1
|
Marcourt C, Pin-Barre C, Langeard A, Rivera C, Temprado JJ, Laurin J. Cognitive and sensorimotor benefits of moderate- and high-intensity exercise are associated with specific expression of neurotrophic markers in older rats. Sci Rep 2025; 15:6292. [PMID: 39984706 PMCID: PMC11845600 DOI: 10.1038/s41598-025-90719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Endurance training is strongly recommended for older adults to maintain cognitive and motor function. The respective effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on improving behavioural function and cerebral plasticity remain unknown. The purpose of this study was to determine the relative effects of 4 weeks of MICT and HIIT training on endurance, sensorimotor, and cognitive performance, as well as on the expression of neurotrophic markers in the hippocampus and cerebral cortex in aged rats. Twenty-two old male Wistar rats were assigned to one of the following groups: MICT (n = 7), HIIT (n = 6), and Control (n = 9). Incremental treadmill exercise tests, the forelimb grip strength test, the adhesive removal test, and the novel object recognition test were performed. Cerebral cortex and hippocampus were then removed for ELISA and Western blot measurements. The results showed similar benefits of MICT and HIIT on sensorimotor and cognitive functions, and a greater benefit of HIIT on endurance performance. HIIT and MICT differentially promoted cortical and hippocampal neurotrophic markers, demonstrating their complementarity. However, MICT was found to be more effective in promoting a broader range of markers, suggesting its potential as an initial training strategy for older adults.
Collapse
Affiliation(s)
- Cécile Marcourt
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
- Aix Marseille University, CNRS, ISM, Marseille, France
| | - Caroline Pin-Barre
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
| | - Antoine Langeard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, Caen, France
| | - Claudio Rivera
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
- Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
| | | | - Jérôme Laurin
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France.
| |
Collapse
|
2
|
Caccialupi Da Prato L, Rezzag Lebza A, Consumi A, Tessier M, Srinivasan A, Rivera C, Laurin J, Pellegrino C. Ectopic expression of the cation-chloride cotransporter KCC2 in blood exosomes as a biomarker for functional rehabilitation. Front Mol Neurosci 2025; 18:1522571. [PMID: 39974187 PMCID: PMC11835807 DOI: 10.3389/fnmol.2025.1522571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of disabilities in industrialized countries. Cognitive decline typically occurs in the chronic phase of the condition, following cellular and molecular processes. In this study, we described the use of KCC2, a neuronal-specific potassium-chloride cotransporter, as a potent biomarker to predict cognitive dysfunction after TBI. Methods Using neuronal and total exosome collections from the blood serum of the controls and patients with TBI, we were able to anticipate the decline in cognitive performance. Results After TBI, we observed a significant and persistent loss of KCC2 expression in the blood exosomes, which was correlated with the changes in the network activity and cellular processes such as secondary neurogenesis. Furthermore, we established a correlation between this decrease in KCC2 expression and the long-term consequences of brain trauma and identified a link between the loss of KCC2 expression and the emergence of depressive-like behavior observed in the mice. Conclusion We successfully validated our previous findings, supporting the potential therapeutic benefits of bumetanide in mitigating post-traumatic depression (PTD) following TBI. This effect was correlated with the recovery of KCC2 expression in the blood exosomes, the prevention of extensive neuronal loss among the interneurons, and changes in secondary neurogenesis.
Collapse
Affiliation(s)
| | | | - A. Consumi
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - M. Tessier
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - A. Srinivasan
- Division of Nanoscience and Technology, School of Life Sciences, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Academy of Higher Education and Research, Mysore, India
| | - C. Rivera
- Inmed, INSERM, Aix-Marseille University, Marseille, France
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - J. Laurin
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| | - C. Pellegrino
- Inmed, INSERM, Aix-Marseille University, Marseille, France
| |
Collapse
|
3
|
Raveendran VA, Serranilla M, Asgarihafshejani A, de Saint-Rome M, Cherednychenko M, Mullany S, Mitchell JA, Pressey JC, Woodin MA. SNARE protein SNAP25 regulates the chloride-transporter KCC2 in neurons. iScience 2024; 27:111156. [PMID: 39507243 PMCID: PMC11539599 DOI: 10.1016/j.isci.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Inhibitory synaptic neurotransmission mediated by GABA requires a low concentration of chloride ions (Cl-) in neurons, which is established and maintained by the potassium-chloride co-transporter 2 (KCC2). While KCC2-interacting proteins are known to regulate KCC2 protein level and function, specific KCC2-interacting partners are still being identified and characterized. We asked whether SNAP25, an integral component of the SNARE-complex and a novel KCC2 interactor, regulates KCC2 protein and function in mice. We demonstrated that SNAP25 interacts with KCC2, and that this interaction is regulated by protein kinase C (PKC)-mediated phosphorylation. We also discovered that SNAP25 knockdown decreases total KCC2 in cortical neurons, and reduces the strength of synaptic inhibition, as demonstrated through a depolarization of the reversal potential for GABA (EGABA), indicating reduced KCC2 function. Our biochemical and electrophysiological data combined demonstrate that SNAP25 regulates KCC2 membrane expression and function, and in doing so, regulates inhibitory synaptic transmission.
Collapse
Affiliation(s)
| | - Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Azam Asgarihafshejani
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Mariia Cherednychenko
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Shanelle Mullany
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jennifer A. Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jessica C. Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Melanie A. Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
4
|
Capilla-López J, Hernández RG, Carrero-Rojas G, Calvo PM, Alvarez FJ, de la Cruz RR, Pastor AM. VEGF, but Not BDNF, Prevents the Downregulation of KCC2 Induced by Axotomy in Extraocular Motoneurons. Int J Mol Sci 2024; 25:9942. [PMID: 39337430 PMCID: PMC11432591 DOI: 10.3390/ijms25189942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The potassium-chloride cotransporter KCC2 is the main extruder of Cl- in neurons. It plays a fundamental role in the activity of the inhibitory neurotransmitters (GABA and glycine) since low levels of KCC2 promote intracellular Cl- accumulation, leading to the depolarizing activity of GABA and glycine. The downregulation of this cotransporter occurs in neurological disorders characterized by hyperexcitability, such as epilepsy, neuropathic pain, and spasticity. KCC2 is also downregulated after axotomy. If muscle reinnervation is allowed, the KCC2 levels recover in motoneurons. Therefore, we argued that target-derived neurotrophic factors might be involved in the regulation of KCC2 expression. For this purpose, we performed the axotomy of extraocular motoneurons via the monocular enucleation of adult rats, and a pellet containing either VEGF or BDNF was chronically implanted in the orbit. Double confocal immunofluorescence of choline acetyl-transferase (ChAT) and KCC2 was carried out in the brainstem sections. Axotomy led to a KCC2 decrease in the neuropil and somata of extraocular motoneurons, peaking at 15 days post-lesion, with the exception of the abducens motoneuron somata. VEGF administration prevented the axotomy-induced KCC2 downregulation. By contrast, BDNF either maintained or reduced the KCC2 levels following axotomy, suggesting that BDNF is involved in the axotomy-induced KCC2 downregulation in extraocular motoneurons. The finding that VEGF prevents KCC2 decrease opens up new possibilities for the treatment of neurological disorders coursing with neuronal hyperactivity due to KCC2 downregulation.
Collapse
Affiliation(s)
- Jaime Capilla-López
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Génova Carrero-Rojas
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University Vienna, 1090 Vienna, Austria
| | - Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Ando H, Shimizu-Okabe C, Okura N, Yafuso T, Kosaka Y, Kobayashi S, Okabe A, Takayama C. Reduced Gene Expression of KCC2 Accelerates Axonal Regeneration and Reduces Motor Dysfunctions after Tibial Nerve Severance and Suturing. Neuroscience 2024; 551:55-68. [PMID: 38788828 DOI: 10.1016/j.neuroscience.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Gamma-aminobutyric acid and glycine (GABA/Gly) are predominantly inhibitory neurotransmitters in the mature central nervous system; however, they mediate membrane potential depolarization during development. These differences in actions depend on intracellular Cl- concentrations ([Cl-]i), which are primarily regulated by potassium chloride cotransporter 2 (KCC2). After nerve injury, KCC2 expression markedly decreases and GABA/Gly mediate depolarization. Following nerve regeneration, KCC2 expression recovers and GABA/Gly become inhibitory, suggesting that KCC2 reduction and GABA/Gly excitation may be crucial for axonal regeneration. To directly clarify their involvement in regeneration, we analyzed recovery processes after tibial nerve severance and suturing between heterozygous KCC2 knockout mice (HT), whose KCC2 levels are halved, and their wild-type littermates (WT). Compared with WT mice, the sciatic functional index-indicating lower limb motor function-was significantly higher until 28 days after operation (D28) in HT mice. Furthermore, at D7, many neurofilament-positive fibers were elongated into the distal part of the sutured nerve in HT mice only, and myelinated axonal density was significantly higher at D21 and D28 in HT animals. Electron microscopy and galanin immunohistochemistry indicated a shorter nerve degeneration period in HT mice. Moreover, a less severe decrease in choline acetyltransferase was observed in HT mice. These results suggest that nerve degeneration and regeneration proceed more rapidly in HT mice, resulting in milder motor dysfunction. Via similar microglial activation, nerve surgery may reduce KCC2 levels more rapidly in HT mice, followed by earlier increased [Cl-]i and longer-lasting GABA/Gly excitation. Taken together, reduced KCC2 may accelerate nerve regeneration via GABA/Gly excitation.
Collapse
Affiliation(s)
- Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
6
|
Sun X, Hou J, Xu H, Qu H. Efficacy of bumetanide in animal models of ischemic stroke: a systematic review and meta-analysis. Aging (Albany NY) 2024; 16:9959-9971. [PMID: 38850525 PMCID: PMC11210250 DOI: 10.18632/aging.205910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
This meta-analysis aimed to describe the efficacy of bumetanide in improving infarct volume, brain edema, and behavioral outcomes in animal models of cerebral ischemia. Embase, PubMed and Web of Science databases were searched from their inception to February 2024 (INPLASY:202430023). Data on the animal species, stroke model, drug dose, time of treatment, method of administration, study quality, and outcomes were extracted and pooled in a meta-analysis. The combined standardized mean difference (SMD) or mean difference (MD) estimates and 95% confidence intervals (CIs) were calculated using random- or fixed-effects models. Thirteen eligible studies involving >200 animals fulfilled the inclusion criteria and were included in this meta-analysis. Meta-analyses demonstrated that bumetanide treatment significantly reduced cerebral infarct volume (SMD: -0.42; 95% CI: -0.75, -0.09; p < 0.01; n = 186 animals) and consistently relieved brain edema (SMD: -1.39; 95% CI: -2.06, -0.72; p < 0.01; n = 64 animals). Subgroup analyses demonstrated that bumetanide treatment reduced infarct volume in transient but not permanent cerebral ischemia models. When administered after the stroke, it was more effective than treatment initiation before the stroke. Eight studies assessed the effect of bumetanide on behavioral function and the results showed that bumetanide treatment significantly improved neurobehavioral deficits (SMD: -2.35; 95% CI: -2.72, -1.97; p < 0.01; n = 250 animals). We conclude that bumetanide appears to be effective in reducing infarct volume and brain edema and improving behavioral recovery in animal models of cerebral ischemia. This mechanism needs to be confirmed through further investigation.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Jiadi Hou
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Haichun Xu
- Department of Psychiatry, Shenyang Jing’an Mental Health Hospital, Shenyang, China
| | - Huiling Qu
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
7
|
Tessier M, Garcia MS, Goubert E, Blasco E, Consumi A, Dehapiot B, Tian L, Molinari F, Laurin J, Guillemot F, Hübner CA, Pellegrino C, Rivera C. Bumetanide induces post-traumatic microglia-interneuron contact to promote neurogenesis and recovery. Brain 2023; 146:4247-4261. [PMID: 37082944 PMCID: PMC10545516 DOI: 10.1093/brain/awad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Although the Na-K-Cl cotransporter (NKCC1) inhibitor bumetanide has prominent positive effects on the pathophysiology of many neurological disorders, the mechanism of action is obscure. Attention paid to elucidating the role of Nkcc1 has mainly been focused on neurons, but recent single cell mRNA sequencing analysis has demonstrated that the major cellular populations expressing NKCC1 in the cortex are non-neuronal. We used a combination of conditional transgenic animals, in vivo electrophysiology, two-photon imaging, cognitive behavioural tests and flow cytometry to investigate the role of Nkcc1 inhibition by bumetanide in a mouse model of controlled cortical impact (CCI). Here, we found that bumetanide rescues parvalbumin-positive interneurons by increasing interneuron-microglia contacts shortly after injury. The longitudinal phenotypic changes in microglia were significantly modified by bumetanide, including an increase in the expression of microglial-derived BDNF. These effects were accompanied by the prevention of CCI-induced decrease in hippocampal neurogenesis. Treatment with bumetanide during the first week post-CCI resulted in significant recovery of working and episodic memory as well as changes in theta band oscillations 1 month later. These results disclose a novel mechanism for the neuroprotective action of bumetanide mediated by an acceleration of microglial activation dynamics that leads to an increase in parvalbumin interneuron survival following CCI, possibly resulting from increased microglial BDNF expression and contact with interneurons. Salvage of interneurons may normalize ambient GABA, resulting in the preservation of adult neurogenesis processes as well as contributing to bumetanide-mediated improvement of cognitive performance.
Collapse
Affiliation(s)
- Marine Tessier
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | - Marta Saez Garcia
- Neuroscience Center, 00014 University of Helsinki, Helsinki, Finland
| | | | - Edith Blasco
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | | | - Benoit Dehapiot
- Aix Marseille Univ, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13288 Marseille, France
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | | | - Jerome Laurin
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | | | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, 07747 Jena, Germany
| | | | - Claudio Rivera
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
- Neuroscience Center, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Becker L, Hausmann J, Hartmann AM. Both chloride-binding sites are required for KCC2-mediated transport. J Biol Chem 2023; 299:105190. [PMID: 37625593 PMCID: PMC10518353 DOI: 10.1016/j.jbc.2023.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The K+-Cl- cotransporter 2 (KCC2) plays an important role in inhibitory neurotransmission, and its impairment is associated with neurological and psychiatric disorders, including epilepsy, schizophrenia, and autism. Although KCCs transport K+ and Cl- in a 1:1 stoichiometry, two Cl- coordination sites were indicated via cryo-EM. In a comprehensive analysis, we analyzed the consequences of point mutations of residues coordinating Cl- in Cl1 and Cl2. Individual mutations of residues in Cl1 and Cl2 reduce or abolish KCC2WT function, indicating a crucial role of both Cl- coordination sites for KCC2 function. Structural changes in the extracellular loop 2 by inserting a 3xHA tag switches the K+ coordination site to another position. To investigate, whether the extension of the extracellular loop 2 with the 3xHA tag also affects the coordination of the two Cl- coordination sites, we carried out the analogous experiments for both Cl- coordinating sites in the KCC2HA construct. These analyses showed that most of the individual mutation of residues in Cl1 and Cl2 in the KCC2HA construct reduces or abolishes KCC2 function, indicating that the coordination of Cl- remains at the same position. However, the coupling of K+ and Cl- in Cl1 is still apparent in the KCC2HA construct, indicating a mutual dependence of both ions. In addition, the coordination residue Tyr569 in Cl2 shifted in KCC2HA. Thus, conformational changes in the extracellular domain affect K+ and Cl--binding sites. However, the effect on the Cl--binding sites is subtler.
Collapse
Affiliation(s)
- Lisa Becker
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
9
|
Del Turco D, Paul MH, Schlaudraff J, Muellerleile J, Bozic F, Vuksic M, Jedlicka P, Deller T. Layer-specific changes of KCC2 and NKCC1 in the mouse dentate gyrus after entorhinal denervation. Front Mol Neurosci 2023; 16:1118746. [PMID: 37293543 PMCID: PMC10244516 DOI: 10.3389/fnmol.2023.1118746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
The cation-chloride cotransporters KCC2 and NKCC1 regulate the intracellular Cl- concentration and cell volume of neurons and/or glia. The Cl- extruder KCC2 is expressed at higher levels than the Cl- transporter NKCC1 in mature compared to immature neurons, accounting for the developmental shift from high to low Cl- concentration and from depolarizing to hyperpolarizing currents through GABA-A receptors. Previous studies have shown that KCC2 expression is downregulated following central nervous system injury, returning neurons to a more excitable state, which can be pathological or adaptive. Here, we show that deafferentation of the dendritic segments of granule cells in the outer (oml) and middle (mml) molecular layer of the dentate gyrus via entorhinal denervation in vivo leads to cell-type- and layer-specific changes in the expression of KCC2 and NKCC1. Microarray analysis validated by reverse transcription-quantitative polymerase chain reaction revealed a significant decrease in Kcc2 mRNA in the granule cell layer 7 days post-lesion. In contrast, Nkcc1 mRNA was upregulated in the oml/mml at this time point. Immunostaining revealed a selective reduction in KCC2 protein expression in the denervated dendrites of granule cells and an increase in NKCC1 expression in reactive astrocytes in the oml/mml. The NKCC1 upregulation is likely related to the increased activity of astrocytes and/or microglia in the deafferented region, while the transient KCC2 downregulation in granule cells may be associated with denervation-induced spine loss, potentially also serving a homeostatic role via boosting GABAergic depolarization. Furthermore, the delayed KCC2 recovery might be involved in the subsequent compensatory spinogenesis.
Collapse
Affiliation(s)
- Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Mandy H. Paul
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Jessica Schlaudraff
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Fran Bozic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Vuksic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Rong J, Yang Y, Liang M, Zhong H, Li Y, Zhu Y, Sha S, Chen L, Zhou R. Neonatal inflammation increases hippocampal KCC2 expression through methylation-mediated TGF-β1 downregulation leading to impaired hippocampal cognitive function and synaptic plasticity in adult mice. J Neuroinflammation 2023; 20:15. [PMID: 36691035 PMCID: PMC9872321 DOI: 10.1186/s12974-023-02697-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
The mechanisms by which neonatal inflammation leads to cognitive deficits in adulthood remain poorly understood. Inhibitory GABAergic synaptic transmission plays a vital role in controlling learning, memory and synaptic plasticity. Since early-life inflammation has been reported to adversely affect the GABAergic synaptic transmission, the aim of this study was to investigate whether and how neonatal inflammation affects GABAergic synaptic transmission resulting in cognitive impairment. Neonatal mice received a daily subcutaneous injection of lipopolysaccharide (LPS, 50 μg/kg) or saline on postnatal days 3-5. It was found that blocking GABAergic synaptic transmission reversed the deficit in hippocampus-dependent memory or the induction failure of long-term potentiation in the dorsal CA1 in adult LPS mice. An increase of mIPSCs amplitude was further detected in adult LPS mice indicative of postsynaptic potentiation of GABAergic transmission. Additionally, neonatal LPS resulted in the increased expression and function of K+-Cl--cotransporter 2 (KCC2) and the decreased expression of transforming growth factor-beta 1 (TGF-β1) in the dorsal CA1 during adulthood. The local TGF-β1 overexpression improved KCC2 expression and function, synaptic plasticity and memory of adult LPS mice. Adult LPS mice show hypermethylation of TGFb1 promoter and negatively correlate with reduced TGF-β1 transcripts. 5-Aza-deoxycytidine restored the changes in TGFb1 promoter methylation and TGF-β1 expression. Altogether, the results suggest that hypermethylation-induced reduction of TGF-β1 leads to enhanced GABAergic synaptic inhibition through increased KCC2 expression, which is a underlying mechanism of neonatal inflammation-induced hippocampus-dependent memory impairment in adult mice.
Collapse
Affiliation(s)
- Jing Rong
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Yang Yang
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Min Liang
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Haiquan Zhong
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Yingchun Li
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Yichao Zhu
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Sha Sha
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Lei Chen
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| | - Rong Zhou
- grid.89957.3a0000 0000 9255 8984Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing, 211166 Jiangsu China
| |
Collapse
|
11
|
Hudson KE, Grau JW. Ionic Plasticity: Common Mechanistic Underpinnings of Pathology in Spinal Cord Injury and the Brain. Cells 2022; 11:2910. [PMID: 36139484 PMCID: PMC9496934 DOI: 10.3390/cells11182910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The neurotransmitter GABA is normally characterized as having an inhibitory effect on neural activity in the adult central nervous system (CNS), which quells over-excitation and limits neural plasticity. Spinal cord injury (SCI) can bring about a modification that weakens the inhibitory effect of GABA in the central gray caudal to injury. This change is linked to the downregulation of the potassium/chloride cotransporter (KCC2) and the consequent rise in intracellular Cl- in the postsynaptic neuron. As the intracellular concentration increases, the inward flow of Cl- through an ionotropic GABA-A receptor is reduced, which decreases its hyperpolarizing (inhibitory) effect, a modulatory effect known as ionic plasticity. The loss of GABA-dependent inhibition enables a state of over-excitation within the spinal cord that fosters aberrant motor activity (spasticity) and chronic pain. A downregulation of KCC2 also contributes to the development of a number of brain-dependent pathologies linked to states of neural over-excitation, including epilepsy, addiction, and developmental disorders, along with other diseases such as hypertension, asthma, and irritable bowel syndrome. Pharmacological treatments that target ionic plasticity have been shown to bring therapeutic benefits.
Collapse
Affiliation(s)
- Kelsey E. Hudson
- Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - James W. Grau
- Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Hartmann AM, Nothwang HG. NKCC1 and KCC2: Structural insights into phospho-regulation. Front Mol Neurosci 2022; 15:964488. [PMID: 35935337 PMCID: PMC9355526 DOI: 10.3389/fnmol.2022.964488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory neurotransmission plays a fundamental role in the central nervous system, with about 30–50% of synaptic connections being inhibitory. The action of both inhibitory neurotransmitter, gamma-aminobutyric-acid (GABA) and glycine, mainly relies on the intracellular Cl– concentration in neurons. This is set by the interplay of the cation chloride cotransporters NKCC1 (Na+, K+, Cl– cotransporter), a main Cl– uptake transporter, and KCC2 (K+, Cl– cotransporter), the principle Cl– extruder in neurons. Accordingly, their dysfunction is associated with severe neurological, psychiatric, and neurodegenerative disorders. This has triggered great interest in understanding their regulation, with a strong focus on phosphorylation. Recent structural data by cryogenic electron microscopy provide the unique possibility to gain insight into the action of these phosphorylations. Interestingly, in KCC2, six out of ten (60%) known regulatory phospho-sites reside within a region of 134 amino acid residues (12% of the total residues) between helices α8 and α9 that lacks fixed or ordered three-dimensional structures. It thus represents a so-called intrinsically disordered region. Two further phospho-sites, Tyr903 and Thr906, are also located in a disordered region between the ß8 strand and the α8 helix. We make the case that especially the disordered region between helices α8 and α9 acts as a platform to integrate different signaling pathways and simultaneously constitute a flexible, highly dynamic linker that can survey a wide variety of distinct conformations. As each conformation can have distinct binding affinities and specificity properties, this enables regulation of [Cl–]i and thus the ionic driving force in a history-dependent way. This region might thus act as a molecular processor underlying the well described phenomenon of ionic plasticity that has been ascribed to inhibitory neurotransmission. Finally, it might explain the stunning long-range effects of mutations on phospho-sites in KCC2.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- *Correspondence: Anna-Maria Hartmann,
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
14
|
Patel DC, Thompson EG, Sontheimer H. Brain-Derived Neurotrophic Factor Inhibits the Function of Cation-Chloride Cotransporter in a Mouse Model of Viral Infection-Induced Epilepsy. Front Cell Dev Biol 2022; 10:961292. [PMID: 35874836 PMCID: PMC9304572 DOI: 10.3389/fcell.2022.961292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Well over 100 different viruses can infect the brain and cause brain inflammation. In the developing world, brain inflammation is a leading cause for epilepsy and often refractory to established anti-seizure drugs. Epilepsy generally results from an imbalance in excitatory glutamatergic and inhibitory GABAergic neurotransmission. GABAergic inhibition is determined by the intracellular Cl− concentration which is established through the opposing action of two cation chloride cotransporters namely NKCC1 and KCC2. Brain-derived neurotrophic factor (BDNF) signaling is known to regulate expression of KCC2. Hence we hypothesized that viral induced epilepsy may result from aberrant BDNF signaling. We tested this hypothesis using a mouse model of Theiler’s murine encephalomyelitis virus (TMEV) infection-induced epilepsy. We found that BDNF levels in the hippocampus from TMEV-infected mice with seizures was increased at the onset of acute seizures and continued to increase during the peak of acute seizure as well as in latent and chronic phases of epilepsy. During the acute phase of epilepsy, we found significant reduction in the expression of KCC2 in hippocampus, whereas the level of NKCC1 was unaltered. Importantly, inhibiting BDNF using scavenging bodies of BDNF in live brain slices from TMEV-infected mice with seizures normalized the level of KCC2 in hippocampus. Our results suggest that BDNF can directly decrease the relative expression of NKCC1 and KCC2 such as to favor accumulation of chloride intracellularly which in turn causes hyperexcitability by reversing GABA-mediated inhibition. Although our attempt to inhibit the BDNF signaling mediated through tyrosine kinase B–phospholipase Cγ1 (TrkB-PLCγ1) using a small peptide did not change the course of seizure development following TMEV infection, alternative strategies for controlling the BDNF signaling could be useful in preventing seizure generation and development of epilepsy in this model.
Collapse
Affiliation(s)
- Dipan C. Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
| | - Emily G. Thompson
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Harald Sontheimer,
| |
Collapse
|
15
|
Abstract
Drug-resistant epilepsy is associated with poor health outcomes and increased economic burden. In the last three decades, various new antiseizure medications have been developed, but the proportion of people with drug-resistant epilepsy remains relatively unchanged. Developing strategies to address drug-resistant epilepsy is essential. Here, we define drug-resistant epilepsy and emphasize its relationship to the conceptualization of epilepsy as a symptom complex, delineate clinical risk factors, and characterize mechanisms based on current knowledge. We address the importance of ruling out pseudoresistance and consider the impact of nonadherence on determining whether an individual has drug-resistant epilepsy. We then review the principles of epilepsy drug therapy and briefly touch upon newly approved and experimental antiseizure medications.
Collapse
|
16
|
Cao T, Chen H, Huang W, Xu S, Liu P, Zou W, Pang M, Xu Y, Bai X, Liu B, Rong L, Cui ZK, Li M. hUC-MSC-mediated recovery of subacute spinal cord injury through enhancing the pivotal subunits β3 and γ2 of the GABA A receptor. Theranostics 2022; 12:3057-3078. [PMID: 35547766 PMCID: PMC9065192 DOI: 10.7150/thno.72015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022] Open
Abstract
Rationale: Spinal cord injury (SCI) remains an incurable neurological disorder leading to permanent and profound neurologic deficits and disabilities. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are particularly appealing in SCI treatment to curtail damage, restore homeostasis and possible neural relay. However, the detailed mechanisms underlying hUC-MSC-mediated functional recovery of SCI have not been fully elucidated. The purpose of our current study is to identify novel therapeutic targets and depict the molecular mechanisms underlying the hUC-MSC-mediated recovery of subacute SCI. Methods: Adult female rats suffering from subacute incomplete thoracic SCI were treated with intrathecal transplantation of hUC-MSCs. The beneficial effects of hUC-MSCs on SCI repair were evaluated by a series of behavioral analyses, motor evoked potentials (MEPs) recording of hindlimb and immunohistochemistry. We carried out extensive transcriptome comparative analyses of spinal cord tissues at the lesion site from the subacute phase of SCI (sub-SCI) either treated without (+PBS) or with hUC-MSCs (+MSC) at 0 (sub-SCI), 1, 2, and 4 weeks post-transplantation (wpt), as well as normal spinal cord segments of intact/sham rats (Intact). Adeno-associated virus (AAV)-mediated neuron-specific expression system was employed to functionally screen specific γ-aminobutyric acid type A receptor (GABAAR) subunits promoting the functional recovery of SCI in vivo. The mature cortical axon scrape assay and transplantation of genetically modified MSCs with either overexpression or knockdown of brain-derived neurotrophic factor (BDNF) were employed to demonstrate that hUC-MSCs ameliorated the reduction of GABAAR subunits in the injured spinal cord via BDNF secretion in vitro and in vivo, respectively. Results: Comparative transcriptome analysis revealed the GABAergic synapse pathway is significantly enriched as a main target of hUC-MSC-activated genes in the injured spinal cord. Functional screening of the primary GABAAR subunits uncovered that Gabrb3 and Garbg2 harbored the motor and electrophysiological recovery-promoting competence. Moreover, targeting either of the two pivotal subunits β3 or γ2 in combination with/without the K+/Cl- cotransporter 2 (KCC2) reinforced the therapeutic effects. Mechanistically, BDNF secreted by hUC-MSCs contributed to the upregulation of GABAAR subunits (β3 & γ2) and KCC2 in the injured neurons. Conclusions: Our study identifies a novel mode for hUC-MSC-mediated locomotor recovery of SCI through synergistic upregulation of GABAAR β3 and γ2 along with KCC2 by BDNF secretion, indicating the significance of restoring the excitation/inhibition balance in the injured neurons for the reestablishment of neuronal circuits. This study also provides a potential combinatorial approach by targeting the pivotal subunit β3 or γ2 and KCC2, opening up possibilities for efficacious drug design.
Collapse
Affiliation(s)
- Tingting Cao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiping Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peilin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiwei Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Ying Xu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, 510630, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
17
|
L-Thyroxine Improves Vestibular Compensation in a Rat Model of Acute Peripheral Vestibulopathy: Cellular and Behavioral Aspects. Cells 2022; 11:cells11040684. [PMID: 35203333 PMCID: PMC8869897 DOI: 10.3390/cells11040684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Unilateral vestibular lesions induce a vestibular syndrome, which recovers over time due to vestibular compensation. The therapeutic effect of L-Thyroxine (L-T4) on vestibular compensation was investigated by behavioral testing and immunohistochemical analysis in a rat model of unilateral vestibular neurectomy (UVN). We demonstrated that a short-term L-T4 treatment reduced the vestibular syndrome and significantly promoted vestibular compensation. Thyroid hormone receptors (TRα and TRβ) and type II iodothyronine deiodinase (DIO2) were present in the vestibular nuclei (VN), supporting a local action of L-T4. We confirmed the T4-induced metabolic effects by demonstrating an increase in the number of cytochrome oxidase-labeled neurons in the VN three days after the lesion. L-T4 treatment modulated glial reaction by decreasing both microglia and oligodendrocytes in the deafferented VN three days after UVN and increased cell proliferation. Survival of newly generated cells in the deafferented vestibular nuclei was not affected, but microglial rather than neuronal differentiation was favored by L-T4 treatment.
Collapse
|
18
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
19
|
Cassol G, Cipolat RP, Papalia WL, Godinho DB, Quines CB, Nogueira CW, Da Veiga M, Da Rocha MIUM, Furian AF, Oliveira MS, Fighera MR, Royes LFF. A role of Na+, K+ -ATPase in spatial memory deficits and inflammatory/oxidative stress after recurrent concussion in adolescent rats. Brain Res Bull 2021; 180:1-11. [PMID: 34954227 DOI: 10.1016/j.brainresbull.2021.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Sports-related concussions are particularly common during adolescence, and there is insufficient knowledge about how recurrent concussions in this phase of life alter the metabolism of essential structures for memory in adulthood. In this sense, our experimental data revealed that seven recurrent concussions (RC) in 35-day-old rats decreased short-term and long-term memory in the object recognition test (ORT) 30 days after injury. The RC protocol did not alter motor and anxious behavior and the immunoreactivity of brain-derived neurotrophic factor (BDNF) in the cerebral cortex. Recurrent concussions induced the inflammatory/oxidative stress characterized here by increased glial fibrillary acidic protein (GFAP), interleukin 1β (IL 1β), 4-hydroxynonenal (4 HNE), protein carbonyl immunoreactivity, and 2',7'-dichlorofluorescein diacetate oxidation (DCFH) levels and lower total antioxidant capacity (TAC). Inhibited Na+,K+-ATPase activity (specifically isoform α2/3) followed by Km (Michaelis-Menten constant) for increased ATP levels and decreased immunodetection of alpha subunit of this enzyme, suggesting that cognitive impairment after RC is caused by the inability of surviving neurons to maintain ionic gradients in selected targets to inflammatory/oxidative damage, such as Na,K-ATPase activity.
Collapse
Affiliation(s)
- G Cassol
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Brazil; Postgraduate Program in Physical Education, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - R P Cipolat
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Brazil; Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - W L Papalia
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Brazil; Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - D B Godinho
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Brazil; Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - C B Quines
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - C W Nogueira
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M Da Veiga
- Department of Morphology, Health Sciences Center, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M I U M Da Rocha
- Department of Morphology, Health Sciences Center, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - A F Furian
- Laboratory of Neurotoxicity and Psychopharmacology, Health Sciences Center, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M S Oliveira
- Laboratory of Neurotoxicity and Psychopharmacology, Health Sciences Center, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - M R Fighera
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Brazil; Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Brazil; Department of Internal Medicine and Pediatrics, Health Sciences Center, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - L F F Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Brazil; Postgraduate Program in Physical Education, Brazil; Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Brazil; Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
20
|
Khaitin A. Calcium in Neuronal and Glial Response to Axotomy. Int J Mol Sci 2021; 22:ijms222413344. [PMID: 34948141 PMCID: PMC8706492 DOI: 10.3390/ijms222413344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotrauma assumes an instant or delayed disconnection of axons (axotomy), which affects not only neurons, but surrounding glia as well. Not only mechanically injured glia near the site of disconnection, especially transection, is subjected to the damage, but also glia that is remote from the lesion site. Glial cells, which surround the neuronal body, in turn, support neuron survival, so there is a mutual protection between neuron and glia. Calcium signaling is a central mediator of all post-axotomy events, both in neuron and glia, playing a critical role in their survival/regeneration or death/degeneration. The involvement of calcium in post-axotomy survival of the remote, mechanically intact glia is poorly studied. The purpose of this review is to sum up the calcium-involving mechanisms in responses of neurons and glial cells to axotomy to show their importance and to give some suggestions for future research of remote glia in this context.
Collapse
Affiliation(s)
- Andrey Khaitin
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
21
|
Thorsdottir D, Einwag Z, Erdos B. BDNF shifts excitatory-inhibitory balance in the paraventricular nucleus of the hypothalamus to elevate blood pressure. J Neurophysiol 2021; 126:1209-1220. [PMID: 34406887 DOI: 10.1152/jn.00247.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Presympathetic neurons in the paraventricular nucleus of the hypothalamus (PVN) play a key role in cardiovascular regulation. We have previously shown that brain-derived neurotrophic factor (BDNF), acting in the PVN, increases sympathetic activity and blood pressure and serves as a key regulator of stress-induced hypertensive responses. BDNF is known to alter glutamatergic and GABA-ergic signaling broadly in the central nervous system, but whether BDNF has similar actions in the PVN remains to be investigated. Here, we tested the hypothesis that increased BDNF expression in the PVN elevates blood pressure by enhancing N-methyl-d-aspartate (NMDA) receptor (NMDAR)- and inhibiting GABAA receptor (GABAAR)-mediated signaling. Sprague-Dawley rats received bilateral PVN injections of AAV2 viral vectors expressing green fluorescent protein (GFP) or BDNF. Three weeks later, cardiovascular responses to PVN injections of NMDAR and GABAAR agonists and antagonists were recorded under α-chloralose-urethane anesthesia. In addition, expressions of excitatory and inhibitory signaling components in the PVN were assessed using immunofluorescence. Our results showed that NMDAR inhibition led to a greater decrease in blood pressure in the BDNF vs. GFP group, while GABAAR inhibition led to greater increases in blood pressure in the GFP group compared to BDNF. Conversely, GABAAR activation decreased blood pressure significantly more in GFP vs. BDNF rats. In addition, immunoreactivity of NMDAR1 was upregulated, while GABAAR-α1 and K+/Cl- cotransporter 2 were downregulated by BDNF overexpression in the PVN. In summary, our findings indicate that hypertensive actions of BDNF within the PVN are mediated, at least in part, by augmented NMDAR and reduced GABAAR signaling.NEW & NOTEWORTHY We have shown that BDNF, acting in the PVN, elevates blood pressure in part by augmenting NMDA receptor-mediated excitatory input and by diminishing GABAA receptor-mediated inhibitory input to PVN neurons. In addition, we demonstrate that elevated BDNF expression in the PVN upregulates NMDA receptor immunoreactivity and downregulates GABAA receptor as well as KCC2 transporter immunoreactivity.
Collapse
Affiliation(s)
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
22
|
De novo Neurosteroidogenesis in Human Microglia: Involvement of the 18 kDa Translocator Protein. Int J Mol Sci 2021; 22:ijms22063115. [PMID: 33803741 PMCID: PMC8003294 DOI: 10.3390/ijms22063115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery-in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.
Collapse
|
23
|
Khirug S, Soni S, Saez Garcia M, Tessier M, Zhou L, Kulesskaya N, Rauvala H, Lindholm D, Ludwig A, Molinari F, Rivera C. Protective Role of Low Ethanol Administration Following Ischemic Stroke via Recovery of KCC2 and p75 NTR Expression. Mol Neurobiol 2021; 58:1145-1161. [PMID: 33099743 PMCID: PMC7878264 DOI: 10.1007/s12035-020-02176-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/14/2020] [Indexed: 01/31/2023]
Abstract
A striking result from epidemiological studies show a correlation between low alcohol intake and lower incidence for ischemic stroke and severity of derived brain injury. Although reduced apoptosis and inflammation has been suggested to be involved, little is known about the mechanism mediating this effect in vivo. Increase in intracellular chloride concentration and derived depolarizing GABAAR-mediated transmission are common consequences following various brain injuries and are caused by the abnormal expression levels of the chloride cotransporters NKCC1 and KCC2. Downstream pro-apoptotic signaling through p75NTR may link GABAA depolarization with post-injury neuronal apoptosis. Here, we show that changes in GABAergic signaling, Cl- homeostasis, and expression of chloride cotransporters in the post-traumatic mouse brain can be significantly reduced by administration of 3% ethanol to the drinking water. Ethanol-induced upregulation of KCC2 has a positive impact on neuronal survival, preserving a large part of the cortical peri-infarct zone, as well as preventing the massive post-ischemic upregulation of the pro-apoptotic protein p75NTR. Importantly, intracortical multisite in vivo recordings showed that ethanol treatment could significantly ameliorate stroke-induced reduction in cortical activity. This surprising finding discloses a pathway triggered by low concentration of ethanol as a novel therapeutically relevant target.
Collapse
Affiliation(s)
- Stanislav Khirug
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
| | - Shetal Soni
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marta Saez Garcia
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marine Tessier
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France
| | - Liang Zhou
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Natalia Kulesskaya
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Anastasia Ludwig
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | | | - Claudio Rivera
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France.
| |
Collapse
|
24
|
Hartmann AM, Fu L, Ziegler C, Winklhofer M, Nothwang HG. Structural changes in the extracellular loop 2 of the murine KCC2 potassium chloride cotransporter modulate ion transport. J Biol Chem 2021; 296:100793. [PMID: 34019872 PMCID: PMC8191313 DOI: 10.1016/j.jbc.2021.100793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/22/2023] Open
Abstract
K+-Cl- cotransporters (KCCs) play important roles in physiological processes such as inhibitory neurotransmission and cell-volume regulation. KCCs exhibit significant variations in K+ affinities, yet recent atomic structures demonstrated that K+- and Cl--binding sites are highly conserved, raising the question of whether additional structural elements may contribute to ion coordination. The termini and the large extracellular domain (ECD) of KCCs exhibit only low sequence identity and were already discussed as modulators of transport activity. Here, we used the extracellular loop 2 (EL2) that links transmembrane helices (TMs) 3 and 4, as a mechanism to modulate ECD folding. We compared consequences of point mutations in the K+-binding site on the function of WT KCC2 and in a KCC2 variant, in which EL2 was structurally altered by insertion of a IFYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHAAA (3xHA) tag (36 amino acids). In WT KCC2, individual mutations of five residues in the K+-binding site resulted in a 2- to 3-fold decreased transport rate. However, the same mutations in the KCC2 variant with EL2 structurally altered by insertion of a 3xHA tag had no effect on transport activity. Homology models of mouse KCC2 with the 3xHA tag inserted into EL2 using ab initio prediction were generated. The models suggest subtle conformational changes occur in the ECD upon EL2 modification. These data suggest that a conformational change in the ECD, for example, by interaction with EL2, might be an elegant way to modulate the K+ affinity of the different isoforms in the KCC subfamily.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Lifei Fu
- Biophysics II, Biophysics II-Structural Biology, Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Christine Ziegler
- Biophysics II, Biophysics II-Structural Biology, Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences IBU, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Center of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
26
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
27
|
Grau JW, Baine RE, Bean PA, Davis JA, Fauss GN, Henwood MK, Hudson KE, Johnston DT, Tarbet MM, Strain MM. Learning to promote recovery after spinal cord injury. Exp Neurol 2020; 330:113334. [PMID: 32353465 PMCID: PMC7282951 DOI: 10.1016/j.expneurol.2020.113334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The present review explores the concept of learning within the context of neurorehabilitation after spinal cord injury (SCI). The aim of physical therapy and neurorehabilitation is to bring about a lasting change in function-to encourage learning. Traditionally, it was assumed that the adult spinal cord is hardwired-immutable and incapable of learning. Research has shown that neurons within the lower (lumbosacral) spinal cord can support learning after communication with the brain has been disrupted by means of a thoracic transection. Noxious stimulation can sensitize nociceptive circuits within the spinal cord, engaging signal pathways analogous to those implicated in brain-dependent learning and memory. After a spinal contusion injury, pain input can fuel hemorrhage, increase the area of tissue loss (secondary injury), and undermine long-term recovery. Neurons within the spinal cord are sensitive to environmental relations. This learning has a metaplastic effect that counters neural over-excitation and promotes adaptive learning through an up-regulation of brain-derived neurotrophic factor (BDNF). Exposure to rhythmic stimulation, treadmill training, and cycling also enhances the expression of BDNF and counters the development of nociceptive sensitization. SCI appears to enable plastic potential within the spinal cord by down-regulating the Cl- co-transporter KCC2, which reduces GABAergic inhibition. This enables learning, but also fuels over-excitation and nociceptive sensitization. Pairing epidural stimulation with activation of motor pathways also promotes recovery after SCI. Stimulating motoneurons in response to activity within the motor cortex, or a targeted muscle, has a similar effect. It is suggested that a neurofunctionalist approach can foster the discovery of processes that impact spinal function and how they may be harnessed to foster recovery after SCI.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel E Baine
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Paris A Bean
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob A Davis
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Gizelle N Fauss
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Melissa K Henwood
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Kelsey E Hudson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - David T Johnston
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Megan M Tarbet
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Misty M Strain
- Battlefield Pain Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BHT-1, BSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
28
|
Zhang J, Cordshagen A, Medina I, Nothwang HG, Wisniewski JR, Winklhofer M, Hartmann AM. Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1. PLoS One 2020; 15:e0232967. [PMID: 32413057 PMCID: PMC7228128 DOI: 10.1371/journal.pone.0232967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
The pivotal role of KCC2 and NKCC1 in development and maintenance of fast inhibitory neurotransmission and their implication in severe human diseases arouse interest in posttranscriptional regulatory mechanisms such as (de)phosphorylation. Staurosporine (broad kinase inhibitor) and N-ethylmalemide (NEM) that modulate kinase and phosphatase activities enhance KCC2 and decrease NKCC1 activity. Here, we investigated the regulatory mechanism for this reciprocal regulation by mass spectrometry and immunoblot analyses using phospho-specific antibodies. Our analyses revealed that application of staurosporine or NEM dephosphorylates Thr1007 of KCC2, and Thr203, Thr207 and Thr212 of NKCC1. Dephosphorylation of Thr1007 of KCC2, and Thr207 and Thr212 of NKCC1 were previously demonstrated to activate KCC2 and to inactivate NKCC1. In addition, application of the two agents resulted in dephosphorylation of the T-loop and S-loop phosphorylation sites Thr233 and Ser373 of SPAK, a critical kinase in the WNK-SPAK/OSR1 signaling module mediating phosphorylation of KCC2 and NKCC1. Taken together, these results suggest that reciprocal regulation of KCC2 and NKCC1 via staurosporine and NEM is based on WNK-SPAK/OSR1 signaling. The key regulatory phospho-site Ser940 of KCC2 is not critically involved in the enhanced activation of KCC2 upon staurosporine and NEM treatment, as both agents have opposite effects on its phosphorylation status. Finally, NEM acts in a tissue-specific manner on Ser940, as shown by comparative analysis in HEK293 cells and immature cultured hippocampal neurons. In summary, our analyses identified phospho-sites that are responsive to staurosporine or NEM application. This provides important information towards a better understanding of the cooperative interactions of different phospho-sites.
Collapse
Affiliation(s)
- Jinwei Zhang
- Hatherly Laboratories, Medical School, College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Exeter, United Kingdom
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Antje Cordshagen
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Igor Medina
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Aix-Marseille University UMR 1249, Marseille, France
| | - Hans Gerd Nothwang
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Excellence Hearing4all, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jacek R. Wisniewski
- Department of Proteomics and Signal Transduction, Biochemical Proteomics Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Michael Winklhofer
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Institute for Biology and Environmental Sciences IBU, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Anna-Maria Hartmann
- Division of Neurogenetics, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
29
|
Tao D, Liu F, Sun X, Qu H, Zhao S, Zhou Z, Xiao T, Zhao C, Zhao M. Bumetanide: A review of its neuroplasticity and behavioral effects after stroke. Restor Neurol Neurosci 2020; 37:397-407. [PMID: 31306143 DOI: 10.3233/rnn-190926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stroke often leads to neuronal injury and neurological functional deficits. Whilst spontaneous neurogenesis and axon regeneration are induced by ischemic stroke, effective pharmacological treatments are also essential for the improvement of neuroplasticity and functional recovery after stroke. However, no pharmacological therapy has been demonstrated to be able to effectively improve the functional recovery after stroke. Bumetanide is a specific Na+-K+-Cl- co-transporter inhibitor which can maintain chloride homeostasis in neurons. Therefore, many studies have focused on this drug's effect in stroke recovery in recent years. Here, we first review the function of Na+-K+-Cl- co-transporter in neurons, then how bumetanide's role in reducing brain damage, promoting neuroplasticity, leading to functional recovery after stroke, is elucidated. Finally, we discuss current limitations of bumetanide's efficiency and their potential solutions. These results may provide new avenues for further exploring mechanisms of post-stroke functional recovery as well as promising therapeutic targets for functional disability rehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Dongxia Tao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Sun
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Mei Zhao
- Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
31
|
Tillman L, Zhang J. Crossing the Chloride Channel: The Current and Potential Therapeutic Value of the Neuronal K +-Cl - Cotransporter KCC2. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8941046. [PMID: 31240228 PMCID: PMC6556333 DOI: 10.1155/2019/8941046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
Chloride (Cl-) homeostasis is an essential process involved in neuronal signalling and cell survival. Inadequate regulation of intracellular Cl- interferes with synaptic signalling and is implicated in several neurological diseases. The main inhibitory neurotransmitter of the central nervous system is γ-aminobutyric acid (GABA). GABA hyperpolarises the membrane potential by activating Cl- permeable GABAA receptor channels (GABAAR). This process is reliant on Cl- extruder K+-Cl- cotransporter 2 (KCC2), which generates the neuron's inward, hyperpolarising Cl- gradient. KCC2 is encoded by the fifth member of the solute carrier 12 family (SLC12A5) and has remained a poorly understood component in the development and severity of many neurological diseases for many years. Recent advancements in next-generation sequencing and specific gene targeting, however, have indicated that loss of KCC2 activity is involved in a number of diseases including epilepsy and schizophrenia. It has also been implicated in neuropathic pain following spinal cord injury. Any variant of SLC12A5 that negatively regulates the transporter's expression may, therefore, be implicated in neurological disease. A recent whole exome study has discovered several causative mutations in patients with epilepsy. Here, we discuss the implications of KCC2 in neurological disease and consider the evolving evidence for KCC2's potential as a therapeutic target.
Collapse
Affiliation(s)
- Luke Tillman
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| |
Collapse
|
32
|
Lee-Hotta S, Uchiyama Y, Kametaka S. Role of the BDNF-TrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: A mini review. Neurochem Int 2019; 128:32-38. [PMID: 30986502 DOI: 10.1016/j.neuint.2019.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
In most mature neurons, low levels of intracellular Cl- concentrations ([Cl-]i) are maintained by channels and transporters, particularly the K+-Cl- cotransporter 2 (KCC2), which is the only Cl- extruder in most neurons. Recent studies have implicated KCC2 expression in the molecular mechanisms underlying neuronal disorders, such as spasticity, epilepsy and neuropathic pain. Alterations in KCC2 expression have been associated with brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB). The present review summarizes recent progress regarding the roles of Cl- regulators in immature and mature neurons. Moreover, we focus on the role of KCC2 regulation via the BDNF-TrkB pathway in spinal cord injury and rehabilitation, as prior studies have shown that the BDNF-TrkB pathway can affect both the pathological development and functional amelioration of spinal cord injuries. Evidence suggests that rehabilitation using active exercise and mechanical stimulation can attenuate spasticity and neuropathic pain in animal models, likely due to the upregulation of KCC2 expression via the BDNF-TrkB pathway. Moreover, research suggests that such rehabilitation efforts may recover KCC2 expression without the use of exogenous BDNF.
Collapse
Affiliation(s)
- Sachiko Lee-Hotta
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20, Daiko-minami Higashi-ku, Nagoya-shi, Aichi, 461-8673, Japan.
| | - Yasushi Uchiyama
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20, Daiko-minami Higashi-ku, Nagoya-shi, Aichi, 461-8673, Japan.
| | - Satoshi Kametaka
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20, Daiko-minami Higashi-ku, Nagoya-shi, Aichi, 461-8673, Japan.
| |
Collapse
|
33
|
Kim WS, Lee K, Kim S, Cho S, Paik NJ. Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury. J Neuroeng Rehabil 2019; 16:14. [PMID: 30683136 PMCID: PMC6347832 DOI: 10.1186/s12984-019-0489-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
After traumatic brain injury (TBI), motor impairment is less common than neurocognitive or behavioral problems. However, about 30% of TBI survivors have reported motor deficits limiting the activities of daily living or participation. After acute primary and secondary injuries, there are subsequent changes including increased GABA-mediated inhibition during the subacute stage and neuroplastic alterations that are adaptive or maladaptive during the chronic stage. Therefore, timely and appropriate neuromodulation by transcranial direct current stimulation (tDCS) may be beneficial to patients with TBI for neuroprotection or restoration of maladaptive changes.Technologically, combination of imaging-based modelling or simultaneous brain signal monitoring with tDCS could result in greater individualized optimal targeting allowing a more favorable neuroplasticity after TBI. Moreover, a combination of task-oriented training using virtual reality with tDCS can be considered as a potent tele-rehabilitation tool in the home setting, increasing the dose of rehabilitation and neuromodulation, resulting in better motor recovery.This review summarizes the pathophysiology and possible neuroplastic changes in TBI, as well as provides the general concepts and current evidence with respect to the applicability of tDCS in motor recovery. Through its endeavors, it aims to provide insights on further successful development and clinical application of tDCS in motor rehabilitation after TBI.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Kiwon Lee
- Ybrain Research Institute, Seongnam-si, Republic of Korea
| | - Seonghoon Kim
- Ybrain Research Institute, Seongnam-si, Republic of Korea
| | | | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
34
|
Romaus-Sanjurjo D, Rodicio MC, Barreiro-Iglesias A. Gamma-aminobutyric acid (GABA) promotes recovery from spinal cord injury in lampreys: role of GABA receptors and perspective on the translation to mammals. Neural Regen Res 2019; 14:1695-1696. [PMID: 31169176 PMCID: PMC6585546 DOI: 10.4103/1673-5374.257515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
35
|
Cordshagen A, Busch W, Winklhofer M, Nothwang HG, Hartmann AM. Phosphoregulation of the intracellular termini of K +-Cl - cotransporter 2 (KCC2) enables flexible control of its activity. J Biol Chem 2018; 293:16984-16993. [PMID: 30201606 DOI: 10.1074/jbc.ra118.004349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
The pivotal role of K+-Cl- cotransporter 2 (KCC2) in inhibitory neurotransmission and severe human diseases fosters interest in understanding posttranslational regulatory mechanisms such as (de)phosphorylation. Here, the regulatory role of the five bona fide phosphosites Ser31, Thr34, Ser932, Thr999, and Thr1008 was investigated by the use of alanine and aspartate mutants. Tl+-based flux analyses in HEK-293 cells demonstrated increased transport activity for S932D (mimicking phosphorylation) and T1008A (mimicking dephosphorylation), albeit to a different extent. Increased activity was due to changes in intrinsic activity, as it was not caused by increased cell-surface abundance. Substitutions of Ser31, Thr34, or Thr999 had no effect. Additionally, we show that the indirect actions of the known KCC2 activators staurosporine and N-ethylmaleimide (NEM) involved multiple phosphosites. S31D, T34A, S932A/D, T999A, or T1008A/D abrogated staurosporine mediated stimulation, and S31A, T34D, or S932D abolished NEM-mediated stimulation. This demonstrates for the first time differential effects of staurosporine and NEM on KCC2. In addition, the staurosporine-mediated effects involved both KCC2 phosphorylation and dephosphorylation with Ser932 and Thr1008 being bona fide target sites. In summary, our data reveal a complex phosphoregulation of KCC2 that provides the transporter with a toolbox for graded activity and integration of different signaling pathways.
Collapse
Affiliation(s)
- Antje Cordshagen
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences
| | - Wiebke Busch
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences IBU, and.,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Hans Gerd Nothwang
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences.,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Anna-Maria Hartmann
- From the Neurogenetics group, Center of Excellence Hearing4all, School of Medicine and Health Sciences, .,Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
36
|
Porcher C, Medina I, Gaiarsa JL. Mechanism of BDNF Modulation in GABAergic Synaptic Transmission in Healthy and Disease Brains. Front Cell Neurosci 2018; 12:273. [PMID: 30210299 PMCID: PMC6121065 DOI: 10.3389/fncel.2018.00273] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
In the mature healthy mammalian neuronal networks, γ-aminobutyric acid (GABA) mediates synaptic inhibition by acting on GABAA and GABAB receptors (GABAAR, GABABR). In immature networks and during numerous pathological conditions the strength of GABAergic synaptic inhibition is much less pronounced. In these neurons the activation of GABAAR produces paradoxical depolarizing action that favors neuronal network excitation. The depolarizing action of GABAAR is a consequence of deregulated chloride ion homeostasis. In addition to depolarizing action of GABAAR, the GABABR mediated inhibition is also less efficient. One of the key molecules regulating the GABAergic synaptic transmission is the brain derived neurotrophic factor (BDNF). BDNF and its precursor proBDNF, can be released in an activity-dependent manner. Mature BDNF operates via its cognate receptors tropomyosin related kinase B (TrkB) whereas proBDNF binds the p75 neurotrophin receptor (p75NTR). In this review article, we discuss recent finding illuminating how mBDNF-TrkB and proBDNF-p75NTR signaling pathways regulate GABA related neurotransmission under physiological conditions and during epilepsy.
Collapse
Affiliation(s)
- Christophe Porcher
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Igor Medina
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Jean-Luc Gaiarsa
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| |
Collapse
|
37
|
Huang YJ, Grau JW. Ionic plasticity and pain: The loss of descending serotonergic fibers after spinal cord injury transforms how GABA affects pain. Exp Neurol 2018; 306:105-116. [PMID: 29729247 PMCID: PMC5994379 DOI: 10.1016/j.expneurol.2018.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
Activation of pain (nociceptive) fibers can sensitize neural circuits within the spinal cord, inducing an increase in excitability (central sensitization) that can foster chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. In adult animals, the co-transporter KCC2 maintains a low intracellular concentration of the anion Cl-. As a result, when the GABA-A receptor is engaged, Cl- flows in the neuron which has a hyperpolarizing (inhibitory) effect. Spinal cord injury (SCI) can down-regulate KCC2 and reverse the flow of Cl-. Under these conditions, engaging the GABA-A receptor can have a depolarizing (excitatory) effect that fosters the development of nociceptive sensitization. The present paper explores how SCI alters GABA function and provides evidence that the loss of descending fibers alters pain transmission to the brain. Prior work has shown that, after SCI, administration of a GABA-A antagonist blocks the development of capsaicin-induced nociceptive sensitization, implying that GABA release plays an essential role. This excitatory effect is linked to serotonergic (5HT) fibers that descend through the dorsolateral funiculus (DLF) and impact spinal function via the 5HT-1A receptor. Supporting this, blocking the 5HT-1A receptor, or lesioning the DLF, emulated the effect of SCI. Conversely, spinal application of a 5HT-1A agonist up-regulated KCC2 and reversed the effect of bicuculline treatment. Finally, lesioning the DLF reversed how a GABA-A antagonist affects a capsaicin-induced aversion in a place conditioning task; in sham operated animals, bicuculline enhanced aversion whereas in DLF-lesioned rats biciculline had an antinociceptive effect.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
38
|
Tashiro S, Nishimura S, Shinozaki M, Takano M, Konomi T, Tsuji O, Nagoshi N, Toyama Y, Liu M, Okano H, Nakamura M. The Amelioration of Pain-Related Behavior in Mice with Chronic Spinal Cord Injury Treated with Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training. J Neurotrauma 2018; 35:2561-2571. [PMID: 29790403 DOI: 10.1089/neu.2017.5537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Progress in regenerative medicine is realizing the possibility of neural regeneration and functional recovery in spinal cord injury (SCI). Recently, rehabilitation has attracted much attention with respect to the synergistic promotion of functional recovery in combination with neural stem/progenitor cell (NS/PC) transplantation, even in the chronic refractory phase of SCI. Nevertheless, sensory disturbance is one of the most prominent sequelae, even though the effects of combination or single therapies have been investigated mostly in the context of motor recovery. To determine how combination therapy with treadmill training (TMT) and NS/PC transplantation affects the manifestation of thermal allodynia and tactile hyperalgesia in chronic phase SCI, four groups of SCI mice were used to assess pain-related behavior and histological changes: combined transplantation and TMT therapy, transplantation only, TMT only, and control groups. Thermal allodynia and coarse touch-pressure hyperalgesia exhibited significant recovery in the combined therapy group in comparison with controls, whereas there were no significant differences with fine touch-pressure hyperalgesia and motor function. Further investigation revealed fewer fibers remaining in the posterior funiculus, which contained the tracts associated with the two modalities showing less recovery; that is, touch-pressure hyperalgesia and motor function. A significant correlation was only observed between these two modalities. Although no remarkable histological recovery was found within the lesion epicenter, changes indicating amelioration of pain were observed in the lumbar enlargement of the combination therapy group. Our results suggest that amelioration of thermal allodynia and tactile hyperalgesia can be brought about by the additive effect of NS/PC transplantation and TMT. The degree of recovery seems dependent on the distribution of damage.
Collapse
Affiliation(s)
- Syoichi Tashiro
- 1 Department of Rehabilitation Medicine, Keio University School of Medicine , Tokyo, Japan
| | - Soraya Nishimura
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Munehisa Shinozaki
- 3 Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| | - Morito Takano
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Tsunehiko Konomi
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan .,4 Department of Orthopaedic Surgery, Murayama Medical Center , National Hospital Organization, Tokyo, Japan
| | - Osahiko Tsuji
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Narihito Nagoshi
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Yoshiaki Toyama
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| | - Meigen Liu
- 1 Department of Rehabilitation Medicine, Keio University School of Medicine , Tokyo, Japan
| | - Hideyuki Okano
- 3 Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| | - Masaya Nakamura
- 2 Department of Orthopaedic Surgery, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|
39
|
Schulte JT, Wierenga CJ, Bruining H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions. Neurosci Biobehav Rev 2018; 90:260-271. [PMID: 29729285 DOI: 10.1016/j.neubiorev.2018.05.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Abstract
Neuronal chloride regulation is a determinant factor for the dynamic tuning of GABAergic inhibition during and beyond brain development. This regulation is mainly dependent on the two co-transporters K+/Cl- co-transporter KCC2 and Na+/K+/Cl- co-transporter NKCC1, whose activity can decrease or increase neuronal chloride concentrations respectively. Altered expression and/or activity of either of these co-transporters has been associated with a wide variety of brain disorders including developmental disorders, epilepsy, schizophrenia and stroke. Here, we review current knowledge on chloride transporter expression and activity regulation and highlight the intriguing potential for existing and future interventions to support chloride homeostasis across a wide range of mental disorders and neurological conditions.
Collapse
Affiliation(s)
- Joran T Schulte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Heidelberglaan 100, 3508 GA Utrecht The Netherlands
| | - Corette J Wierenga
- Division of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Heidelberglaan 100, 3508 GA Utrecht The Netherlands.
| |
Collapse
|
40
|
Grau JW, Huang YJ. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn. Neurobiol Learn Mem 2018; 154:121-135. [PMID: 29635030 DOI: 10.1016/j.nlm.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl- is down-regulated. This causes the intracellular concentration of Cl- to increase, reducing (and potentially reversing) the inward flow of Cl- through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | - Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA
| |
Collapse
|
41
|
Blanquie O, Liebmann L, Hübner CA, Luhmann HJ, Sinning A. NKCC1-Mediated GABAergic Signaling Promotes Postnatal Cell Death in Neocortical Cajal-Retzius Cells. Cereb Cortex 2018; 27:1644-1659. [PMID: 26819276 DOI: 10.1093/cercor/bhw004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During early development, a substantial proportion of central neurons undergoes programmed cell death. This activity-dependent process is essential for the proper structural and functional development of the brain. To uncover cell type-specific differences in the regulation of neuronal survival versus apoptosis, we studied activity-regulated cell death in Cajal-Retzius neurons (CRNs) and the overall neuronal population in the developing mouse cerebral cortex. CRNs in the upper neocortical layer represent an early-born neuronal population, which is important for cortical development and largely disappears by apoptosis during neonatal stages. In contrast to the overall neuronal population, activity blockade with tetrodotoxin improved survival of CRNs in culture. Activation of GABAA receptors also blocked spontaneous activity and caused overall cell death including apoptosis of CRNs. Blockade of the Na-K-Cl transporter NKCC1 in vitro or its genetic deletion in vivo rescued CRNs from apoptosis. This effect was mediated by blockade of the p75NTR receptor signaling pathway. In summary, we discovered a novel developmental death pathway mediated by NKCC1, via GABAA receptor-mediated membrane depolarization and p75NTR signaling in CRNs. This pathway controls apoptosis of CRNs and may be critically involved in neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
42
|
Di Cristo G, Awad PN, Hamidi S, Avoli M. KCC2, epileptiform synchronization, and epileptic disorders. Prog Neurobiol 2018; 162:1-16. [DOI: 10.1016/j.pneurobio.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
43
|
Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing. Cell Rep 2017; 17:2753-2765. [PMID: 27926876 DOI: 10.1016/j.celrep.2016.11.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
In chronic pain states, the neurotrophin brain-derived neurotrophic factor (BDNF) transforms the output of lamina I spinal neurons by decreasing synaptic inhibition. Pain hypersensitivity also depends on N-methyl-D-aspartate receptors (NMDARs) and Src-family kinases, but the locus of NMDAR dysregulation remains unknown. Here, we show that NMDAR-mediated currents at lamina I synapses are potentiated in a peripheral nerve injury model of neuropathic pain. We find that BDNF mediates NMDAR potentiation through activation of TrkB and phosphorylation of the GluN2B subunit by the Src-family kinase Fyn. Surprisingly, we find that Cl--dependent disinhibition is necessary and sufficient to prime potentiation of synaptic NMDARs by BDNF. Thus, we propose that spinal pain amplification is mediated by a feedforward mechanism whereby loss of inhibition gates the increase in synaptic excitation within individual lamina I neurons. Given that neither disinhibition alone nor BDNF-TrkB signaling is sufficient to potentiate NMDARs, we have discovered a form of molecular coincidence detection in lamina I neurons.
Collapse
|
44
|
Gao W, Yu LG, Liu YL, Chen M, Wang YZ, Huang XL. Effects of high frequency repetitive transcranial magnetic stimulation on KCC2 expression in rats with spasticity following spinal cord injury. Curr Med Sci 2017; 37:777-781. [PMID: 29058295 DOI: 10.1007/s11596-017-1804-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Indexed: 01/09/2023]
Abstract
The effect of high-frequency repetitive transcranial magnetic stimulation (rTMS) on potassium- chloride cotransporter-2 (KCC2) protein expression following spinal cord injury (SCI) and the action mechanism were investigated. SCI models were established in SD rats. Five groups were set up randomly: normal control group, SCI 7-day (7D) model group, SCI 14-day (14D) model group, SCI-7D rTMS group and SCI-14D rTMS group (n=5 each). The rats in SCI rTMS groups were treated with 10 Hz rTMS from 8th day and 15th day after SCI respectively, once every day, 5 days every week, a total of 4 weeks. After the model establishment, motor recovery and spasticity alleviation were evaluated with BBB scale once a week till the end of treatment. Finally, different parts of tissues were dissected out for detection of variations of KCC2 protein using Western blotting and polymerase chain reaction (PCR) technique. The results showed that the BBS scores after treatment were significantly higher in SCI-7D rTMS group than in SCI-14D rTMS group (P<0.05). As compared with normal control groups, The KCC2 protein in SCI model groups was down-regulated after SCI, and the decrease was much more significant in SCI-14D model group than in SCI-7D group (P<0.05). As compared with SCI model groups, KCC2 protein in rTMS groups was up-regulated after the treatment (P<0.05). The up-regulation of KCC2 protein content and expression was more obvious in SCI-7D rTMS group than in SCI-14D rTMS group (P<0.05). It was concluded that 10 Hz rTMS can alleviate spasticity in rats with SCI, which might be attributed to the up-regulation of KCC2 protein. It was also suggested that the high-frequency rTMS treatment after SCI at early stage might achieve more satisfactory curative effectiveness.
Collapse
Affiliation(s)
- Wei Gao
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Guo Yu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Li Liu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mo Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-Zhao Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Lin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
45
|
Ben-Ari Y. NKCC1 Chloride Importer Antagonists Attenuate Many Neurological and Psychiatric Disorders. Trends Neurosci 2017; 40:536-554. [PMID: 28818303 DOI: 10.1016/j.tins.2017.07.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Abstract
In physiological conditions, adult neurons have low intracellular Cl- [(Cl-)I] levels underlying the γ-aminobutyric acid (GABA)ergic inhibitory drive. In contrast, neurons have high (Cl-)I levels and excitatory GABA actions in a wide range of pathological conditions including spinal cord lesions, chronic pain, brain trauma, cerebrovascular infarcts, autism, Rett and Down syndrome, various types of epilepsies, and other genetic or environmental insults. The diuretic highly specific NKCC1 chloride importer antagonist bumetanide (PubChem CID: 2461) efficiently restores low (Cl-)I levels and attenuates many disorders in experimental conditions and in some clinical trials. Here, I review the mechanisms of action, therapeutic effects, promises, and pitfalls of bumetanide.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- New INMED, Aix-Marseille University, Campus Scientifique de Luminy, Marseilles, France.
| |
Collapse
|
46
|
Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 2017; 22:1085-1095. [PMID: 28397840 PMCID: PMC5510719 DOI: 10.1038/mp.2017.61] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF) and other members of the neurotrophin family, are central mediators of the activity-dependent plasticity through which environmental experiences, such as sensory information are translated into the structure and function of neuronal networks. Synthesis, release and action of BDNF is regulated by neuronal activity and BDNF in turn leads to trophic effects such as formation, stabilization and potentiation of synapses through its high-affinity TrkB receptors. Several clinically available drugs activate neurotrophin signaling and neuronal plasticity. In particular, antidepressant drugs rapidly activate TrkB signaling and gradually increase BDNF expression, and the behavioral effects of antidepressants are mediated by and dependent on BDNF signaling through TrkB at least in rodents. These findings indicate that antidepressants, widely used drugs, effectively act as TrkB activators. They further imply that neuronal plasticity is a central mechanism in the action of antidepressant drugs. Indeed, it was recently discovered that antidepressants reactivate a state of plasticity in the adult cerebral cortex that closely resembles the enhanced plasticity normally observed during postnatal critical periods. This state of induced plasticity, known as iPlasticity, allows environmental stimuli to beneficially reorganize networks abnormally wired during early life. iPlasticity has been observed in cortical as well as subcortical networks and is induced by several pharmacological and non-pharmacological treatments. iPlasticity is a new pharmacological principle where drug treatment and rehabilitation cooperate; the drug acts permissively to enhance plasticity and rehabilitation provides activity to guide the appropriate wiring of the plastic network. Optimization of iPlastic drug treatment with novel means of rehabilitation may help improve the efficacy of available drug treatments and expand the use of currently existing drugs into new indications.
Collapse
|
47
|
Rinetti-Vargas G, Phamluong K, Ron D, Bender KJ. Periadolescent Maturation of GABAergic Hyperpolarization at the Axon Initial Segment. Cell Rep 2017; 20:21-29. [PMID: 28683314 PMCID: PMC6483373 DOI: 10.1016/j.celrep.2017.06.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/15/2017] [Accepted: 06/11/2017] [Indexed: 10/25/2022] Open
Abstract
Neuronal chloride levels are developmentally regulated. Early in life, high intracellular concentrations support chloride efflux and depolarization at GABAergic synapses. In mouse, intracellular chloride decreases over the first postnatal week in the somatodendritic compartment, eventually supporting mature, hyperpolarizing GABAergic inhibition. In contrast to this dendritic switch, it is less clear how GABAergic signaling at the axon initial segment (AIS) functions in mature pyramidal cells, as reports of both depolarization and hyperpolarization have been reported in the AIS past the first postnatal week. Here, we show that GABAergic signaling at the AIS of prefrontal pyramidal cells, indeed, switches polarity from depolarizing to hyperpolarizing but does so over a protracted periadolescent period. This is the most delayed maturation in chloride reversal in any structure studied to date and suggests that chandelier cells, which mediate axo-axonic inhibition, play a unique role in the periadolescent maturation of prefrontal circuits.
Collapse
Affiliation(s)
- Gina Rinetti-Vargas
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Khanhky Phamluong
- UCSF Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dorit Ron
- UCSF Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin J Bender
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
48
|
Hartmann AM, Pisella LI, Medina I, Nothwang HG. Molecular cloning and biochemical characterization of two cation chloride cotransporter subfamily members of Hydra vulgaris. PLoS One 2017; 12:e0179968. [PMID: 28662098 PMCID: PMC5491111 DOI: 10.1371/journal.pone.0179968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/07/2017] [Indexed: 01/21/2023] Open
Abstract
Cation Chloride Cotransporters (CCCs) comprise secondary active membrane proteins mainly mediating the symport of cations (Na+, K+) coupled with chloride (Cl−). They are divided into K+-Cl− outward transporters (KCCs), the Na+-K+-Cl− (NKCCs) and Na+-Cl− (NCCs) inward transporters, the cation chloride cotransporter interacting protein CIP1, and the polyamine transporter CCC9. KCCs and N(K)CCs are established in the genome since eukaryotes and metazoans, respectively. Most of the physiological and functional data were obtained from vertebrate species. To get insights into the basal functional properties of KCCs and N(K)CCs in the metazoan lineage, we cloned and characterized KCC and N(K)CC from the cnidarian Hydra vulgaris. HvKCC is composed of 1,032 amino-acid residues. Functional analyses revealed that hvKCC mediates a Na+-independent, Cl− and K+ (Tl+)-dependent cotransport. The classification of hvKCC as a functional K-Cl cotransporter is furthermore supported by phylogenetic analyses and a similar structural organization. Interestingly, recently obtained physiological analyses indicate a role of cnidarian KCCs in hyposmotic volume regulation of nematocytes. HvN(K)CC is composed of 965 amino-acid residues. Phylogenetic analyses and structural organization suggest that hvN(K)CC is a member of the N(K)CC subfamily. However, no inorganic ion cotransport function could be detected using different buffer conditions. Thus, hvN(K)CC is a N(K)CC subfamily member without a detectable inorganic ion cotransporter function. Taken together, the data identify two non-bilaterian solute carrier 12 (SLC12) gene family members, thereby paving the way for a better understanding of the evolutionary paths of this important cotransporter family.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Neurogenetics Group, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center for Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- * E-mail:
| | | | | | - Hans Gerd Nothwang
- Neurogenetics Group, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center for Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4All, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
49
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
50
|
Huang YJ, Lee KH, Grau JW. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization. Exp Neurol 2017; 288:38-50. [PMID: 27818188 DOI: 10.1016/j.expneurol.2016.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022]
Abstract
Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABAA agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Kuan H Lee
- Center for Pain Research, Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|