1
|
Lee H, Kim Y, Cho Y, Jeon EJ, Jeong SH, Lee JH, Kim S. Nociceptive effects and gene alterations of CMIT/MIT mixture in zebrafish embryos and larvae. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138392. [PMID: 40280059 DOI: 10.1016/j.jhazmat.2025.138392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Nociception is a critical biological process that facilitates detecting and avoiding harmful stimuli. Methylisothiazolinone (MIT) and methylchloroisothiazolinone (CMIT) are biocidal agents widely used in disinfectants and cosmetics, however, their effects on nociceptive pathways and neurotoxicity remain insufficiently understood. This study investigated the neurotoxic and nociceptive effects of CMIT/MIT mixtures in zebrafish models. Zebrafish embryos were exposed to CMIT/MIT, and their behavioral and molecular responses to nociceptive stimuli were assessed. Acute exposure (4 -72 h post-fertilization) to CMIT/MIT (15 and 30 μg/L) led to heightened behavioral responses to noxious stimuli, significantly increasing velocity and neuronal activity. Molecular analysis revealed the upregulated expression of nociception-related and inflammatory markers. Subchronic exposure (4 hpf to 28 days post-fertilization) to lower CMIT/MIT concentrations resulted in prolonged freezing responses and reduced the movement in zebrafish larvae. Protein-protein interaction analysis further identified key pathways, including calcium signaling, MAPK, and neuroinflammation, affected by CMIT/MIT exposure. This study provides evidence that even low levels of CMIT/MIT exposure can enhance nociceptive responses by activating sensory neurons and modulating inflammatory pathways, raising concerns about the neurotoxic potential of these widely used biocidal compounds.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Yeonhwa Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Yuji Cho
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul 04763, Republic of Korea
| | - Eun Jung Jeon
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul 04763, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan, Gyeonggi-do 15355, Republic of Korea
| | - Suhyun Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do 15355, Republic of Korea; Department of Convergence Medicine, College of Medicine, Korea University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Anderson LS, Costabile JD, Schwinn S, Calderon D, Haesemeyer M. Sensorimotor integration enhances temperature stimulus processing. PLoS Comput Biol 2025; 21:e1013134. [PMID: 40493521 PMCID: PMC12151342 DOI: 10.1371/journal.pcbi.1013134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 05/13/2025] [Indexed: 06/18/2025] Open
Abstract
Animals optimize behavior by integrating sensory input with motor actions. We hypothesized that coupling thermosensory information with motor output enhances the brain's capacity to process temperature changes, leading to more precise and adaptive behaviors. To test this, we developed a virtual "thermal plaid" environment where zebrafish either actively controlled temperature changes (sensorimotor feedback) or passively experienced the same thermal fluctuations. Our findings demonstrate that sensorimotor feedback amplifies the influence of thermal stimuli on swim initiation, resulting in more structured and organized motor output. We show that previously identified mixed-selectivity neurons that simultaneously encode thermal cues and motor activity enable the integration of sensory and motor feedback to optimize behavior. These results highlight the role of sensorimotor integration in refining thermosensory processing, revealing critical neural mechanisms underlying flexible thermoregulatory behavior. Our study offers new insights into how animals adaptively process environmental stimuli and adjust their actions, contributing to a deeper understanding of the neural circuits driving goal-directed behavior in dynamic environments.
Collapse
Affiliation(s)
- Lindsay S. Anderson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Jamie D. Costabile
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Sina Schwinn
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Delia Calderon
- Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Martin Haesemeyer
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
3
|
Qin Y, Fang S, Zhao Y, Liu H, Wang G, Lu W. Born with Silurian global warming: Defensive role of TRPV1 in caudal neurosecretory system (CNSS) in flounder. Int J Biol Macromol 2025; 312:144092. [PMID: 40350111 DOI: 10.1016/j.ijbiomac.2025.144092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The caudal neurosecretory system (CNSS), unique to fish, emerged during the Silurian global warming period and appears to have an inevitable connection with "heat." Although TRPV1 is known to be a key molecule mediating high-temperature perception in fish, its role in CNSS remains unknown. Here, we found that TRPV1 located on Dahlgren cells in CNSS, is involved in sensing high-temperatures and helps flounder to respond correctly. Specifically, in the context of mild high-temperatures, Dahlgren cells expressing Urotensin I (UI) are the main active cell subpopulation. TRPV1 promotes the activation of the UI cell subpopulation by activating excitatory receptors, which in turn facilitates freezing behavior in flounder. When the accumulated temperature in the abdomen reaches avoidance high-temperatures, the firing activity of the UI cell subpopulation is inhibited, which is related to the TRPV1-mediated activation of NR3A. Accordingly, a subpopulation of Urotensin II (UII) cells was activated. Meanwhile, the expression of genes related to dopamine receptors and acetylcholine synthesis are significantly elevated, thereby mediating the avoidance behavior of flounder to escape from injury. Overall, these studies collectively elucidate the complex adaptive mechanisms employed by flounder in response to high-temperature fluctuations, with a special emphasis on the importance of CNSS temperature sensing.
Collapse
Affiliation(s)
- Yeyang Qin
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Shilin Fang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Yinjie Zhao
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Hao Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Guixing Wang
- The Experimental Station of Beidaihe Center, Chinese Academy of Fishery Sciences, Beidaihe, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
4
|
Bunnell AA, Marshall EM, Estes SK, Deadmond MC, Loesgen S, Strother JA. Embryonic Zebrafish Irritant-evoked Hyperlocomotion (EZIH) as a high-throughput behavioral model for nociception. Behav Brain Res 2025; 485:115526. [PMID: 40057202 DOI: 10.1016/j.bbr.2025.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Behavioral models have served a key role in understanding nociception, the sensory system by which animals detect noxious stimuli in their environment. Developing zebrafish (Danio rerio) are a powerful study organism for examining nociceptive pathways, given the vast array of genetic, developmental, and neuroscience tools available for these animals. However, at present there are few widely-adopted behavioral models for nociception in developing zebrafish. This study examines the locomotor response of hatching-stage zebrafish embryos to dilute solutions of the noxious chemical and TRPA1 agonist allyl isothiocyanate (AITC). At this developmental stage, AITC exposure induces a robust uniphasic hyperlocomotion response. This behavior was thoroughly characterized by determining the effects of pre-treatment with an array of pharmacological agents, including anesthetics, TRPA1 agonists/antagonists, opioids, NSAIDs, benzodiazepines, SSRIs, and SNRIs. Anesthetics suppressed the response to AITC, pre-treatment with TRPA1 agonists induced hyperlocomotion and blunted the response to subsequent AITC exposures, and TRPA1 antagonists and the opioid buprenorphine tended to reduce the response to AITC. The behavioral responses of zebrafish embryos to a noxious chemical were minimally affected by the other pharmacological agents examined. The feasibility of using this behavioral model as a screening platform for drug discovery efforts was then evaluated by assaying a library of natural product mixtures from microbial extracts and fractions. Overall, our results indicate that irritant-evoked locomotion in embryonic zebrafish is a robust behavioral model for nociception with substantial potential for examining the molecular and cellular pathways associated with nociception and for drug discovery efforts.
Collapse
Affiliation(s)
- Amelia A Bunnell
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | - Erin M Marshall
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | | | - Monica C Deadmond
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | - Sandra Loesgen
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | - James A Strother
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States; Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
5
|
Ching K, Sagasti A. Caliber of Rohon-Beard Touch-Sensory Axons Is Dynamic In Vivo. eNeuro 2025; 12:ENEURO.0043-25.2025. [PMID: 40341239 PMCID: PMC12114523 DOI: 10.1523/eneuro.0043-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025] Open
Abstract
Cell shape is crucial to cell function, particularly in neurons. The cross-sectional diameter, also known as caliber, of axons and dendrites is an important parameter of neuron shape, best appreciated for its influence on the speed of action potential propagation. Many studies of axon caliber focus on cell-wide regulation and assume that caliber is static. Here, we have characterized local variation and dynamics of axon caliber in vivo using the peripheral axons of zebrafish touch-sensing neurons at embryonic stages, prior to sex determination. To obtain absolute measurements of caliber in vivo, we paired sparse membrane labeling with super-resolution microscopy of neurons in live fish. We observed that axon segments had varicose or "pearled" morphologies and thus vary in caliber along their length, consistent with reports from mammalian systems. Sister axon segments originating from the most proximal branch point in the axon arbor had average calibers that were uncorrelated with each other. Axon caliber also tapered across the branch point. Varicosities and caliber, overall, were dynamic on the timescale of minutes, and dynamicity changed over the course of development. By measuring the caliber of axons adjacent to dividing epithelial cells, we found that skin cell division is one aspect of the cellular microenvironment that may drive local differences and dynamics in axon caliber. Our findings support the possibility that spatial and temporal variation in axon caliber could significantly influence neuronal physiology.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095
| | - Alvaro Sagasti
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
6
|
Schloss SS, Marshall ZQ, Santistevan NJ, Gjorcheska S, Stenzel A, Barske L, Nelson JC. Cadherin-16 regulates acoustic sensory gating in zebrafish through endocrine signaling. PLoS Biol 2025; 23:e3003164. [PMID: 40315416 PMCID: PMC12077787 DOI: 10.1371/journal.pbio.3003164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 05/14/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation. Using this system, we identify Cadherin-16 as a previously undescribed regulator of sensory gating. We demonstrate that Cadherin-16 regulates sensory thresholds via an endocrine organ, the corpuscle of Stannius (CS), which is essential in zebrafish for regulating Ca2+ homeostasis. We further show that Cadherin-16 regulates whole-body calcium and ultimately behavior through the hormone Stanniocalcin 1l (Stc1l), and the IGF-regulatory metalloprotease, Papp-aa. Finally, we demonstrate the importance of the CS through ablation experiments that reveal its role in promoting normal acoustic sensory gating. Together, our results uncover a previously undescribed brain non-autonomous pathway for the regulation of behavior and underscore Ca2+ homeostasis as a critical process underlying sensory gating in vivo.
Collapse
Affiliation(s)
- Susannah S. Schloss
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Zackary Q. Marshall
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Nicholas J. Santistevan
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Stefani Gjorcheska
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Amanda Stenzel
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| | - Lindsey Barske
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
7
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje cells control posture in larval zebrafish ( Danio rerio). eLife 2025; 13:RP97614. [PMID: 40272244 PMCID: PMC12021414 DOI: 10.7554/elife.97614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
8
|
Rajeswari JJ, Gilbert GNY, Khalid E, Vijayan MM. Brain monoamine changes modulate the corticotropin-releasing hormone receptor 1-mediated behavioural response to acute thermal stress in zebrafish larvae. Mol Cell Endocrinol 2025; 600:112494. [PMID: 39956313 DOI: 10.1016/j.mce.2025.112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
While central monoamines play a role in regulating stress-related locomotory activity, the modulation of monoamines by the corticosteroid stress axis in shaping acute behavioural responses are unclear. We investigated whether the corticotropin-releasing hormone receptor 1 (Crhr1) modulation of stress-related behavioral response involves monoamine regulation by subjecting Crhr1 knockout (crhr1-/-) zebrafish (Danio rerio) to an acute thermal stressor (TS: +5 °C above ambient for 60 min). The TS-induced cortisol response and hyper locomotory activity in the WT larvae was abolished in fish lacking Crhr1. However, both genotypes induced a heat shock protein response to the TS. The crhr1-/- larvae showed a region-specific difference in the distribution of serotonin (5-HT)- and tyrosine hydroxylase-positive cells in the brain. This corresponded with increases in whole-body transcript abundance of dopamine beta-hydroxylase, tryptophan hydroxylase 2, and solute carrier family 6-member 4a. Cotreatment with either epinephrine or 5-HT, but not cortisol, was able to rescue the TS-mediated hypo locomotory activity and thigmotaxis seen in the crhr1-/- larvae. Together, these results indicate that Crhr1 is essential not only for mediating the TS-induced hyperactivity but also for maintaining the basal locomotory activity and anxiogenic response during stress. The latter response depends on the central monoamine regulation by Crhr1 in zebrafish larvae.
Collapse
Affiliation(s)
- Jithine J Rajeswari
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Geneece N Y Gilbert
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Enezi Khalid
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
9
|
Balakrishnan KA, Haesemeyer M. Markov models bridge behavioral strategies and circuit principles facilitating thermoregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643749. [PMID: 40166317 PMCID: PMC11957002 DOI: 10.1101/2025.03.17.643749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Behavioral thermoregulation is critical for survival across animals, including endothermic mammals. However, we do not understand how neural circuits control navigation towards preferred temperatures. Zebrafish exclusively regulate body temperature via behavior, making them ideal for studying thermal navigation. Here, we combine behavioral analysis, machine learning and calcium imaging to understand how larval zebrafish seek out preferred temperatures within thermal gradients. By developing a stimulus-controlled Markov model of thermal navigation we find that hot avoidance largely relies on the modulation of individual swim decisions. The avoidance of cold temperatures, a particular challenge in ectotherms, however relies on a deliberate strategy combining gradient alignment and directed reversals. Calcium imaging identified neurons within the medulla encoding thermal stimuli that form a place-code like representation of the gradient. Our findings establish a key link between neural activity and thermoregulatory behavior, elucidating the neural basis of how animals seek out preferred temperatures.
Collapse
Affiliation(s)
- Kaarthik Abhinav Balakrishnan
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Martin Haesemeyer
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
10
|
Otake S, Saito S, Lin X, Saito CT, Kohno S, Takagi W, Hyodo S, Tominaga M, Katsu Y. Functional characterization of thermosensitive TRPV channels from holocephalan elephant shark (Callorhinchus milii) illuminate the ancestral thermosensory system in vertebrates. J Exp Biol 2025; 228:JEB249961. [PMID: 39916595 DOI: 10.1242/jeb.249961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2025] [Indexed: 03/11/2025]
Abstract
Homeostasis and survival of various animal species have been affected by changes in environmental temperature, causing animals to evolve physiological systems for sensing ambient and body temperature. Temperature-sensitive transient receptor potential (TRP) channels have multimodal properties that are activated by physical stimuli such as temperature, as well as by various chemical substances. Our goal is to understand the diversity of the vertebrate thermosensory system by characterizing the temperature-sensitive TRPV channels of the elephant shark, which belongs to the Holocephali of the cartilaginous fishes. Since elephant sharks are basal jawed vertebrates, analysis of elephant shark TRPs is critical to understanding the evolution of thermosensory systems in vertebrate lineages. We found that temperature stimulation activated elephant shark TRPVs in an electrophysiological analysis similarly to the mammalian ortholog. The thermal activation threshold of elephant shark TRPV1 (31°C) was similar to the thresholds reported for several other fish species, but was much lower than that of mammalian orthologs. Strikingly, the elephant shark TRPV4 was a cooling-activated channel with a threshold of 20°C, whereas, in several tetrapods, it is activated by warmth. These results suggest that the temperature sensitivity of TRPV4 has changed in vertebrate evolutionary lineages. Furthermore, we also found the elephant shark possesses heat-evoked TRPV3 with a threshold of 42°C, which is absent in more derived teleost fishes. Taken together, our findings elucidate that the vertebrate-type thermosensory system has already emerged in the common ancestor of jawed vertebrates, although their temperature-sensing ranges were different from those of mammals.
Collapse
Affiliation(s)
- Sumika Otake
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shigeru Saito
- Department of Animal Bioscience, Nagahama Institute of Bio-science and Technology, Nagahama, Shiga 526-0829, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
| | - Xiaozhi Lin
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Claire T Saito
- Department of Animal Bioscience, Nagahama Institute of Bio-science and Technology, Nagahama, Shiga 526-0829, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
| | - Satomi Kohno
- Department of Biological Sciences, St Cloud State University, St Cloud, MN 56301, USA
| | - Wataru Takagi
- Faculty of Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Susumu Hyodo
- Faculty of Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya 467-8601, Aichi, Japan
| | - Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
11
|
Li M, Wang C, Zhou H, Chen J, Wang L, Xiong Y, Tian Y, Yan H, Liang X, Liu Q, Wang X, Wang Y, Fu C. Effects of temperature to the liver transcriptome in the hybrid puffer fish (Takifugu rubripes ♀ × Takifugu obscurus ♂). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101360. [PMID: 39608187 DOI: 10.1016/j.cbd.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
Water temperature exerts a crucial impact on the growth and development of fish. Hybrids may integrate the superior traits of their parents, thereby leading to higher economic benefits. Takifugu rubripes and T. obscurus are two important economic species in Asia. Here, to investigated the effect of temperature on the hybrid puffer larvae (T. rubripes ♀ × T. obscurus ♂), the larvae (0.79 ± 0.02 cm in body length) were treated to three temperatures: 15 °C (T15), 20 °C (T20), and 25 °C (T25) for 45 days. At the end of the study, the body length and weight were measured, the survival rate was calculated, and liver transcriptome analysis was performed on liver tissues. The hybrid puffer larvae in the T25 group showed a significant increase in average body length and body weight compared to the T15 and T20 groups (P < 0.05). 1292, 329, and 1927 differentially expressed genes (DEGs) were identified in T15 vs. T20, T20 vs. T25, and T15 vs. T25 groups, respectively. KEGG enrichment analyses showed that DEGs were primarily involved in the citrate cycle (TCA cycle), PPAR signaling, glycine, serine and threonine metabolism, and protein digestion and absorption pathways. These results indicated that temperature affects metabolism, signal transduction and protein digestion and absorption in hybrid puffer fish. In addition, twelve DEGs were randomly selected for RNA-seq validation, and the transcriptome results were consistent with the qPCR validation results, illustrating the accuracy of transcriptome sequencing. These findings deepen our understanding of the complex molecular mechanism of the response of hybrid puffer fish to temperature changes and contribute to the development of hybrid puffer fish breeding.
Collapse
Affiliation(s)
- Meiyuan Li
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Chenqi Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Huiting Zhou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jinfeng Chen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Liu Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Yuyu Xiong
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Yushun Tian
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Xinyan Liang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023 Dalian, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Yaohui Wang
- Jiangsu Zhongyang Group Company Limited, Haian, Jiangsu 226600, China
| | - Chuang Fu
- Changhai County Marine and Fisheries Comprehensive Administrative Law Enforcement Team, Dalian, Liaoning, China
| |
Collapse
|
12
|
Akhtar MN, Hnatiuk A, Delgadillo-Silva L, Geravandi S, Sameith K, Reinhardt S, Bernhardt K, Singh SP, Maedler K, Brusch L, Ninov N. Developmental beta-cell death orchestrates the islet's inflammatory milieu by regulating immune system crosstalk. EMBO J 2025; 44:1131-1153. [PMID: 39762647 PMCID: PMC11833124 DOI: 10.1038/s44318-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 02/19/2025] Open
Abstract
While pancreatic beta-cell proliferation has been extensively studied, the role of cell death during islet development remains incompletely understood. Using a genetic model of caspase inhibition in beta cells coupled with mathematical modeling, we here discover an onset of beta-cell death in juvenile zebrafish, which regulates beta-cell mass. Histologically, this beta-cell death is underestimated due to phagocytosis by resident macrophages. To investigate beta-cell apoptosis at the molecular level, we implement a conditional model of beta-cell death linked to Ca2+ overload. Transcriptomic analysis reveals that metabolically-stressed beta cells follow paths to either de-differentiation or apoptosis. Beta cells destined to die activate inflammatory and immuno-regulatory pathways, suggesting that cell death regulates the crosstalk with immune cells. Consistently, inhibiting beta-cell death during development reduces pro-inflammatory resident macrophages and expands T-regulatory cells, the deficiency of which causes premature activation of NF-kB signaling in beta cells. Thus, developmental cell death not only shapes beta-cell mass but it also influences the islet's inflammatory milieu by shifting the immune-cell population towards pro-inflammatory.
Collapse
Affiliation(s)
- Mohammad Nadeem Akhtar
- Centre for Regenerative Therapies TU Dresden, Dresden, 01307, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden, German Center for Diabetes Research (DZD e.V.), Dresden, 01307, Germany
- Technische Universität Dresden, CRTD, Center for Molecular and Cellular Bioengineering (CMCB), Fetscherstraße 105, 01307, Dresden, Germany
| | - Alisa Hnatiuk
- Centre for Regenerative Therapies TU Dresden, Dresden, 01307, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden, German Center for Diabetes Research (DZD e.V.), Dresden, 01307, Germany
- Technische Universität Dresden, CRTD, Center for Molecular and Cellular Bioengineering (CMCB), Fetscherstraße 105, 01307, Dresden, Germany
| | | | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359, Bremen, Germany
| | - Katrin Sameith
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307, Dresden, Germany
| | - Katja Bernhardt
- Technische Universität Dresden, CRTD, Center for Molecular and Cellular Bioengineering (CMCB), Fetscherstraße 105, 01307, Dresden, Germany
| | - Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359, Bremen, Germany
| | - Lutz Brusch
- Centre for Interdisciplinary Digital Sciences (CIDS), Information Services and High Performance Computing (ZIH), Technische Universität Dresden, 01187, Dresden, Germany
| | - Nikolay Ninov
- Centre for Regenerative Therapies TU Dresden, Dresden, 01307, Germany.
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU Dresden, German Center for Diabetes Research (DZD e.V.), Dresden, 01307, Germany.
| |
Collapse
|
13
|
Saito S, Saito CT. Evolution of Temperature Receptors and Their Roles in Sensory Diversification and Adaptation. Zoolog Sci 2025; 42. [PMID: 39932757 DOI: 10.2108/zs240060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/21/2024] [Indexed: 05/08/2025]
Abstract
Among various environmental factors, temperature is one of the critical factors for organisms since it can affect most, if not all, biological processes. Therefore, animals precisely sense ambient and body temperatures and physiologically and behaviorally respond to temperature changes. Taking such nature into consideration, alteration of thermal perception should have played a pivotal role in adaptation to diverse thermal niches. Temperature as well as other physical and chemical stimuli are perceived by the primary afferent neurons where transient receptor potential (TRP) channels are expressed, and these channels serve as multimodal receptors in the somatosensory system. To understand the roles of TRP channels in the evolution of sensory perception, comparative analyses have been performed using various animal species, and their functional diversity has been well documented over the past 2 decades. Furthermore, in recent years, species differences in the thermal responses of TRP channels have been found among closely related species inhabiting different thermal niches, which have uncovered the contributions of TRP channels to environmental adaptation in various vertebrate species. The purpose of this review is to summarize the studies that addressed the functional evolution of TRP channels associated with sensory diversification and environmental adaptation.
Collapse
Affiliation(s)
- Shigeru Saito
- Department of Animal Bioscience, Nagahama Institute of Bio-science and Technology, Nagahama, Shiga 526-0829, Japan,
| | - Claire T Saito
- Department of Animal Bioscience, Nagahama Institute of Bio-science and Technology, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
14
|
Ching K, Sagasti A. Caliber of zebrafish touch-sensory axons is dynamic in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.04.626901. [PMID: 39713467 PMCID: PMC11661087 DOI: 10.1101/2024.12.04.626901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cell shape is crucial to cell function, particularly in neurons. The cross-sectional diameter, also known as caliber, of axons and dendrites is an important parameter of neuron shape, best appreciated for its influence on the speed of action potential propagation. Many studies of axon caliber focus on cell-wide regulation and assume that caliber is static. Here, we have characterized local variation and dynamics of axon caliber in vivo using the peripheral axons of zebrafish touch-sensing neurons at embryonic stages, prior to sex determination. To obtain absolute measurements of caliber in vivo, we paired sparse membrane labeling with super-resolution microscopy of neurons in live fish. We observed that axon segments had varicose or "pearled" morphologies, and thus vary in caliber along their length, consistent with reports from mammalian systems. Sister axon segments originating from the most proximal branch point in the axon arbor had average calibers that were uncorrelated with each other. Axon caliber also tapered across the branch point. Varicosities and caliber, overall, were dynamic on the timescale of minutes, and dynamicity changed over the course of development. By measuring the caliber of axons adjacent to dividing epithelial cells, we found that skin cell division is one aspect of the cellular microenvironment that may drive local differences and dynamics in axon caliber. Our findings support the possibility that spatial and temporal variation in axon caliber could significantly influence neuronal physiology.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Alvaro Sagasti
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
15
|
Anderson LS, Costabile JD, Schwinn S, Calderon D, Haesemeyer M. Sensorimotor integration enhances temperature stimulus processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618474. [PMID: 39464018 PMCID: PMC11507703 DOI: 10.1101/2024.10.15.618474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Animals optimize behavior by integrating sensory input with motor actions. We hypothe-sized that coupling thermosensory information with motor output enhances the brain's capacity to process temperature changes, leading to more precise and adaptive behaviors. To test this, we developed a virtual "thermal plaid" environment where zebrafish either actively controlled temperature changes (sensorimotor feedback) or passively experienced the same thermal fluctuations. Our findings demonstrate that sensorimotor feedback amplifies the influence of thermal stimuli on swim initiation, resulting in more structured and organized motor output. We show that previously identified mixed-selectivity neurons that simultaneously encode thermal cues and motor activity enable the integration of sensory and motor feedback to optimize behavior. These results highlight the role of sensorimotor integration in refining thermosensory processing, revealing critical neural mechanisms underlying flexible thermoregulatory behavior. Our study offers new insights into how animals adaptively process environmental stimuli and adjust their actions, contributing to a deeper understanding of the neural circuits driving goal-directed behavior in dynamic environments.
Collapse
|
16
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje Cells Control Posture in Larval Zebrafish ( Danio rerio). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557469. [PMID: 37745506 PMCID: PMC10515840 DOI: 10.1101/2023.09.12.557469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
- Lead Contact
| |
Collapse
|
17
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. Cell Rep 2024; 43:114740. [PMID: 39325616 PMCID: PMC11676005 DOI: 10.1016/j.celrep.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here, we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity among intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
18
|
Schloss SS, Marshall ZQ, Santistevan NJ, Gjorcheska S, Stenzel A, Barske L, Nelson JC. Cadherin 16 promotes sensory gating via the endocrine corpuscles of Stannius. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614609. [PMID: 39386705 PMCID: PMC11463452 DOI: 10.1101/2024.09.23.614609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation. Using this system, we identify Cadherin 16 as a previously undescribed regulator of sensory gating. We demonstrate that Cadherin 16 regulates sensory thresholds via an endocrine organ, the corpuscle of Stannius (CS), which is essential in zebrafish for regulating Ca2+ homeostasis. We further show that Cadherin 16 regulates whole-body calcium and ultimately behavior through the hormone Stanniocalcin 1L, and the IGF-regulatory metalloprotease, Papp-aa. Finally, we demonstrate the importance of the CS through ablation experiments that reveal its role in promoting normal acoustic sensory gating. Together, our results uncover a previously undescribed brain non-autonomous pathway for the regulation of behavior and establish Ca2+ homeostasis as a critical process underlying sensory gating in vivo.
Collapse
Affiliation(s)
- Susannah S. Schloss
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Zackary Q. Marshall
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Nicholas J. Santistevan
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda Stenzel
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| |
Collapse
|
19
|
Ribeiro Liberato H, Bezerra Maciel J, Wlisses Da Silva A, Freitas da Silva AE, San De Oliveira Brito L, Silva J, Sydney Henrique da Silva F, Bezerra AS, Kuerislene Amâncio Ferreira M, Machado Marinho M, Silva Marinho G, Deusdênia Loiola Pessoa O, Goberlânio De Barros Silva P, Noronha Coelho-de-Souza A, Florindo Guedes I, Ferreira de Castro Gomes A, Eire Silva Alencar De Menezes J, Silva Santos H. Tropane Alkaloid Isolated from Erythroxylum bezerrae Exhibits Neuropharmacological Potential in an Adult Zebrafish (Danio rerio) Model. Chem Biodivers 2024; 21:e202400786. [PMID: 38777789 DOI: 10.1002/cbdv.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
This study carried out to investigate the anti-inflammatory and antinociceptive effect of tropane alkaloid (EB7) isolated from E. bezerrae. It evaluated the toxicity and possible involvement of ion channels in the antinociceptive effect of EB7, as well as its anti-inflammatory effect in adult zebrafish (Zfa). Docking studies with EB7 and COX-1 and 2 were also performed. The tested doses of EB7 (4, 20 and 40 mg/kg) did not show any toxic effect on Zfa during the 96h of analysis (LD50>40 mg/kg). They did not produce any alteration in the locomotor behavior of the animals. Furthermore, EB7 showed promising pharmacological effects as it prevented the nociceptive behavior induced by hypertonic saline, capsaicin, formalin and acid saline. EB7 had its analgesic effect blocked by amiloride involving the neuromodulation of ASICs in Zfa. In evaluating the anti-inflammatory activity, the edema induced by κ-carrageenan 3.5 % was reduced by the dose of 40 mg/kg of EB7 observed after the fourth hour of analysis, indicating an effect similar to that of ibuprofen. Molecular docking results indicated that EB7 exhibited better affinity energy when compared to ibuprofen control against the two evaluated targets binding at different sites in the cocrystallized COX-1 and 2 inhibitors.
Collapse
Affiliation(s)
| | - Jéssica Bezerra Maciel
- Programa de PósGraduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Luana San De Oliveira Brito
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Jacilene Silva
- Programa de PósGraduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Arnaldo S Bezerra
- Programa de PósGraduação em Ciências Fisiológicas, Universidade Estadual do Ceará
| | | | - Marcia Machado Marinho
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| | - Gabrielle Silva Marinho
- Programa de PósGraduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | - Hélcio Silva Santos
- Programa de PósGraduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| |
Collapse
|
20
|
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is temporally uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. Development 2024; 151:dev202944. [PMID: 39045613 PMCID: PMC11361639 DOI: 10.1242/dev.202944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates, including zebrafish, can robustly regenerate hair cells after severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here, we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and we observed gradual regeneration with correct spatial patterning over a 2-week period following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells temporally uncoupled from supporting cell division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.
Collapse
Affiliation(s)
- Marielle O. Beaulieu
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - Eric D. Thomas
- Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
- Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Cutler B, Haesemeyer M. Vertebrate behavioral thermoregulation: knowledge and future directions. NEUROPHOTONICS 2024; 11:033409. [PMID: 38769950 PMCID: PMC11105118 DOI: 10.1117/1.nph.11.3.033409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Thermoregulation is critical for survival across species. In animals, the nervous system detects external and internal temperatures, integrates this information with internal states, and ultimately forms a decision on appropriate thermoregulatory actions. Recent work has identified critical molecules and sensory and motor pathways controlling thermoregulation. However, especially with regard to behavioral thermoregulation, many open questions remain. Here, we aim to both summarize the current state of research, the "knowledge," as well as what in our mind is still largely missing, the "future directions." Given the host of circuit entry points that have been discovered, we specifically see that the time is ripe for a neuro-computational perspective on thermoregulation. Such a perspective is largely lacking but is increasingly fueled and made possible by the development of advanced tools and modeling strategies.
Collapse
Affiliation(s)
- Bradley Cutler
- Graduate program in Molecular, Cellular and Developmental Biology, Columbus, Ohio, United States
- The Ohio State University, Columbus, Ohio, United States
| | | |
Collapse
|
22
|
Huang J, Wang X, Guo X, Liu Q, Li J. Transient receptor potential (TRP) channels in Sebastes schlegelii: Genome-wide identification and ThermoTRP expression analysis under high-temperature. Gene 2024; 910:148317. [PMID: 38423141 DOI: 10.1016/j.gene.2024.148317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Transient Receptor Potential (TRP) channels, essential for sensing environmental stimuli, are widely distributed. Among them, thermosensory TRP channels play a crucial role in temperature sensing and regulation. Sebastes schlegelii, a significant aquatic economic species, exhibits sensitivity to temperature across multiple aspects. In this study, we identified 18 SsTRP proteins using whole-genome scanning. Motif analysis revealed motif 2 in all TRP proteins, with conserved motifs in subfamilies. TRP-related domains, anchored repeats, and ion-transmembrane domains were found. Chromosome analysis showed 18 TRP genes on 11 chromosomes and a scaffold. Phylogenetics classified SsTRPs into four subfamilies: TRPM, TRPA, TRPV, and TRPC. In diverse organisms, four monophyletic subfamilies were identified. Additionally, we identified key TRP genes with significantly upregulated transcription levels under short-term (30 min) and long-term (3 days) exposure at 24 °C (optimal elevated temperature) and 27 °C (critical high temperature). We propose that genes upregulated at 30 min may be involved in the primary response process of temperature sensing, while genes upregulated at 3 days may participate in the secondary response process of temperature perception. This study lays the foundation for understanding the regulatory mechanisms of TRPs responses to environmental stimuli in S. schlegelii and other fishes.
Collapse
Affiliation(s)
- Jinwei Huang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xiaoyang Guo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
23
|
Sneddon LU, Schroeder P, Roque A, Finger-Baier K, Fleming A, Tinman S, Collet B. Pain management in zebrafish : Report from a FELASA Working Group. Lab Anim 2024; 58:261-276. [PMID: 38051824 PMCID: PMC11264547 DOI: 10.1177/00236772231198733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 12/07/2023]
Abstract
Empirical evidence suggests fishes meet the criteria for experiencing pain beyond a reasonable doubt and zebrafish are being increasingly used in studies of pain and nociception. Zebrafish are adopted across a wide range of experimental fields and their use is growing particularly in biomedical studies. Many laboratory procedures in zebrafish involve tissue damage and this may give rise to pain. Therefore, this FELASA Working Group reviewed the evidence for pain in zebrafish, the indicators used to assess pain and the impact of a range of drugs with pain-relieving properties. We report that there are several behavioural indicators that can be used to determine pain, including reduced activity, space use and distance travelled. Pain-relieving drugs prevent these responses, and we highlight the dose and administration route. To minimise or avoid pain, several refinements are suggested for common laboratory procedures. Finally, practical suggestions are made for the management and alleviation of pain in laboratory zebrafish, including recommendations for analgesia. Pain management is an important refinement in experimental animal use and so our report has the potential to improve zebrafish welfare during and after invasive procedures in laboratories across the globe.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Paul Schroeder
- Red Kite Veterinary Consultants, 30 Upper High Street, Thame, Oxon, OX9 3EZ, UK
| | | | - Karin Finger-Baier
- Max Planck Institute of Neurobiology (now: Max Planck Institute for Biological Intelligence), Department Genes – Circuits – Behaviour, Martinsried, Germany
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Simon Tinman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat Gan, Israel
| | | |
Collapse
|
24
|
Tuttle AM, Miller LN, Royer LJ, Wen H, Kelly JJ, Calistri NL, Heiser LM, Nechiporuk AV. Single-Cell Analysis of Rohon-Beard Neurons Implicates Fgf Signaling in Axon Maintenance and Cell Survival. J Neurosci 2024; 44:e1600232024. [PMID: 38423763 PMCID: PMC11026351 DOI: 10.1523/jneurosci.1600-23.2024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Collapse
Affiliation(s)
- Adam M Tuttle
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Lauren N Miller
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Lindsey J Royer
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Hua Wen
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Jimmy J Kelly
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Nicholas L Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239
| | - Laura M Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239
| | - Alex V Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
25
|
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588777. [PMID: 38645220 PMCID: PMC11030336 DOI: 10.1101/2024.04.09.588777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates including zebrafish can robustly regenerate hair cells following severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and observed gradual regeneration with correct spatial patterning over two weeks following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells uncoupled from progenitor division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.
Collapse
Affiliation(s)
- Marielle O. Beaulieu
- Molecular and Cellular Biology Graduate Program, Seattle, WA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, Seattle, WA
| | - Eric D. Thomas
- Neuroscience Graduate Program, Seattle, WA
- Department of Biological Structure University of Washington, Seattle, WA
| | - David W. Raible
- Molecular and Cellular Biology Graduate Program, Seattle, WA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology - Head and Neck Surgery, Seattle, WA
- Neuroscience Graduate Program, Seattle, WA
- Department of Biological Structure University of Washington, Seattle, WA
| |
Collapse
|
26
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557289. [PMID: 37745606 PMCID: PMC10515832 DOI: 10.1101/2023.09.11.557289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity amongst intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Lead contact
| |
Collapse
|
27
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
28
|
Palieri V, Paoli E, Wu YK, Haesemeyer M, Grunwald Kadow IC, Portugues R. The preoptic area and dorsal habenula jointly support homeostatic navigation in larval zebrafish. Curr Biol 2024; 34:489-504.e7. [PMID: 38211586 PMCID: PMC10849091 DOI: 10.1016/j.cub.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Animals must maintain physiological processes within an optimal temperature range despite changes in their environment. Through behavioral assays, whole-brain functional imaging, and neural ablations, we show that larval zebrafish, an ectothermic vertebrate, achieves thermoregulation through homeostatic navigation-non-directional and directional movements toward the temperature closest to its physiological setpoint. A brain-wide circuit encompassing several brain regions enables this behavior. We identified the preoptic area of the hypothalamus (PoA) as a key brain structure in triggering non-directional reorientation when thermal conditions are worsening. This result shows an evolutionary conserved role of the PoA as principal thermoregulator of the brain also in ectotherms. We further show that the habenula (Hb)-interpeduncular nucleus (IPN) circuit retains a short-term memory of the sensory history to support the generation of coherent directed movements even in the absence of continuous sensory cues. We finally provide evidence that this circuit may not be exclusive for temperature but may convey a more abstract representation of relative valence of physiologically meaningful stimuli regardless of their specific identity to enable homeostatic navigation.
Collapse
Affiliation(s)
- Virginia Palieri
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Emanuele Paoli
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - You Kure Wu
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Martin Haesemeyer
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ilona C Grunwald Kadow
- School of Life Sciences, Technical University of Munich, Freising, Germany; Institute of Physiology II, University of Bonn, Medical Faculty (UKB), Nussallee 11, 53115 Bonn, Germany.
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| |
Collapse
|
29
|
York JM. Temperature activated transient receptor potential ion channels from Antarctic fishes. Open Biol 2023; 13:230215. [PMID: 37848053 PMCID: PMC10581778 DOI: 10.1098/rsob.230215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023] Open
Abstract
Antarctic notothenioid fishes (cryonotothenioids) live in waters that range between -1.86°C and an extreme maximum +4°C. Evidence suggests these fish sense temperature peripherally, but the molecular mechanism of temperature sensation in unknown. Previous work identified transient receptor potential (TRP) channels TRPA1b, TRPM4 and TRPV1a as the top candidates for temperature sensors. Here, cryonotothenioid TRPA1b and TRPV1a are characterized using Xenopus oocyte electrophysiology. TRPA1b and TRPV1a showed heat-evoked currents with Q10s of 11.1 ± 2.2 and 20.5 ± 2.4, respectively. Unexpectedly, heat activation occurred at a threshold of 22.9 ± 1.3°C for TRPA1b and 32.1 ± 0.6°C for TRPV1a. These fish have not experienced such temperatures for at least 15 Myr. Either (1) another molecular mechanism underlies temperature sensation, (2) these fishes do not sense temperatures below these thresholds despite having lethal limits as low as 5°C, or (3) native cellular conditions modify the TRP channels to function at relevant temperatures. The effects of osmolytes, pH, oxidation, phosphorylation, lipids and accessory proteins were tested. No conditions shifted the activity range of TRPV1a. Oxidation in combination with reduced cholesterol significantly dropped activation threshold of TRPA1b to 11.3 ± 2.3°C, it is hypothesized the effect may be due to lipid raft disruption.
Collapse
Affiliation(s)
- Julia M. York
- Department of Integrative Biology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- School of Integrative Biology, University of Illinois Urbana–Champaign, Urbana, Illinois, USA
| |
Collapse
|
30
|
Tuttle AM, Miller LN, Royer LJ, Wen H, Kelly JJ, Calistri NL, Heiser LM, Nechiporuk AV. Single-cell analysis of Rohon-Beard neurons implicates Fgf signaling in axon maintenance and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554953. [PMID: 37693470 PMCID: PMC10491107 DOI: 10.1101/2023.08.26.554953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular make up of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely non-overlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Collapse
|
31
|
Melanson CA, Lamarre SG, Currie S. Social experience influences thermal sensitivity: lessons from an amphibious mangrove fish. J Exp Biol 2023; 226:jeb245656. [PMID: 37470196 DOI: 10.1242/jeb.245656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Understanding the factors affecting the capacity of ectothermic fishes to cope with warming temperature is critical given predicted climate change scenarios. We know that a fish's social environment introduces plasticity in how it responds to high temperature. However, the magnitude of this plasticity and the mechanisms underlying socially modulated thermal responses are unknown. Using the amphibious hermaphroditic mangrove rivulus fish Kryptolebias marmoratus as a model, we tested three hypotheses: (1) social stimulation affects physiological and behavioural thermal responses of isogenic lineages of fish; (2) social experience and acute social stimulation result in distinct physiological and behavioural responses; and (3) a desensitization of thermal receptors is responsible for socially modulated thermal responses. To test the first two hypotheses, we measured the temperature at which fish emerged from the water (i.e. pejus temperature) upon acute warming with socially naive isolated fish and with fish that were raised alone and then given a short social experience prior to exposure to increasing temperature (i.e. socially experienced fish). Our results did not support our first hypothesis as fish socially stimulated by mirrors during warming (i.e. acute social stimulation) emerged at similar temperatures to isolated fish. However, in support of our second hypothesis, a short period of prior social experience resulted in fish emerging at a higher temperature than socially naive fish suggesting an increase in pejus temperature with social experience. To test our third hypothesis, we exposed fish that had been allowed a brief social interaction and naive fish to capsaicin, an agonist of TRPV1 thermal receptors. Socially experienced fish emerged at significantly higher capsaicin concentrations than socially naive fish suggesting a desensitization of their TRPV1 thermal receptors. Collectively, our data indicate that past and present social experiences impact the behavioural response of fish to high temperature. We also provide novel data suggesting that brief periods of social experience affect the capacity of fish to perceive warm temperature.
Collapse
Affiliation(s)
- Chloé A Melanson
- Département de biologie, Université de Moncton, New Brunswick, E1A 3E9, Canada
| | - Simon G Lamarre
- Département de biologie, Université de Moncton, New Brunswick, E1A 3E9, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| |
Collapse
|
32
|
Ferreira MKA, Freitas WPO, Barbosa IM, da Rocha MN, da Silva AW, de Lima Rebouças E, da Silva Mendes FR, Alves CR, Nunes PIG, Marinho MM, Furtado RF, Santos FA, Marinho ES, de Menezes JESA, dos Santos HS. Heterocyclic chalcone ( E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(thiophen-2-yl) prop-2-en-1-one derived from a natural product with antinociceptive, anti-inflammatory, and hypoglycemic effect in adult zebrafish. 3 Biotech 2023; 13:276. [PMID: 37457871 PMCID: PMC10349009 DOI: 10.1007/s13205-023-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetes is a disease linked to pathologies, such as chronic inflammation, neuropathy, and pain. The synthesis by the Claisen-Schmidt condensation reaction aims to obtain medium to high yield chalconic derivatives. Studies for the synthesis of new chalcone molecules aim at the structural manipulation of aromatic rings, as well as the replacement of rings by heterocycles, and combination through chemical reactions of synthesized structures with other molecules, in order to enhance biological activity. A chalcone was synthesized and evaluated for its antinociceptive, anti-inflammatory and hypoglycemic effect in adult zebrafish. In addition to reducing nociceptive behavior, chalcone (40 mg/kg) reversed post-treatment-induced acute and chronic hyperglycemia and reduced carrageenan-induced abdominal edema in zebrafish. It also showed an inhibitory effect on NO production in J774A.1 cells. When compared with the control groups, the oxidative stress generated after chronic hyperglycemia and after induction of abdominal edema was significantly reduced by chalcone. Molecular docking simulations of chalcone with Cox -1, Cox-2, and TRPA1 channel enzymes were performed and indicated that chalcone has a higher affinity for the COX-1 enzyme and 4 interactions with the TRPA1 channel. Chalcone also showed good pharmacokinetic properties as assessed by ADMET. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03696-8.
Collapse
Affiliation(s)
- Maria Kueirislene Amancio Ferreira
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Wendy Pascoal Oliveira Freitas
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Italo Moura Barbosa
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Matheus Nunes da Rocha
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Antônio Wlisses da Silva
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | - Emanuela de Lima Rebouças
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | | | - Carlucio Roberto Alves
- Laboratório de Sistemas de Nanotecnologia e BiomateriaisPrograma de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | | | | | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | - Emmanuel Silva Marinho
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Helcio Silva dos Santos
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
- Departamento de Química, Universidade Estadual Vale do Acaraú, Sobral, CE Brazil
| |
Collapse
|
33
|
Brehm N, Wenke N, Glessner K, Haehnel-Taguchi M. Physiological responses of mechanosensory systems in the head of larval zebrafish ( Danio rerio). Front Robot AI 2023; 10:1212626. [PMID: 37583713 PMCID: PMC10423815 DOI: 10.3389/frobt.2023.1212626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
The lateral line system of zebrafish consists of the anterior lateral line, with neuromasts distributed on the head, and the posterior lateral line, with neuromasts distributed on the trunk. The sensory afferent neurons are contained in the anterior and posterior lateral line ganglia, respectively. So far, the vast majority of physiological and developmental studies have focused on the posterior lateral line. However, studies that focus on the anterior lateral line, especially on its physiology, are very rare. The anterior lateral line involves different neuromast patterning processes, specific distribution of synapses, and a unique role in behavior. Here, we report our observations regarding the development of the lateral line and analyze the physiological responses of the anterior lateral line to mechanical and water jet stimuli. Sensing in the fish head may be crucial to avoid obstacles, catch prey, and orient in water current, especially in the absence of visual cues. Alongside the lateral line, the trigeminal system, with its fine nerve endings innervating the skin, could contribute to perceiving mechanosensory stimulation. Therefore, we compare the physiological responses of the lateral line afferent neurons to responses of trigeminal neurons and responsiveness of auditory neurons. We show that anterior lateral line neurons are tuned to the velocity of mechanosensory ramp stimulation, while trigeminal neurons either only respond to mechanical step stimuli or fast ramp and step stimuli. Auditory neurons did not respond to mechanical or water jet stimuli. These results may prove to be essential in designing underwater robots and artificial lateral lines, with respect to the spectra of stimuli that the different mechanosensory systems in the larval head are tuned to, and underline the importance and functionality of the anterior lateral line system in the larval fish head.
Collapse
Affiliation(s)
- Nils Brehm
- Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Freiburg, Germany
| | | | | | - Melanie Haehnel-Taguchi
- Department of Developmental Biology, Institute for Biology 1, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Feugere L, Bates A, Emagbetere T, Chapman E, Malcolm LE, Bulmer K, Hardege J, Beltran-Alvarez P, Wollenberg Valero KC. Heat induces multiomic and phenotypic stress propagation in zebrafish embryos. PNAS NEXUS 2023; 2:pgad137. [PMID: 37228511 PMCID: PMC10205475 DOI: 10.1093/pnasnexus/pgad137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Heat alters biology from molecular to ecological levels, but may also have unknown indirect effects. This includes the concept that animals exposed to abiotic stress can induce stress in naive receivers. Here, we provide a comprehensive picture of the molecular signatures of this process, by integrating multiomic and phenotypic data. In individual zebrafish embryos, repeated heat peaks elicited both a molecular response and a burst of accelerated growth followed by a growth slowdown in concert with reduced responses to novel stimuli. Metabolomes of the media of heat treated vs. untreated embryos revealed candidate stress metabolites including sulfur-containing compounds and lipids. These stress metabolites elicited transcriptomic changes in naive receivers related to immune response, extracellular signaling, glycosaminoglycan/keratan sulfate, and lipid metabolism. Consequently, non-heat-exposed receivers (exposed to stress metabolites only) experienced accelerated catch-up growth in concert with reduced swimming performance. The combination of heat and stress metabolites accelerated development the most, mediated by apelin signaling. Our results prove the concept of indirect heat-induced stress propagation toward naive receivers, inducing phenotypes comparable with those resulting from direct heat exposure, but utilizing distinct molecular pathways. Group-exposing a nonlaboratory zebrafish line, we independently confirm that the glycosaminoglycan biosynthesis-related gene chs1 and the mucus glycoprotein gene prg4a, functionally connected to the candidate stress metabolite classes sugars and phosphocholine, are differentially expressed in receivers. This hints at the production of Schreckstoff-like cues in receivers, leading to further stress propagation within groups, which may have ecological and animal welfare implications for aquatic populations in a changing climate.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Timothy Emagbetere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Emma Chapman
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Linsey E Malcolm
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Kathleen Bulmer
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Jörg Hardege
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | | |
Collapse
|
35
|
Reemst K, Shahin H, Shahar OD. Learning and memory formation in zebrafish: Protein dynamics and molecular tools. Front Cell Dev Biol 2023; 11:1120984. [PMID: 36968211 PMCID: PMC10034119 DOI: 10.3389/fcell.2023.1120984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Research on learning and memory formation at the level of neural networks, as well as at the molecular level, is challenging due to the immense complexity of the brain. The zebrafish as a genetically tractable model organism can overcome many of the current challenges of studying molecular mechanisms of learning and memory formation. Zebrafish have a translucent, smaller and more accessible brain than that of mammals, allowing imaging of the entire brain during behavioral manipulations. Recent years have seen an extensive increase in published brain research describing the use of zebrafish for the study of learning and memory. Nevertheless, due to the complexity of the brain comprising many neural cell types that are difficult to isolate, it has been difficult to elucidate neural networks and molecular mechanisms involved in memory formation in an unbiased manner, even in zebrafish larvae. Therefore, data regarding the identity, location, and intensity of nascent proteins during memory formation is still sparse and our understanding of the molecular networks remains limited, indicating a need for new techniques. Here, we review recent progress in establishing learning paradigms for zebrafish and the development of methods to elucidate neural and molecular networks of learning. We describe various types of learning and highlight directions for future studies, focusing on molecular mechanisms of long-term memory formation and promising state-of-the-art techniques such as cell-type-specific metabolic labeling.
Collapse
Affiliation(s)
- Kitty Reemst
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Heba Shahin
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
| | - Or David Shahar
- Migal—Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona, Israel
- *Correspondence: Or David Shahar,
| |
Collapse
|
36
|
Brown TL, Horton EC, Craig EW, Goo CEA, Black EC, Hewitt MN, Yee NG, Fan ET, Raible DW, Rasmussen JP. Dermal appendage-dependent patterning of zebrafish atoh1a+ Merkel cells. eLife 2023; 12:85800. [PMID: 36648063 PMCID: PMC9901935 DOI: 10.7554/elife.85800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Touch system function requires precise interactions between specialized skin cells and somatosensory axons, as exemplified by the vertebrate mechanosensory Merkel cell-neurite complex. Development and patterning of Merkel cells and associated neurites during skin organogenesis remain poorly understood, partly due to the in utero development of mammalian embryos. Here, we discover Merkel cells in the zebrafish epidermis and identify Atonal homolog 1a (Atoh1a) as a marker of zebrafish Merkel cells. We show that zebrafish Merkel cells derive from basal keratinocytes, express neurosecretory and mechanosensory machinery, extend actin-rich microvilli, and complex with somatosensory axons, all hallmarks of mammalian Merkel cells. Merkel cells populate all major adult skin compartments, with region-specific densities and distribution patterns. In vivo photoconversion reveals that Merkel cells undergo steady loss and replenishment during skin homeostasis. Merkel cells develop concomitant with dermal appendages along the trunk and loss of Ectodysplasin signaling, which prevents dermal appendage formation, reduces Merkel cell density by affecting cell differentiation. By contrast, altering dermal appendage morphology changes the distribution, but not density, of Merkel cells. Overall, our studies provide insights into touch system maturation during skin organogenesis and establish zebrafish as an experimentally accessible in vivo model for the study of Merkel cell biology.
Collapse
Affiliation(s)
- Tanya L Brown
- Department of Biology, University of WashingtonSeattleUnited States
| | - Emma C Horton
- Department of Biology, University of WashingtonSeattleUnited States
| | - Evan W Craig
- Department of Biology, University of WashingtonSeattleUnited States
| | - Camille EA Goo
- Department of Biology, University of WashingtonSeattleUnited States
| | - Erik C Black
- Department of Biology, University of WashingtonSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Madeleine N Hewitt
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Nathaniel G Yee
- Department of Biology, University of WashingtonSeattleUnited States
| | - Everett T Fan
- Department of Biology, University of WashingtonSeattleUnited States
| | - David W Raible
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology - Head and Neck Surgery, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey P Rasmussen
- Department of Biology, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
37
|
Henry J, Bai Y, Kreuder F, Saaristo M, Kaslin J, Wlodkowic D. A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120202. [PMID: 36169081 DOI: 10.1016/j.envpol.2022.120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Minna Saaristo
- Environmental Protection Authority Victoria, EPA Science, Macleod, Victoria, 3085, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia. http://www.rmit.edu.au/staff/donald-wlodkowic
| |
Collapse
|
38
|
Yoshimura A, Saito S, Saito C, Takahashi K, Tominaga M, Ohta T. Functional analysis of thermo-sensitive TRPV1 in an aquatic vertebrate, masu salmon (Oncorhynchus masou ishikawae). Biochem Biophys Rep 2022; 31:101315. [PMID: 35898728 PMCID: PMC9309644 DOI: 10.1016/j.bbrep.2022.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is mainly expressed in nociceptive primary sensory neurons and acts as a sensor for heat and capsaicin. The functional properties of TRPV1 have been reported to vary among species and, in some cases, the species difference in its thermal sensitivity is likely to be associated with thermal habitat conditions. To clarify the functional properties and physiological roles of TRPV1 in aquatic vertebrates, we examined the temperature and chemical sensitivities of TRPV1 in masu salmon (Oncorhynchus masou ishikawae, Om) belonging to a family of salmonids that generally prefer cool environments. First, behavioral experiments were conducted using a video tracking system. Application of capsaicin, a TRPV1 agonist, induced locomotor activities in juvenile Om. Increasing the ambient temperature also elicited locomotor activity potentiated by capsaicin. RT-PCR revealed TRPV1 expression in gills as well as spinal cord. Next, electrophysiological analyses of OmTRPV1 were performed using a two-electrode voltage-clamp technique with a Xenopus oocyte expression system. Heat stimulation evoked an inward current in heterologously expressed OmTRPV1. In addition, capsaicin produced current responses in OmTRPV1-expressing oocytes, but higher concentrations were needed for its activation compared to the mammalian orthologues. These results indicate that Om senses environmental stimuli (heat and capsaicin) through the activation of TRPV1, and this channel may play important roles in avoiding environments disadvantageous for survival in aquatic vertebrates. Capsaicin evoked behavioral responses of Oncorhynchus masou ishikawae (Om). The behavioral response to heat was potentiated by capsaicin. Heterologously expressed OmTRPV1 was activated by heat and capsaicin.
Collapse
Affiliation(s)
- A. Yoshimura
- Department of Veterinary Pharmacology, Tottori University, Tottori, Japan
| | - S. Saito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Aichi, Japan
- Corresponding author. Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.
| | - C.T. Saito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Aichi, Japan
| | - K. Takahashi
- Department of Veterinary Pharmacology, Tottori University, Tottori, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
| | - M. Tominaga
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Aichi, Japan
| | - T. Ohta
- Department of Veterinary Pharmacology, Tottori University, Tottori, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
- Corresponding author. Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| |
Collapse
|
39
|
Yan Q, Li W, Gong X, Hu R, Chen L. Transcriptomic and Phenotypic Analysis of CRISPR/Cas9-Mediated gluk2 Knockout in Zebrafish. Genes (Basel) 2022; 13:genes13081441. [PMID: 36011351 PMCID: PMC9408333 DOI: 10.3390/genes13081441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
As a subtype of kainite receptors (KARs), GluK2 plays a role in the perception of cold in the periphery sensory neuron. However, the molecular mechanism for gluk2 on the cold stress in fish has not been reported. In this article, real-time PCR assays showed that gluk2 was highly expressed in the brain and eyes of adult zebrafish. To study the functions of gluk2, gene knockout was carried out using the CRISPR/Cas9 system. According to RNA-seq analysis, we selected the differentially expressed genes (DEGs) that had significant differences in at least three tissues of the liver, gill, intestine, skin, brain, and eyes. Gene Ontology (GO) enrichment analysis revealed that cry1ba, cry2, per1b, per2, hsp70.1, hsp70.2, hsp70l, hsp90aa1.1, hsp90aa1.2, hspb1, trpv1, slc27a1b, park2, ucp3, and METRNL were significantly enriched in the ‘Response to temperature stimulus’ pathway. Through behavioral phenotyping assay, the gluk2−/− larval mutant displayed obvious deficiency in cold stress. Furthermore, TUNEL (TdT-mediated dUTP Nick-End Labeling) staining proved that the gill apoptosis of gluk2−/− mutant was increased approximately 60 times compared with the wild-type after gradient cooling to 8 °C for 15 h. Overall, our data suggested that gluk2 was necessary for cold tolerance in zebrafish.
Collapse
|
40
|
Henry J, Bai Y, Kreuder F, Saaristo M, Kaslin J, Wlodkowic D. Sensory-Motor Perturbations in Larval Zebrafish ( Danio rerio) Induced by Exposure to Low Levels of Neuroactive Micropollutants during Development. Int J Mol Sci 2022; 23:ijms23168990. [PMID: 36012255 PMCID: PMC9409309 DOI: 10.3390/ijms23168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Due to increasing numbers of anthropogenic chemicals with unknown neurotoxic properties, there is an increasing need for a paradigm shift toward rapid and higher throughput behavioral bioassays. In this work, we demonstrate application of a purpose-built high throughput multidimensional behavioral test battery on larval stages of Danio rerio (zebrafish) at 5 days post fertilization (dpf). The automated battery comprised of the established spontaneous swimming (SS), simulated predator response (SPR), larval photomotor response (LPR) assays as well as a new thermotaxis (TX) assay. We applied the novel system to characterize environmentally relevant concentrations of emerging pharmaceutical micropollutants including anticonvulsants (gabapentin: 400 ng/L; carbamazepine: 3000 ng/L), inflammatory drugs (ibuprofen: 9800 ng/L), and antidepressants (fluoxetine: 300 ng/L; venlafaxine: 2200 ng/L). The successful integration of the thermal preference assay into a multidimensional behavioral test battery provided means to reveal ibuprofen-induced perturbations of thermal preference behaviors upon exposure during embryogenesis. Moreover, we discovered that photomotor responses in larval stages of fish are also altered by the as yet understudied anticonvulsant gabapentin. Collectively our results demonstrate the utility of high-throughput multidimensional behavioral ecotoxicity test batteries in prioritizing emerging risks associated with neuroactive drugs that can perturb neurodevelopment. Moreover, we showcase the added value of thermotaxis bioassays for preliminary screening of emerging contaminants.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Minna Saaristo
- Environmental Protection Authority Victoria, EPA Science, Macleod, VIC 3085, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
41
|
Adula KP, Shorey M, Chauhan V, Nassman K, Chen SF, Rolls MM, Sagasti A. The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons. J Neurosci 2022; 42:6195-6210. [PMID: 35840323 PMCID: PMC9374156 DOI: 10.1523/jneurosci.1395-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAP3Ks) dual leucine kinase (DLK) and leucine zipper kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MNs) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate in larvae, before sex is apparent in zebrafish. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs but not in larval Rohon-Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in dlk lzk double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that these MAP3Ks are general inhibitors of sensory axon growth. These results demonstrate that zebrafish DLK and LZK promote diverse injury responses, depending on the neuronal cell identity and type of axonal injury.SIGNIFICANCE STATEMENT The MAP3Ks DLK and LZK are damage sensors that promote diverse outcomes to neuronal injury, including axon regeneration. Understanding their context-specific functions is a prerequisite to considering these kinases as therapeutic targets. To investigate DLK and LZK cell-type-specific functions, we created zebrafish mutants in each gene. Using mosaic cell labeling and precise laser injury we found that both proteins were required for axon regeneration in motor neurons but, unexpectedly, were not required for axon regeneration in Rohon-Beard or DRG sensory neurons and negatively regulated sprouting in the spared axons of touch-sensing neurons. These findings emphasize that animals have evolved distinct mechanisms to regulate injury site regeneration and collateral sprouting, and identify differential roles for DLK and LZK in these processes.
Collapse
Affiliation(s)
- Kadidia Pemba Adula
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Khaled Nassman
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Shu-Fan Chen
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
42
|
Rosa LV, Costa FV, Gonçalves FL, Rosemberg DB. Acetic acid-induced nociception modulates sociability in adult zebrafish: influence on shoaling behavior in heterogeneous groups and social preference. Behav Brain Res 2022; 434:114029. [PMID: 35907568 DOI: 10.1016/j.bbr.2022.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Due to the recognition of fishes as sentient beings, the zebrafish (Danio rerio) has become an emergent animal model system to investigate the biological processes of nocifensive responses. Here, we aimed to characterize the zebrafish social behavior in a nociception-based context. For this purpose, using a three-dimensional analysis of heterogeneous shoals, we investigated the main behavioral responses in two 6-min trials: before (baseline) and after a single intraperitoneal (i.p) injection of 10μL phosphate-buffered saline (PBS) (control), acetic acid 5% (AA), morphine 2.5mg/kg (MOR) or acetic acid 5% plus morphine 2.5mg/kg (AA+MOR) in one subject from a four-fish shoal. The social preference of individuals for tanks with shoals of fish treated with PBS, 5% AA, or to an empty aquarium were also tested. We verified that AA administration disrupted the shoal homogeneity by eliciting dispersion of the treated fish with simultaneous clustering of non-manipulated fish. Morphine coadministration protected against AA-induced behavioral changes. The social preference test revealed a clear preference to conspecifics (PBS and AA) over an empty tank. However, a prominent preference for PBS- over AA-treated shoal was verified. Overall, our novel findings show that nociception can modulate zebrafish sociability, possibly due to the visual recognition of nocifensive responses. Although future studies are needed to elucidate how nociception modulates zebrafish social behavior, our results contribute to improve the welfare assessment of zebrafish shoals under distinct experimental manipulations.
Collapse
Affiliation(s)
- Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | | | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
43
|
Ferreira JM, Félix L, Jorge S, Monteiro SM, Olsson IAS, Valentim AM. Anesthesia Overdose Versus Rapid Cooling for Euthanasia of Adult Zebrafish. Zebrafish 2022; 19:148-159. [PMID: 35759370 DOI: 10.1089/zeb.2022.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rapid increase in zebrafish use needs to be accompanied by research into the refinement of procedures. The European (EU) Directive lists three possible euthanasia methods for fish: anesthetic overdose, electrical stunning, and concussion. However, for small fish such as zebrafish, concussion and electrical stunning are difficult to perform, leaving anesthetic overdose as the most used method. Our aim was to test the efficacy and side effects of anesthesia overdose using different anesthetics and the rapid cooling method to euthanize adult zebrafish. Adult mixed-sex AB zebrafish were randomly assigned to: 250 mg/L MS222; 20 mg/L propofol +100 mg/L lidocaine; 6 mg/L etomidate; 50 mg/L clove oil; and rapid cooling (water at 2°C-4°C). Two minutes after opercular movement ceased, animals were transferred into clean water for 20 min and recovery assessed, or decapitated and used for biochemical analysis of the gills, muscle, liver, and brain; for the histological analysis of the gills and muscle; or for the assessment of cortisol levels. No animal recovered; rapid cooling was the quickest and etomidate overdose was the slowest method to cease the opercular movements. There were no major differences between euthanasia methods regarding the biochemical or histological data. Cortisol levels were higher in the rapid cooling group, but only when compared with the propofol/lidocaine group. The use of a physical method of euthanasia, such as rapid cooling, is essential when chemicals, such as anesthetics, may interfere with postmortem analyses. Although anesthetic overdose can be used without major effects on the analyses conducted in this work, rapid cooling can be another option with the advantage of being simple to administer, easily available, affordable, and very quick; this decreases the potential duration of suffering, being more humane. Therefore, a change in EU legislation should be considered to include additional humane options for euthanasia, such as rapid cooling, for zebrafish and other small tropical fish.
Collapse
Affiliation(s)
- Jorge M Ferreira
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Luís Félix
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Monte e Alto Douro, Vila Real, Portugal
| | - Sara Jorge
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Sandra M Monteiro
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Monte e Alto Douro, Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Universidade de Trás-os-Monte e Alto Douro, Vila Real, Portugal
| | - I Anna S Olsson
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana M Valentim
- Laboratory Animal Science Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Monte e Alto Douro, Vila Real, Portugal
| |
Collapse
|
44
|
Cloning and functional characterization of medaka TRPV4. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111182. [PMID: 35247590 DOI: 10.1016/j.cbpa.2022.111182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/20/2022]
Abstract
Medaka, Oryzias latipes is distributed in fresh water of South Asia. To study roles of TRPV4 in osmosensing and adaption mechanism of medaka during changes in salinity environment, we isolated the cDNA for TRPV4 from medaka (olTRPV4) and characterized it. The electrophysiological analysis using Xenopus oocytes revealed that olTRPV4 can be activated by a TRPV4-specific agonist, GSK1016790A and acid at pH 5. Further, olTRPV4 was sensitive to 2-APB. Although warm temperatures activate mammalian TRPV4, olTRPV4 was activated by cold and hot stimulation. The threshold for cold activation was determined as 13.13 ± 0.60 °C, and the heat-activation threshold was 40.26 ± 0.25 °C. Further, when olTRPV4-expressing oocytes were stimulated by hypotonic solution, an apparent activation was observed. We further found that the expression of this hypotonic sensor, olTRPV4 was significantly down-regulated in gills but up-regulated in brains of sea water-acclimated medaka. Results demonstrated that olTRPV4 must function as an osmosensor and play important roles in adaption mechanism of medaka fish in various salinity environments.
Collapse
|
45
|
Bump RG, Goo CEA, Horton EC, Rasmussen JP. Osteoblasts pattern endothelium and somatosensory axons during zebrafish caudal fin organogenesis. Development 2022; 149:dev200172. [PMID: 35129199 PMCID: PMC8918783 DOI: 10.1242/dev.200172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
Skeletal elements frequently associate with vasculature and somatosensory nerves, which regulate bone development and homeostasis. However, the deep, internal location of bones in many vertebrates has limited in vivo exploration of the neurovascular-bone relationship. Here, we use the zebrafish caudal fin, an optically accessible organ formed of repeating bony ray skeletal units, to determine the cellular relationship between nerves, bones and endothelium. In adult zebrafish, we establish the presence of somatosensory axons running through the inside of the bony fin rays, juxtaposed with osteoblasts on the inner hemiray surface. During development we show that the caudal fin progresses through sequential stages of endothelial plexus formation, bony ray addition, ray innervation and endothelial remodeling. Surprisingly, the initial stages of fin morphogenesis proceed normally in animals lacking either fin endothelium or somatosensory nerves. Instead, we find that sp7+ osteoblasts are required for endothelial remodeling and somatosensory axon innervation in the developing fin. Overall, this study demonstrates that the proximal neurovascular-bone relationship in the adult caudal fin is established during fin organogenesis and suggests that ray-associated osteoblasts pattern axons and endothelium.
Collapse
Affiliation(s)
- Rosalind G Bump
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Camille E A Goo
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Emma C Horton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey P Rasmussen
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
46
|
Yu X, Li W. Comparative insights into the integration mechanism of neuropeptides to starvation and temperature stress. Gen Comp Endocrinol 2022; 316:113945. [PMID: 34826429 DOI: 10.1016/j.ygcen.2021.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Stress is known as the process of biological responses evoked by internal or external stimuli. The ability to sense, integrate and respond to stress signals is a requisite for life. Temperature and photoperiod are very important environmental factors for animals. In addition, stress signals can also be inputted from peripheral tissue, such as starvation and inflammation. Through afferent pathways, stress signals input to the central nervous system (CNS), where various signals will integrate, and the integrated information will transmit to the peripheral effectors. As the regulators of neural activity, neuropeptides play important roles in these processes. The present review summarizes recent findings about the integration mechanism of stress signals in the CNS, emphasizing on the role of neuropeptides.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
47
|
Nisembaum LG, Loentgen G, L’Honoré T, Martin P, Paulin CH, Fuentès M, Escoubeyrou K, Delgado MJ, Besseau L, Falcón J. Transient Receptor Potential-Vanilloid (TRPV1-TRPV4) Channels in the Atlantic Salmon, Salmo salar. A Focus on the Pineal Gland and Melatonin Production. Front Physiol 2022; 12:784416. [PMID: 35069244 PMCID: PMC8782258 DOI: 10.3389/fphys.2021.784416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Fish are ectotherm, which rely on the external temperature to regulate their internal body temperature, although some may perform partial endothermy. Together with photoperiod, temperature oscillations, contribute to synchronizing the daily and seasonal variations of fish metabolism, physiology and behavior. Recent studies are shedding light on the mechanisms of temperature sensing and behavioral thermoregulation in fish. In particular, the role of some members of the transient receptor potential channels (TRP) is being gradually unraveled. The present study in the migratory Atlantic salmon, Salmo salar, aims at identifying the tissue distribution and abundance in mRNA corresponding to the TRP of the vanilloid subfamilies, TRPV1 and TRPV4, and at characterizing their putative role in the control of the temperature-dependent modulation of melatonin production-the time-keeping hormone-by the pineal gland. In Salmo salar, TRPV1 and TRPV4 mRNA tissue distribution appeared ubiquitous; mRNA abundance varied as a function of the month investigated. In situ hybridization and immunohistochemistry indicated specific labeling located in the photoreceptor cells of the pineal gland and the retina. Additionally, TRPV analogs modulated the production of melatonin by isolated pineal glands in culture. The TRPV1 agonist induced an inhibitory response at high concentrations, while evoking a bell-shaped response (stimulatory at low, and inhibitory at high, concentrations) when added with an antagonist. The TRPV4 agonist was stimulatory at the highest concentration used. Altogether, the present results agree with the known widespread distribution and role of TRPV1 and TRPV4 channels, and with published data on trout (Oncorhynchus mykiss), leading to suggest these channels mediate the effects of temperature on S. salar pineal melatonin production. We discuss their involvement in controlling the timing of daily and seasonal events in this migratory species, in the context of an increasing warming of water temperatures.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Guillaume Loentgen
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Thibaut L’Honoré
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Charles-Hubert Paulin
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Michael Fuentès
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Karine Escoubeyrou
- SU, CNRS Fédération 3724, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - María Jesús Delgado
- Departamento de Genética, Fisiología y Microbiologia, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Laurence Besseau
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Jack Falcón
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
48
|
Morini M, Bergqvist CA, Asturiano JF, Larhammar D, Dufour S. Dynamic evolution of transient receptor potential vanilloid (TRPV) ion channel family with numerous gene duplications and losses. Front Endocrinol (Lausanne) 2022; 13:1013868. [PMID: 36387917 PMCID: PMC9664204 DOI: 10.3389/fendo.2022.1013868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
The transient receptor potential vanilloid (TRPV) ion channel family is involved in multiple sensory and physiological functions including thermosensing and temperature-dependent neuroendocrine regulation. The objective of the present study was to investigate the number, origin and evolution of TRPV genes in metazoans, with special focus on the impact of the vertebrate whole-genome duplications (WGD). Gene searches followed by phylogenetic and synteny analyses revealed multiple previously undescribed TRPV genes. The common ancestor of Cnidaria and Bilateria had three TRPV genes that became four in the deuterostome ancestor. Two of these were lost in the vertebrate ancestor. The remaining two genes gave rise to two TRPV subfamilies in vertebrates, consisting of subtypes 1, 2, 3, 4, 9 and 5, 6, 7, 8, respectively. This gene expansion resulted from the two basal vertebrate WGD events (1R and 2R) and three local duplications before the radiation of gnathostomes. TRPV1, 4 and 5 have been retained in all gnathostomes investigated, presumably reflecting important functions. TRPV7 and 8 have been lost independently in various lineages but are still retained in cyclostomes, actinistians (coelacanth), amphibians, prototherians and basal actinopterygians (Polypteridae). TRPV3 and 9 are present in extant elasmobranchs, while TRPV9 was lost in the osteichthyan ancestor and TRPV3 in the actinopterygian ancestor. The coelacanth has retained the ancestral osteichthyan repertoire of TRPV1, 3, 4, 5, 7 and 8. TRPV2 arose in the tetrapod ancestor. Duplications of TRPV5 occurred independently in various lineages, such as cyclostomes, chondrichthyans, anuran amphibians, sauropsids, mammals (where the duplicate is called TRPV6), and actinopterygians (Polypteridae and Esocidae). After the teleost-specific WGD (3R) only TRPV1 retained its duplicate, whereas TRPV4 and 5 remained as single genes. Both 3R-paralogs of TRPV1 were kept in some teleost species, while one paralog was lost in others. The salmonid-specific WGD (4R) duplicated TRPV1, 4, and 5 leading to six TRPV genes. The largest number was found in Xenopus tropicalis with no less than 15 TRPV genes. This study provides a comprehensive evolutionary scenario for the vertebrate TRPV family, revealing additional TRPV types and proposing a phylogeny-based classification of TRPV across metazoans.
Collapse
Affiliation(s)
- Marina Morini
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), National Museum of Natural History (MNHN), CNRS, IRD, Sorbonne University, Paris, France
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Marina Morini, ; Sylvie Dufour,
| | - Christina A. Bergqvist
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan F. Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Dan Larhammar
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), National Museum of Natural History (MNHN), CNRS, IRD, Sorbonne University, Paris, France
- *Correspondence: Marina Morini, ; Sylvie Dufour,
| |
Collapse
|
49
|
Abstract
Animals rely on their sensory systems to inform them of ecologically relevant environmental variation. In the Southern Ocean, the thermal environment has remained between −1.9 and 5 °C for 15 Myr, yet we have no knowledge of how an Antarctic marine organism might sense their thermal habitat as we have yet to discover a thermosensitive ion channel that gates (opens/closes) below 10 °C. Here, we investigate the evolutionary dynamics of transient receptor potential (TRP) channels, which are the primary thermosensors in animals, within cryonotothenioid fishes—the dominant fish fauna of the Southern Ocean. We found cryonotothenioids have a similar complement of TRP channels as other teleosts (∼28 genes). Previous work has shown that thermosensitive gating in a given channel is species specific, and multiple channels act together to sense the thermal environment. Therefore, we combined evidence of changes in selective pressure, gene gain/loss dynamics, and the first sensory ganglion transcriptome in this clade to identify the best candidate TRP channels that might have a functional dynamic range relevant for frigid Antarctic temperatures. We concluded that TRPV1a, TRPA1b, and TRPM4 are the likeliest putative thermosensors, and found evidence of diversifying selection at sites across these proteins. We also put forward hypotheses for molecular mechanisms of other cryonotothenioid adaptations, such as reduced skeletal calcium deposition, sensing oxidative stress, and unusual magnesium homeostasis. By completing a comprehensive and unbiased survey of these genes, we lay the groundwork for functional characterization and answering long-standing thermodynamic questions of thermosensitive gating and protein adaptation to low temperatures.
Collapse
Affiliation(s)
- Julia M York
- Department of Integrative Biology, University of Texas at Austin, USA
- Corresponding author: E-mail:
| | - Harold H Zakon
- Department of Integrative Biology, University of Texas at Austin, USA
| |
Collapse
|
50
|
Feugere L, Scott VF, Rodriguez-Barucg Q, Beltran-Alvarez P, Wollenberg Valero KC. Thermal stress induces a positive phenotypic and molecular feedback loop in zebrafish embryos. J Therm Biol 2021; 102:103114. [PMID: 34863478 DOI: 10.1016/j.jtherbio.2021.103114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Aquatic organisms must cope with both rising and rapidly changing temperatures. These thermal changes can affect numerous traits, from molecular to ecological scales. Biotic stressors are already known to induce the release of chemical cues which trigger behavioural responses in other individuals. In this study, we infer whether fluctuating temperature, as an abiotic stressor, may similarly induce stress-like responses in individuals not directly exposed to the stressor. To test this hypothesis, zebrafish (Danio rerio) embryos were exposed for 24 h to fluctuating thermal stress, to medium in which another embryo was thermally stressed before ("stress medium"), and to a combination of these. Growth, behaviour, expression of molecular markers, and of whole-embryo cortisol were used to characterise the thermal stress response and its propagation between embryos. Both fluctuating high temperature and stress medium significantly accelerated development, by shifting stressed embryos from segmentation to pharyngula stages, and altered embryonic activity. Importantly, we found that the expression of sulfide:quinone oxidoreductase (SQOR), the antioxidant gene SOD1, and of interleukin-1β (IL-1β) were significantly altered by stress medium. This study illustrates the existence of positive thermal stress feedback loops in zebrafish embryos where heat stress can induce stress-like responses in conspecifics, but which might operate via different molecular pathways. If similar effects also occur under less severe heat stress regimes, this mechanism may be relevant in natural settings as well.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Victoria F Scott
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom; Energy and Environment Institute, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Quentin Rodriguez-Barucg
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Pedro Beltran-Alvarez
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Katharina C Wollenberg Valero
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom.
| |
Collapse
|