1
|
Schwarz D, Le Marois M, Sturm V, Peters AS, Longuespée R, Helm D, Schneider M, Eichmüller B, Hidmark AS, Fischer M, Kender Z, Schwab C, Hausser I, Weis J, Dihlmann S, Böckler D, Bendszus M, Heiland S, Herzig S, Nawroth PP, Szendroedi J, Fleming T. Exploring Structural and Molecular Features of Sciatic Nerve Lesions in Diabetic Neuropathy: Unveiling Pathogenic Pathways and Targets. Diabetes 2025; 74:65-74. [PMID: 39418320 DOI: 10.2337/db24-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Lesioned fascicles (LFs) in the sciatic nerves of individuals with diabetic neuropathy (DN) correlate with clinical symptom severity. This study aimed to characterize the structural and molecular composition of these lesions to better understand DN pathogenesis. Sciatic nerves from amputees with and without type 2 diabetes (T2D) were examined using ex vivo magnetic resonance neurography, in vitro imaging, and proteomic analysis. Lesions were only found in T2D donors and exhibited significant structural abnormalities, including axonal degeneration, demyelination, and impaired blood-nerve barrier (BNB). Although non-LFs from T2D donors showed activation of neuroprotective pathways, LFs lacked this response and instead displayed increased complement activation via the classical pathway. The detection of liver-derived acute-phase proteins suggests that BNB disruption facilitates harmful interorgan communication between the liver and nerves. These findings reveal key molecular mechanisms contributing to DN and highlight potential targets for therapeutic intervention. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maxime Le Marois
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas S Peters
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Vascular Biomaterial Bank Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- German Cancer Research Center (DKFZ) Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Eichmüller
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Asa S Hidmark
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
| | - Constantin Schwab
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ingrid Hausser
- Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Weis
- Institute of Neuropathology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, University Hospital, Aachen, Germany
| | - Susanne Dihlmann
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dittmar Böckler
- Department for Vascular Surgery and Endovascular Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
- Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| | - Peter P Nawroth
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Szendroedi
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Fleming
- Department for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Ellsworth CR, Chen Z, Xiao MT, Qian C, Wang C, Khatun MS, Liu S, Islamuddin M, Maness NJ, Halperin JA, Blair RV, Kolls JK, Tomlinson S, Qin X. Enhanced complement activation and MAC formation accelerates severe COVID-19. Cell Mol Life Sci 2024; 81:405. [PMID: 39284944 PMCID: PMC11405604 DOI: 10.1007/s00018-024-05430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Emerging evidence indicates that activation of complement system leading to the formation of the membrane attack complex (MAC) plays a detrimental role in COVID-19. However, their pathogenic roles have never been experimentally investigated before. We used three knock out mice strains (1. C3-/-; 2. C7-/-; and 3. Cd59ab-/-) to evaluate the role of complement in severe COVID-19 pathogenesis. C3 deficient mice lack a key common component of all three complement activation pathways and are unable to generate C3 and C5 convertases. C7 deficient mice lack a complement protein needed for MAC formation. Cd59ab deficient mice lack an important inhibitor of MAC formation. We also used anti-C5 antibody to block and evaluate the therapeutic potential of inhibiting MAC formation. We demonstrate that inhibition of complement activation (in C3-/-) and MAC formation (in C3-/-. C7-/-, and anti-C5 antibody) attenuates severe COVID-19; whereas enhancement of MAC formation (Cd59ab-/-) accelerates severe COVID-19. The degree of MAC but not C3 deposits in the lungs of C3-/-, C7-/- mice, and Cd59ab-/- mice as compared to their control mice is associated with the attenuation or acceleration of SARS-CoV-2-induced disease. Further, the lack of terminal complement activation for the formation of MAC in C7 deficient mice protects endothelial dysfunction, which is associated with the attenuation of diseases and pathologic changes. Our results demonstrated the causative effect of MAC in severe COVID-19 and indicate a potential avenue for modulating the complement system and MAC formation in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Calder R Ellsworth
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zheng Chen
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mark T Xiao
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chaosi Qian
- Department of Microbiology and Immunology, Medical University of South Carolina, and Ralph Johnson VA Medical Center, Charleston, SC, USA
| | - Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mst Shamima Khatun
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shumei Liu
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mohammad Islamuddin
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jose A Halperin
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert V Blair
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, and Ralph Johnson VA Medical Center, Charleston, SC, USA
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Division of Comparative Pathology, Tulane National Primate Research Center, Health Sciences Campus, 18703, Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
3
|
Green-Fulgham SM, Lacagnina MJ, Willcox KF, Li J, Harland ME, Ciena AP, Rocha IRC, Ball JB, Dreher RA, Zuberi YA, Dragavon JM, Chacur M, Maier SF, Watkins LR, Grace PM. Voluntary wheel running prevents formation of membrane attack complexes and myelin degradation after peripheral nerve injury. Brain Behav Immun 2024; 115:419-431. [PMID: 37924957 PMCID: PMC10842182 DOI: 10.1016/j.bbi.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Regular aerobic activity is associated with a reduced risk of chronic pain in humans and rodents. Our previous studies in rodents have shown that prior voluntary wheel running can normalize redox signaling at the site of peripheral nerve injury, attenuating subsequent neuropathic pain. However, the full extent of neuroprotection offered by voluntary wheel running after peripheral nerve injury is unknown. Here, we show that six weeks of voluntary wheel running prior to chronic constriction injury (CCI) reduced the terminal complement membrane attack complex (MAC) at the sciatic nerve injury site. This was associated with increased expression of the MAC inhibitor CD59. The levels of upstream complement components (C3) and their inhibitors (CD55, CR1 and CFH) were altered by CCI, but not increased by voluntary wheel running. Since MAC can degrade myelin, which in turn contributes to neuropathic pain, we evaluated myelin integrity at the sciatic nerve injury site. We found that the loss of myelinated fibers and decreased myelin protein which occurs in sedentary rats following CCI was not observed in rats with prior running. Substitution of prior voluntary wheel running with exogenous CD59 also attenuated mechanical allodynia and reduced MAC deposition at the nerve injury site, pointing to CD59 as a critical effector of the neuroprotective and antinociceptive actions of prior voluntary wheel running. This study links attenuation of neuropathic pain by prior voluntary wheel running with inhibition of MAC and preservation of myelin integrity at the sciatic nerve injury site.
Collapse
Affiliation(s)
- Suzanne M Green-Fulgham
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Michael J Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson Pain Research Consortium, Houston, TX 77030, USA
| | - Kendal F Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson Pain Research Consortium, Houston, TX 77030, USA
| | - Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson Pain Research Consortium, Houston, TX 77030, USA
| | - Michael E Harland
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, São Paulo, Brazil
| | - Igor R Correia Rocha
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA; Laboratory of Neuroanatomy Functional of Pain, Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jayson B Ball
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Renee A Dreher
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Younus A Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson Pain Research Consortium, Houston, TX 77030, USA
| | - Joseph M Dragavon
- Advanced Light Microscopy Core, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Marucia Chacur
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA; Laboratory of Neuroanatomy Functional of Pain, Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Steven F Maier
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson Pain Research Consortium, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Li HY, Fu SW, Wu JC, Li ZH, Xu MY. Vsig4 + resident single-Kupffer cells improve hepatic inflammation and fibrosis in NASH. Inflamm Res 2023; 72:669-682. [PMID: 36745210 DOI: 10.1007/s00011-023-01696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/28/2022] [Accepted: 01/20/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of macrophages in the pathogenesis of nonalcoholic steatohepatitis (NASH) is complex and unclear. METHODS Single-cell RNA sequencing was performed on nonparenchymal cells isolated from NASH and control mice. The expression of Vsig4+ macrophages was verified by qPCR, flow cytometry and immunohistochemistry. Primary hepatic macrophages were cocultured with primary hepatocytes or hepatic stellate cells (LX2) cells by Transwell to detect immunofluorescence and oil red O staining. RESULTS Two main single macrophage subsets were identified that exhibited a significant change in cell percentage when NASH occurred: resident Kupffer cells (KCs; Cluster 2) and lipid-associated macrophages (LAMs; Cluster 13). Nearly 82% of resident single KCs in Cluster 2 specifically expressed Cd163, and an inhibited subgroup of Cd163+ resident single-KCs was suggested to be protective against NASH. Similar to Cd163, Vsig4 was both enriched in and specific to Cluster 2. The percentage of Vsig4+-KCs was significantly decreased in NASH in vivo and in vitro. Hepatocytes and hepatic stellate cells produced less lipid droplet accumulation, proinflammatory protein (TNF-α) and profibrotic protein (α-SMA) in response to coculture with Vsig4+-KCs than in those cocultured with lipotoxic KCs. CONCLUSIONS A subgroup of Vsig4+ resident single-KCs was shown to improve hepatic inflammation and fibrosis in NASH.
Collapse
Affiliation(s)
- Hui-Yi Li
- Department of Gastroenterology, School of Medicine, Shanghai East Hospital, Tongji University, No. 1800, Yuntai Rd, Shanghai, 310115, China
| | - Seng-Wang Fu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jun-Cheng Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, China
| | - Zheng-Hong Li
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Rd, Shanghai, 200092, China.
| | - Ming-Yi Xu
- Department of Gastroenterology, School of Medicine, Shanghai East Hospital, Tongji University, No. 1800, Yuntai Rd, Shanghai, 310115, China.
| |
Collapse
|
5
|
Michailidou I, Vreijling J, Rumpf M, Loos M, Koopmans B, Vlek N, Straat N, Agaser C, Kuipers TB, Mei H, Baas F, Fluiter K. The systemic inhibition of the terminal complement system reduces neuroinflammation but does not improve motor function in mouse models of CMT1A with overexpressed PMP22. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100077. [PMID: 36926597 PMCID: PMC10011818 DOI: 10.1016/j.crneur.2023.100077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 02/07/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most prevalent hereditary demyelinating neuropathy. This autosomal, dominantly inherited disease is caused by a duplication on chromosome 17p which includes the peripheral myelin protein 22 (PMP22) gene. There is clinical evidence that the disability in CMT1A is to a large extend due to axonal damage rather than demyelination. Over-expression of PMP22 is recently thought to impede cholesterol trafficking causing a total shutdown of local cholesterol and lipid synthesis in the Schwann cells, thus disturbing their ability to remyelinate. But there is a large variety in disease burden between CMT1A patients with the same genetic defect, indicating the presence of modifying factors that affect disease severity. One of these potential factors is the immune system. Several reports have described patients with co-occurrence of CMT1A with chronic inflammatory demyelinating disease or Guillain-Barré syndrome. We have previously shown in multiple animal models that the innate immune system and specifically the terminal complement system is a driver of inflammatory demyelination. To test the contribution of the terminal complement system to neuroinflammation and disease progression in CMT1A, we inhibited systemic complement C6 in two transgenic mouse models for CMT1A, the C3-PMP22 and C3-PMP22 c-JunP0Cre models. Both models over-express human PMP22, and one (C3-PMP22 c-JunP0Cre) also has a Schwann cell-specific knockout of c-Jun, a crucial regulator of myelination controlling autophagy. We found that systemic inhibition of C6 using antisense oligonucleotides affects the neuroinflammation, Rho GTPase and ERK/MAPK signalling pathways in the CMT1A mouse models. The cholesterol synthesis pathway remained unaffected. Analysis of motor function during treatment with C6 antisense oligonucleotides did not reveal any significant improvement in the CMT1A mouse models. This study shows that the contribution of the terminal complement system to progressive loss of motor function in the CMT1A mouse models tested is limited.
Collapse
Affiliation(s)
- Iliana Michailidou
- Dept of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jeroen Vreijling
- Dept of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Matthijs Rumpf
- Dept of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Maarten Loos
- Sylics (Synaptologics B.V.), Bilthoven, the Netherlands
| | | | - Nina Vlek
- Sylics (Synaptologics B.V.), Bilthoven, the Netherlands
| | - Nina Straat
- Sylics (Synaptologics B.V.), Bilthoven, the Netherlands
| | - Cedrick Agaser
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Thomas B Kuipers
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Frank Baas
- Dept of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Kees Fluiter
- Dept of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
6
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Zhou Z, Wu J, Yang Y, Gao P, Wang L, Wu Z. Hepcidin as a prognostic biomarker in clear cell renal cell carcinoma. Am J Cancer Res 2022; 12:4120-4139. [PMID: 36225649 PMCID: PMC9548002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignancy of urologic neoplasms. Hepcidin is a pivotal modulator of iron metabolism involved in human cancers; however, the biological significance of hepcidin in ccRCC remains to be fully understood. Therefore, in this study, we evaluated the expression profiles of hepcidin in ccRCC from several public databases and found that hepcidin expression was upregulated in ccRCC, which was further validated in ccRCC cell lines, clinical samples, and tissue microarray (TMA) quantitative real-time PCR and immunohistochemistry. In addition, we found that the expression level of hepcidin was correlated with the age, T stage and pathologic stage of patients. Furthermore, hepcidin promoter methylation was significantly associated with the worse poor clinical parameters of ccRCC patients, and hepcidin was an independent prognostic factor. Mechanistically, enrichment analysis revealed that hepcidin participated in the immune-related and metabolism-related pathways. Hepcidin was positively correlated with not only immune infiltration and immune checkpoints but also tumor mutation burden and cytotoxic T lymphocyte. Finally, we validated the positive correlation of hepcidin with the marker of macrophage (CD68) in the TMA. Our findings provide insights into understanding the function and its underlying mechanism of hepcidin in ccRCC and suggest that hepcidin might serve as a potential predictive biomarker of response to immunotherapy and the prognosis of patients with ccRCC.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Urology, Huashan Hospital, Fudan UniversityShanghai 200040, PR China
- Institute of Urology, Fudan UniversityShanghai 200040, PR China
| | - Jiajin Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, PR China
| | - Yuanyuan Yang
- Department of Urology, Huashan Hospital, Fudan UniversityShanghai 200040, PR China
- Institute of Urology, Fudan UniversityShanghai 200040, PR China
| | - Peng Gao
- Department of Urology, Huashan Hospital, Fudan UniversityShanghai 200040, PR China
- Institute of Urology, Fudan UniversityShanghai 200040, PR China
| | - Lujia Wang
- Department of Urology, Huashan Hospital, Fudan UniversityShanghai 200040, PR China
- Institute of Urology, Fudan UniversityShanghai 200040, PR China
| | - Zhong Wu
- Department of Urology, Huashan Hospital, Fudan UniversityShanghai 200040, PR China
- Institute of Urology, Fudan UniversityShanghai 200040, PR China
| |
Collapse
|
8
|
Gytz Olesen H, Michailidou I, Zelek WM, Vreijling J, Ruizendaal P, de Klein F, Marquart JA, Kuipers TB, Mei H, Zhang Y, Ahasan M, Johnson KK, Wang Y, Morgan BP, van Dijk M, Fluiter K, Andersen GR, Baas F. Development, Characterization, and in vivo Validation of a Humanized C6 Monoclonal Antibody that Inhibits the Membrane Attack Complex. J Innate Immun 2022; 15:16-36. [PMID: 35551129 PMCID: PMC10643903 DOI: 10.1159/000524587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
Damage and disease of nerves activates the complement system. We demonstrated that activation of the terminal pathway of the complement system leads to the formation of the membrane attack complex (MAC) and delays regeneration in the peripheral nervous system. Animals deficient in the complement component C6 showed improved recovery after neuronal trauma. Thus, inhibitors of the MAC might be of therapeutic use in neurological disease. Here, we describe the development, structure, mode of action, and properties of a novel therapeutic monoclonal antibody, CP010, against C6 that prevents formation of the MAC in vivo. The monoclonal antibody is humanized and specific for C6 and binds to an epitope in the FIM1-2 domain of human and primate C6 with sub-nanomolar affinity. Using biophysical and structural studies, we show that the anti-C6 antibody prevents the interaction between C6 and C5/C5b by blocking the C6 FIM1-2:C5 C345c axis. Systemic administration of the anti-C6 mAb caused complete depletion of free C6 in circulation in transgenic rats expressing human C6 and thereby inhibited MAC formation. The antibody prevented disease in experimental autoimmune myasthenia gravis and ameliorated relapse in chronic relapsing experimental autoimmune encephalomyelitis in human C6 transgenic rats. CP010 is a promising complement C6 inhibitor that prevents MAC formation. Systemic administration of this C6 monoclonal antibody has therapeutic potential in the treatment of neuronal disease.
Collapse
Affiliation(s)
- Heidi Gytz Olesen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, Denmark
| | | | - Wioleta M Zelek
- Division of Infection and Immunity and Dementia Research Institute, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | - Ferry de Klein
- Core Facility Genomics, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Thomas B Kuipers
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, LUMC, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, LUMC, Leiden, The Netherlands
| | - Yuchun Zhang
- Alexion, AstraZeneca Rare Disease, New Haven, Connecticut, USA
| | - Muhammad Ahasan
- Alexion, AstraZeneca Rare Disease, New Haven, Connecticut, USA
| | | | - Yi Wang
- Alexion, AstraZeneca Rare Disease, New Haven, Connecticut, USA
| | - B Paul Morgan
- Division of Infection and Immunity and Dementia Research Institute, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Kees Fluiter
- Department of Clinical Genetics, LUMC, Leiden, The Netherlands,
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, Denmark
| | - Frank Baas
- Department of Clinical Genetics, LUMC, Leiden, The Netherlands
- Complement Pharma BV, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Zhao XF, Huffman LD, Hafner H, Athaiya M, Finneran MC, Kalinski AL, Kohen R, Flynn C, Passino R, Johnson CN, Kohrman D, Kawaguchi R, Yang LJS, Twiss JL, Geschwind DH, Corfas G, Giger RJ. The injured sciatic nerve atlas (iSNAT), insights into the cellular and molecular basis of neural tissue degeneration and regeneration. eLife 2022; 11:80881. [PMID: 36515985 PMCID: PMC9829412 DOI: 10.7554/elife.80881] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Upon trauma, the adult murine peripheral nervous system (PNS) displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single-cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1 day, 3 days, and 7 days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac with a high glycolytic flux dominate the early injury response and rapidly give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood-nerve barrier, proliferation of endoneurial and perineurial stromal cells, and entry of opsonizing serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with Sarm1-/- mice, in which Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in Sarm1-/- mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new resource for neural tissue regeneration, reveals location- specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT): https://cdb-rshiny.med.umich.edu/Giger_iSNAT/.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Matthew C Finneran
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Corey Flynn
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - David Kohrman
- Kresge Hearing Institute, University of Michigan–Ann ArborAnn ArborUnited States
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Lynda JS Yang
- Department of Neurosurgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South CarolinaColumbiaUnited States
| | - Daniel H Geschwind
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States,Department of Human Genetics,David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States,Institute of Precision Health, University of California, Los AngelesLos AngelesUnited States
| | - Gabriel Corfas
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States,Kresge Hearing Institute, University of Michigan–Ann ArborAnn ArborUnited States,Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States,Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
10
|
Latov N. Immune mechanisms, the role of complement, and related therapies in autoimmune neuropathies. Expert Rev Clin Immunol 2021; 17:1269-1281. [PMID: 34751638 DOI: 10.1080/1744666x.2021.2002147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Autoimmune neuropathies have diverse presentations and underlying immune mechanisms. Demonstration of efficacy of therapeutic agents that inhibit the complement cascade would confirm the role of complement activation. AREAS COVERED A review of the pathophysiology of the autoimmune neuropathies, to identify those that are likely to be complement mediated. EXPERT OPINION Complement mediated mechanisms are implicated in the acute and chronic neuropathies associated with IgG or IgM antibodies that target the Myelin Associated Glycoprotein (MAG) or gangliosides in the peripheral nerves. Antibody and complement mechanisms are also suspected in the Guillain-Barré syndrome and chronic inflammatory demyelinating neuropathy, given the therapeutic response to plasmapheresis or intravenous immunoglobulins, even in the absence of an identifiable target antigen. Complement is unlikely to play a role in paraneoplastic sensory neuropathy associated with antibodies to HU/ANNA-1 given its intracellular localization. In chronic demyelinating neuropathy with anti-nodal/paranodal CNTN1, NFS-155, and CASPR1 antibodies, myotonia with anti-VGKC LGI1 or CASPR2 antibodies, or autoimmune autonomic neuropathy with anti-gAChR antibodies, the response to complement inhibitory agents would depend on the extent to which the antibodies exert their effects through complement dependent or independent mechanisms. Complement is also likely to play a role in Sjogren's, vasculitic, and cryoglobulinemic neuropathies.
Collapse
Affiliation(s)
- Norman Latov
- Department of Neurology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
11
|
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021; 9:660259. [PMID: 33898462 PMCID: PMC8060502 DOI: 10.3389/fcell.2021.660259] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
The central nervous system (CNS) has very limited capacity to regenerate after traumatic injury or disease. In contrast, the peripheral nervous system (PNS) has far greater capacity for regeneration. This difference can be partly attributed to variances in glial-mediated functions, such as axon guidance, structural support, secretion of growth factors and phagocytic activity. Due to their growth-promoting characteristic, transplantation of PNS glia has been trialed for neural repair. After peripheral nerve injuries, Schwann cells (SCs, the main PNS glia) phagocytose myelin debris and attract macrophages to the injury site to aid in debris clearance. One peripheral nerve, the olfactory nerve, is unique in that it continuously regenerates throughout life. The olfactory nerve glia, olfactory ensheathing cells (OECs), are the primary phagocytes within this nerve, continuously clearing axonal debris arising from the normal regeneration of the nerve and after injury. In contrast to SCs, OECs do not appear to attract macrophages. SCs and OECs also respond to and phagocytose bacteria, a function likely critical for tackling microbial invasion of the CNS via peripheral nerves. However, phagocytosis is not always effective; inflammation, aging and/or genetic factors may contribute to compromised phagocytic activity. Here, we highlight the diverse roles of SCs and OECs with the focus on their phagocytic activity under physiological and pathological conditions. We also explore why understanding the contribution of peripheral glia phagocytosis may provide us with translational strategies for achieving axonal regeneration of the injured nervous system and potentially for the treatment of certain neurological diseases.
Collapse
Affiliation(s)
- Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mariyam Murtaza
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
12
|
Lacagnina MJ, Heijnen CJ, Watkins LR, Grace PM. Autoimmune regulation of chronic pain. Pain Rep 2021; 6:e905. [PMID: 33981931 PMCID: PMC8108590 DOI: 10.1097/pr9.0000000000000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic pain is an unpleasant and debilitating condition that is often poorly managed by existing therapeutics. Reciprocal interactions between the nervous system and the immune system have been recognized as playing an essential role in the initiation and maintenance of pain. In this review, we discuss how neuroimmune signaling can contribute to peripheral and central sensitization and promote chronic pain through various autoimmune mechanisms. These pathogenic autoimmune mechanisms involve the production and release of autoreactive antibodies from B cells. Autoantibodies-ie, antibodies that recognize self-antigens-have been identified as potential molecules that can modulate the function of nociceptive neurons and thereby induce persistent pain. Autoantibodies can influence neuronal excitability by activating the complement pathway; by directly signaling at sensory neurons expressing Fc gamma receptors, the receptors for the Fc fragment of immunoglobulin G immune complexes; or by binding and disrupting ion channels expressed by nociceptors. Using examples primarily from rheumatoid arthritis, complex regional pain syndrome, and channelopathies from potassium channel complex autoimmunity, we suggest that autoantibody signaling at the central nervous system has therapeutic implications for designing novel disease-modifying treatments for chronic pain.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Morgan BP, Gommerman JL, Ramaglia V. An "Outside-In" and "Inside-Out" Consideration of Complement in the Multiple Sclerosis Brain: Lessons From Development and Neurodegenerative Diseases. Front Cell Neurosci 2021; 14:600656. [PMID: 33488361 PMCID: PMC7817777 DOI: 10.3389/fncel.2020.600656] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The last 15 years have seen an explosion of new findings on the role of complement, a major arm of the immune system, in the central nervous system (CNS) compartment including contributions to cell migration, elimination of synapse during development, aberrant synapse pruning in neurologic disorders, damage to nerve cells in autoimmune diseases, and traumatic injury. Activation of the complement system in multiple sclerosis (MS) is typically thought to occur as part of a primary (auto)immune response from the periphery (the outside) against CNS antigens (the inside). However, evidence of local complement production from CNS-resident cells, intracellular complement functions, and the more recently discovered role of early complement components in shaping synaptic circuits in the absence of inflammation opens up the possibility that complement-related sequelae may start and finish within the brain itself. In this review, the complement system will be introduced, followed by evidence that implicates complement in shaping the developing, adult, and normal aging CNS as well as its contribution to pathology in neurodegenerative conditions. Discussion of data supporting "outside-in" vs. "inside-out" roles of complement in MS will be presented, concluded by thoughts on potential approaches to therapies targeting specific elements of the complement system.
Collapse
Affiliation(s)
- B. Paul Morgan
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | | | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Su D, Hooshmand MJ, Galvan MD, Nishi RA, Cummings BJ, Anderson AJ. Complement C6 deficiency exacerbates pathophysiology after spinal cord injury. Sci Rep 2020; 10:19500. [PMID: 33177623 PMCID: PMC7659012 DOI: 10.1038/s41598-020-76441-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Historically, the membrane attack complex, composed of complement components C5b-9, has been connected to lytic cell death and implicated in secondary injury after a CNS insult. However, studies to date have utilized either non-littermate control rat models, or mouse models that lack significant C5b-9 activity. To investigate what role C5b-9 plays in spinal cord injury and recovery, we generated littermate PVG C6 wildtype and deficient rats and tested functional and histological recovery after moderate contusion injury using the Infinite Horizon Impactor. We compare the effect of C6 deficiency on recovery of locomotor function and histological injury parameters in PVG rats under two conditions: (1) animals maintained as separate C6 WT and C6-D homozygous colonies; and (2) establishment of a heterozygous colony to generate C6 WT and C6-D littermate controls. The results suggest that maintenance of separate homozygous colonies is inadequate for testing the effect of C6 deficiency on locomotor and histological recovery after SCI, and highlight the importance of using littermate controls in studies involving genetic manipulation of the complement cascade.
Collapse
Affiliation(s)
- Diane Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Mitra J Hooshmand
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Manuel D Galvan
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Rebecca A Nishi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.
| |
Collapse
|
15
|
Identification of the Sixth Complement Component as Potential Key Genes in Hepatocellular Carcinoma via Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7042124. [PMID: 33083480 PMCID: PMC7556077 DOI: 10.1155/2020/7042124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
The present study is designed to determine potential target genes involved in hepatocellular carcinoma (HCC) and provide possible underlying mechanisms of action. Several studies (GSE112790, GSE87630, and GSE56140) from the GEO database looking at molecular characteristics in HCC were screened and analyzed by GEO2R, which led to the identification of a total of 93 differentially expressed genes (DEGs). From the protein–protein interaction (PPI) network, we selected 13 key genes with high degree of variability in expression in HCC. Expression of three key genes (NQO1, CYP2C9, and C6) presented with poor overall survival (OS) in HCC patients by UALCAN. C6, which is a complement component, was found by ONCOMINE and TIMER to have low expression in many solid cancers including HCC. Besides, Kaplan-Meier plotter and UALCAN database analysis to access diseases prognosis suggested that low expression of C6 is significantly related to worse OS in LIHC patients, especially in advanced HCC patients. Finally, the TIMER analysis suggested that the C6 expression showed significant negative correlation with infiltrating levels of six immune cells. The somatic copy number alterations (SCNAs) of C6 were associated with CD4+ T cell infiltration in HCC. Taken together, these results together identified C6 as a potential key gene in the diagnosis and prognosis of HCC.
Collapse
|
16
|
Copolymer Surfactant Poloxamer 188 Accelerates Post-axonotemetic Sciatic Nerve Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00174-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Bombeiro AL, Lima BHDM, Bonfanti AP, Oliveira ALRD. Improved mouse sciatic nerve regeneration following lymphocyte cell therapy. Mol Immunol 2020; 121:81-91. [PMID: 32172028 DOI: 10.1016/j.molimm.2020.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Traumatic injury to the peripheral nervous system (PNS) is the most common cause of acquired nerve damage and impairs the quality of life of patients. The success of nerve regeneration depends on distal stump degeneration, tissue clearance and remodeling, processes in which the immune system participates. We previously reported improved motor recovery in sciatic nerve crush mice following adoptive transfer of lymphocytes, which migrated to the lesion site. However, lymphocyte activity and the nerve tissue response remain unexplored. Thus, in the present study, we evaluated sciatic nerve regeneration and T cell polarization in lymphocyte recipient mice. Splenic lymphocytes were isolated from mice 14 days after sciatic nerve crush and transferred to axotomized animals three days postinjury. Immediate lymphocyte migration to the crushed nerve was confirmed by in vivo imaging. Phenotyping of T helper (Th) cells by flow cytometry revealed an increased frequency of the proinflammatory Th1 and Th17 cell subsets in recipient mice at 7 days and showed that the frequency of these cells remained unchanged for up to 21 days. Moreover, nerve regeneration was improved upon cell therapy, as shown by sustained immunolabeling of axons, Schwann cells, growth-associated protein 43 and BDNF from 14 to 28 days after lesion. Macrophage and IgG immunolabeling were also higher in cell-transferred mice at 14 and 21 days following nerve crush. Functionally, we observed better sensory recovery in the lymphocyte-treated group. Overall, our data demonstrate that enhanced inflammation early after nerve injury has beneficial effects for the regenerative process, improving tissue clearance and axonal regrowth towards the target organs.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | - Bruno Henrique de Melo Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | | |
Collapse
|
18
|
David Clark J, Tawfik VL, Tajerian M, Kingery WS. Autoinflammatory and autoimmune contributions to complex regional pain syndrome. Mol Pain 2018; 14:1744806918799127. [PMID: 30124090 PMCID: PMC6125849 DOI: 10.1177/1744806918799127] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a highly enigmatic syndrome typically developing after injury or surgery to a limb. Severe pain and disability are common among those with chronic forms of this condition. Accumulating evidence suggests that CRPS may involve both autoinflammatory and autoimmune components. In this review article, evidence for dysfunction of both the innate and adaptive immune systems in CRPS is presented. Findings from human studies in which cytokines and other inflammatory mediators were measured in the skin of affected limbs are discussed. Additional results from studies of mediator levels in animal models are evaluated in this context. Similarly, the evidence from human, animal, and translational studies of the production of autoantibodies and the potential targets of those antibodies is reviewed. Compelling evidence of autoinflammation in skin and muscle of the affected limb has been collected from CRPS patients and laboratory animals. Cytokines including IL-1β, IL-6, TNFα, and others are reliably identified during the acute phases of the syndrome. More recently, autoimmune contributions have been suggested by the discovery of self-directed pain-promoting IgG and IgM antibodies in CRPS patients and model animals. Both the autoimmune and the autoinflammatory components of CRPS appear to be regulated by neuropeptide-containing peripheral nerve fibers and the sympathetic nervous system. While CRPS displays a complex neuroimmunological pathogenesis, therapeutic interventions could be designed targeting autoinflammation, autoimmunity, or the neural support for these phenomena.
Collapse
Affiliation(s)
- J David Clark
- 1 Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivianne L Tawfik
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maral Tajerian
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- 3 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
19
|
Nahas AA, Lima MIDS, Goulart IMB, Goulart LR. Anti-Lipoarabinomannan-Specific Salivary IgA as Prognostic Marker for Leprosy Reactions in Patients and Cellular Immunity in Contacts. Front Immunol 2018; 9:1205. [PMID: 29904387 PMCID: PMC5990868 DOI: 10.3389/fimmu.2018.01205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/14/2018] [Indexed: 11/24/2022] Open
Abstract
Leprosy causes the most common peripheral neuropathy of infectious etiology, posing an important public health problem worldwide. Understanding the molecular and immunological mechanisms of nerve damage induced by M. leprae is mandatory to develop tools for early diagnosis and preventive measures. The phenolic glycolipid 1 (PGL-1) and lipoarabinomannan (LAM) antigens are major components of the bacterial surface and are implicated on leprosy immunopathogenesis and neural damage. Although the anti-PGL-1 serum IgM is highly used for operational classification of patients, the anti-LAM salivary IgA (sIgA) has not been investigated as diagnostic or prognostic marker in leprosy. Our aim was to assess the presence of anti-LAM sIgA in leprosy patients and their contacts in order to demonstrate whether such expression was associated with leprosy reactions. Distinct patterns of anti-LAM slgA were observed among groups, which were stratified into treatment-naïve patients (116), patients who completed multidrug therapy—MDT (39), household contacts (111), and endemic controls (11). Both anti-LAM sIgA and anti-PGL-I serum IgM presented similar prognostic odds toward leprosy reactions [(odds ratio) OR = 2.33 and 2.78, respectively]. Furthermore, the anti-LAM sIgA was highly correlated with multibacillary (MB) forms (OR = 4.15). Contrarily, among contacts the positive anti-LAM sIgA was highly correlated with those with positive Mitsuda test, suggesting that the presence of anti-LAM slgA may act as an indicator of cellular immunity conferred to contacts. Our data suggest that anti-LAM slgA may be used as a tool to monitor patients undergoing treatment to predict reactional episodes and may also be used in contacts to evaluate their cellular immunity without the need of Mitsuda tests.
Collapse
Affiliation(s)
- André Alan Nahas
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Isabela Maria Bernardes Goulart
- National Reference Center for Sanitary Dermatology and Leprosy, Clinics' Hospital, School of Medicine, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States
| |
Collapse
|
20
|
Michailidou I, Jongejan A, Vreijling JP, Georgakopoulou T, de Wissel MB, Wolterman RA, Ruizendaal P, Klar-Mohamad N, Grootemaat AE, Picavet DI, Kumar V, van Kooten C, Woodruff TM, Morgan BP, van der Wel NN, Ramaglia V, Fluiter K, Baas F. Systemic inhibition of the membrane attack complex impedes neuroinflammation in chronic relapsing experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2018; 6:36. [PMID: 29724241 PMCID: PMC5932802 DOI: 10.1186/s40478-018-0536-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
The complement system is a key driver of neuroinflammation. Activation of complement by all pathways, results in the formation of the anaphylatoxin C5a and the membrane attack complex (MAC). Both initiate pro-inflammatory responses which can contribute to neurological disease. In this study, we delineate the specific roles of C5a receptor signaling and MAC formation during the progression of experimental autoimmune encephalomyelitis (EAE)-mediated neuroinflammation. MAC inhibition was achieved by subcutaneous administration of an antisense oligonucleotide specifically targeting murine C6 mRNA (5 mg/kg). The C5a receptor 1 (C5aR1) was inhibited with the C5a receptor antagonist PMX205 (1.5 mg/kg). Both treatments were administered systemically and started after disease onset, at the symptomatic phase when lymphocytes are activated. We found that antisense-mediated knockdown of C6 expression outside the central nervous system prevented relapse of disease by impeding the activation of parenchymal neuroinflammatory responses, including the Nod-like receptor protein 3 (NLRP3) inflammasome. Furthermore, C6 antisense-mediated MAC inhibition protected from relapse-induced axonal and synaptic damage. In contrast, inhibition of C5aR1-mediated inflammation diminished expression of major pro-inflammatory mediators, but unlike C6 inhibition, it did not stop progression of neurological disability completely. Our study suggests that MAC is a key driver of neuroinflammation in this model, thereby MAC inhibition might be a relevant treatment for chronic neuroinflammatory diseases.
Collapse
|
21
|
Pinheiro RO, Schmitz V, Silva BJDA, Dias AA, de Souza BJ, de Mattos Barbosa MG, de Almeida Esquenazi D, Pessolani MCV, Sarno EN. Innate Immune Responses in Leprosy. Front Immunol 2018; 9:518. [PMID: 29643852 PMCID: PMC5882777 DOI: 10.3389/fimmu.2018.00518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - André Alves Dias
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Chen L, Cheng J, Yang X, Jin X, Qi Z, Jin YQ. Bone marrow-derived cells response in proximal regions of nerves after peripheral nerve injury. Cell Biol Int 2017; 41:863-870. [PMID: 28544161 DOI: 10.1002/cbin.10796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Lulu Chen
- Department No.16 of Plastic Surgery Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Jia Cheng
- Department of Burn and Plastic Surgery; Wuxi 3rd People's Hospital; Wuxi Jiangsu China
| | - Xiaonan Yang
- Department No.16 of Plastic Surgery Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Xiaolei Jin
- Department No.16 of Plastic Surgery Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Zuoliang Qi
- Department No.16 of Plastic Surgery Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Yu-Qing Jin
- Department of Plastic and Reconstructive Surgery; Shanghai 1st People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
23
|
In Situ complement activation and T-cell immunity in leprosy spectrum: An immunohistological study on leprosy lesional skin. PLoS One 2017; 12:e0177815. [PMID: 28505186 PMCID: PMC5432188 DOI: 10.1371/journal.pone.0177815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/03/2017] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium leprae (M. leprae) infection causes nerve damage and the condition worsens often during and long after treatment. Clearance of bacterial antigens including lipoarabinomannan (LAM) during and after treatment in leprosy patients is slow. We previously demonstrated that M. leprae LAM damages peripheral nerves by in situ generation of the membrane attack complex (MAC). Investigating the role of complement activation in skin lesions of leprosy patients might provide insight into the dynamics of in situ immune reactivity and the destructive pathology of M. leprae. In this study, we analyzed in skin lesions of leprosy patients, whether M. leprae antigen LAM deposition correlates with the deposition of complement activation products MAC and C3d on nerves and cells in the surrounding tissue. Skin biopsies of paucibacillary (n = 7), multibacillary leprosy patients (n = 7), and patients with erythema nodosum leprosum (ENL) (n = 6) or reversal reaction (RR) (n = 4) and controls (n = 5) were analyzed. The percentage of C3d, MAC and LAM deposition was significantly higher in the skin biopsies of multibacillary compared to paucibacillary patients (p = <0.05, p = <0.001 and p = <0.001 respectively), with a significant association between LAM and C3d or MAC in the skin biopsies of leprosy patients (r = 0.9578, p< 0.0001 and r = 0.8585, p<0.0001 respectively). In skin lesions of multibacillary patients, MAC deposition was found on axons and co-localizing with LAM. In skin lesions of paucibacillary patients, we found C3d positive T-cells in and surrounding granulomas, but hardly any MAC deposition. In addition, MAC immunoreactivity was increased in both ENL and RR skin lesions compared to non-reactional leprosy patients (p = <0.01 and p = <0.01 respectively). The present findings demonstrate that complement is deposited in skin lesions of leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions of these patients. This should be regarded as an important factor in M. leprae nerve damage pathology.
Collapse
|
24
|
Facial Nerve Recovery in KbDb and C1q Knockout Mice: A Role for Histocompatibility Complex 1. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 4:e1186. [PMID: 28293529 PMCID: PMC5222674 DOI: 10.1097/gox.0000000000001186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/01/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Understanding the mechanisms in nerve damage can lead to better outcomes for neuronal rehabilitation. The purpose of our study was to assess the effect of major histocompatibility complex I deficiency and inhibition of the classical complement pathway (C1q) on functional recovery and cell survival in the facial motor nucleus (FMN) after crush injury in adult and juvenile mice. METHODS A prospective blinded analysis of functional recovery and cell survival in the FMN after a unilateral facial nerve crush injury in juvenile and adult mice was undertaken between wild-type, C1q knockout (C1q-/-), and KbDb knockout (KbDb-/-) groups. Whisker function was quantified to assess functional recovery. Neuron counts were performed to determine neuron survival in the FMN after recovery. RESULTS After facial nerve injury, all adult wild-type mice fully recovered. Juvenile mice recovered incompletely corresponding to a greater neuron loss in the FMN of juveniles compared with adults. The C1q-/- juvenile and adult groups did not differ from wild type. The KbDb-/- adults demonstrated 50% recovery of whisker movement and decreased cell survival in FMN. The KbDb-/- juvenile group did not demonstrate any difference from control group. CONCLUSION Histocompatibility complex I plays a role for neuroprotection and enhanced facial nerve recovery in adult mice. Inhibition of the classical complement pathway alone does not affect functional recovery or neuronal survival. The alternative and mannose binding pathways pose alternative means for activating the final components of the pathway that may lead to acute nerve damage.
Collapse
|
25
|
Granados-Durán P, López-Ávalos MD, Cifuentes M, Pérez-Martín M, Fernández-Arjona MDM, Hughes TR, Johnson K, Morgan BP, Fernández-Llebrez P, Grondona JM. Microbial Neuraminidase Induces a Moderate and Transient Myelin Vacuolation Independent of Complement System Activation. Front Neurol 2017; 8:78. [PMID: 28326060 PMCID: PMC5339270 DOI: 10.3389/fneur.2017.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
AIMS Some central nervous system pathogens express neuraminidase (NA) on their surfaces. In the rat brain, a single intracerebroventricular (ICV) injection of NA induces myelin vacuolation in axonal tracts. Here, we explore the nature, the time course, and the role of the complement system in this damage. METHODS The spatiotemporal analysis of myelin vacuolation was performed by optical and electron microscopy. Myelin basic protein-positive area and oligodendrocyte transcription factor (Olig2)-positive cells were quantified in the damaged bundles. Neuronal death in the affected axonal tracts was assessed by Fluoro-Jade B and anti-caspase-3 staining. To evaluate the role of the complement, membrane attack complex (MAC) deposition on damaged bundles was analyzed using anti-C5b9. Rats ICV injected with the anaphylatoxin C5a were studied for myelin damage. In addition, NA-induced vacuolation was studied in rats with different degrees of complement inhibition: normal rats treated with anti-C5-blocking antibody and C6-deficient rats. RESULTS The stria medullaris, the optic chiasm, and the fimbria were the most consistently damaged axonal tracts. Vacuolation peaked 7 days after NA injection and reverted by day 15. Olig2+ cell number in the damaged tracts was unaltered, and neurodegeneration associated with myelin alterations was not detected. MAC was absent on damaged axonal tracts, as revealed by C5b9 immunostaining. Rats ICV injected with the anaphylatoxin C5a displayed no myelin injury. When the complement system was experimentally or constitutively inhibited, NA-induced myelin vacuolation was similar to that observed in normal rats. CONCLUSION Microbial NA induces a moderate and transient myelin vacuolation that is not caused either by neuroinflammation or complement system activation.
Collapse
Affiliation(s)
- Pablo Granados-Durán
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - María Dolores López-Ávalos
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - Manuel Cifuentes
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain; Centro de Investigaciones Biomédicas en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER BBN, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Margarita Pérez-Martín
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - María Del Mar Fernández-Arjona
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , UK
| | | | - B Paul Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff University , Cardiff , UK
| | - Pedro Fernández-Llebrez
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| | - Jesús M Grondona
- Laboratorio de Fisiología Animal, Facultad de Ciencias, Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga , Málaga , Spain
| |
Collapse
|
26
|
Pilch KS, Spaeth PJ, Yuki N, Wakerley BR. Therapeutic complement inhibition: a promising approach for treatment of neuroimmunological diseases. Expert Rev Neurother 2017; 17:579-591. [PMID: 28092989 DOI: 10.1080/14737175.2017.1282821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Autoimmunity is an important cause of disease both in the central and peripheral nervous systems. Aetiologies and clinical manifestations are complex and heterogeneous. Inappropriate control of complement activation at inappropriate sites has been recognized as a major determinant in several neurological conditions, including Guillain-Barré syndrome and neuromyelitis optica. In each case pathogenesis is thought to be associated with generation of autoantibodies which upon binding guide activation of the complement system to self-tissue. Areas covered: Modulation of the complement system activation at such sites may represent a novel therapeutic approach for treatment of immune-mediated inflammatory conditions. In this review we focus on the therapeutic effects of complement inhibitors in Guillain-Barré syndrome and neuromyelitis optica and highlight recent developments within the field. Expert Commentary: Conventional first line treatment strategies in GBS and NMO have the potential disadvantage of causing widespread immunosuppressive effects. A more targeted approach may therefore be more effective and less disruptive to the immune system, especially in the case of NMO, which requires long term immunosuppression. Modulation of the complement system may hold the key and has already been shown to be of clinical benefit in other non-neurological conditions, including paroxysmal nocturnal hemoglobinuria and hereditary angioedema.
Collapse
Affiliation(s)
- Kjara S Pilch
- a Department of Cell and Developmental Biology , University College London , UK
| | - Peter J Spaeth
- b University of Bern, Institute of Pharmacology , Bern , Switzerland
| | - Nobuhiro Yuki
- c Department of Neurology , University of Mishima , Niigata , Japan
| | - Benjamin R Wakerley
- d Department of Neurology , Gloucestershire Hospitals NHS Foundation Trust , Gloucester , United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
27
|
Granados-Durán P, López-Ávalos MD, Hughes TR, Johnson K, Morgan BP, Tamburini PP, Fernández-Llebrez P, Grondona JM. Complement system activation contributes to the ependymal damage induced by microbial neuraminidase. J Neuroinflammation 2016; 13:115. [PMID: 27209022 PMCID: PMC4875702 DOI: 10.1186/s12974-016-0576-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023] Open
Abstract
Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement.
Collapse
Affiliation(s)
- Pablo Granados-Durán
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - María Dolores López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - Timothy R Hughes
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Krista Johnson
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT, 06410, USA
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Paul P Tamburini
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT, 06410, USA
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain.
| |
Collapse
|
28
|
Wang Z, Liao J, Wu S, Li C, Fan J, Peng Z. Recipient C6 rs9200 genotype is associated with hepatocellular carcinoma recurrence after orthotopic liver transplantation in a Han Chinese population. Cancer Gene Ther 2016; 23:157-61. [PMID: 27173880 DOI: 10.1038/cgt.2016.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) recurrence is one of the leading causes of death after orthotopic liver transplantation (OLT). The sixth complement component (C6) is a late-acting complement protein that participates in the assembly of the membrane attack complex, which has an indispensable role in innate and acquired immune responses, as well as cancer immune surveillance. However, studies assessing the association between C6 and HCC recurrence after OLT are scarce. This study aimed to evaluate the association of donor and recipient C6 single-nucleotide polymorphisms with the risk for HCC recurrence after OLT. A total of 71 adult patients who underwent primary LT for HCC were enrolled. HCC recurrence was observed in 26 (36.6%) patients. Ten single-nucleotide polymorphisms were genotyped and analyzed in both donor and recipient groups. Patients with the rs9200 heterozygous GA variant presented significantly higher HCC recurrence rates (54.17 vs 27.66%, P=0.028), and lower cumulative tumor-free survival and overall survival (P=0.006 and P=0.013, respectively) compared with those harboring the GG/AA genotype, in multivariate logistic regression and Cox regression analyses. The rs9200 heterozygous GA variant in C6 persisted as a statistically independent prognostic factor (P<0.05) for predicting HCC recurrence after OLT. In conclusion, recipient C6 rs9200 polymorphism is associated with HCC recurrence after OLT, and improves the predictive value of clinical models.
Collapse
Affiliation(s)
- Z Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Brennan FH, Lee JD, Ruitenberg MJ, Woodruff TM. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Semin Immunol 2016; 28:292-308. [PMID: 27049459 DOI: 10.1016/j.smim.2016.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022]
Abstract
The recognition that complement proteins are abundantly present and can have pathological roles in neurological conditions offers broad scope for therapeutic intervention. Accordingly, an increasing number of experimental investigations have explored the potential of harnessing the unique activation pathways, proteases, receptors, complexes, and natural inhibitors of complement, to mitigate pathology in acute neurotrauma and chronic neurodegenerative diseases. Here, we review mechanisms of complement activation in the central nervous system (CNS), and explore the effects of complement inhibition in cerebral ischemic-reperfusion injury, traumatic brain injury, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. We consider the challenges and opportunities arising from these studies. As complement therapies approach clinical translation, we provide perspectives on how promising complement-targeted therapeutics could become part of novel and effective future treatment options to improve outcomes in the initiation and progression stages of these debilitating CNS disorders.
Collapse
Affiliation(s)
- Faith H Brennan
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia; Trauma, Critical Care and Recovery, Brisbane Diamantina Health Partners, The University of Queensland, Brisbane 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
30
|
An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci U S A 2015; 112:14319-24. [PMID: 26578778 DOI: 10.1073/pnas.1513698112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of complement is a key determinant of neuropathology and disability after traumatic brain injury (TBI), and inhibition is neuroprotective. However, systemic complement is essential to fight infections, a critical complication of TBI. We describe a targeted complement inhibitor, comprising complement receptor of the Ig superfamily (CRIg) fused with complement regulator CD59a, designed to inhibit membrane attack complex (MAC) assembly at sites of C3b/iC3b deposition. CRIg and CD59a were linked via the IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited MAC formation and prevented complement-mediated lysis in vitro. CD59-2a-CRIg dimer bound C3b-coated surfaces with submicromolar affinity (KD). In experimental TBI, CD59-2a-CRIg administered posttrauma homed to sites of injury and significantly reduced MAC deposition, microglial accumulation, mitochondrial stress, and axonal damage and enhanced neurologic recovery compared with placebo controls. CD59-2a-CRIg inhibited MAC-induced inflammasome activation and IL-1β production in microglia. Given the important anti-infection roles of complement opsonization, site-targeted inhibition of MAC should be considered to promote recovery postneurotrauma.
Collapse
|
31
|
Jackson HM, Onos KD, Pepper KW, Graham LC, Akeson EC, Byers C, Reinholdt LG, Frankel WN, Howell GR. DBA/2J genetic background exacerbates spontaneous lethal seizures but lessens amyloid deposition in a mouse model of Alzheimer's disease. PLoS One 2015; 10:e0125897. [PMID: 25933409 PMCID: PMC4416920 DOI: 10.1371/journal.pone.0125897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/24/2015] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles (NFTs) and neuronal dysfunction. Early onset AD (EOAD) is commonly caused by mutations in amyloid precursor protein (APP) or genes involved in the processing of APP including the presenilins (e.g. PSEN1 or PSEN2). In general, mouse models relevant to EOAD recapitulate amyloidosis, show only limited amounts of NFTs and neuronal cell dysfunction and low but significant levels of seizure susceptibility. To investigate the effect of genetic background on these phenotypes, we generated APPswe and PSEN1de9 transgenic mice on the seizure prone inbred strain background, DBA/2J. Previous studies show that the DBA/2J genetic background modifies plaque deposition in the presence of mutant APP but the impact of PSEN1de9 has not been tested. Our study shows that DBA/2J.APPswePSEN1de9 mice are significantly more prone to premature lethality, likely to due to lethal seizures, compared to B6.APPswePSEN1de9 mice—70% of DBA/2J.APPswePSEN1de9 mice die between 2-3 months of age. Of the DBA/2J.APPswePSEN1de9 mice that survived to 6 months of age, plaque deposition was greatly reduced compared to age-matched B6.APPswePSEN1de9 mice. The reduction in plaque deposition appears to be independent of microglia numbers, reactive astrocytosis and complement C5 activity.
Collapse
Affiliation(s)
| | - Kristen D. Onos
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Leah C. Graham
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Medicine, Tufts University, Boston, United States of America
| | - Ellen C. Akeson
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Candice Byers
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Wayne N. Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Medicine, Tufts University, Boston, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bahia El Idrissi N, Das PK, Fluiter K, Rosa PS, Vreijling J, Troost D, Morgan BP, Baas F, Ramaglia V. M. leprae components induce nerve damage by complement activation: identification of lipoarabinomannan as the dominant complement activator. Acta Neuropathol 2015; 129:653-67. [PMID: 25772973 PMCID: PMC4405335 DOI: 10.1007/s00401-015-1404-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 02/12/2015] [Accepted: 03/01/2015] [Indexed: 02/06/2023]
Abstract
Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients.
Collapse
Affiliation(s)
- Nawal Bahia El Idrissi
- Department of Genome Analysis, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Pranab K. Das
- Department of Neuropathology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Immunology, Colleges of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Instituto Lauro de Souza Lima, Bauru, Sao Paulo Brazil
| | - Kees Fluiter
- Department of Genome Analysis, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | | | - Jeroen Vreijling
- Department of Genome Analysis, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Dirk Troost
- Department of Neuropathology, Academic Medical Center, Amsterdam, The Netherlands
| | - B. Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valeria Ramaglia
- Department of Genome Analysis, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
33
|
Klein D, Groh J, Weishaupt A, Martini R. Endogenous antibodies contribute to macrophage-mediated demyelination in a mouse model for CMT1B. J Neuroinflammation 2015; 12:49. [PMID: 25879857 PMCID: PMC4364634 DOI: 10.1186/s12974-015-0267-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/17/2015] [Indexed: 01/02/2023] Open
Abstract
Background We could previously identify components of both the innate and the adaptive immune system as disease modifiers in the pathogenesis of models for Charcot-Marie-Tooth (CMT) neuropathies type 1B and 1X. As part of the adaptive immune system, here we investigated the role of antibodies in a model for CMT1B. Methods Antibodies were localized and characterized in peripheral nerves of the CMT1B model by immunohistochemistry and Western blot analysis. Experimental ablation of antibodies was performed by cross breeding the CMT1B models with mutants deficient in B-lymphocytes (JHD−/− mutants). Ameliorated demyelination by antibody deficiency was reverted by intravenous injection of mouse IgG fractions. Histopathological analysis was performed by immunocytochemistry and light and quantitative electron microscopy. Results We demonstrate that in peripheral nerves of a mouse model for CMT1B, endogenous antibodies strongly decorate endoneurial tubes of peripheral nerves. These antibodies comprise IgG and IgM subtypes and are preferentially, but not exclusively, associated with nerve fiber aspects nearby the nodes of Ranvier. In the absence of antibodies, the early demyelinating phenotype is substantially ameliorated. Reverting the neuropathy by reconstitution with murine IgG fractions identified accumulating antibodies as potentially pathogenic at this early stage of disease. Conclusions Our study demonstrates that in a mouse model for CMT1B, endogenous antibodies contribute to early macrophage-mediated demyelination and disease progression. Thus, both the innate and adaptive immune system are mutually interconnected in a genetic model for demyelination. Since in Wallerian degeneration antibodies have also been shown to be involved in myelin phagocytosis, our study supports our view that inherited demyelination and Wallerian degeneration share common mechanisms, which are detrimental when activated under nonlesion conditions.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Andreas Weishaupt
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| |
Collapse
|
34
|
Remarkable Activation of the Complement System and Aberrant Neuronal Localization of the Membrane Attack Complex in the Brain Tissues of Scrapie-Infected Rodents. Mol Neurobiol 2014; 52:1165-1179. [PMID: 25311207 DOI: 10.1007/s12035-014-8915-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
As an integral part of the innate immunity, the complement system has been reported to involve in the pathogenesis of prion diseases (PrD). However, the states of expression and activity of complement proteins in experimental models of scrapie infection are still not fully understood. Herein, the state of complement activation, the presence, and distribution as well as localization of C3 and membrane attack complex (MAC) in the brains of several scrapie-infected rodents were comparatively assessed through various methodologies. Our data illustrated a significant increase in the total complement activity (CH50, U/ml) in several scrapie-infected rodent brains at the terminal stage and a time-dependent upregulation of C1q in 263K-infected hamsters during the incubation period, intimating the sustained and progressive activation of the classical pathway during PrD progression. Confocal microscopy revealed robust activation of C3 and its localization to various central nervous system (CNS) cells with differential morphology in the brain tissues of both 263K-infected hamsters and 139A-infected C57BL/6 mice at disease end stages. Dynamic analyses of MAC in the brains of 263K-infected hamsters and 139A-infected C57BL/6 mice demonstrated remarkably time-dependent deposition during the incubation period, which may highlight a persistently activated terminal complement components. Moreover, immunofluorescent assays (IFAs) showed that MAC-specific signals appeared to overlap with morphologically abnormal neurons rather than proliferative astrocytes or activated microglia throughout the CNS of both 263K-infected hamsters and 139A-infected C57BL/6 mice. Overall, these results indicate that the activation of the complement system and the subsequent localization of the complement components to neurons may be a hallmark during prion infection, which ultimately contribute to the neurodegeneration in PrD.
Collapse
|
35
|
Peterson SL, Anderson AJ. Complement and spinal cord injury: traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol 2014; 258:35-47. [PMID: 25017886 DOI: 10.1016/j.expneurol.2014.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/21/2022]
Abstract
The pathology associated with spinal cord injury (SCI) is caused not only by primary mechanical trauma, but also by secondary responses of the injured CNS. The inflammatory response to SCI is robust and plays an important but complex role in the progression of many secondary injury-associated pathways. Although recent studies have begun to dissect the beneficial and detrimental roles for inflammatory cells and proteins after SCI, many of these neuroimmune interactions are debated, not well understood, or completely unexplored. In this regard, the complement cascade is a key component of the inflammatory response to SCI, but is largely underappreciated, and our understanding of its diverse interactions and effects in this pathological environment is limited. In this review, we discuss complement in the context of SCI, first in relation to traditional functions for complement cascade activation, and then in relation to novel roles for complement proteins in a variety of models.
Collapse
Affiliation(s)
- Sheri L Peterson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Physical Medicine and Rehabilitation, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
36
|
C6 deficiency does not alter intrinsic regeneration speed after peripheral nerve crush injury. Neurosci Res 2014; 87:26-32. [PMID: 25011063 DOI: 10.1016/j.neures.2014.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
Peripheral nerve injury leads to Wallerian degeneration, followed by regeneration, in which functionality and morphology of the nerve are restored. We previously described that deficiency for complement component C6, which prevents formation of the membrane attack complex, slows down degeneration and results in an earlier recovery of sensory function after sciatic nerve injury compared to WT animals. In this study, we determine whether C6(-/-) rats have an intrinsic trait that affects sciatic nerve regeneration after injury. To study the contribution of complement activation on degeneration and regeneration with only minimal effect of complement activation, a crush injury model with only modest complement deposition was used. We compared the morphological and functional aspects of crushed nerves during degeneration and regeneration in C6(-/-) and WT animals. Morphological changes of myelin and axons showed similar degeneration and regeneration patterns in WT and C6(-/-) injured nerves. Functional degeneration and regeneration, recorded by ex vivo electrophysiology and in vivo foot flick test, showed that the timeline of the restoration of nerve conduction and sensory recovery also followed similar patterns in WT and C6(-/-) animals. Our findings suggest that C6 deficiency by itself does not alter the regrowth capacity of the peripheral nerve after crush injury.
Collapse
|
37
|
Tzekova N, Heinen A, Küry P. Molecules involved in the crosstalk between immune- and peripheral nerve Schwann cells. J Clin Immunol 2014; 34 Suppl 1:S86-104. [PMID: 24740512 DOI: 10.1007/s10875-014-0015-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
Abstract
Schwann cells are the myelinating glial cells of the peripheral nervous system and establish myelin sheaths on large caliber axons in order to accelerate their electrical signal propagation. Apart from this well described function, these cells revealed to exhibit a high degree of differentiation plasticity as they were shown to re- and dedifferentiate upon injury and disease as well as to actively participate in regenerative- and inflammatory processes. This review focuses on the crosstalk between glial- and immune cells observed in many peripheral nerve pathologies and summarizes functional evidences of molecules, regulators and factors involved in this process. We summarize data on Schwann cell's role presenting antigens, on interactions with the complement system, on Schwann cell surface molecules/receptors and on secreted factors involved in immune cell interactions or para-/autocrine signaling events, thus strengthening the view for a broader (patho) physiological role of this cell lineage.
Collapse
Affiliation(s)
- Nevena Tzekova
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
38
|
Fluiter K, Opperhuizen AL, Morgan BP, Baas F, Ramaglia V. Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice. THE JOURNAL OF IMMUNOLOGY 2014; 192:2339-48. [PMID: 24489093 DOI: 10.4049/jimmunol.1302793] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death in young adults. The secondary neuroinflammation and neuronal damage that follows the primary mechanical injury is an important cause of disability in affected people. The membrane attack complex (MAC) of the complement system is detected in the traumatized brain early after TBI; however, its role in the pathology and neurologic outcome of TBI has not yet been investigated. We generated a C6 antisense oligonucleotide that blocks MAC formation by inhibiting C6, and we compared its therapeutic effect to that of Ornithodoros moubata complement inhibitor (OmCI), a known inhibitor of C5 activation that blocks generation of the anaphylatoxin C5a and C5b, an essential component of MAC. Severe closed head injury in mice induced abundant MAC deposition in the brain. Treatment with C6 antisense reduced C6 synthesis (85%) and serum levels (90%), and inhibited MAC deposition in the injured brain (91-96%). Treatment also reduced accumulation of microglia/macrophages (50-88%), neuronal apoptosis, axonal loss and weight loss (54-93%), and enhanced neurologic performance (84-92%) compared with placebo-treated controls after injury. These data provide the first evidence, to our knowledge, that inhibition of MAC formation in otherwise complement-sufficient animals reduces neuropathology and promotes neurologic recovery after TBI. Given the importance of maintaining a functional complement opsonization system to fight infections, a critical complication in TBI patients, inhibition of the MAC should be considered to reduce posttraumatic neurologic damage. This work identifies a novel therapeutic target for TBI and will guide the development of new therapy for patients.
Collapse
Affiliation(s)
- Kees Fluiter
- Department of Genome Analysis, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Kaida K, Kusunoki S. Guillain–Barré syndrome: update on immunobiology and treatment. Expert Rev Neurother 2014; 9:1307-19. [DOI: 10.1586/ern.09.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Sta M, Cappaert N, Ramekers D, Baas F, Wadman W. The functional and morphological characteristics of sciatic nerve degeneration and regeneration after crush injury in rats. J Neurosci Methods 2014; 222:189-98. [DOI: 10.1016/j.jneumeth.2013.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022]
|
41
|
Martini R, Klein D, Groh J. Similarities between inherited demyelinating neuropathies and Wallerian degeneration: an old repair program may cause myelin and axon perturbation under nonlesion conditions. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:655-60. [PMID: 23831295 DOI: 10.1016/j.ajpath.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/09/2023]
Abstract
Wallerian degeneration (WD) and inherited demyelinating neuropathies of the Charcot-Marie-Tooth type 1 (CMT1) appear to represent completely distinct events. CMT1-like diseases are chronic disorders of peripheral nerves that are genetically caused and lead to secondary neurodegenerative events, resulting in usually non-treatable disabilities, whereas WD is an acute, usually transient, reaction on injuries, aiming to allow peripheral nerve regeneration. Despite these differences, there are some striking similarities regarding molecular characteristics of neural cells in the affected peripheral nerves. The most conspicuous similarities might comprise the inflammatory component in both situations, as identified in appropriate mouse models. However, although inflammation is a beneficial component in WD, leading to removal of regrowth-repellent myelin debris, inflammation in CMT1 mouse models causes damage of initially intact nerve fibers. We hypothesize that, in CMT1 models, molecular pathways are activated that are shared with an important repair program after peripheral nerve injury, but lead to neural perturbation when activated under nonlesion conditions, as is the case in CMT1. These novel insights into the pathogenesis of CMT1 might be instrumental for the development of new therapeutic options in humans.
Collapse
Affiliation(s)
- Rudolf Martini
- Section of Developmental Neurobiology, Department of Neurology, University of Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
42
|
Howell GR, Soto I, Ryan M, Graham LC, Smith RS, John SWM. Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J Neuroinflammation 2013; 10:76. [PMID: 23806181 PMCID: PMC3708765 DOI: 10.1186/1742-2094-10-76] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/12/2013] [Indexed: 01/08/2023] Open
Abstract
Background Glaucoma is an age-related neurodegenerative disorder involving the loss of retinal ganglion cells (RGCs), which results in blindness. Studies in animal models have shown that activation of inflammatory processes occurs early in the disease. In particular, the complement cascade is activated very early in DBA/2J mice, a widely used mouse model of glaucoma. A comprehensive analysis of the role of the complement cascade in DBA/2J glaucoma has not been possible because DBA/2J mice are naturally deficient in complement component 5 (C5, also known as hemolytic complement, Hc), a key mediator of the downstream processes of the complement cascade, including the formation of the membrane attack complex. Methods To assess the role of C5 in DBA/2J glaucoma, we backcrossed a functional C5 gene from strain C57BL/6J to strain DBA/2J for at least 10 generations. The prevalence and severity of glaucoma was evaluated using ocular examinations, IOP measurements, and assessments of optic nerve damage and RGC degeneration. To understand how C5 affects glaucoma, C5 expression was assessed in the retinas and optic nerves of C5-sufficient DBA/2J mice, using immunofluorescence. Results C5-sufficient DBA/2J mice developed a more severe glaucoma at an earlier age than standard DBA/2J mice, which are therefore protected by C5 deficiency. Components of the membrane attack complex were found to be deposited at sites of axonal injury in the optic nerve head and associated with RGC soma in the retina. Conclusion C5 plays an important role in glaucoma, with its deficiency lessening disease severity. These results highlight the importance of fully understanding the role of the complement cascade in neurodegenerative diseases. Inhibiting C5 may be beneficial as a therapy for human glaucoma.
Collapse
Affiliation(s)
- Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Role of inflammation and cytokines in peripheral nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:173-206. [PMID: 24083435 DOI: 10.1016/b978-0-12-410499-0.00007-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter provides a review of immune reactions involved in classic as well as alternative methods of peripheral nerve regeneration, and mainly with a view to understanding their beneficial effects. Axonal degeneration distal to nerve damage triggers a cascade of inflammatory events alongside injured nerve fibers known as Wallerian degeneration (WD). The early inflammatory reactions of WD comprise the complement system, arachidonic acid metabolites, and inflammatory mediators that are related to myelin fragmentation and activation of Schwann cells. Fine-tuned upregulation of the cytokine/chemokine network by Schwann cells activates resident and hematogenous macrophages to complete the clearance of axonal and myelin debris and stimulate regrowth of axonal sprouts. In addition to local effects, immune reactions of neuronal bodies and glial cells are also implicated in the survival and conditioning of neurons to regenerate severed nerves. Understanding of the cellular and molecular interactions between the immune system and peripheral nerve injury opens new possibilities for targeting inflammatory mediators to improve functional reinnervation.
Collapse
|
44
|
Abstract
The complement cascade is a major contributor to the innate immune response. It has now been well accepted that complement plays a critical role in hyperacute rejection and acute antibody-mediated rejection of transplanted organ. There is also increasing evidence that complement proteins contribute to the pathogenesis of organ ischemia-reperfusion injury, and even to cell-mediated rejection. Furthermore, the chemoattractants C3a and C5a and the terminal membrane attack complex that are generated by complement activation can directly or indirectly mediate tissue injury and trigger adaptive immune responses. Here, we review recent findings concerning the role of complement in graft ischemia-reperfusion injury, antibody-mediated rejection and accommodation, and cell-mediated rejection. We also discuss the current status of complement intervention therapies in clinical transplantation and describe potential new therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | |
Collapse
|
45
|
Changes in CLIP3 expression after sciatic nerve injury in adult rats. J Mol Histol 2012; 43:669-79. [PMID: 23014974 DOI: 10.1007/s10735-012-9450-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/14/2012] [Indexed: 02/04/2023]
Abstract
CLIP3 (cytoplasmic linker protein 3) is a 547 amino acid residue cytoplasmic protein that localises to Golgi stacks and tubulovesicular elements juxtaposed to Golgi cisternae. Composed of three Ank (ankyrin) repeats and two CAP-Gly (cytoskeleton-associated protein-glycine) domains, CLIP3 may function as a cytoplasmic linker protein that is involved in TGN-endosome dynamics. To define the expression and role of CLIP3 during peripheral nervous system degeneration and regeneration, we created an acute sciatic nerve injury (SNI) model in adult rats. Western blot analyses revealed prominent up-regulation of CLIP3 and PCNA (proliferating cell nuclear antigen) protein levels at 3 days after SNI. Immunohistochemistry displayed that the expression of CLIP3 was noticeably increased in the injured nerve. Immunofluorescence further revealed that the CLIP3 and PCNA proteins colocalised respectively with S100 in the cytoplasm of Schwann cells. The expression profile of the SC/neuron co-cultures demonstrated that CLIP3 and PCNA protein levels were markedly expressed during the early stage of myelination. These results suggest that CLIP3 is likely associated with the myelination of proliferating Schwann cells, and nerve tissue regeneration after peripheral nerve injury. CLIP3 and PCNA expression during early myelination may be related to the direct uptake and transport of lipids and cholesterol, which were derived from the degenerating myelin, by Schwann cells to prepare for the formation of myelin sheath-like structures around regenerated axons after SNI.
Collapse
|
46
|
Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 2012; 349:5-14. [PMID: 22476657 DOI: 10.1007/s00441-012-1389-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/23/2012] [Indexed: 12/11/2022]
Abstract
The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.
Collapse
|
47
|
Hong JW, Cho WD, Hong KP, Kim SS, Son SM, Yun SJ, Lee HC, Yoon SS, Song HG. Generation of 1E8 Single Chain Fv-Fc Construct Against Human CD59. Immune Netw 2012; 12:33-9. [PMID: 22536168 PMCID: PMC3329601 DOI: 10.4110/in.2012.12.1.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/27/2012] [Accepted: 02/07/2012] [Indexed: 12/01/2022] Open
Abstract
Background Therapeutic approaches using monoclonal antibodies (mAbs) against complement regulatory proteins (CRPs:i.e.,CD46,CD55 and CD59) have been reported for adjuvant cancer therapy. In this study, we generated a recombinant 1E8 single-chain anti-CD59 antibody (scFv-Fc) and tested anti-cancer effect.by using complement dependent cytotoxicity (CDC). Methods We isolated mRNA from 1E8 hybridoma cells and amplified the variable regions of the heavy chain (VH) and light chain (VL) genes using reverse-transcriptase polymerase chain reaction (RT-PCR). Using a linker, the amplified sequences for the heavy and light chains were each connected to the sequence for a single polypeptide chain that was designed to be expressed. The VL and VH fragments were cloned into the pOptiVEC-TOPO vector that contained the human CH2-CH3 fragment. Then, 293T cells were transfected with the 1E8 single-chain Fv-Fc (scFv-Fc) constructs. CD59 expression was evaluated in the prostate cancer cell lines using flow cytometry. The enhancement of CDC effect by mouse 1E8 and 1E8 scFv-Fc were evaluated using a cytotoxicity assay. Results The scFv-Fc constructs were expressed by the transfected 293T cells and secreted into the culture medium. The immunoreactivity of the secreted scFv-Fc construct was similar to that of the mouse 1E8 for CCRF-CEM cells. The molecular masses of 1E8 scFv-Fc were about 120 kDa and 55 kDa under reducing and non-reducing conditions, respectively. The DNA sequence of 1E8 scFv-Fc was obtained and presented. CD59 was highly expressed by the prostate cancer cell line. The recombinant 1E8 scFv-Fc mAb revealed significantly enhanced CDC effect similar with mouse 1E8 for prostate cancer cells. Conclusion A 1E8 scFv-Fc construct for adjuvant cancer therapy was developed.
Collapse
Affiliation(s)
- Jeong-Won Hong
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc Natl Acad Sci U S A 2012; 109:965-70. [PMID: 22219359 DOI: 10.1073/pnas.1111924109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microglial priming predisposes the brain to neurodegeneration and affects disease progression. The signal to switch from the quiescent to the primed state is unknown. We show that deleting the C3 convertase regulator complement receptor 1-related protein y (Crry) induces microglial priming. Mice that were double-knockout for Crry and either C3 or factor B did not show priming, demonstrating dependence on alternative pathway activation. Colocalization of C3b/iC3b and CR3 implicated the CR3/iC3b interaction in priming. Systemic lipopolysaccharide challenge overactivated primed microglia with florid expression of proinflammatory molecules, which were blocked by complement inhibition. Relevance for neurodegenerative disease is exemplified by human multiple sclerosis (MS) and by experimental autoimmune encephalomyelitis (EAE), a model of MS. In human MS, microglial priming was evident in perilesional white matter, in close proximity to C3b/iC3b deposits. EAE was accelerated and exacerbated in Crry-deficient mice, and was dependent on C activation. In summary, C3-dependent microglial priming confers susceptibility to other challenges. Our observations are relevant to progression in MS and other neurological diseases exacerbated by acute insults.
Collapse
|
49
|
Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 2011; 8:109. [PMID: 21878125 PMCID: PMC3179447 DOI: 10.1186/1742-2094-8-109] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/30/2011] [Indexed: 12/23/2022] Open
Abstract
Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.
Collapse
Affiliation(s)
- Shlomo Rotshenker
- Dept. of Medical Neurobiology, IMRIC, Hebrew University, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
50
|
Complement protein 6 deficiency in PVG/c rats does not lead to neuroprotection against seizure induced cell death. Neuroscience 2011; 188:109-16. [DOI: 10.1016/j.neuroscience.2011.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/28/2011] [Accepted: 05/01/2011] [Indexed: 02/05/2023]
|