1
|
Chen X, Lin E, Haghighatian MM, Shepard LW, Hattar S, Kuruvilla R, Zhao H. Light modulates glucose and lipid homeostasis via the sympathetic nervous system. SCIENCE ADVANCES 2024; 10:eadp3284. [PMID: 39661675 PMCID: PMC11633741 DOI: 10.1126/sciadv.adp3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Light is an important environmental factor for vision and for diverse physiological and psychological functions. Light can also modulate glucose metabolism. Here, we show that in mice, light is critical for glucose and lipid homeostasis by regulating the sympathetic nervous system, independent of circadian disruption. Light deprivation from birth elicits insulin hypersecretion, glucagon hyposecretion, lower gluconeogenesis, and reduced lipolysis by 6 to 8 weeks in male, but not female, mice. These metabolic defects are consistent with blunted sympathetic activity, and indeed, sympathetic responses to a cold stimulus are substantially attenuated in dark-reared mice. Further, long-term dark rearing leads to body weight gain, insulin resistance, and glucose intolerance. Notably, metabolic dysfunction can be partially alleviated by 5 weeks exposure to a regular light-dark cycle. These studies provide insight into circadian-independent mechanisms by which light directly influences whole-body physiology and better understanding of metabolic disorders linked to aberrant environmental light conditions.
Collapse
Affiliation(s)
- Xiangning Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugene Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Chen X, Lin E, Haghighatian MM, Shepard LW, Hattar S, Kuruvilla R, Zhao H. Light modulates glucose and lipid homeostasis via the sympathetic nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617839. [PMID: 39416062 PMCID: PMC11483057 DOI: 10.1101/2024.10.11.617839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Light is an important environmental factor for vision, and for diverse physiological and psychological functions. Light can also modulate glucose metabolism. Here, we show that in mice, light is critical for glucose and lipid homeostasis by regulating the sympathetic nervous system, independent of circadian disruption. Light deprivation from birth elicits insulin hypersecretion, glucagon hyposecretion, lower gluconeogenesis, and reduced lipolysis by 6-8 weeks, in male, but not, female mice. These metabolic defects are consistent with blunted sympathetic activity, and indeed, sympathetic responses to a cold stimulus are significantly attenuated in dark-reared mice. Further, long-term dark rearing leads to body weight gain, insulin resistance, and glucose intolerance. Notably, metabolic dysfunction can be partially alleviated by 5 weeks exposure to a regular light-dark cycle. These studies provide insight into circadian-independent mechanisms by which light directly influences whole-body physiology and inform new approaches for understanding metabolic disorders linked to aberrant environmental light conditions.
Collapse
Affiliation(s)
- Xiangning Chen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Eugene Lin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | | | | | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
3
|
He Q, Li R, Zhong N, Ma J, Nie F, Zhang R. The role and molecular mechanisms of the early growth response 3 gene in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32969. [PMID: 38327141 DOI: 10.1002/ajmg.b.32969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Schizophrenia is a chronic, debilitating mental illness caused by both genetic and environmental factors. Genetic factors play a major role in schizophrenia development. Early growth response 3 (EGR3) is a member of the EGR family, which is associated with schizophrenia. Accumulating studies have investigated the relationship between EGR3 and schizophrenia. However, the role of EGR3 in schizophrenia pathogenesis remains unclear. In the present review, we focus on the progress of research related to the role of EGR3 in schizophrenia, including association studies between EGR3 and schizophrenia, abnormal gene expressional analysis of EGR3 in schizophrenia, biological function studies of EGR3 in schizophrenia, the molecular regulatory mechanism of EGR3 and schizophrenia susceptibility candidate genes, and possible role of EGR3 in the immune system function in schizophrenia. In summary, EGR3 is a schizophrenia risk candidate factor and has comprehensive regulatory roles in schizophrenia pathogenesis. Further studies investigating the molecular mechanisms of EGR3 in schizophrenia are warranted for understanding the pathophysiology of this disorder as well as the development of new therapeutic strategies for the treatment and control of this disorder.
Collapse
Affiliation(s)
- Qi He
- School of Basic Medicine, Shaanxi Key Laboratory of Acupuncture and Medicine, Shannxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Ruochun Li
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Nannan Zhong
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Jie Ma
- Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Fayi Nie
- School of Basic Medicine, Shaanxi Key Laboratory of Acupuncture and Medicine, Shannxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rui Zhang
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Rivera O, Sharma M, Dagar S, Shahani N, Ramĺrez-Jarquĺn UN, Crynen G, Karunadharma P, McManus F, Bonneil E, Pierre T, Subramaniam S. Rhes, a striatal enriched protein, regulates post-translational small-ubiquitin-like-modifier (SUMO) modification of nuclear proteins and alters gene expression. Cell Mol Life Sci 2024; 81:169. [PMID: 38589732 PMCID: PMC11001699 DOI: 10.1007/s00018-024-05181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.
Collapse
Affiliation(s)
- Oscar Rivera
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Uri Nimrod Ramĺrez-Jarquĺn
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
- National Institute of Cardiology Ignacio Chávez, Department of Pharmacology, Mexico, USA
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Pabalu Karunadharma
- Genomic Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Francis McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Thibault Pierre
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Norman Fixel Institute for Neurological Diseases, 3009 SW Williston Rd, Gainesville, FL, 32608, USA.
| |
Collapse
|
5
|
Zhou KY, Deng LJ, Luo SY, Wang QX, Fang S. Expression of Early Growth Response 3 in Skin Cancers. Appl Immunohistochem Mol Morphol 2024; 32:169-175. [PMID: 38478384 DOI: 10.1097/pai.0000000000001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE To assess the expression of early growth response 3 (EGR3) in normal skin and different types of skin tumors: cutaneous squamous cell carcinoma (cSCC), basal cell carcinoma (BCC), melanoma (MM), and cutaneous adnexal tumors containing sebaceous carcinoma (SC), trichoepithelioma (TE) and clear cell hidradenoma (CCH). BACKGROUND EGR3, expressed in multiple organs, including skin, plays an important role in cell differentiation and tumor growth. Previous studies have shown that EGR3 suppresses tumor growth and is downregulated in various malignancies. However, its distribution in normal skin and its expression especially in skin tumors have not been studied. MATERIALS AND METHODS Samples of normal cases (n = 4), cSCC (n = 12), BCC (n = 12), MM (n = 12), SC (n = 4), TE (n = 4), and CCH (n = 4) were collected from patients treated in our department between 2018 and 2023. Immunohistochemistry was used to investigate the expression of EGR3. The results were analyzed with the description of the staining pattern and the histochemical score. RESULTS Immunohistochemical staining showed that EGR3 was uniquely expressed in normal skin in the granular layer and upper part of the stratum spinosum, as well as in sebaceous glands and hair follicles, but not in sweat glands. In skin cancers, BCC, SC, and TE showed positive EGR3 staining, whereas cSCC, MM, and CCH were negative. CONCLUSIONS EGR3 has a specific expression pattern in normal skin and in skin tumors, which is important for the differential diagnosis of skin tumors, in particular for cSCC and sebaceous gland carcinoma.
Collapse
Affiliation(s)
- Kai-Yi Zhou
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
6
|
Najafi P, Reimer C, Gilthorpe JD, Jacobsen KR, Ramløse M, Paul NF, Simianer H, Tetens J, Falker-Gieske C. Genomic evidence for the suitability of Göttingen Minipigs with a rare seizure phenotype as a model for human epilepsy. Neurogenetics 2024; 25:103-117. [PMID: 38383918 PMCID: PMC11076379 DOI: 10.1007/s10048-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy is a complex genetic disorder that affects about 2% of the global population. Although the frequency and severity of epileptic seizures can be reduced by a range of pharmacological interventions, there are no disease-modifying treatments for epilepsy. The development of new and more effective drugs is hindered by a lack of suitable animal models. Available rodent models may not recapitulate all key aspects of the disease. Spontaneous epileptic convulsions were observed in few Göttingen Minipigs (GMPs), which may provide a valuable alternative animal model for the characterisation of epilepsy-type diseases and for testing new treatments. We have characterised affected GMPs at the genome level and have taken advantage of primary fibroblast cultures to validate the functional impact of fixed genetic variants on the transcriptome level. We found numerous genes connected to calcium metabolism that have not been associated with epilepsy before, such as ADORA2B, CAMK1D, ITPKB, MCOLN2, MYLK, NFATC3, PDGFD, and PHKB. Our results have identified two transcription factor genes, EGR3 and HOXB6, as potential key regulators of CACNA1H, which was previously linked to epilepsy-type disorders in humans. Our findings provide the first set of conclusive results to support the use of affected subsets of GMPs as an alternative and more reliable model system to study human epilepsy. Further neurological and pharmacological validation of the suitability of GMPs as an epilepsy model is therefore warranted.
Collapse
Affiliation(s)
- Pardis Najafi
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Höltystr. 10, 31535, Neustadt, Germany
| | - Jonathan D Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Kirsten R Jacobsen
- Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Maja Ramløse
- Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Nora-Fabienne Paul
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Henner Simianer
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.
| |
Collapse
|
7
|
Kumari R, Pascalau R, Wang H, Bajpayi S, Yurgel M, Quansah K, Hattar S, Tampakakis E, Kuruvilla R. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. Cell Rep 2024; 43:113674. [PMID: 38236776 PMCID: PMC10951981 DOI: 10.1016/j.celrep.2024.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/17/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024] Open
Abstract
Neuropeptide Y (NPY) is best known for its effects in the brain as an orexigenic and anxiolytic agent and in reducing energy expenditure. NPY is also co-expressed with norepinephrine (NE) in sympathetic neurons. Although NPY is generally considered to modulate noradrenergic responses, its specific roles in autonomic physiology remain under-appreciated. Here, we show that sympathetic-derived NPY is essential for metabolic and cardiovascular regulation in mice. NPY and NE are co-expressed in 90% of prevertebral sympathetic neurons and only 43% of paravertebral neurons. NPY-expressing neurons primarily innervate blood vessels in peripheral organs. Sympathetic-specific NPY deletion elicits pronounced metabolic and cardiovascular defects in mice, including reductions in insulin secretion, glucose tolerance, cold tolerance, and pupil size and elevated heart rate, while notably, however, basal blood pressure was unchanged. These findings provide insight into target tissue-specific functions of NPY derived from sympathetic neurons and imply its potential involvement in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Raniki Kumari
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Raluca Pascalau
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Wang
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheetal Bajpayi
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Maria Yurgel
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwaku Quansah
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Masliukov PM, Emanuilov AI, Budnik AF. Sympathetic innervation of the development, maturity, and aging of the gastrointestinal tract. Anat Rec (Hoboken) 2023; 306:2249-2263. [PMID: 35762574 DOI: 10.1002/ar.25015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The sympathetic nervous system inhibits gut motility, secretion, and blood flow in the gut microvasculature and can modulate gastrointestinal inflammation. Sympathetic neurons signal via catecholamines, neuropeptides, and gas mediators. In the current review, we summarize the current understanding of the mature sympathetic innervation of the gastrointestinal tract with a focus mainly on the prevertebral sympathetic ganglia as the main output to the gut. We also highlight recent work regarding the developmental processes of sympathetic innervation. The anatomy, neurochemistry, and connections of the sympathetic prevertebral ganglia with different parts of the gut are considered in adult organisms during prenatal and postnatal development and aging. The processes and mechanisms that control the development of sympathetic neurons, including their migratory pathways, neuronal differentiation, and aging, are reviewed.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| |
Collapse
|
9
|
Kumari R, Pascalau R, Wang H, Bajpayi S, Yurgel M, Quansah K, Hattar S, Tampakakis E, Kuruvilla R. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550381. [PMID: 37546870 PMCID: PMC10402010 DOI: 10.1101/2023.07.24.550381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neuropeptide Y (NPY) is best known for its effects in the brain as an orexigenic and anxiolytic agent and in reducing energy expenditure. NPY is also co-expressed with Norepinephrine (NE) in sympathetic neurons. Although NPY is generally considered to modulate noradrenergic responses, its specific roles in autonomic physiology remain under-appreciated. Here, we show that sympathetic-derived NPY is essential for metabolic and cardiovascular regulation in mice. NPY and NE are co-expressed in 90% of prevertebral sympathetic neurons and only 43% of paravertebral neurons. NPY-expressing neurons primarily innervate blood vessels in peripheral organs. Sympathetic-specific deletion of NPY elicits pronounced metabolic and cardiovascular defects in mice, including reductions in insulin secretion, glucose tolerance, cold tolerance, pupil size, and an elevation in heart rate, while notably, however, basal blood pressure was unchanged. These findings provide new knowledge about target tissue-specific functions of NPY derived from sympathetic neurons and imply its potential involvement in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Raniki Kumari
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Raluca Pascalau
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Hui Wang
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sheetal Bajpayi
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Maria Yurgel
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Kwaku Quansah
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
10
|
Han B, Wang J, Hu F, Liu Y, Sun Y, Meng K, Lu P, Tang H. Functional mechanism of EGR3 in cerebral ischemia/reperfusion injury in rats by modulating transcription of pri-miR-146a/146b to miR-146 and suppressing SORT1 expression. Brain Res 2022; 1797:148096. [PMID: 36150456 DOI: 10.1016/j.brainres.2022.148096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE EGR3 is implicated in angiogenesis in rats with cerebral ischemia/reperfusion injury (CIRI). This research aimed to explore the effect and in vivo and ex vivo mechanisms of EGR3 in CIRI. METHODS CIRI rat models were established via middle cerebral artery occlusion. Cell models were established via oxygen-glucose deprivation/reoxygenation (OGD/R). Brain injury was assessed by neurological scoring, HE, and TTC staining. Inflammatory factors and oxidative stress markers were measured using corresponding kits. Mitochondrial membrane potential and mitochondrial respiration were examined by flow cytometry and respirometry. EGR3-miR-146 network was predicted on TransmiR v2.0 database. Target genes of miR-146 were screened on Starbase, Targetscan, and miRDB databases. miR-146 expression was determined by RT-qPCR. Levels of EGR3 and SORT1 were determined by Western blot. Binding relationships among EGR3, miR-146, and SORT1 were validated by dual-luciferase assay. EGR3, miR-146, and SORT1 levels were altered by injection or cell transfection to observe their functions. RESULTS EGR3 was poorly-expressed in CIRI rats and OGD/R-induced neurons. EGR3 overexpression reduced inflammatory factor levels and attenuated oxidative stress and mitochondrial injury in CIRI rats and OGD/R-induced neurons. EGR3 bound to miR-146b promoter region. EGR3 promoted pri-miR-146a/146b processing and stimulated miR-146 transcription. miR-146 overexpression ameliorated oxidative stress and mitochondrial injury and miR-146 downregulation abolished the effect of EGR3 overexpression in vitro. miR-146 targeted SORT1. SORT1 overexpression invalidated the protective function of miR-146 overexpression on oxidative stress and mitochondrial injury in vitro. CONCLUSION EGR3 protected against CIRI by mitigating oxidative stress and mitochondrial injury via the miR-146/SORT1 axis.
Collapse
Affiliation(s)
- Bin Han
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Jing Wang
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Yi Liu
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Yaxuan Sun
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Kun Meng
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Pengyu Lu
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Haifeng Tang
- Department of Emergency, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
11
|
CaMKIV mediates spine growth deficiency of hippocampal neurons by regulation of EGR3/BDNF signal axis in congenital hypothyroidism. Cell Death Dis 2022; 8:482. [PMID: 36473844 PMCID: PMC9723595 DOI: 10.1038/s41420-022-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Congenital hypothyroidism (CH) will cause cognitive impairment in the condition of delayed treatment. The hippocampus is one of the most affected tissues by CH, in which the functional structures of hippocampal neurons manifest deficiency due to aberrant expression of effector molecules. The Ca2+/Calmodulin-dependent protein kinase, CaMKIV, is downregulated in the hippocampal neurons, influencing the growth of dendritic spines in response to CH. However, the underlying mechanism is not fully elucidated. In the present study, the early growth response factor 3 (EGR3) was regulated by CaMKIV in the hippocampal neurons of CH rat pups, as was analyzed by transcriptome sequencing and in vitro cell experiments. EGR3 localized within hippocampal neurons in CA1, CA3, and dentate gyrus regions. Deficient EGR3 in the primary hippocampal neurons significantly reduced the density of dendritic spines by downregulating the expression of BDNF, and such effects could be rescued by supplementing recombinant BDNF protein. Taken together, CH mediates cognitive impairment of pups through the inactivation of CaMKIV in the hippocampal neurons, which decreases the expression of EGR3 and further reduces the production of BDNF, thereby impairing the growth of dendritic spines. Identifying CaMKIV/EGR3/BDNF pathway in the hippocampal neurons in the context of CH will benefit the drug development of intellectual disability caused by CH.
Collapse
|
12
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
13
|
Labade AS, Salvi A, Kar S, Karmodiya K, Sengupta K. Nup93 and CTCF modulate spatiotemporal dynamics and function of the HOXA gene locus during differentiation. J Cell Sci 2021; 134:273378. [PMID: 34746948 DOI: 10.1242/jcs.259307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/30/2021] [Indexed: 11/20/2022] Open
Abstract
Nucleoporins regulate nuclear transport and are also involved in DNA damage, repair, cell cycle, chromatin organization, and gene expression. Here, we studied the role of nucleoporin Nup93 and the chromatin organizer CTCF in regulating HOXA expression during differentiation. ChIP sequencing revealed a significant overlap between Nup93 and CTCF peaks. Interestingly, Nup93 and CTCF are associated with the 3' and 5'HOXA genes respectively. Depletions of Nup93 and CTCF antagonistically modulate expression levels of 3'and 5'HOXA genes in undifferentiated NT2/D1 cells. Nup93 also regulates the localization of the HOXA gene locus, which disengages from the nuclear periphery upon Nup93 but not CTCF depletion, consistent with its upregulation. The dynamic association of Nup93 and CTCF with the HOXA locus during differentiation correlates with its spatial positioning and expression. While Nup93 tethers the HOXA locus to the nuclear periphery, CTCF potentially regulates looping of the HOXA gene cluster in a temporal manner. In summary, Nup93 and CTCF complement one another in modulating the spatiotemporal dynamics and function of the HOXA gene locus during differentiation.
Collapse
Affiliation(s)
- Ajay S Labade
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Adwait Salvi
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Saswati Kar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| | - Kundan Sengupta
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008 Maharashtra, INDIA
| |
Collapse
|
14
|
Abstract
The sympathetic nervous system prepares the body for 'fight or flight' responses and maintains homeostasis during daily activities such as exercise, eating a meal or regulation of body temperature. Sympathetic regulation of bodily functions requires the establishment and refinement of anatomically and functionally precise connections between postganglionic sympathetic neurons and peripheral organs distributed widely throughout the body. Mechanistic studies of key events in the formation of postganglionic sympathetic neurons during embryonic and early postnatal life, including axon growth, target innervation, neuron survival, and dendrite growth and synapse formation, have advanced the understanding of how neuronal development is shaped by interactions with peripheral tissues and organs. Recent progress has also been made in identifying how the cellular and molecular diversity of sympathetic neurons is established to meet the functional demands of peripheral organs. In this Review, we summarize current knowledge of signalling pathways underlying the development of the sympathetic nervous system. These findings have implications for unravelling the contribution of sympathetic dysfunction stemming, in part, from developmental perturbations to the pathophysiology of peripheral neuropathies and cardiovascular and metabolic disorders.
Collapse
|
15
|
Han S, Zhu T, Ding S, Wen J, Lin Z, Lu G, Zhang Y, Xiao W, Ding Y, Jia X, Chen H, Gong W. Early growth response genes 2 and 3 induced by AP-1 and NF-κB modulate TGF-β1 transcription in NK1.1 - CD4 + NKG2D + T cells. Cell Signal 2020; 76:109800. [PMID: 33011290 DOI: 10.1016/j.cellsig.2020.109800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
NK1.1- CD4+ NKG2D+ T cells are a subpopulation of regulatory T cells that downregulate the functions of CD4+ T, CD8+ T, natural killer (NK) cells, and macrophages through TGF-β1 production. Early growth response genes 2 (Egr2) and 3 (Egr3) maintain immune homeostasis by modulating T lymphocyte development, inhibiting effector T cell function, and promoting the induction of regulatory T cells. Whether Egr2 and Egr3 directly regulate TGF-β1 transcription in NK1.1- CD4+ NKG2D+ T cells remains elusive. The expression levels of Egr2 and Egr3 were higher in NK1.1- CD4+ NKG2D+ T cells than in NK1.1- CD4+ NKG2D- T cells. Egr2 and Egr3 expression were remarkably increased after stimulating NK1.1- CD4+ NKG2D+ T cells with sRAE or α-CD3/sRAE. The ectopic expression of Egr2 or Egr3 resulted in the enhancement of TGF-β1 expression, while knockdown of Egr2 or Egr3 led to the decreased expression of TGF-β1 in NK1.1- CD4+ NKG2D+ T cells. Egr2 and Egr3 directly bound with the TGF-β1 promoter as demonstrated by the electrophoretic mobility shift assay and dual-luciferase gene reporter assay. Furthermore, the Egr2 and Egr3 expression of NK1.1- CD4+ NKG2D+ T cells could be induced by the AP-1 and NF-κB transcriptional factors, but had no involvement with the activation of NF-AT and STAT3. In conclusion, Egr2 and Egr3 induced by AP-1 and NF-κB directly initiate TGF-β1 transcription in NK1.1- CD4+ NKG2D+ T cells. This study indicates that manipulating Egr2 and Egr3 expression would potentiate or alleviate the regulatory function of NK1.1- CD4+ NKG2D+ T cells and this strategy could be used in the therapy for patients with autoimmune diseases or tumor.
Collapse
Affiliation(s)
- Sen Han
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Tao Zhu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Shizhen Ding
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Jianqiang Wen
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Zhijie Lin
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China
| | - Guotao Lu
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China
| | - Yu Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China
| | - Xiaoqin Jia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225000, PR China
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Weijuan Gong
- Department of Immunology, School of Medicine, Yangzhou University, Yangzhou 225000, PR China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225000, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, PR China.
| |
Collapse
|
16
|
Chong Y, Saviuk N, Pie B, Basisty N, Quinn RK, Schilling B, Sonenberg N, Cooper E, Haghighi AP. Removing 4E-BP Enables Synapses to Refine without Postsynaptic Activity. Cell Rep 2019; 23:11-22. [PMID: 29617653 DOI: 10.1016/j.celrep.2018.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/02/2018] [Accepted: 03/10/2018] [Indexed: 11/29/2022] Open
Abstract
Throughout the developing nervous system, considerable synaptic re-organization takes place as postsynaptic neurons extend dendrites and incoming axons refine their synapses, strengthening some and eliminating others. It is well accepted that these processes rely on synaptic activity; however, the mechanisms that lead to this developmental reorganization are not fully understood. Here, we explore the regulation of cap-dependent translation, a mechanism known to play a role in synaptic growth and plasticity. Using sympathetic ganglia in α3 nicotinic acetylcholine receptor (nAChR)-knockout (KO) mice, we establish that electrophysiologically silent synapses between preganglionic axons and postsynaptic sympathetic neurons do not refine, and the growth of dendrites and the targeting of synapses on postsynaptic neurons are impaired. Remarkably, genetically removing 4E-BP, a suppressor of cap-dependent translation, from these α3 nAChR-KO mice largely restores these features. We conclude that synaptic connections can re-organize and refine without postsynaptic activity during post-natal development when 4E-BP-regulated cap-dependent translation is enhanced.
Collapse
Affiliation(s)
- Yumaine Chong
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Natasha Saviuk
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Brigitte Pie
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Ryan K Quinn
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ellis Cooper
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - A Pejmun Haghighi
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
17
|
Sugiaman-Trapman D, Vitezic M, Jouhilahti EM, Mathelier A, Lauter G, Misra S, Daub CO, Kere J, Swoboda P. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics 2018; 19:181. [PMID: 29510665 PMCID: PMC5838959 DOI: 10.1186/s12864-018-4564-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes. RESULTS We extracted all known human RFX1-8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1-3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes. CONCLUSIONS The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.
Collapse
Affiliation(s)
| | - Morana Vitezic
- Department of Biology, Bioinformatics Centre, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eeva-Mari Jouhilahti
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anthony Mathelier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sougat Misra
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Basic and Medical Biosciences, King's College London, London, UK
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
18
|
Pfaffenseller B, Kapczinski F, Gallitano AL, Klamt F. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder. Front Behav Neurosci 2018; 12:15. [PMID: 29459824 PMCID: PMC5807664 DOI: 10.3389/fnbeh.2018.00015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/17/2018] [Indexed: 01/09/2023] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs) are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3) of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF) that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.
Collapse
Affiliation(s)
- Bianca Pfaffenseller
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Amelia L Gallitano
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ, United States
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Francis TC, Chandra R, Gaynor A, Konkalmatt P, Metzbower SR, Evans B, Engeln M, Blanpied TA, Lobo MK. Molecular basis of dendritic atrophy and activity in stress susceptibility. Mol Psychiatry 2017; 22:1512-1519. [PMID: 28894298 PMCID: PMC5747312 DOI: 10.1038/mp.2017.178] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Molecular and cellular adaptations in nucleus accumbens (NAc) medium spiny neurons (MSNs) underlie stress-induced depression-like behavior, but the molecular substrates mediating cellular plasticity and activity in MSN subtypes in stress susceptibility are poorly understood. We find the transcription factor early growth response 3 (EGR3) is increased in D1 receptor containing MSNs of mice susceptible to social defeat stress. Genetic reduction of Egr3 levels in D1-MSNs prevented depression-like outcomes in stress susceptible mice by preventing D1-MSN dendritic atrophy, reduced frequency of excitatory input and altered in vivo activity. Overall, we identify NAc neuronal-subtype molecular control of dendritic morphology and related functional adaptations, which underlie susceptibility to stress.
Collapse
Affiliation(s)
- TC Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - R Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - A Gaynor
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - P Konkalmatt
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, USA
| | - SR Metzbower
- Department of Physiology, University of Maryland, University of Maryland, Baltimore, MD, USA
| | - B Evans
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - M Engeln
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - TA Blanpied
- Department of Physiology, University of Maryland, University of Maryland, Baltimore, MD, USA
| | - MK Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
20
|
López-López D, Gómez-Nieto R, Herrero-Turrión MJ, García-Cairasco N, Sánchez-Benito D, Ludeña MD, López DE. Overexpression of the immediate-early genes Egr1, Egr2, and Egr3 in two strains of rodents susceptible to audiogenic seizures. Epilepsy Behav 2017; 71:226-237. [PMID: 26775236 DOI: 10.1016/j.yebeh.2015.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 11/17/2022]
Abstract
Genetic animal models of epilepsy are an important tool for further understanding the basic cellular mechanisms underlying epileptogenesis and for developing novel antiepileptic drugs. We conducted a comparative study of gene expression in the inferior colliculus, a nucleus that triggers audiogenic seizures, using two animal models, the Wistar audiogenic rat (WAR) and the genetic audiogenic seizure hamster (GASH:Sal). For this purpose, both models were exposed to high intensity auditory stimulation, and 60min later, the inferior colliculi were collected. As controls, intact Wistar rats and Syrian hamsters were subjected to stimulation and tissue preparation protocols identical to those performed on the experimental animals. Ribonucleic acid was isolated, and microarray analysis comparing the stimulated Wistar and WAR rats showed that the genomic profile of these animals displayed significant (fold change, |FC|≥2.0 and p<0.05) upregulation of 38 genes and downregulation of 47 genes. Comparison of gene expression profiles between stimulated control hamsters and stimulated GASH:Sal revealed the upregulation of 10 genes and the downregulation of 5 genes. Among the common genes that were altered in both models, we identified the zinc finger immediate-early growth response gene Egr3. The Egr3 protein is a transcription factor that is induced by distinct stress-elicited factors. Based on immunohistochemistry, this protein was expressed in the cochlear nucleus complex, the inferior colliculus, and the hippocampus of both animal models as well as in lymphoma tumors of the GASH:Sal. Our results support that the overexpression of the Egr3 gene in both models might contribute to neuronal viability and development of lymphoma in response to stress associated with audiogenic seizures. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- D López-López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - R Gómez-Nieto
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - M J Herrero-Turrión
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
| | - N García-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - D Sánchez-Benito
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - M D Ludeña
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - D E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
21
|
Shin H, Seol DW, Nam M, Song H, Lee DR, Lim HJ. Expression of Egr3 in mouse gonads and its localization and function in oocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:781-787. [PMID: 28002932 PMCID: PMC5411840 DOI: 10.5713/ajas.16.0798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/02/2022]
Abstract
Objective The early growth response (Egr) family consists of four members (Egr1, Egr2, Egr3, and Egr4) that are zinc finger transcription factors. Among them, Egr3 is involved in transcriptional regulation of target genes during muscle spindle formation and neurite outgrowth. We previously showed that the immunoreactive Egr3 is localized on oocyte spindle and accumulate near the microtubule organizing center during meiosis I in mice. Egr3 was also shown to be localized on spermatocytes. We herein investigated if Egr3 is expressed in mouse gonads and if Egr3 blockade results in any defect in oocyte maturation. Methods Expression of Egr3 in mouse gonads was examined by reverse transcription-polymerase chain reaction. Full-length Egr3 and truncated Egr3 (ΔEgr3) complementary RNAs (cRNAs) with Xpress tag at N-terminus and DsRed2 at C-terminus, and small interfering RNA (siRNA) targeting Egr3 were microinjected into mouse oocytes at germinal vesicle stage. Localization of microinjected Egr3 was examined by confocal live imaging and immunofluorescence staining. Results Egr3 mRNA was detected in mouse ovaries and testes from 1 to 4 week-old mice. An uncharacterized longer transcript containing 5′untranslated region was also detected in 3 and 4 week-old gonads. Microinjected Xpress-Egr3-DsRed2 or Xpress-ΔEgr3-DsRed2 localized to nuclei and chromosomes during meiotic progression. Microinjection of these cRNAs or Egr3 siRNA in oocytes did not affect meiotic maturation. Immunofluorescence staining of Egr3 in Xpress-ΔEgr3-DsRed2-injected oocytes showed a positive signal only on meiotic spindle, suggesting that this antibody does not detect endogenous or exogenous Egr3 in mouse oocytes. Conclusion The results show that Egr3 localizes to chromosomes during meiotic progression and that certain antibodies may not faithfully represent localization of target proteins in oocytes. Egr3 seems to be dispensable during oocyte maturation in mice.
Collapse
Affiliation(s)
- Hyejin Shin
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Dong-Won Seol
- Department of Biomedical Science, CHA University, Seongnam 13884, Korea
| | - Minyeong Nam
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam 13884, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam 13884, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,Department of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
22
|
O'Donovan KJ. Intrinsic Axonal Growth and the Drive for Regeneration. Front Neurosci 2016; 10:486. [PMID: 27833527 PMCID: PMC5081384 DOI: 10.3389/fnins.2016.00486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/10/2016] [Indexed: 02/01/2023] Open
Abstract
Following damage to the adult nervous system in conditions like stroke, spinal cord injury, or traumatic brain injury, many neurons die and most of the remaining spared neurons fail to regenerate. Injured neurons fail to regrow both because of the inhibitory milieu in which they reside as well as a loss of the intrinsic growth capacity of the neurons. If we are to develop effective therapeutic interventions that promote functional recovery for the devastating injuries described above, we must not only better understand the molecular mechanisms of developmental axonal growth in hopes of re-activating these pathways in the adult, but at the same time be aware that re-activation of adult axonal growth may proceed via distinct mechanisms. With this knowledge in hand, promoting adult regeneration of central nervous system neurons can become a more tractable and realistic therapeutic endeavor.
Collapse
Affiliation(s)
- Kevin J O'Donovan
- Department of Chemistry and Life Science, United States Military Academy West Point, NY, USA
| |
Collapse
|
23
|
Kurosaka M, Ogura Y, Funabashi T, Akema T. Early Growth Response 3 (Egr3) Contributes a Maintenance of C2C12 Myoblast Proliferation. J Cell Physiol 2016; 232:1114-1122. [PMID: 27576048 DOI: 10.1002/jcp.25574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022]
Abstract
Satellite cell proliferation is a crucially important process for adult myogenesis. However, its regulatory mechanisms remain unknown. Early growth response 3 (Egr3) is a zinc-finger transcription factor that regulates different cellular functions. Reportedly, Egr3 interacts with multiple signaling molecules that are also known to regulate satellite cell proliferation. Therefore, it is possible that Egr3 is involved in satellite cell proliferation. Results of this study have demonstrated that Egr3 transcript levels are upregulated in regenerating mouse skeletal muscle after cardiotoxin injury. Using C2C12 myoblast culture (a model of activated satellite cells), results show that inhibition of Egr3 by shRNA impairs the myoblast proliferation rate. Results also show reduction of NF-кB transcriptional activity in Egr3-inhibited cells. Inhibition of Egr3 is associated with an increase in annexin V+ cell fraction and apoptotic protein activity including caspase-3 and caspase-7, and Poly-ADP ribose polymerase. By contrast, the reduction of cellular proliferation by inhibition of Egr3 was partially recovered by treatment of pan-caspase inhibitor Z-VAD-FMK. Collectively, these results suggest that Egr3 is involved in myoblast proliferation by interaction with survival signaling. J. Cell. Physiol. 232: 1114-1122, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuji Ogura
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
24
|
Decock A, Ongenaert M, De Wilde B, Brichard B, Noguera R, Speleman F, Vandesompele J. Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait. Epigenetics 2016; 11:761-771. [PMID: 27599161 DOI: 10.1080/15592294.2016.1226739] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stage 4S neuroblastoma (NB) is a special type of NB found in infants with metastases at diagnosis and is associated with an excellent outcome due to its remarkable capacity to undergo spontaneous regression. As genomics have not been able to explain this intriguing clinical presentation, we here aimed at profiling the DNA methylome of stage 4S NB to better understand this phenomenon. To this purpose, differential methylation analyses between International Neuroblastoma Staging System (INSS) stage 4S, stage 4 and stage 1/2 were performed, using methyl-CpG-binding domain (MBD) sequencing data of 14 stage 4S, 14 stage 4, and 13 stage 1/2 primary NB tumors (all MYCN non-amplified in order not to confound results). Stage 4S-specific hyper- and hypomethylated promoters were determined and further characterized for genomic localization and function by cytogenetic band enrichment, gene set enrichment, transcription factor target enrichment and differential RNA expression analyses. We show that specific chromosomal locations are enriched for stage 4S differentially methylated promoters and that stage 4S tumors show characteristic hypermethylation of specific subtelomeric promoters. Furthermore, genes involved in important oncogenic pathways, in neural crest development and differentiation, and in epigenetic processes are differentially methylated and expressed in stage 4S tumors. Based on these findings, we describe new biological mechanisms possibly contributing to the stage 4S-specific tumor biology and spontaneous regression. In conclusion, this study is the first to describe the highly characteristic stage 4S DNA methylome. These findings will open new avenues to further unravel the NB pathology in general and stage 4S disease specifically.
Collapse
Affiliation(s)
- Anneleen Decock
- a Center for Medical Genetics, Ghent University , Ghent , Belgium.,b Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Maté Ongenaert
- a Center for Medical Genetics, Ghent University , Ghent , Belgium
| | - Bram De Wilde
- a Center for Medical Genetics, Ghent University , Ghent , Belgium.,b Cancer Research Institute Ghent (CRIG) , Ghent , Belgium.,c Department of Pediatric Hematology and Oncology , Ghent University Hospital , Ghent , Belgium
| | - Bénédicte Brichard
- d Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Rosa Noguera
- e Department of Pathology , Medical School, University of Valencia, and Health Research Institute INCLIVA , Valencia , Spain
| | - Frank Speleman
- a Center for Medical Genetics, Ghent University , Ghent , Belgium.,b Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Jo Vandesompele
- a Center for Medical Genetics, Ghent University , Ghent , Belgium.,b Cancer Research Institute Ghent (CRIG) , Ghent , Belgium.,f Bioinformatics Institute Ghent - From Nucleotides to Networks (BIG N2N) , Ghent , Belgium
| |
Collapse
|
25
|
Variants of the CNTNAP2 5' promoter as risk factors for autism spectrum disorders: a genetic and functional approach. Mol Psychiatry 2015; 20:839-49. [PMID: 25224256 DOI: 10.1038/mp.2014.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/04/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin gene superfamily, is one of the best-replicated risk genes for autism spectrum disorders (ASD). ASD are predominately genetically determined neurodevelopmental disorders characterized by impairments of language development, social interaction and communication, as well as stereotyped behavior and interests. Although CNTNAP2 expression levels were proposed to alter ASD risk, no study to date has focused on its 5' promoter. Here, we directly sequenced the CNTNAP2 5' promoter region of 236 German families with one child with ASD and detected four novel variants. Furthermore, we genotyped the three most frequent variants (rs150447075, rs34712024, rs71781329) in an additional sample of 356 families and found nominal association of rs34712024G with ASD and rs71781329GCG[7] with language development. The four novel and the three known minor alleles of the identified variants were predicted to alter transcription factor binding sites (TFBS). At the functional level, the respective sequences spanning these seven variants were bound by nuclear factors. In a luciferase promoter assay, the respective minor alleles showed cell line-specific and differentiation stage-dependent effects at the level of promoter activation. The novel potential rare risk-variant M2, a G>A mutation -215 base pairs 5' of the transcriptional start site, significantly reduced promoter efficiency in HEK293T and in undifferentiated and differentiated neuroblastoid SH-SY5Y cells. This variant was transmitted to a patient with autistic disorder. The under-transmitted, protective minor G allele of the common variant rs34712024, in contrast, increased transcriptional activity. These results lead to the conclusion that the pathomechanism of CNTNAP2 promoter variants on ASD risk is mediated by their effect on TFBSs, and thus confirm the hypothesis that a reduced CNTNAP2 level during neuronal development increases liability for ASD.
Collapse
|
26
|
Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis. J Neurosci 2015; 35:5566-78. [PMID: 25855173 DOI: 10.1523/jneurosci.0241-15.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These "spindle remnants" persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
Collapse
|
27
|
Jackson MZ, Gruner KA, Qin C, Tourtellotte WG. A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 2014; 141:2452-61. [PMID: 24917501 DOI: 10.1242/dev.107797] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Familial dysautonomia (FD) is characterized by severe and progressive sympathetic and sensory neuron loss caused by a highly conserved germline point mutation of the human ELP1/IKBKAP gene. Elp1 is a subunit of the hetero-hexameric transcriptional elongator complex, but how it functions in disease-vulnerable neurons is unknown. Conditional knockout mice were generated to characterize the role of Elp1 in migration, differentiation and survival of migratory neural crest (NC) progenitors that give rise to sympathetic and sensory neurons. Loss of Elp1 in NC progenitors did not impair their migration, proliferation or survival, but there was a significant impact on post-migratory sensory and sympathetic neuron survival and target tissue innervation. Ablation of Elp1 in post-migratory sympathetic neurons caused highly abnormal target tissue innervation that was correlated with abnormal neurite outgrowth/branching and abnormal cellular distribution of soluble tyrosinated α-tubulin in Elp1-deficient primary sympathetic and sensory neurons. These results indicate that neuron loss and physiologic impairment in FD is not a consequence of abnormal neuron progenitor migration, differentiation or survival. Rather, loss of Elp1 leads to neuron death as a consequence of failed target tissue innervation associated with impairments in cytoskeletal regulation.
Collapse
Affiliation(s)
- Marisa Z Jackson
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Northwestern University Integrated Neuroscience (NUIN) Program, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Katherine A Gruner
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Charles Qin
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Warren G Tourtellotte
- Department of Pathology (Division of Neuropathology), Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Northwestern University Integrated Neuroscience (NUIN) Program, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
28
|
Shin H, Kwon S, Song H, Lim HJ. The transcription factor Egr3 is a putative component of the microtubule organizing center in mouse oocytes. PLoS One 2014; 9:e94708. [PMID: 24722338 PMCID: PMC3983223 DOI: 10.1371/journal.pone.0094708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
The early growth response (Egr) family of zinc finger transcription factors consists of 4 members. During an investigation of Egr factor localization in mouse ovaries, we noted that Egr3 exhibits a subcellular localization that overlaps with the meiotic spindle in oocytes. Using Egr3-specific antibodies, we establish that Egr3 co-localizes with the spindle and cytosolic microtubule organizing centers (MTOCs) in oocytes during meiotic maturation. Notably, the Egr3 protein appears to accumulate around γ-tubulin in MTOCs. Nocodazole treatment, which induces microtubule depolymerization, resulted in the disruption of spindle formation and Egr3 localization, suggesting that Egr3 localization is dependent on the correct configuration of the spindle. Shortly after warming of vitrified oocytes, growing arrays of microtubules were observed near large clusters of Egr3. An in vitro microtubule interaction assay showed that Egr3 does not directly interact with polymerized microtubules. Egr3 localization on the spindle was sustained in early preimplantation mouse embryos, but this pattern did not persist until the blastocyst stage. Collectively, our result shows for the first time that the Egr3 a transcription factor may play a novel non-transcriptional function during microtubule organization in mouse oocytes.
Collapse
Affiliation(s)
- Hyejin Shin
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Sojung Kwon
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Institute of Biomedical Science & Technology, Konkuk University, Seoul, Korea
- * E-mail:
| |
Collapse
|
29
|
Abstract
The rodent superior cervical ganglion (SCG) is a useful and readily accessible source of neurons for studying the mechanisms of sympathetic nervous system (SNS) development and growth in vitro. The sympathetic nervous system (SNS) of early postnatal animals undergoes a great deal of remodeling and development; thus, neurons taken from mice at this age are primed to re-grow and establish synaptic connections after in situ removal. The stereotypic location and size of the SCG make it ideal for rapid isolation and dissociation. The protocol described here details the requirements for the dissection, culture and differentiation of SCG neurons. The protocol is suitable for culturing neurons from late embryonic gestation to approximately postnatal day 3. The culture technique discussed below utilizes glass coverslips for the microscopic examination of fixed cells.
Collapse
Affiliation(s)
- Marisa Jackson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Warren Tourtellotte
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|