1
|
Yim KM, Baumgartner M, Krenzer M, Rosales Larios MF, Hill-Terán G, Nottoli T, Muhle RA, Noonan JP. Cell type-specific dysregulation of gene expression due to Chd8 haploinsufficiency during mouse cortical development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.608000. [PMID: 39185167 PMCID: PMC11343218 DOI: 10.1101/2024.08.14.608000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Disruptive variants in the chromodomain helicase CHD8, which acts as a transcriptional regulator during neurodevelopment, are strongly associated with risk for autism spectrum disorder (ASD). Loss of CHD8 function is hypothesized to perturb gene regulatory networks in the developing brain, thereby contributing to ASD etiology. However, insight into the cell type-specific transcriptional effects of CHD8 loss of function remains limited. We used single-cell and single-nucleus RNA-sequencing to globally profile gene expression and identify dysregulated genes in the embryonic and juvenile wild type and Chd8 +/- mouse cortex, respectively. Chd8 and other ASD risk-associated genes showed a convergent expression trajectory that was largely conserved between the mouse and human developing cortex, increasing from the progenitor zones to the cortical plate. Genes associated with risk for neurodevelopmental disorders and genes involved in neuron projection development, chromatin remodeling, signaling, and migration were dysregulated in Chd8 +/- embryonic day (E) 12.5 radial glia. Genes implicated in synaptic organization and activity were dysregulated in Chd8 +/- postnatal day (P) 25 deep- and upper-layer excitatory cortical neurons, suggesting a delay in synaptic maturation or impaired synaptogenesis due to CHD8 loss of function. Our findings reveal a complex pattern of transcriptional dysregulation in Chd8 +/- developing cortex, potentially with distinct biological impacts on progenitors and maturing neurons in the excitatory neuronal lineage.
Collapse
Affiliation(s)
- Kristina M. Yim
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Martina Krenzer
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Present address: Mount Sinai School of Medicine, Brookdale Department of Geriatrics and Palliative Medicine, New York, NY 10029, USA
| | - María F. Rosales Larios
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Present address: Social Studies of Science and Technology, Department of Evolutionary Biology, School of Sciences, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Guillermina Hill-Terán
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Present address: Higher Institute of Biological Research (INSIBIO, CONICET-UNT), Institute of Biology, National University of Tucumán, T4000 San Miguel de Tucumán, Argentina
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rebecca A. Muhle
- Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
- Present address: New York State Psychiatric Institute and Columbia University Department of Psychiatry, New York, NY 10032, USA
| | - James P. Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Eintracht J, Owen N, Harding P, Moosajee M. Disruption of common ocular developmental pathways in patient-derived optic vesicle models of microphthalmia. Stem Cell Reports 2024; 19:839-858. [PMID: 38821055 PMCID: PMC11390689 DOI: 10.1016/j.stemcr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.
Collapse
Affiliation(s)
| | | | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
3
|
Yang X, Wan R, Liu Z, Feng S, Yang J, Jing N, Tang K. The differentiation and integration of the hippocampal dorsoventral axis are controlled by two nuclear receptor genes. eLife 2023; 12:RP86940. [PMID: 37751231 PMCID: PMC10522401 DOI: 10.7554/elife.86940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The hippocampus executes crucial functions from declarative memory to adaptive behaviors associated with cognition and emotion. However, the mechanisms of how morphogenesis and functions along the hippocampal dorsoventral axis are differentiated and integrated are still largely unclear. Here, we show that Nr2f1 and Nr2f2 genes are distinctively expressed in the dorsal and ventral hippocampus, respectively. The loss of Nr2f2 results in ectopic CA1/CA3 domains in the ventral hippocampus. The deficiency of Nr2f1 leads to the failed specification of dorsal CA1, among which there are place cells. The deletion of both Nr2f genes causes almost agenesis of the hippocampus with abnormalities of trisynaptic circuit and adult neurogenesis. Moreover, Nr2f1/2 may cooperate to guarantee appropriate morphogenesis and function of the hippocampus by regulating the Lhx5-Lhx2 axis. Our findings revealed a novel mechanism that Nr2f1 and Nr2f2 converge to govern the differentiation and integration of distinct characteristics of the hippocampus in mice.
Collapse
Affiliation(s)
- Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Zhiwen Liu
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Su Feng
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Naihe Jing
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| |
Collapse
|
4
|
Warren EB, Briano JA, Ellegood J, DeYoung T, Lerch JP, Morrow EM. 17q12 deletion syndrome mouse model shows defects in craniofacial, brain and kidney development, and glucose homeostasis. Dis Model Mech 2022; 15:dmm049752. [PMID: 36373506 PMCID: PMC10655816 DOI: 10.1242/dmm.049752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
17q12 deletion (17q12Del) syndrome is a copy number variant (CNV) disorder associated with neurodevelopmental disorders and renal cysts and diabetes syndrome (RCAD). Using CRISPR/Cas9 genome editing, we generated a mouse model of 17q12Del syndrome on both inbred (C57BL/6N) and outbred (CD-1) genetic backgrounds. On C57BL/6N, the 17q12Del mice had severe head development defects, potentially mediated by haploinsufficiency of Lhx1, a gene within the interval that controls head development. Phenotypes included brain malformations, particularly disruption of the telencephalon and craniofacial defects. On the CD-1 background, the 17q12Del mice survived to adulthood and showed milder craniofacial and brain abnormalities. We report postnatal brain defects using automated magnetic resonance imaging-based morphometry. In addition, we demonstrate renal and blood glucose abnormalities relevant to RCAD. On both genetic backgrounds, we found sex-specific presentations, with male 17q12Del mice exhibiting higher penetrance and more severe phenotypes. Results from these experiments pinpoint specific developmental defects and pathways that guide clinical studies and a mechanistic understanding of the human 17q12Del syndrome. This mouse mutant represents the first and only experimental model to date for the 17q12 CNV disorder. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Emily B. Warren
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Juan A. Briano
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Eric M. Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
López-Mengual A, Segura-Feliu M, Sunyer R, Sanz-Fraile H, Otero J, Mesquida-Veny F, Gil V, Hervera A, Ferrer I, Soriano J, Trepat X, Farré R, Navajas D, Del Río JA. Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development. Front Cell Dev Biol 2022; 10:886110. [PMID: 35652101 PMCID: PMC9150848 DOI: 10.3389/fcell.2022.886110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.
Collapse
Affiliation(s)
- Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Sanz-Fraile
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain
| | - Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de La Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Xavier Trepat
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institució Catalana de Recerca I Estudis Avançats, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Institut D'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Cellular and Respiratory Biomechanics, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Early Life Events and Maturation of the Dentate Gyrus: Implications for Neurons and Glial Cells. Int J Mol Sci 2022; 23:ijms23084261. [PMID: 35457079 PMCID: PMC9031216 DOI: 10.3390/ijms23084261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The dentate gyrus (DG), an important part of the hippocampus, plays a significant role in learning, memory, and emotional behavior. Factors potentially influencing normal development of neurons and glial cells in the DG during its maturation can exert long-lasting effects on brain functions. Early life stress may modify maturation of the DG and induce lifelong alterations in its structure and functioning, underlying brain pathologies in adults. In this paper, maturation of neurons and glial cells (microglia and astrocytes) and the effects of early life events on maturation processes in the DG have been comprehensively reviewed. Early postnatal interventions affecting the DG eventually result in an altered number of granule neurons in the DG, ectopic location of neurons and changes in adult neurogenesis. Adverse events in early life provoke proinflammatory changes in hippocampal glia at cellular and molecular levels immediately after stress exposure. Later, the cellular changes may disappear, though alterations in gene expression pattern persist. Additional stressful events later in life contribute to manifestation of glial changes and behavioral deficits. Alterations in the maturation of neuronal and glial cells induced by early life stress are interdependent and influence the development of neural nets, thus predisposing the brain to the development of cognitive and psychiatric disorders.
Collapse
|
8
|
Jiménez S, Moreno N. Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:263-282. [PMID: 34614492 DOI: 10.1159/000519025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/09/2021] [Indexed: 01/26/2023]
Abstract
Cajal-Retzius cells are essential for cortical development in mammals, and their involvement in the evolution of this structure has been widely postulated, but very little is known about their progenitor domains in non-mammalian vertebrates. Using in situhybridization and immunofluorescence techniques we analyzed the expression of some of the main Cajal-Retzius cell markers such as Dbx1, Ebf3, ER81, Lhx1, Lhx5, p73, Reelin, Wnt3a, Zic1, and Zic2 in the forebrain of the anuran Xenopus laevis, because amphibians are the only class of anamniote tetrapods and show a tetrapartite evaginated pallium, but no layered or nuclear organization. Our results suggested that the Cajal-Retzius cell progenitor domains were comparable to those previously described in amniotes. Thus, at dorsomedial telencephalic portions a region comparable to the cortical hem was defined in Xenopus based on the expression of Wnt3a, p73, Reelin, Zic1, and Zic2. In the septum, two different domains were observed: a periventricular dorsal septum, at the limit between the pallium and the subpallium, expressing Reelin, Zic1, and Zic2, and a related septal domain, expressing Ebf3, Zic1, and Zic2. In the lateral telencephalon, the ventral pallium next to the pallio-subpallial boundary, the lack of Dbx1 and the unique expression of Reelin during development defined this territory as the most divergent with respect to mammals. Finally, we also analyzed the expression of these markers at the prethalamic eminence region, suggested as Cajal-Retzius progenitor domain in amniotes, observing there Zic1, Zic2, ER81, and Lhx1 expression. Our data show that in anurans there are different subtypes and progenitor domains of Cajal-Retzius cells, which probably contribute to the cortical regional specification and territory-specific properties. This supports the notion that the basic organization of pallial derivatives in vertebrates follows a comparable fundamental arrangement, even in those that do not have a sophisticated stratified cortical structure like the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| |
Collapse
|
9
|
Moreau MX, Saillour Y, Cwetsch AW, Pierani A, Causeret F. Single-cell transcriptomics of the early developing mouse cerebral cortex disentangle the spatial and temporal components of neuronal fate acquisition. Development 2021; 148:269283. [PMID: 34170322 DOI: 10.1242/dev.197962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
In the developing cerebral cortex, how progenitors that seemingly display limited diversity end up producing a vast array of neurons remains a puzzling question. The prevailing model suggests that temporal maturation of progenitors is a key driver in the diversification of the neuronal output. However, temporal constraints are unlikely to account for all diversity, especially in the ventral and lateral pallium where neuronal types significantly differ from their dorsal neocortical counterparts born at the same time. In this study, we implemented single-cell RNAseq to sample the diversity of progenitors and neurons along the dorso-ventral axis of the early developing pallium. We first identified neuronal types, mapped them on the tissue and determined their origin through genetic tracing. We characterised progenitor diversity and disentangled the gene modules underlying temporal versus spatial regulations of neuronal specification. Finally, we reconstructed the developmental trajectories followed by ventral and dorsal pallial neurons to identify lineage-specific gene waves. Our data suggest a model by which discrete neuronal fate acquisition from a continuous gradient of progenitors results from the superimposition of spatial information and temporal maturation.
Collapse
Affiliation(s)
- Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Yoann Saillour
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Andrzej W Cwetsch
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Alessandra Pierani
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| |
Collapse
|
10
|
Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci 2021; 24:584-594. [PMID: 33723434 PMCID: PMC8012207 DOI: 10.1038/s41593-020-00794-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
The human cortex comprises diverse cell types that emerge from an initially uniform neuroepithelium that gives rise to radial glia, the neural stem cells of the cortex. To characterize the earliest stages of human brain development, we performed single-cell RNA-sequencing across regions of the developing human brain, including the telencephalon, diencephalon, midbrain, hindbrain and cerebellum. We identify nine progenitor populations physically proximal to the telencephalon, suggesting more heterogeneity than previously described, including a highly prevalent mesenchymal-like population that disappears once neurogenesis begins. Comparison of human and mouse progenitor populations at corresponding stages identifies two progenitor clusters that are enriched in the early stages of human cortical development. We also find that organoid systems display low fidelity to neuroepithelial and early radial glia cell types, but improve as neurogenesis progresses. Overall, we provide a comprehensive molecular and spatial atlas of early stages of human brain and cortical development.
Collapse
Affiliation(s)
- Ugomma C Eze
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| | | | - Tomasz J Nowakowski
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
11
|
Li J, Sun L, Peng XL, Yu XM, Qi SJ, Lu ZJ, Han JDJ, Shen Q. Integrative genomic analysis of early neurogenesis reveals a temporal genetic program for differentiation and specification of preplate and Cajal-Retzius neurons. PLoS Genet 2021; 17:e1009355. [PMID: 33760820 PMCID: PMC7990179 DOI: 10.1371/journal.pgen.1009355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Neurogenesis in the developing neocortex begins with the generation of the preplate, which consists of early-born neurons including Cajal-Retzius (CR) cells and subplate neurons. Here, utilizing the Ebf2-EGFP transgenic mouse in which EGFP initially labels the preplate neurons then persists in CR cells, we reveal the dynamic transcriptome profiles of early neurogenesis and CR cell differentiation. Genome-wide RNA-seq and ChIP-seq analyses at multiple early neurogenic stages have revealed the temporal gene expression dynamics of early neurogenesis and distinct histone modification patterns in early differentiating neurons. We have identified a new set of coding genes and lncRNAs involved in early neuronal differentiation and validated with functional assays in vitro and in vivo. In addition, at E15.5 when Ebf2-EGFP+ cells are mostly CR neurons, single-cell sequencing analysis of purified Ebf2-EGFP+ cells uncovers molecular heterogeneities in CR neurons, but without apparent clustering of cells with distinct regional origins. Along a pseudotemporal trajectory these cells are classified into three different developing states, revealing genetic cascades from early generic neuronal differentiation to late fate specification during the establishment of CR neuron identity and function. Our findings shed light on the molecular mechanisms governing the early differentiation steps during cortical development, especially CR neuron differentiation. Neural stem cells and progenitor cells in the embryonic brain give rise to neurons following a precise temporal order after initial expansion. Early-born neurons including Cajal-Retzius (CR) cells and subplate neurons form the preplate in the developing cerebral cortex, then CR neurons occupy the layer 1, playing an important role in cortical histogenesis. The molecular mechanisms governing the early neuronal differentiation processes remain to be explored. Here, by genome-wide approaches including bulk RNA-seq, single-cell RNA-seq and ChIP-seq, we comprehensively characterized the temporal dynamic gene expression profile and epigenetic status at different stages during early cortical development and uncovered molecularly heterogeneous subpopulations within the CR cells. We revealed CR neuron signatures and cell type-specific histone modification patterns along early neuron specification. Using in vitro and in vivo assays, we identified novel lncRNAs as potential functional regulators in preplate differentiation and CR neuron identity establishment. Our study provides a comprehensive analysis of the genetic and epigenetic programs during neuronal differentiation and would help bring new insights into the early cortical neurogenesis process, particularly the differentiation of CR neurons.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- PTN graduate program, School of Life Sciences, Peking University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Lei Sun
- PTN graduate program, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Xiao-Ming Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Shao-Jun Qi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Brain and Spinal Cord Clinical Research Center, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
Alonso A, Trujillo CM, Puelles L. Quail-chick grafting experiments corroborate that Tbr1-positive eminential prethalamic neurons migrate along three streams into hypothalamus, subpallium and septocommissural areas. Brain Struct Funct 2021; 226:759-785. [PMID: 33544184 PMCID: PMC7981335 DOI: 10.1007/s00429-020-02206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
The prethalamic eminence (PThE), a diencephalic caudal neighbor of the telencephalon and alar hypothalamus, is frequently described in mammals and birds as a transient embryonic structure, undetectable in the adult brain. Based on descriptive developmental analysis of Tbr1 gene brain expression in chick embryos, we previously reported that three migratory cellular streams exit the PThE rostralward, targeting multiple sites in the hypothalamus, subpallium and septocommissural area, where eminential cells form distinct nuclei or disperse populations. These conclusions needed experimental corroboration. In this work, we used the homotopic quail-chick chimeric grafting procedure at stages HH10/HH11 to demonstrate by fate-mapping the three predicted tangential migration streams. Some chimeric brains were processed for Tbr1 in situ hybridization, for correlation with our previous approach. Evidence supporting all three postulated migration streams is presented. The results suggested a slight heterochrony among the juxtapeduncular (first), the peripeduncular (next), and the eminentio-septal (last) streams, each of which followed differential routes. A possible effect of such heterochrony on the differential selection of medial to lateral habenular hodologic targets by the migrated neurons is discussed.
Collapse
Affiliation(s)
- Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, School of Medicine, University of Murcia, 30100, Murcia, Spain. .,Biomedical Research Laboratory (LAIB), Health Campus, Murcia Biomedical Research Institute (IMIB-Arrixaca), El Palmar, 30120, Murcia, Spain.
| | - Carmen María Trujillo
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Faculty of Sciences, School of Biology, University of La Laguna, 38200, La Laguna, Canary Islands, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, School of Medicine, University of Murcia, 30100, Murcia, Spain.,Biomedical Research Laboratory (LAIB), Health Campus, Murcia Biomedical Research Institute (IMIB-Arrixaca), El Palmar, 30120, Murcia, Spain
| |
Collapse
|
13
|
Akhir MKAM, Choy CS, Abdullah MA, Ghani FA, Veerakumarasivam A, Hussin H. The Role of ISL1 and LHX5 LIM Homeobox Genes in Bladder Tumourigenesis. Malays J Med Sci 2020; 27:37-45. [PMID: 32158343 PMCID: PMC7053544 DOI: 10.21315/mjms2020.27.1.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/01/2020] [Indexed: 01/19/2023] Open
Abstract
Introduction Lin-11, Isl-1 and Mec-3 domains (LIM) homeobox genes are among the most important sub-families of homeobox genes. These genes are thought to play an important role in cancer. In this study, the protein expression of these genes was examined in urothelial carcinoma of the bladder. The expression pattern of Islet-1 (ISL1) and LIM homeobox 5 (LHX5) across different cancer stages and grades, as well as the association between the protein expression of these genes and patient demographics and clinicopathological features, were examined. Methods A total of 100 formalin-fixed paraffin-embedded urothelial carcinoma tissues were selected from the Department of Pathology, Hospital Kuala Lumpur and the protein expression of ISL1 and LHX5 was determined using immunohistochemistry. Results Positive expression of ISL1 and LHX5 was detected in 94% and 98% of the samples, respectively. There were no distinct LHX5 expression patterns associated with different cancer stages, but the proportion of high-expressing tumours was higher in high-grade tumours. In addition, there was a significant association between the expression of LHX5 and tumour grade. The proportion of tumours expressing high levels of ISL1 was found to be highest in later stage tumours. Conclusion The high percentage of tumours expressing both these genes suggests that ISL1 and LHX5 play an important role in bladder tumourigenesis across multiple stages.
Collapse
Affiliation(s)
- Mohd Khairul Anuar Md Akhir
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chan Soon Choy
- Perdana University School of Foundation Studies, Perdana University, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Fauzah Abd Ghani
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia.,Malaysia Genome Institute, National Institute of Biotechnology Malaysia, Selangor, Malaysia.,Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Huzlinda Hussin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
14
|
Muley VY, López-Victorio CJ, Ayala-Sumuano JT, González-Gallardo A, González-Santos L, Lozano-Flores C, Wray G, Hernández-Rosales M, Varela-Echavarría A. Conserved and divergent expression dynamics during early patterning of the telencephalon in mouse and chick embryos. Prog Neurobiol 2019; 186:101735. [PMID: 31846713 DOI: 10.1016/j.pneurobio.2019.101735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
The mammalian and the avian telencephalon are nearly indistinguishable at early embryonic vesicle stages but differ substantially in form and function at their adult stage. We sequenced and analyzed RNA populations present in mouse and chick during the early stages of embryonic telencephalon to understand conserved and lineage-specific developmental differences. We found approximately 3000 genes that orchestrate telencephalon development. Many chromatin-associated epigenetic and transcription regulators show high expression in both species and some show species-specific expression dynamics. Interestingly, previous studies associated them to autism, intellectual disabilities, and mental retardation supporting a causal link between their impaired functions during telencephalon development and brain dysfunction. Strikingly, the conserved up-regulated genes were differentially enriched in ontologies related to development or functions of the adult brain. Moreover, a differential enrichment of distinct repertoires of transcription factor binding motifs in their upstream promoter regions suggest a species-specific regulation of the various gene groups identified. Overall, our results reveal that the ontogenetic divergences between the mouse and chick telencephalon result from subtle differences in the regulation of common patterning signaling cascades and regulatory networks unique to each species at their very early stages of development.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos Lozano-Flores
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Gregory Wray
- Department of Biology, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
15
|
de las Heras-Saldana S, Clark SA, Duijvesteijn N, Gondro C, van der Werf JHJ, Chen Y. Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle. BMC Genomics 2019; 20:939. [PMID: 31810463 PMCID: PMC6898931 DOI: 10.1186/s12864-019-6270-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) are extensively used to identify single nucleotide polymorphisms (SNP) underlying the genetic variation of complex traits. However, much uncertainly often still exists about the causal variants and genes at quantitative trait loci (QTL). The aim of this study was to identify QTL associated with residual feed intake (RFI) and genes in these regions whose expression is also associated with this trait. Angus cattle (2190 steers) with RFI records were genotyped and imputed to high density arrays (770 K) and used for a GWAS approach to identify QTL associated with RFI. RNA sequences from 126 Angus divergently selected for RFI were analyzed to identify the genes whose expression was significantly associated this trait with special attention to those genes residing in the QTL regions. RESULTS The heritability for RFI estimated for this Angus population was 0.3. In a GWAS, we identified 78 SNPs associated with RFI on six QTL (on BTA1, BTA6, BTA14, BTA17, BTA20 and BTA26). The most significant SNP was found on chromosome BTA20 (rs42662073) and explained 4% of the genetic variance. The minor allele frequencies of significant SNPs ranged from 0.05 to 0.49. All regions, except on BTA17, showed a significant dominance effect. In 1 Mb windows surrounding the six significant QTL, we found 149 genes from which OAS2, STC2, SHOX, XKR4, and SGMS1 were the closest to the most significant QTL on BTA17, BTA20, BTA1, BTA14, and BTA26, respectively. In a 2 Mb windows around the six significant QTL, we identified 15 genes whose expression was significantly associated with RFI: BTA20) NEURL1B and CPEB4; BTA17) RITA1, CCDC42B, OAS2, RPL6, and ERP29; BTA26) A1CF, SGMS1, PAPSS2, and PTEN; BTA1) MFSD1 and RARRES1; BTA14) ATP6V1H and MRPL15. CONCLUSIONS Our results showed six QTL regions associated with RFI in a beef Angus population where five of these QTL contained genes that have expression associated with this trait. Therefore, here we show that integrating information from gene expression and GWAS studies can help to better understand the genetic mechanisms that determine variation in complex traits.
Collapse
Affiliation(s)
| | - Samuel A. Clark
- School of Environmental and Rural Science, University of New England, Armidale, NSW Australia
| | - Naomi Duijvesteijn
- School of Environmental and Rural Science, University of New England, Armidale, NSW Australia
| | - Cedric Gondro
- School of Environmental and Rural Science, University of New England, Armidale, NSW Australia
- Department of Animal Science, Michigan State University, East Lansing, MI USA
| | | | - Yizhou Chen
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW Australia
| |
Collapse
|
16
|
Whitman MC, Bell JL, Nguyen EH, Engle EC. Ex Vivo Oculomotor Slice Culture from Embryonic GFP-Expressing Mice for Time-Lapse Imaging of Oculomotor Nerve Outgrowth. J Vis Exp 2019. [PMID: 31380850 DOI: 10.3791/59911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accurate eye movements are crucial for vision, but the development of the ocular motor system, especially the molecular pathways controlling axon guidance, has not been fully elucidated. This is partly due to technical limitations of traditional axon guidance assays. To identify additional axon guidance cues influencing the oculomotor nerve, an ex vivo slice assay to image the oculomotor nerve in real-time as it grows towards the eye was developed. E10.5 IslMN-GFP embryos are used to generate ex vivo slices by embedding them in agarose, slicing on a vibratome, then growing them in a microscope stage-top incubator with time-lapse photomicroscopy for 24-72 h. Control slices recapitulate the in vivo timing of outgrowth of axons from the nucleus to the orbit. Small molecule inhibitors or recombinant proteins can be added to the culture media to assess the role of different axon guidance pathways. This method has the advantages of maintaining more of the local microenvironment through which axons traverse, not axotomizing the growing axons, and assessing the axons at multiple points along their trajectory. It can also identify effects on specific subsets of axons. For example, inhibition of CXCR4 causes axons still within the midbrain to grow dorsally rather than ventrally, but axons that have already exited ventrally are not affected.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital; Department of Ophthalmology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital;
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital; F.M. Kirby Neurobiology Center, Boston Children's Hospital
| | - Elaine H Nguyen
- Department of Ophthalmology, Boston Children's Hospital; F.M. Kirby Neurobiology Center, Boston Children's Hospital
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital; Department of Ophthalmology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital; Department of Neurology, Boston Children's Hospital; Department of Neurology, Harvard Medical School; Howard Hughes Medical Institute
| |
Collapse
|
17
|
Lu C, Shi X, Allen A, Baez-Nieto D, Nikish A, Sanjana NE, Pan JQ. Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons. FASEB J 2019; 33:5287-5299. [PMID: 30698461 PMCID: PMC6436650 DOI: 10.1096/fj.201801110rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/02/2019] [Indexed: 01/19/2023]
Abstract
Overexpression of mouse neurogenin ( Neurog) 2 alone or in combination with mouse Neurog2/1 in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can rapidly produce high-yield excitatory neurons. Here, we report a detailed characterization of human neuronal networks induced by the expression of human NEUROG2 together with human NEUROG2/1 in hESCs using molecular, cellular, and electrophysiological measurements over 60 d after induction. Both excitatory synaptic transmission and network firing activity increased over time. Strikingly, inhibitory synaptic transmission and GABAergic cells were identified from NEUROG2/1 induced neurons (iNs). To illustrate the application of such iNs, we demonstrated that the heterozygous knock out of SCN2A, whose loss-of-function mutation is strongly implicated in autism risk, led to a dramatic reduction in network activity in the NEUROG2/1 iNs. Our findings not only extend our understanding of the NEUROG2/1-induced human neuronal network but also substantiate NEUROG2/1 iNs as an in vitro system for modeling neuronal and functional deficits on a human genetic background.-Lu, C., Shi, X., Allen, A., Baez-Nieto, D., Nikish, A., Sanjana, N. E., Pan, J. Q. Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- Congyi Lu
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
- New York Genome Center, New York, New York, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Department of Biology, New York University, New York, New York, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Alexandria Nikish
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Neville E. Sanjana
- New York Genome Center, New York, New York, USA
- Department of Biology, New York University, New York, New York, USA
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
García-Peña CM, Ávila-González D, Miquelajáuregui A, Lozano-Flores C, Mastick GS, Tamariz E, Varela-Echavarría A. Neurophilic Descending Migration of Dorsal Midbrain Neurons Into the Hindbrain. Front Neuroanat 2018; 12:96. [PMID: 30483071 PMCID: PMC6243072 DOI: 10.3389/fnana.2018.00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
Stereotypic cell migrations in the developing brain are fundamental for the proper patterning of brain regions and formation of neural networks. In this work, we uncovered in the developing rat, a population of neurons expressing tyrosine hydroxylase (TH) that migrates posteriorly from the alar plate of the midbrain, in neurophilic interaction with axons of the mesencephalic nucleus of the trigeminal nerve. A fraction of this population was also shown to traverse the mid-hindbrain boundary, reaching the vicinity of the locus coeruleus (LC) in rhombomere 1 (r1). This migratory population, however, does not have a noradrenergic (NA) phenotype and, in keeping with its midbrain origin, expresses Otx2 which is down regulated upon migration into the hindbrain. The interaction with the trigeminal mesencephalic axons is necessary for the arrangement and distribution of migratory cells as these aspects are dramatically altered in whole embryo cultures upon disruption of trigeminal axon projection by interfering with DCC function. Moreover, in mouse embryos in an equivalent developmental stage, we detected a cell population that also migrates caudally within the midbrain apposed to mesencephalic trigeminal axons but that does not express TH; a fraction of this population expresses calbindin instead. Overall, our work identified TH-expressing neurons from the rat midbrain alar plate that migrate tangentially over long distances within the midbrain and into the hindbrain by means of a close interaction with trigeminal mesencephalic axons. A different migratory population in this region and also in mouse embryos revealed diversity among the cells that follow this descending migratory pathway.
Collapse
Affiliation(s)
- Claudia M García-Peña
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Daniela Ávila-González
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Amaya Miquelajáuregui
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Carlos Lozano-Flores
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Elisa Tamariz
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Alfredo Varela-Echavarría
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| |
Collapse
|
19
|
Chen L, Zhang YH, Zhang Z, Huang T, Cai YD. Inferring Novel Tumor Suppressor Genes with a Protein-Protein Interaction Network and Network Diffusion Algorithms. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:57-67. [PMID: 30069494 PMCID: PMC6068090 DOI: 10.1016/j.omtm.2018.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Extensive studies on tumor suppressor genes (TSGs) are helpful to understand the pathogenesis of cancer and design effective treatments. However, identifying TSGs using traditional experiments is quite difficult and time consuming. Developing computational methods to identify possible TSGs is an alternative way. In this study, we proposed two computational methods that integrated two network diffusion algorithms, including Laplacian heat diffusion (LHD) and random walk with restart (RWR), to search possible genes in the whole network. These two computational methods were LHD-based and RWR-based methods. To increase the reliability of the putative genes, three strict screening tests followed to filter genes obtained by these two algorithms. After comparing the putative genes obtained by the two methods, we designated twelve genes (e.g., MAP3K10, RND1, and OTX2) as common genes, 29 genes (e.g., RFC2 and GUCY2F) as genes that were identified only by the LHD-based method, and 128 genes (e.g., SNAI2 and FGF4) as genes that were inferred only by the RWR-based method. Some obtained genes can be confirmed as novel TSGs according to recent publications, suggesting the utility of our two proposed methods. In addition, the reported genes in this study were quite different from those reported in a previous one.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People’s Republic of China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Zhenghua Zhang
- Department of Clinical Oncology, Jing’an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing’An Branch), Shanghai 200040, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
- Corresponding author: Tao Huang, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
- Corresponding author: Yu-Dong Cai, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China.
| |
Collapse
|
20
|
Ozair MZ, Kirst C, van den Berg BL, Ruzo A, Rito T, Brivanlou AH. hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate. Cell Stem Cell 2018; 23:60-73.e6. [PMID: 29937203 DOI: 10.1016/j.stem.2018.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
Abstract
Cortical deep projection neurons (DPNs) are implicated in neurodevelopmental disorders. Although recent findings emphasize post-mitotic programs in projection neuron fate selection, the establishment of primate DPN identity during layer formation is not well understood. The subplate lies underneath the developing cortex and is a post-mitotic compartment that is transiently and disproportionately enlarged in primates in the second trimester. The evolutionary significance of subplate expansion, the molecular identity of its neurons, and its contribution to primate corticogenesis remain open questions. By modeling subplate formation with human pluripotent stem cells (hPSCs), we show that all classes of cortical DPNs can be specified from subplate neurons (SPNs). Post-mitotic WNT signaling regulates DPN class selection, and DPNs in the caudal fetal cortex appear to exclusively derive from SPNs. Our findings indicate that SPNs have evolved in primates as an important source of DPNs that contribute to cortical lamination prior to their known role in circuit formation.
Collapse
Affiliation(s)
- M Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Christoph Kirst
- Center for Studies in Physics and Biology and Kavli Neural Systems Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bastiaan L van den Berg
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098XH Amsterdam, the Netherlands
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tiago Rito
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
Ruiz-Reig N, Andrés B, Huilgol D, Grove EA, Tissir F, Tole S, Theil T, Herrera E, Fairén A. Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. Cereb Cortex 2018; 27:2841-2856. [PMID: 27178193 DOI: 10.1093/cercor/bhw126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Current address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Eloisa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Alfonso Fairén
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| |
Collapse
|
22
|
Frade-Pérez MD, Miquelajáuregui A, Varela-Echavarría A. Origin and Migration of Olfactory Cajal-Retzius Cells. Front Neuroanat 2017; 11:97. [PMID: 29163070 PMCID: PMC5671926 DOI: 10.3389/fnana.2017.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022] Open
Abstract
Early telencephalic development involves the migration of diverse cell types that can be identified by specific molecular markers. Most prominent among them are Cajal-Retzius (CR) cells that emanate mainly from the cortical hem and to a lesser extent from rostrolateral, septal and caudo-medial regions. One additional territory proposed to give rise to CR cells that migrate dorsally into the neocortex lies at the ventral pallium, although contradictory results question this notion. With the use of a cell-permeable fluorescent tracer in cultured embryos, we identified novel migratory paths of putative CR cells and other populations that originate from the rostrolateral telencephalon at its olfactory region. Moreover, extensive labeling on the lateral telencephalon along its rostro-caudal extent failed to reveal a dorsally-migrating CR cell population from the ventral pallium at the stages analyzed. Hence, this work reveals a novel olfactory CR cell migration and supports the idea that the ventral pallium, where diverse types of neurons converge, does not actually generate CR cells.
Collapse
Affiliation(s)
| | - Amaya Miquelajáuregui
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | |
Collapse
|
23
|
Huilgol D, Tole S. Cell migration in the developing rodent olfactory system. Cell Mol Life Sci 2016; 73:2467-90. [PMID: 26994098 PMCID: PMC4894936 DOI: 10.1007/s00018-016-2172-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
24
|
Barber M, Pierani A. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells. Dev Neurobiol 2015; 76:847-81. [PMID: 26581033 DOI: 10.1002/dneu.22363] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016.
Collapse
Affiliation(s)
- Melissa Barber
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France.,Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| | - Alessandra Pierani
- Institut Jacques-Monod, CNRS, Université Paris Diderot, Sorbonne Cité, Paris, France
| |
Collapse
|
25
|
Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 2015; 6:8896. [PMID: 26573335 PMCID: PMC4660208 DOI: 10.1038/ncomms9896] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
The developing dorsomedial telencephalon includes the medial pallium, which goes on to form the hippocampus. Generating a reliable source of human hippocampal tissue is an important step for cell-based research into hippocampus-related diseases. Here we show the generation of functional hippocampal granule- and pyramidal-like neurons from self-organizing dorsomedial telencephalic tissue using human embryonic stem cells (hESCs). First, we develop a hESC culture method that utilizes bone morphogenetic protein (BMP) and Wnt signalling to induce choroid plexus, the most dorsomedial portion of the telencephalon. Then, we find that titrating BMP and Wnt exposure allowed the self-organization of medial pallium tissues. Following long-term dissociation culture, these dorsomedial telencephalic tissues give rise to Zbtb20+/Prox1+ granule neurons and Zbtb20+/KA1+ pyramidal neurons, both of which were electrically functional with network formation. Thus, we have developed an in vitro model that recapitulates human hippocampus development, allowing the generation of functional hippocampal granule- and pyramidal-like neurons. In vitro differentiation of human pluripotent stem cells (hPSCs) has enabled the generation of neuroectodermal tissues. Here, Sakaguchi et al. use a modified neocortical induction method to generate functional hippocampal granule and pyramidal-like neurons, as well as dorsomedial telencephalic tissues from hPSCs.
Collapse
|
26
|
Miquelajáuregui A, Sandoval-Schaefer T, Martínez-Armenta M, Pérez-Martínez L, Cárabez A, Zhao Y, Heide M, Alvarez-Bolado G, Varela-Echavarría A. LIM homeobox protein 5 (Lhx5) is essential for mamillary body development. Front Neuroanat 2015; 9:136. [PMID: 26578897 PMCID: PMC4621302 DOI: 10.3389/fnana.2015.00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 02/01/2023] Open
Abstract
The mamillary body (MM) is a group of hypothalamic nuclei related to memory and spatial navigation that interconnects hippocampal, thalamic, and tegmental regions. Here we demonstrate that Lhx5, a LIM-HD domain transcription factor expressed early in the developing posterior hypothalamus, is required for the generation of the MM and its derived tracts. The MM markers Foxb1, Sim2, and Lhx1 are absent in Lhx5 knock-out mice from early embryonic stages, suggesting abnormal specification of this region. This was supported by the absence of Nkx2.1 and expansion of Shh in the prospective mamillary area. Interestingly, we also found an ectopic domain expressing Lhx2 and Lhx9 along the anterio-posterior hypothalamic axis. Our results suggest that Lhx5 controls early aspects of hypothalamic development by regulating gene expression and cellular specification in the prospective MM.
Collapse
Affiliation(s)
- Amaya Miquelajáuregui
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Teresa Sandoval-Schaefer
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Miriam Martínez-Armenta
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Alfonso Cárabez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Yangu Zhao
- Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Michael Heide
- Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | | | - Alfredo Varela-Echavarría
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| |
Collapse
|
27
|
Mashanov VS, Zueva OR, García-Arrarás JE. Heterogeneous generation of new cells in the adult echinoderm nervous system. Front Neuroanat 2015; 9:123. [PMID: 26441553 PMCID: PMC4585025 DOI: 10.3389/fnana.2015.00123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/29/2015] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis, generation of new functional cells in the mature central nervous system (CNS), has been documented in a number of diverse organisms, ranging from humans to invertebrates. However, the origin and evolution of this phenomenon is still poorly understood for many of the key phylogenetic groups. Echinoderms are one such phylum, positioned as a sister group to chordates within the monophyletic clade Deuterostomia. They are well known for the ability of their adult organs, including the CNS, to completely regenerate after injury. Nothing is known, however, about production of new cells in the nervous tissue under normal physiological conditions in these animals. In this study, we show that new cells are continuously generated in the mature radial nerve cord (RNC) of the sea cucumber Holothuria glaberrima. Importantly, this neurogenic activity is not evenly distributed, but is significantly more extensive in the lateral regions of the RNC than along the midline. Some of the new cells generated in the apical region of the ectoneural neuroepithelium leave their place of origin and migrate basally to populate the neural parenchyma. Gene expression analysis showed that generation of new cells in the adult sea cucumber CNS is associated with transcriptional activity of genes known to be involved in regulation of various aspects of neurogenesis in other animals. Further analysis of one of those genes, the transcription factor Myc, showed that it is expressed, in some, but not all radial glial cells, suggesting heterogeneity of this CNS progenitor cell population in echinoderms.
Collapse
Affiliation(s)
| | - Olga R Zueva
- Department of Biology, University of Puerto Rico Rio Piedras, PR, USA
| | | |
Collapse
|
28
|
Heide M, Zhang Y, Zhou X, Zhao T, Miquelajáuregui A, Varela-Echavarría A, Alvarez-Bolado G. Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse. Front Neuroanat 2015; 9:113. [PMID: 26321924 PMCID: PMC4536661 DOI: 10.3389/fnana.2015.00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/30/2015] [Indexed: 12/30/2022] Open
Abstract
Acquisition of specific neuronal identity by individual brain nuclei is a key step in brain development. However, how the mechanisms that confer neuronal identity are integrated with upstream regional specification networks is still mysterious. Expression of Sonic hedgehog (Shh), is required for hypothalamic specification and is later downregulated by Tbx3 to allow for the differentiation of the tubero-mamillary region. In this region, the mamillary body (MBO), is a large neuronal aggregate essential for memory formation. To clarify how MBO identity is acquired after regional specification, we investigated Lhx5, a transcription factor with restricted MBO expression. We first generated a hypomorph allele of Lhx5—in homozygotes, the MBO disappears after initial specification. Intriguingly, in these mutants, Tbx3 was downregulated and the Shh expression domain abnormally extended. Microarray analysis and chromatin immunoprecipitation indicated that Lhx5 appears to be involved in Shh downregulation through Tbx3 and activates several MBO-specific regulator and effector genes. Finally, by tracing the caudal hypothalamic cell lineage we show that, in the Lhx5 mutant, at least some MBO cells are present but lack characteristic marker expression. Our work shows how the Lhx5 locus contributes to integrate regional specification pathways with downstream acquisition of neuronal identity in the MBO.
Collapse
Affiliation(s)
- Michael Heide
- Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | - Yuanfeng Zhang
- Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | - Xunlei Zhou
- Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | - Tianyu Zhao
- Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital, Chongqing Medical University Chongqing, China
| | - Amaya Miquelajáuregui
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Alfredo Varela-Echavarría
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | | |
Collapse
|
29
|
Sun L, Chen F, Peng G. Conserved Noncoding Sequences Regulate lhx5 Expression in the Zebrafish Forebrain. PLoS One 2015; 10:e0132525. [PMID: 26147098 PMCID: PMC4492605 DOI: 10.1371/journal.pone.0132525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
The LIM homeobox family protein Lhx5 plays important roles in forebrain development in the vertebrates. The lhx5 gene exhibits complex temporal and spatial expression patterns during early development but its transcriptional regulation mechanisms are not well understood. Here, we have used transgenesis in zebrafish in order to define regulatory elements that drive lhx5 expression in the forebrain. Through comparative genomic analysis we identified 10 non-coding sequences conserved in five teleost species. We next examined the enhancer activities of these conserved non-coding sequences with Tol2 transposon mediated transgenesis. We found a proximately located enhancer gave rise to robust reporter EGFP expression in the forebrain regions. In addition, we identified an enhancer located at approximately 50 kb upstream of lhx5 coding region that is responsible for reporter gene expression in the hypothalamus. We also identify an enhancer located approximately 40 kb upstream of the lhx5 coding region that is required for expression in the prethalamus (ventral thalamus). Together our results suggest discrete enhancer elements control lhx5 expression in different regions of the forebrain.
Collapse
Affiliation(s)
- Liu Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Fengjiao Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Gang Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
30
|
Molnár Z, Kaas JH, de Carlos JA, Hevner RF, Lein E, Němec P. Evolution and development of the mammalian cerebral cortex. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:126-39. [PMID: 24776993 PMCID: PMC4440552 DOI: 10.1159/000357753] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of the brain. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals, which helps to elucidate how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration whereas others migrate radially. A number of recent studies have begun to characterize the chick, mouse and human and nonhuman primate cortical transcriptome to help us understand how gene expression relates to the development and anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
31
|
Radial Glia, the Keystone of the Development of the Hippocampal Dentate Gyrus. Mol Neurobiol 2014; 51:131-41. [DOI: 10.1007/s12035-014-8692-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
|
32
|
Currie KW, Pearson BJ. Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians. Development 2013; 140:3577-88. [PMID: 23903188 DOI: 10.1242/dev.098590] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In contrast to most adult organisms, freshwater planarians can regenerate any injured body part, including their entire nervous system. This allows for the analysis of genes required for both the maintenance and regeneration of specific neural subtypes. In addition, the loss of specific neural subtypes may uncover previously unknown behavioral roles for that neural population in the context of the adult animal. Here we show that two homeodomain transcription factor homologs, Smed-lhx1/5-1 and Smed-pitx, are required for the maintenance and regeneration of serotonergic neurons in planarians. When either lhx1/5-1 or pitx was knocked down by RNA interference, the expression of multiple canonical markers for serotonergic neurons was lost. Surprisingly, the loss of serotonergic function uncovered a role for these neurons in the coordination of motile cilia on the ventral epidermis of planarians that are required for their nonmuscular gliding locomotion. Finally, we show that in addition to its requirement in serotonergic neurons, Smed-pitx is required for proper midline patterning during regeneration, when it is required for the expression of the midline-organizing molecules Smed-slit in the anterior and Smed-wnt1 in the posterior.
Collapse
Affiliation(s)
- Ko W Currie
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada
| | | |
Collapse
|
33
|
Berletch JB, Deng X, Nguyen DK, Disteche CM. Female bias in Rhox6 and 9 regulation by the histone demethylase KDM6A. PLoS Genet 2013; 9:e1003489. [PMID: 23658530 PMCID: PMC3642083 DOI: 10.1371/journal.pgen.1003489] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 03/18/2013] [Indexed: 12/20/2022] Open
Abstract
The Rhox cluster on the mouse X chromosome contains reproduction-related homeobox genes expressed in a sexually dimorphic manner. We report that two members of the Rhox cluster, Rhox6 and 9, are regulated by de-methylation of histone H3 at lysine 27 by KDM6A, a histone demethylase with female-biased expression. Consistent with other homeobox genes, Rhox6 and 9 are in bivalent domains prior to embryonic stem cell differentiation and thus poised for activation. In female mouse ES cells, KDM6A is specifically recruited to Rhox6 and 9 for gene activation, a process inhibited by Kdm6a knockdown in a dose-dependent manner. In contrast, KDM6A occupancy at Rhox6 and 9 is low in male ES cells and knockdown has no effect on expression. In mouse ovary where Rhox6 and 9 remain highly expressed, KDM6A occupancy strongly correlates with expression. Our study implicates Kdm6a, a gene that escapes X inactivation, in the regulation of genes important in reproduction, suggesting that KDM6A may play a role in the etiology of developmental and reproduction-related effects of X chromosome anomalies.
Collapse
Affiliation(s)
- Joel B. Berletch
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Di Kim Nguyen
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Christine M. Disteche
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nat Neurosci 2013; 16:157-65. [PMID: 23292680 DOI: 10.1038/nn.3297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/05/2012] [Indexed: 11/09/2022]
Abstract
The accessory olfactory bulb (AOB) is a critical olfactory structure that has been implicated in mediating social behavior. It receives input from the vomeronasal organ and projects to targets in the amygdaloid complex. Its anterior and posterior components (aAOB and pAOB) display molecular, connectional and functional segregation in processing reproductive and defensive and aggressive behaviors, respectively. We observed a dichotomy in the development of the projection neurons of the aAOB and pAOB in mice. We found that they had distinct sites of origin and that different regulatory molecules were required for their specification and migration. aAOB neurons arose locally in the rostral telencephalon, similar to main olfactory bulb neurons. In contrast, pAOB neurons arose caudally, from the neuroepithelium of the diencephalic-telencephalic boundary, from which they migrated rostrally to reach their destination. This unusual origin and migration is conserved in Xenopus, providing an insight into the origin of a key component of this system in evolution.
Collapse
|
35
|
Saulnier A, Keruzore M, De Clercq S, Bar I, Moers V, Magnani D, Walcher T, Filippis C, Kricha S, Parlier D, Viviani L, Matson CK, Nakagawa Y, Theil T, Götz M, Mallamaci A, Marine JC, Zarkower D, Bellefroid EJ. The doublesex homolog Dmrt5 is required for the development of the caudomedial cerebral cortex in mammals. ACTA ACUST UNITED AC 2012; 23:2552-67. [PMID: 22923088 DOI: 10.1093/cercor/bhs234] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regional patterning of the cerebral cortex is initiated by morphogens secreted by patterning centers that establish graded expression of transcription factors within cortical progenitors. Here, we show that Dmrt5 is expressed in cortical progenitors in a high-caudomedial to low-rostrolateral gradient. In its absence, the cortex is strongly reduced and exhibits severe abnormalities, including agenesis of the hippocampus and choroid plexus and defects in commissural and thalamocortical tracts. Loss of Dmrt5 results in decreased Wnt and Bmp in one of the major telencephalic patterning centers, the dorsomedial telencephalon, and in a reduction of Cajal-Retzius cells. Expression of the dorsal midline signaling center-dependent transcription factors is downregulated, including Emx2, which promotes caudomedial fates, while the rostral determinant Pax6, which is inhibited by midline signals, is upregulated. Consistently, Dmrt5(-/-) brains exhibit patterning defects with a dramatic reduction of the caudomedial cortex. Dmrt5 is increased upon the activation of Wnt signaling and downregulated in Gli3(xt/xt) mutants. We conclude that Dmrt5 is a novel Wnt-dependent transcription factor required for early cortical development and that it may regulate initial cortical patterning by promoting dorsal midline signaling center formation and thereby helping to establish the graded expression of the other transcription regulators of cortical identity.
Collapse
Affiliation(s)
- Amandine Saulnier
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gu X, Liu B, Wu X, Yan Y, Zhang Y, Wei Y, Pleasure SJ, Zhao C. Inducible genetic lineage tracing of cortical hem derived Cajal-Retzius cells reveals novel properties. PLoS One 2011; 6:e28653. [PMID: 22174859 PMCID: PMC3236758 DOI: 10.1371/journal.pone.0028653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/12/2011] [Indexed: 12/14/2022] Open
Abstract
During cortical development, Cajal-Retzius (CR) cells are among the earliest-born subclasses of neurons. These enigmatic neurons play an important role in cortical development through their expression of the extracellular protein, reelin. CR cells arise from discrete sources within the telencephalon, including the pallial-subpallial border and the medial (cortical hem) regions of the pallium. Combined evidence suggests that CR cells derived from distinct origins may have different distributions and functions. By tracing CR cells derived from the cortical hem using the inducible Cre transgenic mouse tool, Frizzled 10-CreER™, we examined the specific properties of hem-derived CR cells during cortical development. Our results show that the progenitor zone for later production of CR cells from the hem can be specifically marked as early as embryonic day 6.5 (E6.5), a pre-neural period. Moreover, using our Cre line, we found that some hem-derived CR cells migrated out along the fimbrial radial glial scaffold, which was also derived from the cortical hem, and preferentially settled in the hippocampal marginal zone, which indicated specific roles for hem-derived CR cells in hippocampal development.
Collapse
Affiliation(s)
- Xiaochun Gu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Yan
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yiquan Wei
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Samuel J. Pleasure
- Department of Neurology, Programs in Neuroscience, Developmental Biology and Biomedical Sciences, San Francisco, California, United States of America
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, Jiangsu, People's Republic of China
- * E-mail:
| |
Collapse
|
37
|
Dixit R, Zimmer C, Waclaw RR, Mattar P, Shaker T, Kovach C, Logan C, Campbell K, Guillemot F, Schuurmans C. Ascl1 Participates in Cajal–Retzius Cell Development in the Neocortex. Cereb Cortex 2011; 21:2599-611. [DOI: 10.1093/cercor/bhr046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|