to homeostatically downregulate increases in excitability, to protect against seizure through downregulation of BDNF (Brain-Derived Neurotrophic Factor) and its receptor, TrkB (Tropomyosin receptor kinase B). However, in epilepsy patients and post-seizure, REST may increase to a larger degree, which allows downregulation of the glutamate receptor subunit GluR2. This leads to AMPA glutamate receptors lacking GluR2 subunits, which have increased permeability to Ca2+, causing excitotoxicity, cell death and seizure. This concept highlights therapeutic potential of REST modulation through gene therapy in epilepsy patients.
Collapse
Affiliation(s)
- Ruth Butler-Ryan
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT UK
| | - Ian C. Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
17
|
Zhou J, Ying X, Zhang J, Chen M, Chen M. Emerging role of serum dickkopf-1 in prognosis of aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2021; 521:116-121. [PMID: 34252424 DOI: 10.1016/j.cca.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Wnt signaling pathway is involved in early brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Dickkopf-1 acts as a secreted Wnt antagonist. We analyzed the relationship between dickkopf-1 concentrations and clinical outcomes of aSAH. METHODS Serum dickkopf-1 concentrations were determined in 132 aSAH patients and 100 control individuals using the enzyme-linked immunosorbent assay. patients' characteristics, the World Federation of Neurological Surgeons (WFNS) Scale and modified Fisher grade were assessed. At 3-month follow-up, functional outcome (Glasgow Outcome Scale score; dichotomized as poor [score 1-3] or good [score 4-5]) was recorded. The multivariate logistic regression model was constructed to discern the association of serum dickkopf-1 concentrations with outcome. RESULTS Compared with controls, serum dickkopf-1 concentrations were substantially raised after aSAH. Dickkopf-1 concentrations were highly related to WFNS score and modified Fisher score. Patients with a poor outcome had significantly increased dickkopf-1 concentrations. In multivariate logistic regression analysis, serum dickkopf-1 appeared as an independent predictor of poor outcome. Receiver operating characteristic curve analysis showed that serum dickkopf-1 concentrations predicted poor outcome efficiently. CONCLUSIONS Serum dickkopf-1 concentrations were strongly associated with the severity and poor outcome of aSAH, suggesting that serum dickkopf-1 may be a novel biomarker for predicting poor outcome in aSAH.
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Ningbo 315040, Zhejiang Province, PR China
| | - Xiang Ying
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Ningbo 315040, Zhejiang Province, PR China.
| | - Jie Zhang
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Ningbo 315040, Zhejiang Province, PR China
| | - Maosong Chen
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Ningbo 315040, Zhejiang Province, PR China
| | - Mengzong Chen
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Ningbo 315040, Zhejiang Province, PR China
| |
Collapse
|
18
|
Salloum-Asfar S, Elsayed AK, Elhag SF, Abdulla SA. Circulating Non-Coding RNAs as a Signature of Autism Spectrum Disorder Symptomatology. Int J Mol Sci 2021; 22:ijms22126549. [PMID: 34207213 PMCID: PMC8235321 DOI: 10.3390/ijms22126549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder that becomes apparent during early childhood development. The complexity of ASD makes clinically diagnosing the condition difficult. Consequently, by identifying the biomarkers associated with ASD severity and combining them with clinical diagnosis, one may better factionalize within the spectrum and devise more targeted therapeutic strategies. Currently, there are no reliable biomarkers that can be used for precise ASD diagnosis. Consequently, our pilot experimental cohort was subdivided into three groups: healthy controls, individuals those that express severe symptoms of ASD, and individuals that exhibit mild symptoms of ASD. Using next-generation sequencing, we were able to identify several circulating non-coding RNAs (cir-ncRNAs) in plasma. To the best of our knowledge, this study is the first to show that miRNAs, piRNAs, snoRNAs, Y-RNAs, tRNAs, and lncRNAs are stably expressed in plasma. Our data identify cir-ncRNAs that are specific to ASD. Furthermore, several of the identified cir-ncRNAs were explicitly associated with either the severe or mild groups. Hence, our findings suggest that cir-ncRNAs have the potential to be utilized as objective diagnostic biomarkers and clinical targets.
Collapse
|
19
|
Gerosa L, Lombardi G. Bone-to-Brain: A Round Trip in the Adaptation to Mechanical Stimuli. Front Physiol 2021; 12:623893. [PMID: 33995117 PMCID: PMC8120436 DOI: 10.3389/fphys.2021.623893] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Besides the classical ones (support/protection, hematopoiesis, storage for calcium, and phosphate) multiple roles emerged for bone tissue, definitively making it an organ. Particularly, the endocrine function, and in more general terms, the capability to sense and integrate different stimuli and to send signals to other tissues, has highlighted the importance of bone in homeostasis. Bone is highly innervated and hosts all nervous system branches; bone cells are sensitive to most of neurotransmitters, neuropeptides, and neurohormones that directly affect their metabolic activity and sensitivity to mechanical stimuli. Indeed, bone is the principal mechanosensitive organ. Thanks to the mechanosensing resident cells, and particularly osteocytes, mechanical stimulation induces metabolic responses in bone forming (osteoblasts) and bone resorbing (osteoclasts) cells that allow the adaptation of the affected bony segment to the changing environment. Once stimulated, bone cells express and secrete, or liberate from the entrapping matrix, several mediators (osteokines) that induce responses on distant targets. Brain is a target of some of these mediator [e.g., osteocalcin, lipocalin2, sclerostin, Dickkopf-related protein 1 (Dkk1), and fibroblast growth factor 23], as most of them can cross the blood-brain barrier. For others, a role in brain has been hypothesized, but not yet demonstrated. As exercise effectively modifies the release and the circulating levels of these osteokines, it has been hypothesized that some of the beneficial effects of exercise on brain functions may be associated to such a bone-to-brain communication. This hypothesis hides an interesting clinical clue: may well-addressed physical activities support the treatment of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases?
Collapse
Affiliation(s)
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
20
|
Srikanth MP, Feldman RA. Elevated Dkk1 Mediates Downregulation of the Canonical Wnt Pathway and Lysosomal Loss in an iPSC Model of Neuronopathic Gaucher Disease. Biomolecules 2020; 10:E1630. [PMID: 33287247 PMCID: PMC7761665 DOI: 10.3390/biom10121630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Gaucher Disease (GD), which is the most common lysosomal storage disorder, is caused by bi-allelic mutations in GBA1-a gene that encodes the lysosomal hydrolase β-glucocerebrosidase (GCase). The neuronopathic forms of GD (nGD) are characterized by severe neurological abnormalities that arise during gestation or early in infancy. Using GD-induced pluripotent stem cell (iPSC)-derived neuronal progenitor cells (NPCs), we have previously reported that neuronal cells have neurodevelopmental defects associated with the downregulation of canonical Wnt signaling. In this study, we report that GD NPCs display elevated levels of Dkk1, which is a secreted Wnt antagonist that prevents receptor activation. Dkk1 upregulation in mutant NPCs resulted in an increased degradation of β-catenin, and there was a concomitant reduction in lysosomal numbers. Consistent with these results, incubation of the mutant NPCs with recombinant Wnt3a (rWnt3a) was able to outcompete the excess Dkk1, increasing β-catenin levels and rescuing lysosomal numbers. Furthermore, the incubation of WT NPCs with recombinant Dkk1 (rDkk1) phenocopied the mutant phenotype, recapitulating the decrease in β-catenin levels and lysosomal depletion seen in nGD NPCs. This study provides evidence that downregulation of the Wnt/β-catenin pathway in nGD neuronal cells involves the upregulation of Dkk1. As Dkk1 is an extracellular Wnt antagonist, our results suggest that the deleterious effects of Wnt/β-catenin downregulation in nGD may be ameliorated by the prevention of Dkk1 binding to the Wnt co-receptor LRP6, pointing to Dkk1 as a potential therapeutic target for GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
| | - Ricardo A. Feldman
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| |
Collapse
|
21
|
Canto AM, Matos AHB, Godoi AB, Vieira AS, Aoyama BB, Rocha CS, Henning B, Carvalho BS, Pascoal VDB, Veiga DFT, Gilioli R, Cendes F, Lopes-Cendes I. Multi-omics analysis suggests enhanced epileptogenesis in the Cornu Ammonis 3 of the pilocarpine model of mesial temporal lobe epilepsy. Hippocampus 2020; 31:122-139. [PMID: 33037862 DOI: 10.1002/hipo.23268] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022]
Abstract
Mesial temporal lobe epilepsy (MTLE) is a chronic neurological disorder characterized by the occurrence of seizures, and histopathological abnormalities in the mesial temporal lobe structures, mainly hippocampal sclerosis (HS). We used a multi-omics approach to determine the profile of transcript and protein expression in the dorsal and ventral hippocampal dentate gyrus (DG) and Cornu Ammonis 3 (CA3) in an animal model of MTLE induced by pilocarpine. We performed label-free proteomics and RNAseq from laser-microdissected tissue isolated from pilocarpine-induced Wistar rats. We divided the DG and CA3 into dorsal and ventral areas and analyzed them separately. We performed a data integration analysis and evaluated enriched signaling pathways, as well as the integrated networks generated based on the gene ontology processes. Our results indicate differences in the transcriptomic and proteomic profiles among the DG and the CA3 subfields of the hippocampus. Moreover, our data suggest that epileptogenesis is enhanced in the CA3 region when compared to the DG, with most abnormalities in transcript and protein levels occurring in the CA3. Furthermore, our results show that the epileptogenesis in the pilocarpine model involves predominantly abnormal regulation of excitatory neuronal mechanisms mediated by N-methyl D-aspartate (NMDA) receptors, changes in the serotonin signaling, and neuronal activity controlled by calcium/calmodulin-dependent protein kinase (CaMK) regulation and leucine-rich repeat kinase 2 (LRRK2)/WNT signaling pathways.
Collapse
Affiliation(s)
- Amanda M Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Alexandre H B Matos
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Alexandre B Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - André S Vieira
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Beatriz B Aoyama
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Structural and Functional Biology, Institute of Biology. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cristiane S Rocha
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Barbara Henning
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Benilton S Carvalho
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vinicius D B Pascoal
- Department of Basic Sciences, Fluminense Federal University (UFF), Nova Friburgo, Rio de Janeiroz, Brazil
| | - Diogo F T Veiga
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Rovilson Gilioli
- Laboratory of Animal Quality Control, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil.,Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Ectodysplasin-A2 induces dickkopf 1 expression in human balding dermal papilla cells overexpressing the ectodysplasin A2 receptor. Biochem Biophys Res Commun 2020; 529:766-772. [PMID: 32736705 DOI: 10.1016/j.bbrc.2020.06.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Androgenetic alopecia (AGA) is a common genetic disorder, and a X-chromosomal locus that contains the androgen receptor (AR) and ectodysplasin A2 receptor (EDA2R) genes represents a major susceptibility locus for AGA. In our previous study, we reported that ectodysplasin-A2 (EDA-A2) induces apoptosis in cultured human hair follicle (HF) cells and promotes the regression of HFs in mice. However, the role of the EDA-A2/EDA2R in AGA remains unknown, as the causative gene in this pathway has not yet been identified and potential functional connections between EDA-A2 signaling and the androgen pathway remain unclear. In this study, we investigated the expression of EDA2R in balding HFs and matched with non-balding HFs. The EDA2R level was upregulated in the balding dermal papilla (DP) cells compared with non-balding DP cells derived from patients with AGA. However, EDA2R was strongly expressed in both balding and non-balding outer root sheath (ORS) cells. We screened EDA-A2-regulated genes in balding DP cells and identified dickkopf 1 (DKK-1) as catagen inducer during the hair cycle. The mRNA and protein expression levels of DKK-1 were both upregulated by EDA-A2. In addition, DKK-1 expression was induced by EDA-A2 both in cultured human HFs and in mouse HFs. Moreover, the EDA-A2-induced apoptosis of DP and ORS cells was reversed by the antibody-mediated neutralization of DKK-1. Collectively, our data strongly suggest that EDA-A2 induces DKK-1 secretion and causes apoptosis in HFs by binding EDA2R, which is overexpressed in the bald scalp. EDA-A2/EDA2R signaling could inhibit hair growth through DKK-1 induction, and an inhibitor of EDA-A2/EDA2R signaling may be a promising agent for the treatment and prevention of AGA.
Collapse
|
23
|
Xu D, Li F, Xue G, Hou K, Fang W, Li Y. Effect of Wnt signaling pathway on neurogenesis after cerebral ischemia and its therapeutic potential. Brain Res Bull 2020; 164:1-13. [PMID: 32763283 DOI: 10.1016/j.brainresbull.2020.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Neurogenesis process in the chronic phase of ischemic stroke has become the focus of research on stroke treatment recently, mainly through the activation of related pathways to increase the differentiation of neural stem cells (NSCs) in the brain sub-ventricular zone (SVZ) and subgranular zone (SGZ) of hippocampal dentate gyrus (DG) areas into neurons, promoting neurogenesis. While there is still debate about the longevity of active adult neurogenesis in humans, the SVZ and SGZ have the capacity to upregulate neurogenesis in response to cerebral ischemia, which opens discussion about potential treatment strategies to harness this neuronal regenerative response. Wnt signaling pathway is one of the most important approaches potentially targeting on neurogenesis after cerebral ischemia, appropriate activation of which in NSCs may help to improve the sequelae of cerebral ischemia. Various therapeutic approaches are explored on preclinical stage to target endogenous neurogenesis induced by Wnt signaling after stroke onset. This article describes the composition of Wnt signaling pathway and the process of neurogenesis after cerebral ischemia, and emphatically introduces the recent studies on the mechanisms of this pathway for post-stroke neurogenesis and the therapeutic possibility of activating the pathway to improve neurogenesis after stroke.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Gou Xue
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway. Genes (Basel) 2020; 11:genes11070804. [PMID: 32708801 PMCID: PMC7397164 DOI: 10.3390/genes11070804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway’s impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.
Collapse
|
25
|
Li J, Gao Y, Yue W. The Clinical Diagnostic and Prognostic Value of Dickkopf-1 in Cancer. Cancer Manag Res 2020; 12:4253-4260. [PMID: 32606922 PMCID: PMC7292247 DOI: 10.2147/cmar.s254596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
The Wnt signaling pathway extensively participates in diverse processes such as embryonic development, maintenance of homeostasis and tumor pathogenesis. Dickkopf-1 (DKK1), a Wnt inhibitor, plays a vital role for over the past decades regarding its role in the regulation of several types of cancers. However, studies have shown that DKK1 is expressed differently in cancer and plays a role as a cancer-promoting factor or a tumor suppressor, which is worthy of further exploration. We herein study whether DKK1 is highly expressed in all cancers and plays a crucial role in promoting cancer. Furthermore, we discussed as to which stages of cancer development it plays in. Finally, the present detection methods were introduced and indicated the clinical application of DKK1 in tumor development.
Collapse
Affiliation(s)
- Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of China
| |
Collapse
|
26
|
Ke X, Yang M, Luo JM, Zhang Y, Chen XY. The role of serum Dickkopf-1 in predicting 30-day death in severe traumatic brain injury. Brain Behav 2020; 10:e01589. [PMID: 32324340 PMCID: PMC7303377 DOI: 10.1002/brb3.1589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Dickkopf-1 (DKK-1), an inhibitor of the canonical/-catenin cascade of the Wnt pathway, was upregulated in brain tissues of hemorrhagic stroke rats, and its rising circulating levels were associated with poor prognosis of acute ischemic stroke patients. We attempted to ascertain the relationship between serum DKK-1 levels and 30-day death after severe traumatic brain injury (sTBI). MATERIALS AND METHODS Serum DKK-1 levels were gauged in a total of 94 sTBI patients and 94 healthy controls. Trauma severity was assessed using Glasgow Coma Scale (GCS) and Rotterdam classification based on head computerized tomography scan. Prognostic variable was 30-day death. RESULTS Compared with controls, serum DKK-1 levels were substantially elevated in patients (median value, 3.7 versus 1.0 ng/ml). Area under receiver operating characteristic curve was 0.802 (95% confidence interval (CI), 0.708-0.877) for predicting 30-day death. Adjusted logistic regression showed that serum DKK-1 levels above 3.7 ng/ml remained as an independent marker of 30-day death (odds ratio, 8.573; 95% CI, 1.386-53.020) and overall survival (hazard ratio, 7.322; 95% CI, 1.320-40.622). An intimate correlation existed between DKK-1 levels and GCS scores (r = -.649) in addition to Rotterdam classification (r = .664). CONCLUSIONS High serum levels of DKK-1 are closely associated with increasing severity and rising short-term mortality of sTBI.
Collapse
Affiliation(s)
- Xin Ke
- Department of Critical Medicine, The Taizhou First People's Hospital, Taizhou, China
| | - Ming Yang
- Department of Neurosurgery, The Taizhou First People's Hospital, Taizhou, China
| | - Jin-Ming Luo
- Department of Critical Medicine, The Taizhou First People's Hospital, Taizhou, China
| | - Yu Zhang
- Department of Critical Medicine, The Taizhou First People's Hospital, Taizhou, China
| | - Xiao-Yu Chen
- Department of Critical Medicine, The Taizhou First People's Hospital, Taizhou, China
| |
Collapse
|
27
|
Tanioka M, Park WK, Shim I, Kim K, Choi S, Kim UJ, Lee KH, Hong SK, Lee BH. Neuroprotection from Excitotoxic Injury by Local Administration of Lipid Emulsion into the Brain of Rats. Int J Mol Sci 2020; 21:ijms21082706. [PMID: 32295117 PMCID: PMC7215821 DOI: 10.3390/ijms21082706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/10/2023] Open
Abstract
Lipid emulsion was recently shown to attenuate cell death caused by excitotoxic conditions in the heart. There are key similarities between neurons and cardiomyocytes, such as excitability and conductibility, which yield vulnerability to excitotoxic conditions. However, systematic investigations on the protective effects of lipid emulsion in the central nervous system are still lacking. This study aimed to determine the neuroprotective effects of lipid emulsion in an in vivo rat model of kainic acid-induced excitotoxicity through intrahippocampal microinjections. Kainic acid and/or lipid emulsion-injected rats were subjected to the passive avoidance test and elevated plus maze for behavioral assessment. Rats were sacrificed at 24 h and 72 h after kainic acid injections for molecular study, including immunoblotting and qPCR. Brains were also cryosectioned for morphological analysis through cresyl violet staining and Fluorojade-C staining. Anxiety and memory functions were significantly preserved in 1% lipid emulsion-treated rats. Lipid emulsion was dose-dependent on the protein expression of β-catenin and the phosphorylation of GSK3-β and Akt. Wnt1 mRNA expression was elevated in lipid emulsion-treated rats compared to the vehicle. Neurodegeneration was significantly reduced mainly in the CA1 region with increased cell survival. Our results suggest that lipid emulsion has neuroprotective effects against excitotoxic conditions in the brain and may provide new insight into its potential therapeutic utility.
Collapse
Affiliation(s)
- Motomasa Tanioka
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (M.T.); (K.K.); (S.C.); (U.J.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wyun Kon Park
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Insop Shim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (M.T.); (K.K.); (S.C.); (U.J.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Songyeon Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (M.T.); (K.K.); (S.C.); (U.J.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (M.T.); (K.K.); (S.C.); (U.J.K.)
| | - Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan 47011, Korea;
| | - Seong-Karp Hong
- Division of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; (M.T.); (K.K.); (S.C.); (U.J.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: + 82-2-2228-1711
| |
Collapse
|
28
|
Kim MS, Bang J, Jeon WK. The Involvement of Canonical Wnt Signaling in Memory Impairment Induced by Chronic Cerebral Hypoperfusion in Mice. Transl Stroke Res 2020; 11:734-746. [DOI: 10.1007/s12975-019-00748-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/25/2023]
|
29
|
Ueland T, Åkerblom A, Ghukasyan T, Michelsen AE, Becker RC, Bertilsson M, Himmelmann A, James SK, Siegbahn A, Storey RF, Kontny F, Aukrust P, Wallentin L. Admission Levels of DKK1 (Dickkopf-1) Are Associated With Future Cardiovascular Death in Patients With Acute Coronary Syndromes. Arterioscler Thromb Vasc Biol 2019; 39:294-302. [PMID: 30580572 DOI: 10.1161/atvbaha.118.311042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective- The Wnt/wingless signaling antagonist DKK1 (dickkopf-1) regulates platelet-mediated inflammation and may contribute to plaque destabilization. We hypothesized that DKK1 would be associated with cardiovascular outcomes. Approach and Results- We determined DKK1 levels in serum samples obtained before randomization, at discharge, and 1 and 6 months in a subset of 5165 patients with acute coronary syndromes in the PLATO trial (Platelet Inhibition and Patient Outcomes; NCT00391872). The median (interquartile range) DKK1 concentrations were 0.61 (0.20-1.27) ng/mL at baseline and increased during follow-up. The hazard ratio (95% CIs) for the composite end point (cardiovascular death, nonprocedural spontaneous myocardial infarction, or stroke) during 1 year of follow-up, per 50% increase in baseline DKK1 concentration, was 1.06 (1.02-1.10), P=0.0011, and remained significant in fully adjusted analysis with 14 conventional clinical and demographic and 6 biochemical variables, including NT-proBNP (N-terminal pro-B-type natriuretic peptide), hs-TnT (high-sensitivity troponin T), and GDF-15 (growth differentiation factor 15; 1.05 [1.00-1.09]; P=0.028). This association was mainly driven by the association with cardiovascular death, where a gradual increase in event rates was observed with increasing quartiles of DKK1 (2.7%, 3.0%, 4.3%, and 5.0%) and remained significant and unmodified in fully adjusted analysis (hazard ratio, 1.10 [1.04-1.17]; P=0.002). Change in DKK1 and levels at 1 month were unrelated to outcomes. A modifying effect of ticagrelor on DKK1 discharge levels was observed but not associated with prognosis. Conclusions- In patients with acute coronary syndromes treated with dual antiplatelet treatment, admission DKK1 levels were independently associated with a composite of cardiovascular death, myocardial infarction, or stroke and with cardiovascular death alone.
Collapse
Affiliation(s)
- Thor Ueland
- From the Research Institute of Internal Medicine, National Hospital (T.U., A.E.M., P.A.), University of Oslo, Norway.,K.G. Jebsen Inflammatory Research Center (T.U., P.A.), University of Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Norway (T.U., P.A.)
| | - Axel Åkerblom
- Division of Cardiology, Department of Medical Sciences (A.Å, S.K.J., L.W.), Uppsala University, Sweden.,Uppsala Clinical Research Center (A.Å, T.G., M.B., S.K.J., A.S., L.W.), Uppsala University, Sweden
| | - Tatevik Ghukasyan
- Uppsala Clinical Research Center (A.Å, T.G., M.B., S.K.J., A.S., L.W.), Uppsala University, Sweden
| | - Annika E Michelsen
- From the Research Institute of Internal Medicine, National Hospital (T.U., A.E.M., P.A.), University of Oslo, Norway
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.)
| | - Maria Bertilsson
- Uppsala Clinical Research Center (A.Å, T.G., M.B., S.K.J., A.S., L.W.), Uppsala University, Sweden
| | | | - Stefan K James
- Division of Cardiology, Department of Medical Sciences (A.Å, S.K.J., L.W.), Uppsala University, Sweden.,Uppsala Clinical Research Center (A.Å, T.G., M.B., S.K.J., A.S., L.W.), Uppsala University, Sweden
| | - Agneta Siegbahn
- Uppsala Clinical Research Center (A.Å, T.G., M.B., S.K.J., A.S., L.W.), Uppsala University, Sweden.,Department of Medical Sciences, Clinical Chemistry (A.S.), Uppsala University, Sweden
| | - Robert F Storey
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, United Kingdom (R.F.S.)
| | - Frederic Kontny
- Department of Cardiology, Stavanger University Hospital, Norway (F.K.).,Drammen Heart Center, Norway (F.K.)
| | - Pål Aukrust
- From the Research Institute of Internal Medicine, National Hospital (T.U., A.E.M., P.A.), University of Oslo, Norway.,K.G. Jebsen Inflammatory Research Center (T.U., P.A.), University of Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Norway (T.U., P.A.).,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Norway (P.A.)
| | - Lars Wallentin
- Division of Cardiology, Department of Medical Sciences (A.Å, S.K.J., L.W.), Uppsala University, Sweden.,Uppsala Clinical Research Center (A.Å, T.G., M.B., S.K.J., A.S., L.W.), Uppsala University, Sweden
| | | |
Collapse
|
30
|
Zhu Z, Guo D, Zhong C, Wang A, Xie X, Xu T, Chen CS, Peng Y, Peng H, Li Q, Ju Z, Geng D, Chen J, Liu L, Wang Y, Zhang Y, He J. Serum Dkk-1 (Dickkopf-1) Is a Potential Biomarker in the Prediction of Clinical Outcomes Among Patients With Acute Ischemic Stroke. Arterioscler Thromb Vasc Biol 2019; 39:285-293. [PMID: 30580563 DOI: 10.1161/atvbaha.118.311960] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective- Serum Dkk-1 (dickkopf-1) level has been shown to be elevated in patients with ischemic stroke, but its impact on clinical outcomes of ischemic stroke remains unclear. The aim of this study is to investigate the association between serum Dkk-1 and prognosis of ischemic stroke. Approach and Results- We measured serum Dkk-1 levels in 3178 patients with ischemic stroke from CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). The primary outcome was a combination of all-cause mortality and major disability (modified Rankin scale score, ≥3) at 1 year after stroke. Secondary outcomes were stroke recurrence and vascular events. After multivariate adjustment, elevated Dkk-1 levels were associated with an increased risk of primary outcome (odds ratio, 1.40; 95% CI, 1.03-1.89; Ptrend=0.015) when 2 extreme quartiles were compared. Each SD increase of log-transformed Dkk-1 was associated with 12% (95% CI, 1%-24%) increased risk of primary outcome. Multiple-adjusted spline regression model showed a linear association between serum Dkk-1 and risk of primary outcome ( P for linearity, 0.039). Subgroup analyses further confirmed these associations. The addition of serum Dkk-1 to conventional risk factors improved the predictive power for primary outcome (net reclassification improvement: 10.11%, P=0.029; integrated discrimination improvement: 0.21%, P=0.028). Conclusions- High serum Dkk-1 levels at baseline were associated with poor prognosis at 1 year after ischemic stroke, suggesting that serum Dkk-1 may be a potential prognostic biomarker for ischemic stroke. Further studies from other samples of patients with ischemic stroke are needed to replicate our findings and to clarify the potential mechanisms.
Collapse
Affiliation(s)
- Zhengbao Zhu
- From the Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China (Z.Z., D.G., C.Z., A.W., T.X., H.P., Y.Z.).,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Z.Z., C.-S.C., J.C., J.H.)
| | - Daoxia Guo
- From the Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China (Z.Z., D.G., C.Z., A.W., T.X., H.P., Y.Z.)
| | - Chongke Zhong
- From the Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China (Z.Z., D.G., C.Z., A.W., T.X., H.P., Y.Z.)
| | - Aili Wang
- From the Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China (Z.Z., D.G., C.Z., A.W., T.X., H.P., Y.Z.)
| | - Xuewei Xie
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (X.X., L.L., Y.W.)
| | - Tan Xu
- From the Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China (Z.Z., D.G., C.Z., A.W., T.X., H.P., Y.Z.)
| | - Chung-Shiuan Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Z.Z., C.-S.C., J.C., J.H.)
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei (Y.P.)
| | - Hao Peng
- From the Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China (Z.Z., D.G., C.Z., A.W., T.X., H.P., Y.Z.)
| | - Qunwei Li
- Department of Epidemiology, School of Public Health, Taishan Medical College, Shandong, China (Q.L.)
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Inner Mongolia, China (Z.J.)
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Jiangsu, China (D.G.)
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Z.Z., C.-S.C., J.C., J.H.).,Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (X.X., L.L., Y.W.)
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (X.X., L.L., Y.W.)
| | - Yonghong Zhang
- From the Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China (Z.Z., D.G., C.Z., A.W., T.X., H.P., Y.Z.)
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Z.Z., C.-S.C., J.C., J.H.).,Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| |
Collapse
|
31
|
Zhan L, Liu D, Wen H, Hu J, Pang T, Sun W, Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J 2019; 33:9291-9307. [PMID: 31120770 DOI: 10.1096/fj.201802633r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wingless/Int (Wnt)/β-catenin pathway plays an essential role in cell survival. Although postconditioning with 8% oxygen can alleviate transient global cerebral ischemia (tGCI)-induced neuronal damage in hippocampal CA1 subregion in adult rats as demonstrated by our previous studies, little is understood about the role of Wnt/β-catenin pathway in hypoxic postconditioning (HPC)-induced neuroprotection. This study tried to investigate the involvement of Wnt/β-catenin pathway in HPC-induced neuroprotection against tGCI and explore the underlying molecular mechanism thereof. We observed that HPC elevated nuclear β-catenin level as well as increased Wnt3a and decreased Dickkopf-1 (Dkk1) expression in CA1 after tGCI. Accordingly, HPC enhanced the expression of survivin and reduced the ratio of B-cell lymphoma/lewkmia-2 (Bcl-2)-associated X protein (Bax) to Bcl-2 following reperfusion. Moreover, our study has shown that these effects of HPC were abolished by lentivirus-mediated overexpression of Dkk1, and that the overexpression of Dkk1 completely reversed HPC-induced neuroprotection. Furthermore, HPC suppressed the activity of glycogen synthase kinase-3β (GSK-3β) in CA1 after tGCI, and the inhibition of GSK-3β activity with SB216763 increased the nuclear accumulation of β-catenin, up-regulated the expression of survivin, and reduced the ratio of Bax to Bcl-2, thus preventing the delayed neuronal death after tGCI. Finally, the administration of LY294002, an inhibitor of PI3K, increased GSK-3β activity and blocked nuclear β-catenin accumulation, thereby decreasing survivin expression and elevating the Bax-to-Bcl-2 ratio after HPC. These results suggest that activation of the Wnt/β-catenin pathway through Dkk1 inhibition and PI3K/protein kinase B pathway-mediated GSK-3β inactivation contributes to the neuroprotection of HPC against tGCI.-Zhan, L., Liu, D., Wen, H., Hu, J., Pang, T., Sun, W., Xu, E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 inhibition and GSK-3β inactivation.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Liu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Haixia Wen
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jiaoyue Hu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Taoyan Pang
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
32
|
Zhou XM, Liu J, Wang Y, Zhang SL, Zhao X, Xu X, Pei J, Zhang MH. Retracted: microRNA-129-5p involved in the neuroprotective effect of dexmedetomidine on hypoxic-ischemic brain injury by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats. J Cell Biochem 2019; 120:6908-6919. [PMID: 29377229 DOI: 10.1002/jcb.26704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 02/02/2023]
Abstract
Our study aims to elucidate the mechanisms how microRNA-129-5p (miR-129-5p) involved in the neuroprotective effect of dexmedetomidine (DEX) on hypoxic-ischemic brain injury (HIBI) by targeting the type III procollagen gene (COL3A1) through the Wnt/β-catenin signaling pathway in neonatal rats. A total of 120 rats were obtained, among which 15 rats were selected as sham group and rest rats as model, DEX, DEX + negative control (DEX + NC), DEX + miR-129-5p mimics, DEX + miR-129-5p inhibitors, DEX + XAV-939, and DEX + miR-129-5p inhibitors + XAV-939 groups. A dual-luciferase reporter assay was performed for the target relationship between miR-129-5p and COL3A1. Weight rate and water content of cerebral hemisphere were detected. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to detect miR-129-5p expression and expressions of COL3A1, E-cadherin, T-cell factor (TCF)- 4, and β-catenin. The DEX, DEX + miR-129-5p mimics, DEX + XAV-939 groups had increased weight rate of the cerebral hemisphere, but decreased water content of left cerebral hemisphere, levels of COL3A1, β-catenin, TCF-4, and E-cadherin in the hippocampus compared with the model and DEX + miR-129-5p inhibitors groups. COL3A1 was verified as the target gene of the miR-129-5p. Compared with the DEX + NC and DEX + miR-129-5p inhibitors + XAV-939 groups, the DEX + XAV-939 and DEX + miR-129-5p mimics groups had elevated weight rate of the cerebral hemisphere, but reduced water content of left cerebral hemisphere, levels of COL3A1, β-catenin, TCF-4, and E-cadherin in the hippocampus. Our findings demonstrate that miR-129-5p improves the neuroprotective role of DEX in HIBI by targeting COL3A1 through the Wnt/β-catenin signaling pathway in neonatal rats.
Collapse
Affiliation(s)
- Xiu-Min Zhou
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Jie Liu
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Ying Wang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Shu-Li Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xin Zhao
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, China
| | - Man-He Zhang
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
33
|
Ren C, Gu X, Li H, Lei S, Wang Z, Wang J, Yin P, Zhang C, Wang F, Liu C. The role of DKK1 in Alzheimer's disease: A potential intervention point of brain damage prevention? Pharmacol Res 2019; 144:331-335. [PMID: 31042564 DOI: 10.1016/j.phrs.2019.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/24/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
Dickkopf-1 (DKK1), a secretory glycoprotein discovered for 'inducing generation of head', is an endogenous inhibitor of the canonical Wnt/β-catenin signaling pathway. It was found to be involved in many pathophysiological processes in vivo. Abnormal expression of DKK1 will alter expressions of related proteins and genes not only in canonical Wnt/β-catenin signaling pathway but also in other signaling pathways. Previous studies of DKK1 focused on its function in tumors. In recent years, a large number of studies have shown that it plays an important role in embryonic development, neural regeneration, synaptogenesis and so on. Therefore, its role in neuropsychiatric disorders, such as neurodysplasia, cognitive impairment and emotional disorder, has attracted increasing attention. At present, the role of DKK1 in Alzheimer's disease (AD) is one of the research hot topics. This article reviewed the research progress of its role in AD in order to provide new ideas and directions for further studies on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China; Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China; Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xinxin Gu
- Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Huihua Li
- Zhenjiang Mental Health Center, Zhenjiang 212000, Jiangsu Province, China.
| | - Shihui Lei
- Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Zhe Wang
- Department of Clinical Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China.
| | - Jiahui Wang
- Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, China.
| | - Peiyuan Yin
- Department of Blood Supply, Yantai Center Blood Station, Yantai 264000, Shandong Province, China.
| | - Caiyi Zhang
- Department of Emergency and Rescue Medicine, Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China.
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Chunfeng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China; Institute of Neuroscience, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
34
|
Gadd45b Acts as Neuroprotective Effector in Global Ischemia-Induced Neuronal Death. Int Neurourol J 2019; 23:S11-21. [PMID: 30832463 PMCID: PMC6433207 DOI: 10.5213/inj.1938040.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/15/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Transient global ischemia arising in human due to cardiac arrest causes selective, delayed neuronal death in hippocampal CA1 and cognitive impairment. Growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) is a wellknown molecule in both DNA damage-related pathogenesis and therapies. Emerging evidence suggests that Gadd45b is an anti-apoptotic factor in nonneuronal cells and is an intrinsic neuroprotective molecule in neurons. However, the mechanism of Gadd45b pathway is not fully examined in neurodegeneration associated with global ischemia. METHODS Rats were subjected to transient global ischemia by the 4-vessel occlusion or sham operation. The animals were sacrificed at 24 hours, 48 hours, and 7 days after ischemia. The hippocampal CA1 was microdissected and processed to examine mRNA and protein level. To assess neuronal death, tissue sections were cut and processed for Fluoro-Jade and Nissl staining. RESULTS Here we show that ischemic insults increase abundance of Gadd45b and brain-derived neurotrophic factor, a known target of Gadd45 mediated demethylation, in selectively-vulnerable hippocampal CA1 neurons. We further show that knockdown of Gadd45b increases abundance of a pro-apoptotic Bcl-2 family member Bax while decreasing the antiapoptotic protein Bcl-2, which together promote neuronal death. CONCLUSION These findings document a protective role of Gadd45b against neuronal insults associated with global ischemia and identify Gadd45b as a potential therapeutic target for the amelioration of hippocampal neurodegeneration.
Collapse
|
35
|
Singh S, Mishra A, Mohanbhai SJ, Tiwari V, Chaturvedi RK, Khurana S, Shukla S. Axin-2 knockdown promote mitochondrial biogenesis and dopaminergic neurogenesis by regulating Wnt/β-catenin signaling in rat model of Parkinson's disease. Free Radic Biol Med 2018; 129:73-87. [PMID: 30176346 DOI: 10.1016/j.freeradbiomed.2018.08.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
Wnts and the components of Wnt/β-catenin signaling are widely expressed in midbrain and required to control the fate specification of dopaminergic (DAergic) neurons, a neuronal population that specifically degenerate in Parkinson's disease (PD). Accumulating evidence suggest that mitochondrial dysfunction plays a key role in pathogenesis of PD. Axin-2, a negative regulator of Wnt/β-catenin signaling affects mitochondrial biogenesis and death/birth of new DAergic neurons is not fully explored. We investigated the functional role of Axin-2/Wnt/β-catenin signaling in mitochondrial biogenesis and DAergic neurogenesis in 6-hydroxydopamine (6-OHDA) induced rat model of PD-like phenotypes. We demonstrate that single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB) potentially dysregulates Wnt/β-catenin signaling in substantia nigra pars compacta (SNpc). We used shRNA lentiviruses to genetically knockdown Axin-2 to up-regulate Wnt/β-catenin signaling in SNpc in parkinsonian rats. Genetic knockdown of Axin-2 up-regulates Wnt/β-catenin signaling by destabilizing the β-catenin degradation complex in SNpc in parkinsonian rats. Axin-2 shRNA mediated activation of Wnt/β-catenin signaling improved behavioural functions and protected the nigral DAergic neurons by increasing mitochondrial functionality in parkinsonian rats. Axin-2 shRNA treatment reduced apoptotic signaling, autophagy and ROS generation and improved mitochondrial membrane potential which promotes mitochondrial biogenesis in SNpc in parkinsonian rats. Interestingly, Axin-2 shRNA-mediated up-regulation of Wnt/β-catenin signaling enhanced net DAergic neurogenesis by regulating proneural genes (Nurr-1, Pitx-3, Ngn-2, and NeuroD1) and mitochondrial biogenesis in SNpc in parkinsonian rats. Therefore, our data suggest that pharmacological/genetic manipulation of Wnt signaling that enhances the endogenous regenerative capacity of DAergic neurons may have implication for regenerative approaches in PD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Gene Expression Regulation
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Injections, Intraventricular
- Male
- Medial Forebrain Bundle/drug effects
- Medial Forebrain Bundle/metabolism
- Medial Forebrain Bundle/pathology
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Mesencephalon/pathology
- Mitochondria/genetics
- Mitochondria/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurogenesis/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Organelle Biogenesis
- Oxidopamine/administration & dosage
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/genetics
- Parkinson Disease, Secondary/metabolism
- Parkinson Disease, Secondary/pathology
- Pars Compacta/drug effects
- Pars Compacta/metabolism
- Pars Compacta/pathology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Stereotaxic Techniques
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; Academy of Scientific and Innovative Research, New Delhi, India
| | | | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Sukant Khurana
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P., India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
36
|
Busceti CL, Di Menna L, Bianchi F, Mastroiacovo F, Di Pietro P, Traficante A, Bozza G, Niehrs C, Battaglia G, Bruno V, Fornai F, Volpe M, Rubattu S, Nicoletti F. Dickkopf-3 Causes Neuroprotection by Inducing Vascular Endothelial Growth Factor. Front Cell Neurosci 2018; 12:292. [PMID: 30258353 PMCID: PMC6143799 DOI: 10.3389/fncel.2018.00292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
Dickkopf-3 (Dkk3) is an atypical member of the Dkk family of Wnt inhibitors, which has been implicated in the pathophysiology of neurodegenerative disorders. However, the role of Dkk3 in mechanisms of cell degeneration and protection is unknown. We used Dkk3 knockout mice to examine how endogenous Dkk3 influences ischemic brain damage. In addition, we used primary cultures of astrocytes or mixed cultures of astrocytes and neurons to investigate the action of Dkk3 on cell damage and dissect the underlying molecular mechanisms. In a model of focal brain ischemia induced by permanent middle cerebral artery (MCA) occlusion (MCAO) Dkk3−/− mice showed a significantly greater infarct size with respect to their wild-type counterparts at all time points investigated (1, 3 and 7 days after MCAO). Immunohistochemical analysis showed that Dkk3 expression was enhanced at the borders of the ischemic focus, and was predominantly detected in astrocytes. This raised the possibility that Dkk3 produced by astrocytes acted as a protective molecule. We tested this hypothesis using either primary cultures of cortical astrocytes or mixed cortical cultures containing both neurons and astrocytes. Genetic deletion of Dkk3 was permissive to astrocyte damage induced by either oxidative stress or glucose deprivation. In addition, application of human recombinant Dkk3 (hrDkk3) was highly protective against oxidative stress in cultured astrocytes. We tested the hypothesis that the protective activity of Dkk3 was mediated byvascular endothelial growth factor (VEGF). Interestingly, glucose deprivation up-regulated both Dkk3 and VEGF in cultured astrocytes prepared from wild-type mice. VEGF induction was not observed in astrocytes lacking Dkk3 (i.e., in cultures prepared from Dkk3−/− mice). In mixed cultures of cortical cells, excitotoxic neuronal death induced by a brief pulse with N-methyl-D-aspartate (NMDA) was significantly enhanced when Dkk3 was lacking in astrocytes, whereas post-NMDA addition of hrDkk3 was neuroprotective. Neuroprotection by hrDkk3 was significantly reduced by pharmacological blockade of type-2 VEGF receptors and was mimicked by hrVEGF. These data offer the first evidence that Dkk3 protects both neurons and astrocytes against a variety of toxic insults, and at least in culture, protection involves VEGF induction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Massimo Volpe
- IRCCS Neuromed, Pozzilli, Italy.,Clinical and Molecular Medicine, University Sapienza, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy.,Clinical and Molecular Medicine, University Sapienza, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| |
Collapse
|
37
|
Hodges SL, Lugo JN. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 2018; 146:9-16. [PMID: 30053675 DOI: 10.1016/j.eplepsyres.2018.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Epilepsy is one of the most common neurological disorders, and yet many afflicted individuals are resistant to all available therapeutic treatments. Existing pharmaceutical treatments function primarily to reduce hyperexcitability and prevent seizures, but fail to influence the underlying pathophysiology of the disorder. Recently, research efforts have focused on identifying alternative mechanistic targets for anti-epileptogenic therapies that can prevent the development of chronic epilepsy. The Wnt/β-catenin pathway, one possible target, has been demonstrated to be disrupted in both acute and chronic phases of epilepsy. Wnt/β-catenin signaling can regulate many seizure-induced changes in the brain, including neurogenesis and neuronal death, as well as can influence seizure susceptibility and potentially the development of chronic epilepsy. Several genome-wide studies and in vivo knockout animal models have provided evidence for an association between disrupted Wnt/β-catenin signaling and epilepsy. Furthermore, approved pharmaceutical drugs and other small molecule compounds that target components of the β-catenin destruction complex or antagonize endogenous inhibitors of the pathway have shown to be protective following seizures. However, additional studies are needed to determine the optimal time period in which modulation of the pathway may be most beneficial. Overall, disrupted molecular networks such as Wnt/β-catenin signaling, could be a promising anti-epileptogenic target for future epilepsy therapies.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
38
|
Intracellular Calcium Determines the Adipogenic Differentiation Potential of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells via the Wnt5a/ β-Catenin Signaling Pathway. Stem Cells Int 2018; 2018:6545071. [PMID: 30123291 PMCID: PMC6079381 DOI: 10.1155/2018/6545071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells- (MSCs-) based therapies show different degrees of efficacies for the treatment of various diseases, including lipogenesis. We evaluated the adipogenic differentiation ability of human umbilical cord blood-derived MSCs (hUCB-MSCs) from different donors and examined the contribution of the intracellular calcium (Ca2+) level to this diversity. hUCB-MSCs treated with Ca2+ or the Ca2+ chelator BAPTA-AM increased and decreased adipogenic differentiation, respectively. Canonical Wnt5a/β-catenin expression decreased during adipogenic differentiation of hUCB-MSCs. Treatment with Wnt5a blocked the adipogenic differentiation of hUCB-MSCs and activated the Wnt pathway, with a decrease in the adipogenesis markers PPARγ and leptin, and reduced lipid vacuole-associated Oil red O activity. In contrast, inhibition of the Wnt pathway with dickkopf-1 and β-catenin small interfering RNA transfection promoted the adipogenic potential of hUCB-MSCs. Interestingly, the Ca2+-based system exhibited a synergic effect on adipogenic potential through the Wnt5a/β-catenin pathway. Our data suggest that the variable adipogenic differentiation potential of hUCB-MSCs from different lots is due to variation in the intracellular Ca2+ level, which can be used as a marker to predict hUCB-MSCs selection for lipogenesis therapy. Overall, these results demonstrate that exogenous calcium treatment enhanced the adipogenic differentiation of hUCB-MSCs via negatively regulating the Wnt5a/β-catenin signaling pathway.
Collapse
|
39
|
Workman A, Zhu L, Keel BN, Smith TPL, Jones C. The Wnt Signaling Pathway Is Differentially Expressed during the Bovine Herpesvirus 1 Latency-Reactivation Cycle: Evidence That Two Protein Kinases Associated with Neuronal Survival, Akt3 and BMPR2, Are Expressed at Higher Levels during Latency. J Virol 2018; 92:e01937-17. [PMID: 29321317 PMCID: PMC5972910 DOI: 10.1128/jvi.01937-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory neurons in trigeminal ganglia (TG) of calves latently infected with bovine herpesvirus 1 (BoHV-1) abundantly express latency-related (LR) gene products, including a protein (ORF2) and two micro-RNAs. Recent studies in mouse neuroblastoma cells (Neuro-2A) demonstrated ORF2 interacts with β-catenin and a β-catenin coactivator, high-mobility group AT-hook 1 (HMGA1) protein, which correlates with increased β-catenin-dependent transcription and cell survival. β-Catenin and HMGA1 are readily detected in a subset of latently infected TG neurons but not TG neurons from uninfected calves or reactivation from latency. Consequently, we hypothesized that the Wnt/β-catenin signaling pathway is differentially expressed during the latency and reactivation cycle and an active Wnt pathway promotes latency. RNA-sequencing studies revealed that 102 genes associated with the Wnt/β-catenin signaling pathway were differentially expressed in TG during the latency-reactivation cycle in calves. Wnt agonists were generally expressed at higher levels during latency, but these levels decreased during dexamethasone-induced reactivation. The Wnt agonist bone morphogenetic protein receptor 2 (BMPR2) was intriguing because it encodes a serine/threonine receptor kinase that promotes neuronal differentiation and inhibits cell death. Another differentially expressed gene encodes a protein kinase (Akt3), which is significant because Akt activity enhances cell survival and is linked to herpes simplex virus 1 latency and neuronal survival. Additional studies demonstrated ORF2 increased Akt3 steady-state protein levels and interacted with Akt3 in transfected Neuro-2A cells, which correlated with Akt3 activation. Conversely, expression of Wnt antagonists increased during reactivation from latency. Collectively, these studies suggest Wnt signaling cooperates with LR gene products, in particular ORF2, to promote latency.IMPORTANCE Lifelong BoHV-1 latency primarily occurs in sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency in calves. RNA sequencing studies revealed 102 genes associated with the Wnt/β-catenin signaling pathway are differentially regulated during the latency-reactivation cycle. Two protein kinases associated with the Wnt pathway, Akt3 and BMPR2, were expressed at higher levels during latency but were repressed during reactivation. Furthermore, five genes encoding soluble Wnt antagonists and β-catenin-dependent transcription inhibitors were induced during reactivation from latency. These findings are important because Wnt, BMPR2, and Akt3 promote neurogenesis and cell survival, processes crucial for lifelong viral latency. In transfected neuroblastoma cells, a viral protein expressed during latency (ORF2) interacts with and enhances Akt3 protein kinase activity. These findings provide insight into how cellular factors associated with the Wnt signaling pathway cooperate with LR gene products to regulate the BoHV-1 latency-reactivation cycle.
Collapse
Affiliation(s)
- Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Liqian Zhu
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Brittney N Keel
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Timothy P L Smith
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Clinton Jones
- Oklahoma State University Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
40
|
Fluoride Induces Neuroinflammation and Alters Wnt Signaling Pathway in BV2 Microglial Cells. Inflammation 2018; 40:1123-1130. [PMID: 28405851 DOI: 10.1007/s10753-017-0556-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fluoride is a common element in nature and our daily life, and excessive intake of this element can cause fluorosis and irreversible brain damage. The toxic effects of fluoride on the central nervous system may be attributed to the release of inflammatory cytokines and ROS. GSK3β is a key protein that modulates NF-κB activity and inflammatory cytokine levels and plays an important role in the Wnt signaling pathway. In this study, we found that fluoride altered the inflammatory status and oxidative stress by inhibiting Wnt signaling pathway activity. This study thus provides a valid basis for the fluorine-induced neuroinflammation injury theory.
Collapse
|
41
|
Abstract
Heat shock protein A12A (HSPA12A) is a newly discovered member of the Hsp70 family. The biological characteristics and functional roles of HSPA12A are poorly understood. This study investigated the effects of HSPA12A on ischaemic stroke in mice. Ischaemic stroke was induced by left middle cerebral artery occlusion for 1 h followed by blood reperfusion. We observed that HSPA12A was highly expressed in brain neurons, and neuronal HSPA12A expression was downregulated by ischaemic stroke and stroke-associated risk factors (aging, obesity and hyperglycaemia). To investigate the functional requirement of HSPA12A in protecting ischaemic brain injury, HSPA12A knockout mice (Hspa12a-/-) were generated. Hspa12a-/- mice exhibited an enlarged infarct volume and aggravated neurological deficits compared to their wild-type (WT) littermates after stroke. These aggravations in Hspa12a-/- mice were accompanied by more apoptosis and severer hippocampal morphological abnormalities in ischaemic hemispheres. Long-term examination revealed impaired motor function recovery and neurogenesis in stroke-affected Hspa12a-/- mice compared to stroke-affected WT controls. Significant reduced activation of GSK-3β/mTOR/p70S6K signalling was also observed in ischaemic hemispheres of Hspa12a-/- mice compared to WT controls. Administration with lithium (non-selective GSK-3β inhibitor) activated GSK-3β/mTOR/p70S6K signalling in stroke-affected Hspa12a-/- mice. Notably, lithium administration attenuated the HSPA12A deficiency-induced aggravation in infarct size, neurological deficits and neuronal death in Hspa12a-/- mice after stroke. Altogether, the findings suggest that HSPA12A expression encodes a critical novel prosurvival pathway during ischaemic stroke. We identified HSPA12A as a novel neuroprotective target for stroke patients.
Collapse
|
42
|
Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, Guo P, Qi S. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology 2018; 135:11-21. [PMID: 29510185 DOI: 10.1016/j.neuropharm.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
It is well known that Wnt5a activation plays a pivotal role in brain injury and β-arrestin2 induces c-Jun N-terminal kinase (JNK3) activation is involved in neuronal cell death. Nonetheless, the relationship between Wnt5a and JNK3 remains unexplored during cerebral ischemia/reperfusion (I/R). In the present study, we tested the hypothesis that Wnt5a-mediated JNK3 activation via the Wnt5a-Dvl-1-β-arrestin2-JNK3 signaling pathway was correlated with I/R brain injury. We found that cerebral I/R could enhance the assembly of the Dvl-1-β-arrestin2-JNK3 signaling module, Dvl-1 phosphorylation and JNK3 activation. Activated JNK3 could phosphorylate the transcription factor c-Jun, prompt caspase-3 activation and ultimately lead to neuronal cell death. To further explore specifically Wnt5a mediated JNK3 pathway activation in neuronal injury, we used Foxy-5 (a peptide that mimics the effects of Wnt5a) and Box5 (a Wnt5a antagonist) both in vitro and in vivo. AS-β-arrestin2 (an antisense oligonucleotide against β-arrestin2) and RRSLHL (a small peptide that competes with β-arrestin2 for binding to JNK3) were applied to confirm the positive signal transduction effect of the Dvl-1-β-arrestin2-JNK3 signaling module during cerebral I/R. Furthermore, Box5 and the RRSLHL peptide were found to play protective roles in neuronal death both in vivo global and focal cerebral I/R rat models and in vitro oxygen glucose deprivation (OGD) neural cells. In summary, our results indicate that Wnt5a-mediated JNK3 activation participates in I/R brain injury by targeting the Dvl-1-β-arrestin2/JNK3 interaction. Our results also point to the possibility that disrupting Wnt5a-JNK3 signaling pathway may provide a new approach for stroke therapy.
Collapse
Affiliation(s)
- Xuewen Wei
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - JuanJuan Gong
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Juyun Ma
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Taiyu Zhang
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Yihang Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China.
| |
Collapse
|
43
|
Tapia-Rojas C, Inestrosa NC. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20-APP transgenic and wild-type mice. J Neurochem 2018; 144:443-465. [DOI: 10.1111/jnc.14278] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE UC); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
- Centre for Healthy Brain Ageing; School of Psychiatry; Faculty of Medicine; University of New South Wales; Sydney New South Wales Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA); Universidad de Magallanes; Punta Arenas Chile
| |
Collapse
|
44
|
Oliva CA, Montecinos-Oliva C, Inestrosa NC. Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:81-130. [PMID: 29389523 DOI: 10.1016/bs.pmbts.2017.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its discovery, Wnt signaling has been shown to be one of the most crucial morphogens in development and during the maturation of central nervous system. Its action is relevant during the establishment and maintenance of synaptic structure and neuronal function. In this chapter, we will discuss the most recent evidence on these aspects, and we will explore the evidence that involves Wnt signaling on other less known functions, such as in adult neurogenesis, in the generation of oscillatory neural rhythms, and in adult behavior. The dysfunction of Wnt signaling at different levels will be also discussed, in particular in those aspects that have been found to be linked with several neurodegenerative diseases and neurological disorders. Finally, we will address the possibility of Wnt signaling manipulation to treat those pathophysiological aspects.
Collapse
Affiliation(s)
- Carolina A Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile
| | - Carla Montecinos-Oliva
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Interdisciplinary Institute for Neuroscience (IINS), University of Bordeaux, Bordeaux, France
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontifical Catholic University of Chile, Santiago, Chile; Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia; Center of Excellence in Biomedicine of Magallanes (CEBIMA), University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
45
|
Plasma dickkopf-related protein 1, an antagonist of the Wnt pathway, is associated with HIV-associated neurocognitive impairment. AIDS 2017; 31:1379-1385. [PMID: 28358733 DOI: 10.1097/qad.0000000000001481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Dickkopf-related protein 1 (DKK1) is a soluble antagonist of the Wningless (Wnt) pathway. It binds to and sequesters low-density lipoprotein receptor-related proteins 5/6 away from Wnts. Because the Wnt pathway regulates synaptic transmission and plasticity, we hypothesized that increased DKK1 would increase the risk for neurocognitive impairment (NCI) in HIV-positive (HIV) individuals. We evaluated, here, the relationship between plasma DKK1 and global NCI. METHODS Plasma samples and data from 41 HIV to 42 HIV adults were obtained from the University of California, San Diego, California, USA. Concentrations of DKK1 and a comparator protein, monocyte chemoattractant protein-1 (MCP-1), were quantified in plasma by immunoassay. All study participants completed a standardized comprehensive neuropsychological test battery and their performance was summarized using the global deficit score method. RESULTS A higher DKK1 level was associated with NCI among HIV participants (d = 0.63, P = 0.05), particularly among the 26 participants whose plasma HIV RNA level was suppressed (d = 0.74, P = 0.08). DKK1 level was not associated with NCI among HIV participants (P = 0.98). was not associated with NCI in either group. In HIV adults with suppressed plasma HIV RNA, a receiver operator characteristic curve identified that a DKK1 level of at least 735 pg/ml had a positive predictive value of 83.3% for a diagnosis of NCI. This association did not weaken after accounting for the effect of AIDS, nadir CD4 T-cell count, addictive drug use, or demographic characteristics. CONCLUSION DKK1 is a specific biomarker for NCI in HIV adults, implicating the Wnt pathway in HIV neuropathogenesis.
Collapse
|
46
|
Wang J, Gu J, Wu H, Zhu G, Feng D, Li Y, Guo W, Tian K, Gao G, Gao L. Pentazocine Protects SN4741 Cells Against MPP +-Induced Cell Damage via Up-Regulation of the Canonical Wnt/β-Catenin Signaling Pathway. Front Aging Neurosci 2017; 9:196. [PMID: 28659791 PMCID: PMC5469889 DOI: 10.3389/fnagi.2017.00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/31/2017] [Indexed: 12/04/2022] Open
Abstract
The Wnt/β-catenin signaling pathway has been linked to many neurodegenerative diseases including Parkinson’s disease (PD). A glycoprotein named Dickkopf-1 (Dkk1) can combine with the receptor complex on cell membrane to inhibit Wnt/β-catenin signaling. Opioids, a series of compounds including morphine, fentanyl and pentazocine, have been reported to contribute to the up-regulation of Wnt/β-catenin signaling. Naloxone is an antagonist that has been used as an antidote to opioids through mu-opioid receptor. 1-methyl-4-phenylpyridinium (MPP+), which serves as a selective toxin for dopaminergic neurons, has been used to create experimental models of PD. In our study, we examined the protective effects of pentazocine against MPP+-induced cell death in the nigral dopaminergic cell line, SN4741 and tried to elucidate the molecular mechanisms underlying such protective effects. The data showed that pretreatment with pentazocine significantly rescued the SN4741 cell against MPP+. Moreover, the MPP+-exposed SN4741 cells exhibited a down-regulation of β-catenin, which could be restored by treatment with pentazocine. However, Dkk1 but not naloxonewas associated with the abrogation of protective effect of pentazocine. These results suggest that pentazocine alleviates MPP+-induced SN4741 cells apoptosis via the up-regulation of canonical Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical UniversityXi'an, China
| | - Hao Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Keyong Tian
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
47
|
Jenwitheesuk A, Boontem P, Wongchitrat P, Tocharus J, Mukda S, Govitrapong P. Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. EXCLI JOURNAL 2017; 16:340-353. [PMID: 28507478 PMCID: PMC5427465 DOI: 10.17179/excli2016-852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022]
Abstract
Sirtuin1 (SIRT1) and forkhead box transcription factor O subfamily 1 (FOXO1) play vital roles in the maintenance of hippocampal neuronal homeostasis during aging. Our previous study showed that melatonin, a hormone mainly secreted by the pineal gland, restored the impaired memory of aged mice. Age-related neuronal energy deficits contribute to the pathogenesis of several neurodegenerative disorders. An attempt has been made to determine whether the effect of melatonin is mediated through the SIRT1-FOXO1 pathways. The present results showed that aged mice (22 months old) exhibited significantly downregulated SIRT1, FOXO1, and melatonin receptors MT1 and MT2 protein expression but upregulated tumor suppressor protein 53 (p53), acetyl-p53 protein (Ac-p53), mouse double minute 2 homolog (MDM2), Dickkopf-1 (DKK1) protein expression in mouse hippocampus compared with the young group. Melatonin treatment (10 mg/kg, daily in drinking water for 6 months) in aged mice significantly attenuated the age-induced downregulation of SIRT1, FOXO1, MT1 and MT2 protein expression and attenuated the age-induced increase in p53, ac-p53, MDM2, and DKK1 protein and mRNA expression. Melatonin decreased p53 and MDM2 expression, which led to a decrease in FOXO1 degradation. These present results suggest that melatonin may help the hippocampal neuronal homeostasis by increasing SIRT1, FOXO1 and melatonin receptors expression while decreasing DKK1 expression in the aging hippocampus. DKK1 can be induced by the accumulation of amyloid β (Aβ) which is the major hallmark of Alzheimer's disease.
Collapse
Affiliation(s)
- Anorut Jenwitheesuk
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom 73170, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom, Thailand.,Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand.,Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
48
|
Li Z, Chen X, Zhang X, Ren X, Chen X, Cao J, Zang W, Liu X, Guo F. Small Interfering RNA Targeting Dickkopf-1 Contributes to Neuroprotection After Intracerebral Hemorrhage in Rats. J Mol Neurosci 2017; 61:279-288. [DOI: 10.1007/s12031-017-0883-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
|
49
|
Potential protective effects of autophagy activated in MPP+ treated astrocytes. Exp Ther Med 2016; 12:2803-2810. [PMID: 27882077 PMCID: PMC5103691 DOI: 10.3892/etm.2016.3736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/21/2015] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, which have various important functions, have previously been associated with Parkinsons disease (PD), particularly in 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models of PD. MPP+ is the toxic metabolite of MPTP and is generated by the enzymatic activity of monoamine oxidase B, which is predominantly located in astrocytes. MPP+ acts as a mitochondrial complex I inhibitor. Autophagy is an evolutionarily conserved self-digestion pathway in eukaryotic cells, which occurs in response to various types of stress, including starvation and oxidative stress. Lithium treatment has previously been shown to induce autophagy in astrocytes by inhibiting the enzyme inositol monophosphatase, which may aid in the treatment of neurodegenerative diseases, including Huntington's disease, in which the toxic protein is an autophagy substrate. Therefore, using western blotting and MTT assay, the present study aimed to investigate the protective effects of lithium-induced autophagy against astrocyte injury caused by MPP+ treatment, as well as the potential underlying mechanisms. The results of the present study suggested that lithium was able to induce autophagy in astrocytes treated with MPP+, and this likely occurred via activation of the phosphoinositide 3-kinase/AKT pathway.
Collapse
|
50
|
Marzo A, Galli S, Lopes D, McLeod F, Podpolny M, Segovia-Roldan M, Ciani L, Purro S, Cacucci F, Gibb A, Salinas PC. Reversal of Synapse Degeneration by Restoring Wnt Signaling in the Adult Hippocampus. Curr Biol 2016; 26:2551-2561. [PMID: 27593374 PMCID: PMC5070786 DOI: 10.1016/j.cub.2016.07.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
Abstract
Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer’s disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secreted Wnt antagonist Dickkopf-1 (Dkk1), which is elevated in AD, contributes to amyloid-β-mediated synaptic failure. However, the impact of Dkk1 at the circuit level and the mechanism by which synapses disassemble have not yet been explored. Using a transgenic mouse model that inducibly expresses Dkk1 in the hippocampus, we demonstrate that Dkk1 triggers synapse loss, impairs long-term potentiation, enhances long-term depression, and induces learning and memory deficits. We decipher the mechanism involved in synapse loss induced by Dkk1 as it can be prevented by combined inhibition of the Gsk3 and RhoA-Rock pathways. Notably, after loss of synaptic connectivity, reactivation of the Wnt pathway by cessation of Dkk1 expression completely restores synapse number, synaptic plasticity, and long-term memory. These findings demonstrate the remarkable capacity of adult neurons to regenerate functional circuits and highlight Wnt signaling as a targetable pathway for neuronal circuit recovery after synapse degeneration. Wnt signaling is required for synapse integrity in the adult hippocampus Dkk1 induces synapse loss and deficits in synaptic plasticity and long-term memory Dkk1 disassembles synapses by activating the Gsk3 and Rock pathways Synapse loss and memory defects are reversible by reactivation of the Wnt pathway
Collapse
Affiliation(s)
- Aude Marzo
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Soledad Galli
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Douglas Lopes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Faye McLeod
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marina Podpolny
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Lorenza Ciani
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Silvia Purro
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|