1
|
Edwards S, Corrigan F, Collins-Praino L. Lasting Impact: Exploring the Brain Mechanisms that Link Traumatic Brain Injury to Parkinson's Disease. Mol Neurobiol 2025; 62:7421-7444. [PMID: 39891816 DOI: 10.1007/s12035-025-04706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
Development of Parkinson's Disease (PD) is linked with a history of traumatic brain injury (TBI), although the mechanisms driving this remain unclear. Of note, many key parallels have been identified between the pathologies of PD and TBI; in particular, PD is characterised by loss of dopaminergic neurons from the substantia nigra (SN), accompanied by broader changes to dopaminergic signalling, disruption of the Locus Coeruleus (LC) and noradrenergic system, and accumulation of aggregated α-synuclein in Lewy Bodies, which spreads in a stereotypical pattern throughout the brain. Widespread disruptions to the dopaminergic and noradrenergic systems, including progressive neuronal loss from the SN and LC, have been observed acutely following injury, some of which have also been identified chronically in TBI patients and preclinical models. Furthermore, changes to α-synuclein expression are also seen both acutely and chronically following injury throughout the brain, although detailed characterisation of these changes and spread of pathology is limited. In this review, we detail the current literature regarding dopaminergic and noradrenergic disruption and α-synuclein pathology following injury, with particular focus on how these changes may predispose individuals to prolonged pathology and progressive neurodegeneration, particularly the development of PD. While it is increasingly clear that TBI is a key risk factor for the development of PD, significant gaps remain in current understanding of neurodegenerative pathology following TBI, particularly chronic manifestations of injury.
Collapse
Affiliation(s)
- Samantha Edwards
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lyndsey Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Manolopoulos A, Yao PJ, Kapogiannis D. Extracellular vesicles: translational research and applications in neurology. Nat Rev Neurol 2025; 21:265-282. [PMID: 40181198 DOI: 10.1038/s41582-025-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Over the past few decades, extensive basic, translational and clinical research has been devoted to deciphering the physiological and pathogenic roles of extracellular vesicles (EVs) in the nervous system. The presence of brain cell-derived EVs in the blood, carrying diverse cargoes, has enabled the development of predictive, diagnostic, prognostic, disease-monitoring and treatment-response biomarkers for various neurological disorders. In this Review, we consider how EV biomarkers can bring us closer to understanding the complex pathogenesis of neurological disorders such as Alzheimer disease, Parkinson disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis and multiple sclerosis. We describe how translational research on EVs might unfold bidirectionally, proceeding from basic to clinical studies but also in the opposite direction, with biomarker findings in the clinic leading to novel hypotheses that can be tested in the laboratory. We demonstrate the potential value of EVs across all stages of the therapeutic development pipeline, from identifying therapeutic targets to the use of EVs as reporters in model systems and biomarkers in clinical research. Finally, we discuss how the cargo and physicochemical properties of naturally occurring and custom-engineered EVs can be leveraged as novel treatments and vehicles for drug delivery, potentially revolutionizing neurotherapeutics.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
3
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2025; 45:909-946. [PMID: 39704040 PMCID: PMC11976381 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of NeurologyThe Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone HealthNew York CityNew YorkUSA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Pascal Derkinderen
- Department of NeurologyNantes Université, CHU Nantes, INSERMNantesFrance
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
4
|
Li D, Liu K, Li D, Brunger A, Li C, Burré J, Diao J. α-Synuclein condensation in synaptic vesicle function and synucleinopathies. Trends Cell Biol 2025:S0962-8924(25)00087-X. [PMID: 40307115 DOI: 10.1016/j.tcb.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025]
Abstract
Research into the crosstalk between α-synuclein (α-syn) and synaptic vesicles (SVs) has gained considerable attention. Notably, the recently discovered liquid-liquid phase separation of α-syn involving SVs is crucial for performing their physiological functions and mediating the transition to pathological aggregates. This review first examines the functional interactions between α-syn and SVs in the context of α-syn's condensation state. It then explores how these interactions become disrupted under pathological conditions, leading to α-syn aggregation and subsequent synaptic dysfunction. Finally, the review discusses the therapeutic potential of targeting α-syn-SV interactions to restore synaptic function in diseased states. By connecting α-syn's physiological roles with its pathological effects, the article aims to shed light on its dual role as both a regulator of SVs and a driver of neurodegeneration.
Collapse
Affiliation(s)
- Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kaien Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Danni Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Axel Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Cong Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China; Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai, China
| | - Jacqueline Burré
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Zacharopoulou M, Seetaloo N, Ross J, Stephens AD, Fusco G, McCoy TM, Dai W, Mela I, Fernandez-Villegas A, Martel A, Routh AF, De Simone A, Phillips JJ, Kaminski Schierle GS. Local Ionic Conditions Modulate the Aggregation Propensity and Influence the Structural Polymorphism of α-Synuclein. J Am Chem Soc 2025; 147:13131-13145. [PMID: 40207671 PMCID: PMC12023029 DOI: 10.1021/jacs.4c13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
Parkinson's disease (PD) is linked to the aggregation of the intrinsically disordered protein α-synuclein (aSyn), but the precise triggers and mechanisms driving this process remain unclear. Local environmental factors, such as ion concentrations, can influence aSyn's conformational ensemble and its tendency to aggregate. In this study, we explore how physiologically relevant ions, mainly Ca2+ and Na+, affect aSyn aggregation, monomer structural dynamics, and fibril polymorphism. ThT fluorescence assays show that all ions speed up aggregation, with Ca2+ having the strongest effect. Using heteronuclear single quantum correlation nuclear magnetic resonance (1H-15N HSQC NMR) spectroscopy, we validate that Ca2+ binds at the C-terminus while Na+ interacts nonspecifically across the sequence. Small-angle neutron scattering (SANS) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) show that Na+ leads to more extended aSyn structures, while Ca2+ results in moderate extension. Molecular dynamics (MD) simulations support this, showing Na+ increases extension between the NAC region and C-terminus, whereas Ca2+ biases the ensemble toward a moderately elongated structure. MD also shows that Ca2+ increases water persistence times in the hydration shell, indicating that aSyn aggregation propensity is due to a combination of conformational bias of the monomer and solvent mobility. Atomic force microscopy (AFM) points toward the formation of distinct fibril polymorphs under different ionic conditions, suggesting ion-induced monomer changes contribute to the diversity of fibril structures. These findings underscore the pivotal influence of the local ionic milieu in shaping the structure and aggregation propensity of aSyn, offering insights into the molecular underpinnings of PD and potential therapeutic strategies targeting aSyn dynamics.
Collapse
Affiliation(s)
- Maria Zacharopoulou
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Neeleema Seetaloo
- Living
Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.
| | - James Ross
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Amberley D. Stephens
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Giuliana Fusco
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Thomas M. McCoy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Wenyue Dai
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Ioanna Mela
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Ana Fernandez-Villegas
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Anne Martel
- Institut
Laue Langevin, 71 Avenue
des Martyrs, Grenoble CS 20156 38042, France
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Alfonso De Simone
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Jonathan J. Phillips
- Living
Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.
| | - Gabriele S. Kaminski Schierle
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
6
|
Phan L, Miller D, Gopinath A, Lin M, Gunther D, Kiel K, Quintin S, Borg D, Hasanpour-Segherlou Z, Newman A, Sorrentino Z, Miller E J, Seibold J, Hoh B, Giasson B, Khoshbouei H. Parkinson's Paradox: Alpha-synuclein's Selective Strike on SNc Dopamine Neurons over VTA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644952. [PMID: 40236072 PMCID: PMC11996431 DOI: 10.1101/2025.03.24.644952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In synucleinopathies, including Parkinson's disease (PD), dopamine neurons in the substantia nigra pars compacta (SNc) exhibit greater vulnerability to degeneration than those in the ventral tegmental area (VTA). While α-synuclein (αSyn) pathology is implicated in nigral dopamine neuron loss, the mechanisms by which αSyn affects neuronal activity and midbrain dopamine network connectivity prior to cell death remain unclear. This study tested the hypothesis that elevated αSyn expression induces pathophysiological changes in firing activity and disrupts network connectivity dynamics of dopamine neurons before neuronal loss. We employed two mouse models of synucleinopathy: preformed αSyn fibril (PFF) injection and AAV-mediated expression of human αSyn (hαSyn) under the control of the tyrosine hydroxylase (TH) promoter, both targeting the VTA and SNc. Four weeks post-injection, brain sections underwent histological, electrophysiological, and network analyses. Immunohistochemistry for TH, hαSyn, and phospho-Ser129 αSyn assessed αSyn expression and dopaminergic neuron alterations. Neuronal viability was evaluated using two complementary approaches: quantification of TH + or FOX3 + and TUNEL labeling. Importantly, these analyses revealed no significant changes in neuronal counts or TUNEL + cells at this time point, confirming that subsequent functional assessments captured pre-neurodegenerative, αSyn-induced alterations rather than late-stage neurodegeneration. Electrophysiological recordings revealed a differential effect of hαSyn expression. SNc dopamine neurons exhibited significantly increased baseline firing rates, whereas VTA dopamine neurons remained unchanged. These findings indicate a region-specific vulnerability to αSyn-induced hyperactivity of dopamine neurons. Further analysis revealed impaired homeostatic firing rate regulation in SNc, but not VTA, dopamine neurons, demonstrated by a reduced capacity to recover baseline firing following hyperpolarization. Collectively, our results demonstrate that, prior to neurodegeneration, elevated αSyn expression differentially disrupts both basal firing activity and network stability of SNc dopamine neurons, while sparing VTA dopamine neurons. By identifying neurophysiological changes preceding dopaminergic neuron loss, these findings provide critical insights into the pathophysiological mechanisms predisposing SNc neurons to degeneration in Parkinson's disease. Significance Statement A central question in Parkinson's disease research is why dopamine neurons in the substantia nigra pars compacta (SNc) are more vulnerable than those in the ventral tegmental area (VTA). This study reveals that alpha-synuclein (αSyn) pathology differentially impacts dopamine neuronal activity and network connectivity, causing changes in the SNc before neuronal loss occurs, but not in the VTA. These findings provide a mechanism to explain the differential resilience of these neighboring dopamine neuron populations and provide insights into Parkinson's disease progression. The methodologies developed in this study establish a foundation for investigating network topology in deep brain structures and its role in neurodegenerative disorders.
Collapse
|
7
|
Jangam TC, Desai SA, Patel VP, Pagare NB, Raut ND. Exosomes as Therapeutic and Diagnostic Tools: Advances, Challenges, and Future Directions. Cell Biochem Biophys 2025:10.1007/s12013-025-01730-5. [PMID: 40122928 DOI: 10.1007/s12013-025-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Exosomes are tiny extracellular vesicles that are essential for intercellular communication and have shown great promise in the detection and treatment of disease. They are especially useful in the treatment of cancer, cardiovascular conditions, and neurological diseases because of their capacity to transport bioactive substances including proteins, lipids, and nucleic acids. Because of their low immunogenicity, ability to traverse biological barriers, and biocompatibility, exosome-based medicines have benefits over conventional treatments. Large-scale production, standardization of separation methods, possible immunological reactions, and worries about unforeseen biological effects are some of the obstacles that still need to be overcome. Furthermore, there are major barriers to the clinical use of exosomes due to their complex cargo sorting mechanisms and heterogeneity. Future studies should concentrate on enhancing separation and purification procedures, optimizing exosome engineering techniques, and creating plans to reduce immune system modifications. This review examines the most recent developments in exosome-based diagnostics and treatments, identifies current issues, and suggests ways to improve their clinical translation in the future.
Collapse
Affiliation(s)
- Tejas C Jangam
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India.
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Nishant B Pagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| | - Nikita D Raut
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India
| |
Collapse
|
8
|
Choi SG, Tittle TR, Barot RR, Betts DJ, Gallagher JJ, Kordower JH, Chu Y, Killinger BA. Proximity proteomics reveals unique and shared pathological features between multiple system atrophy and Parkinson's disease. Acta Neuropathol Commun 2025; 13:65. [PMID: 40122840 PMCID: PMC11931798 DOI: 10.1186/s40478-025-01958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are neurodegenerative diseases with shared clinical and pathological features. Aggregates of alpha-synuclein (αsyn) phosphorylated at serine 129 (PSER129) are hallmarks of synucleinopathies, which, for PD/DLB, are found predominantly in neurons, whereas in MSA, aggregates are primarily found in oligodendroglia. It remains unclear whether the distinct pathological presentations of PD/DLB and MSA are manifestations of unique or shared pathological processes. Using the in-situ proximity labeling technique of biotinylation by antibody recognition (BAR), we compared aggregated αsyn-interactomes (BAR-PSER129) and total αsyn-interactomes (BAR-MJFR1) between MSA (n = 5) and PD/DLB (n = 10) in forebrain and midbrain structures. Comparison between MSA and PD/DLB-enriched proteins revealed 79 PD/DLB-differentially abundant proteins and only three MSA-differentially abundant proteins (CBR1, CRYAB, and GFAP). Pathway enrichment analysis revealed that vesicle/SNARE-associated pathways dominated PD/DLB interactions, whereas MSA was strongly enriched for metabolic/catabolic, iron, and cellular oxidant detoxification pathways. A subnetwork of cytosolic antioxidant enzymes called peroxiredoxins drove cellular detoxification pathway enrichment in MSA. A network of 26 proteins, including neuronal-specific proteins (e.g., SYNGR3) with HSPA8 at the core, was shared between MSA and DLB/PD. Extracellular exosome pathways were universally enriched regardless of the disease or BAR target protein. In conclusion, synucleinopathies have divergent and convergent αsyn-aggregate interactions, indicating unique and shared pathogenic mechanisms. MSA uniquely involves oxidant detoxification processes in glial cells, while vesicular processes in neurons dominate PD/DLB. Shared interactions, specifically SYNGR3, between MSA and PD/DLB suggest that neuronal axons are the origin of both diseases. In conclusion, we provide αsyn protein interaction maps for two distinct synucleinopathies.
Collapse
Affiliation(s)
- Solji G Choi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tyler R Tittle
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Raj R Barot
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Dakota J Betts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- University of Michigan, Ann Arbor, MI, USA
| | | | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bryan A Killinger
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Wu H, Li YL, Liu PM, Yang JJ. Global status and trends of exosomes in neurodegenerative diseases from 2014 to 2023: a bibliometric and visual analysis. Front Aging Neurosci 2025; 17:1496252. [PMID: 40134534 PMCID: PMC11933124 DOI: 10.3389/fnagi.2025.1496252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Background Neurodegenerative diseases (NDs) are chronic and progressive conditions that significantly impact global public health. Recent years have highlighted exosomes as key mechanisms involved in these diseases. This study aims to visualize and analyze the structure and content of exosomes in NDs based on past research to identify new research ideas and directions. Through bibliometric analysis, we assess the current state of research on exosomes in the field of NDs worldwide over the past decade, highlighting significant findings, major research areas, and emerging trends. Methods Publications on exosomes in NDs research were obtained from the Web of Science Core Collection (WOSCC) database. Eligible literature was analyzed using Bibliometric R, VOSviewer, and Citespace. Results Between 2014 and 2023, 2,393 publications on exosomes in NDs were included in the analysis. The number of relevant publications has been increasing yearly, with China leading in international collaboration, followed by the United States. And China has the largest number of academic scholars as leading and corresponding authors in all the countries, known as the great research society and community. Notable institutions contributing to these publications include Nia, the University of San Francisco California, and Capital Medical University, which rank highly in both publication volume and citations. Dimitrios Kapogiannis is a pivotal figure in the author collaboration network, having produced the highest number of publications (Sato et al., 2011) and amassed 3,921 citations. The journal with the most published articles in this field is The International Journal of Molecular Sciences, which has published 131 articles and received 3,347 citations. A recent analysis of keyword clusters indicates that "Exosome-like liposomes," "Independent mechanisms," and "Therapeutic potential" are emerging research hotspots. Conclusion This is the first bibliometric study to provide a comprehensive summary of the research trends and developments regarding exosomes in NDs studies. Future research in this area may explore the role of mesenchymal stromal cells, microRNAs (miRNAs), and targeted drug delivery systems to further investigate the underlying mechanisms and develop new therapeutics.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao-lei Li
- National Institutes for Food and Drug Control, Beijing, China
| | - Pan-miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Zingkou E, Kolianou A, Angelis G, Lykouras M, Orkoula M, Pampalakis G, Sotiropoulou G. Cytocompatibility Study of Stainless Steel 316l Against Differentiated SH-SY5Y Cells. Biomimetics (Basel) 2025; 10:169. [PMID: 40136823 PMCID: PMC11940300 DOI: 10.3390/biomimetics10030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Stainless steel (SS) 316l constitutes a popular biomaterial with various applications as implants in cardiovascular and orthopedic surgery, as well as in dentistry. Nevertheless, its cytocompatibility against neuronal cells has not been investigated, a feature that is important for the construction of implants that require contact with neurons, e.g., neuronal electrodes. In addition, most cytocompatibility studies have focused on decorated or surface-modified SS 316l. On the other hand, SH-SY5Y cells are an established cellular model for cytocompatibility studies of potential biomaterials given their ability to differentiate into neuron-like cells. Here, we used retinoic-acid-differentiated SH-SY5Y cells and SH-SY5Y controls to investigate the cytocompatibility and biomimetics of uncoated SS 316l. The assessment of cytocompatibility was based on the determination of differentiation markers by immunofluorescence, RT-qPCR, and the neurite growth of these cells attached on SS 316l and standard tissue culture polystyrene (TCP) surfaces. Even though the neurite length was shorter in differentiated SH-SY5Y cells grown on SS 316l, no other significant changes were found. In conclusion, our results suggest that the uncoated SS 316l mimics a natural bio-surface and allows the adhesion, growth, and differentiation of SH-SY5Y cells. Therefore, this alloy can be directly applied in the emerging field of biomimetics, especially for the development of implants or devices that contact neurons.
Collapse
Affiliation(s)
- Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04 Rion-Patras, Greece; (A.K.); (G.A.); (M.L.); (M.O.); (G.P.)
| | | | | | | | | | | | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04 Rion-Patras, Greece; (A.K.); (G.A.); (M.L.); (M.O.); (G.P.)
| |
Collapse
|
11
|
Sirerol-Piquer MS, Perez-Villalba A, Duart-Abadia P, Belenguer G, Gómez-Pinedo U, Blasco-Chamarro L, Carrillo-Barberà P, Pérez-Cañamás A, Navarro-Garrido V, Dehay B, Vila M, Vitorica J, Pérez-Sánchez F, Fariñas I. Age-dependent progression from clearance to vulnerability in the early response of periventricular microglia to α-synuclein toxic species. Mol Neurodegener 2025; 20:26. [PMID: 40038767 PMCID: PMC11881471 DOI: 10.1186/s13024-025-00816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
Cytoplasmic alpha-synuclein (αSyn) aggregates are a typical feature of Parkinson's disease (PD). Extracellular insoluble αSyn can induce pathology in healthy neurons suggesting that PD neurodegeneration may spread through cell-to-cell transfer of αSyn proteopathic seeds. Early pro-homeostatic reaction of microglia to toxic forms of αSyn remains elusive, which is especially relevant considering the recently uncovered microglial molecular diversity. Here, we show that periventricular microglia of the subependymal neurogenic niche monitor the cerebrospinal fluid and can rapidly phagocytize and degrade different aggregated forms of αSyn delivered into the lateral ventricle. However, this clearing ability worsens with age, leading to an increase in microglia with aggregates in aged treated mice, an accumulation also observed in human PD samples. We also show that exposure of aged microglia to aggregated αSyn isolated from human PD samples results in the phosphorylation of the endogenous protein and the generation of αSyn seeds that can transmit the pathology to healthy neurons. Our data indicate that while microglial phagocytosis rapidly clears toxic αSyn, aged microglia can contribute to synucleinopathy spreading.
Collapse
Affiliation(s)
- Mª Salomé Sirerol-Piquer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain.
| | - Ana Perez-Villalba
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
- L.A.B.P. (Laboratory of Animal Behavior Phenotype), Facultad de Psicología. UCV, Valencia, Spain
| | - Pere Duart-Abadia
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Germán Belenguer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, Hospital Clínico San Carlos Health Research Institute, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Blasco-Chamarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Pau Carrillo-Barberà
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Victoria Navarro-Garrido
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
- Departamento Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, F-33000, France
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d´Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Seville, Spain
- Departamento Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Francisco Pérez-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Burjassot, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universidad de Valencia, Burjassot, Spain.
| |
Collapse
|
12
|
Almasi F, Abbasloo F, Soltani N, Dehbozorgi M, Moghadam Fard A, Kiani A, Ghasemzadeh N, Mesgari H, Zadeh Hosseingholi E, Payandeh Z, Rahmanpour P. Biology, Pathology, and Targeted Therapy of Exosomal Cargoes in Parkinson's Disease: Advances and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04788-7. [PMID: 39998798 DOI: 10.1007/s12035-025-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD) involves the loss of dopamine neurons and accumulation of alpha-synuclein (α-syn), leading to Lewy bodies. While α-syn-targeting immunotherapies show promise, clinical application is challenging. Emerging strategies include nano-platforms for targeted delivery and imaging, and cell-based therapies with patient-specific dopaminergic neurons, aiming to enhance treatment effectiveness despite challenges. Exosome-based methodologies are emerging as a promising area of research in PD due to their role in the spread of α-syn pathology. Exosomes are small extracellular vesicles that can carry misfolded α-syn and transfer it between cells, contributing to the progression of PD. They can be isolated from biological fluids such as blood and cerebrospinal fluid, making them valuable biomarkers for the disease. Additionally, engineering exosomes to deliver therapeutic agents, including small molecules, RNA, or proteins, offers a novel approach for targeted therapy, capitalizing on their natural ability to cross the blood-brain barrier (BBB). Ongoing studies are evaluating the safety and efficacy of these engineered exosomes in clinical settings. This review explores the role of exosomes in PD, focusing on their potential for diagnosis, treatment, and understanding of pathology. It highlights advancements and future directions in using exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Faezeh Almasi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Faeze Abbasloo
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Soltani
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Masoud Dehbozorgi
- Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen), Aachen City, Germany
| | | | - Arash Kiani
- Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasim Ghasemzadeh
- School of Natural Sciences and Mathematics, University of Dallas, Richardson, TX, USA
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Zadeh Hosseingholi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden.
| | | |
Collapse
|
13
|
Liu Y, Zhang H, Li X, He T, Zhang W, Ji C, Wang J. Molecular mechanisms and pathological implications of unconventional protein secretion in human disease: from cellular stress to therapeutic targeting. Mol Biol Rep 2025; 52:236. [PMID: 39955475 DOI: 10.1007/s11033-025-10316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Unconventional protein secretion (UcPS) encompasses diverse non-canonical cellular export mechanisms that operate independently of the classical secretory pathway, representing a crucial cellular response to various physiological and pathological conditions. This comprehensive review synthesizes current understanding of UcPS mechanisms, particularly focusing on their roles in disease pathogenesis and progression. Recent advances in proteomics and cellular biology have revealed that UcPS facilitates the secretion of various biomedically significant proteins, including inflammatory mediators, growth factors, and disease-associated proteins, through multiple pathways such as membrane translocation, secretory lysosomes, and membrane-bound organelles. Notably, dysregulation of UcPS mechanisms has been implicated in various pathological conditions, including chronic inflammation, neurodegenerative disorders, and malignant transformation. We critically evaluate the molecular machinery governing UcPS, its regulation under cellular stress, and its contribution to disease mechanisms. Furthermore, we examine emerging therapeutic strategies targeting UcPS pathways, highlighting both opportunities and challenges in developing novel interventional approaches.
Collapse
Affiliation(s)
- Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
14
|
Spinelli S, Tripodi D, Corti N, Zocchi E, Bruschi M, Leoni V, Dominici R. Roles, Functions, and Pathological Implications of Exosomes in the Central Nervous System. Int J Mol Sci 2025; 26:1345. [PMID: 39941112 PMCID: PMC11818369 DOI: 10.3390/ijms26031345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Exosomes are a subset of extracellular vesicles (EVs) secreted by nearly all cell types and have emerged as a novel mechanism for intercellular communication within the central nervous system (CNS). These vesicles facilitate the transport of proteins, nucleic acids, lipids, and metabolites between neurons and glial cells, playing a pivotal role in CNS development and the maintenance of homeostasis. Current evidence indicates that exosomes from CNS cells may function as either inhibitors or enhancers in the onset and progression of neurological disorders. Furthermore, exosomes have been found to transport disease-related molecules across the blood-brain barrier, enabling their detection in peripheral blood. This distinctive property positions exosomes as promising diagnostic biomarkers for neurological conditions. Additionally, a growing body of research suggests that exosomes derived from mesenchymal stem cells exhibit reparative effects in the context of neurological disorders. This review provides a concise overview of the functions of exosomes in both physiological and pathological states, with particular emphasis on their emerging roles as potential diagnostic biomarkers and therapeutic agents in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Domenico Tripodi
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Nicole Corti
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Dominici
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| |
Collapse
|
15
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Huang Y, Zhang G, Li S, Feng J, Zhang Z. Innate and adaptive immunity in neurodegenerative disease. Cell Mol Life Sci 2025; 82:68. [PMID: 39894884 PMCID: PMC11788272 DOI: 10.1007/s00018-024-05533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive loss of selected neurons. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs. Pathologically, NDs are characterized by progressive failure of neural interactions and aberrant protein fibril aggregation and deposition, which lead to neuron loss and cognitive and behavioral impairments. Great efforts have been made to delineate the underlying mechanism of NDs. However, the very first trigger of these disorders and the state of the illness are still vague. Existing therapeutic strategies can relieve symptoms but cannot cure these diseases. The human immune system is a complex and intricate network comprising various components that work together to protect the body against pathogens and maintain overall health. They can be broadly divided into two main types: innate immunity, the first line of defense against pathogens, which acts nonspecifically, and adaptive immunity, which follows a defense process that acts more specifically and is targeted. The significance of brain immunity in maintaining the homeostatic environment of the brain, and its direct implications in NDs, has increasingly come into focus. Some components of the immune system have beneficial regulatory effects, whereas others may have detrimental effects on neurons. The intricate interplay and underlying mechanisms remain an area of active research. This review focuses on the effects of both innate and adaptive immunity on AD and PD, offering a comprehensive understanding of the initiation and regulation of brain immunity, as well as the interplay between innate and adaptive immunity in influencing the progression of NDs.
Collapse
Affiliation(s)
- Yeyu Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jin Feng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
17
|
Cohen‐Adiv S, Amer‐Sarsour F, Berdichevsky Y, Boxer E, Goldstein O, Gana‐Weisz M, Tripathi U, Rike WA, Prag G, Gurevich T, Giladi N, Stern S, Orr‐Urtreger A, Friedmann‐Morvinski D, Ashkenazi A. TMEM16F regulates pathologic α-synuclein secretion and spread in cellular and mouse models of Parkinson's disease. Aging Cell 2025; 24:e14387. [PMID: 39487963 PMCID: PMC11822650 DOI: 10.1111/acel.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
One of the main hallmarks of Parkinson's disease (PD) pathology is the spread of the aggregate-prone protein α-synuclein (α-syn), which can be detected in the plasma and cerebrospinal fluid of patients as well as in the extracellular environment of neuronal cells. The secreted α-syn can exhibit "prion-like" behavior and transmission to naïve cells can promote conformational changes and pathology. The precise role of plasma membrane proteins in the pathologic process of α-syn is yet to be fully resolved. The TMEM16 family of lipid scramblases and ion channels has been recently associated with cancer and infectious diseases but is less known for its role in aging-related diseases. To elucidate the role of TMEM16F in α-syn spread, we transduced neurons derived from TMEM16F knockout mice with a reporter system that enables the distinction between donor and recipient neurons of pathologic α-synA53T. We found that the spread of α-synA53T was reduced in neurons derived from TMEM16F-knockout mice. These findings were recapitulated in vivo in a mouse model of PD, where attenuated α-synA53T spread was observed when TMEM16F was ablated. Moreover, we identified a single nucleotide polymorphism in TMEM16F of Ashkenazi Jewish PD patients resulting in a missense Ala703Ser mutation with enhanced lipid scramblase activity. This mutation is associated with altered regulation of α-synA53T extracellular secretion in cellular models of PD. Our study highlights TMEM16F as a novel regulator of α-syn spread and as a potential therapeutic target in synucleinopathies.
Collapse
Affiliation(s)
- Stav Cohen‐Adiv
- The Department of Cell and Developmental Biology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Fatima Amer‐Sarsour
- The Department of Cell and Developmental Biology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Yevgeny Berdichevsky
- The Department of Cell and Developmental Biology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Emily Boxer
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Mali Gana‐Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Gali Prag
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Tanya Gurevich
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Movement Disorders Division, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Nir Giladi
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
- Brain DivisionTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Avi Orr‐Urtreger
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Dinorah Friedmann‐Morvinski
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
18
|
Sampson TR, Tansey MG, West AB, Liddle RA. Lewy body diseases and the gut. Mol Neurodegener 2025; 20:14. [PMID: 39885558 PMCID: PMC11783828 DOI: 10.1186/s13024-025-00804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation. Experimental LBD models have implicated important contributions from the intrinsic gut microbiome, the intestinal immune system, and environmental toxicants, acting as triggers and modifiers to GI pathologies. Here, we review the primary clinical observations that link GI dysfunctions to LBDs. We first provide an overview of GI anatomy and the cellular repertoire relevant for disease, with a focus on luminal-sensing cells of the intestinal epithelium including enteroendocrine cells that express ⍺-syn and make direct contact with nerves. We describe interactions within the GI tract with resident microbes and exogenous toxicants, and how these may directly contribute to ⍺-syn pathology along with related metabolic and immunological responses. Finally, critical knowledge gaps in the field are highlighted, focusing on pivotal questions that remain some 200 years after the first descriptions of GI tract dysfunction in LBDs. We predict that a better understanding of how pathophysiologies in the gut influence disease risk and progression will accelerate discoveries that will lead to a deeper overall mechanistic understanding of disease and potential therapeutic strategies targeting the gut-brain axis to delay, arrest, or prevent disease progression.
Collapse
Affiliation(s)
- Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30329, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Malú Gámez Tansey
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
- Normal Fixel Institute of Neurological Diseases, Gainesville, FL, 32608, USA
| | - Andrew B West
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Center for Neurodegeneration and Neurotherapeutic Research, Department of Pharmacology and Cancer Biology, Durham, NC, 27710, USA.
| | - Rodger A Liddle
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University and Department of Veterans Affairs Health Care System, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
Renganathan A, Minaya MA, Broder M, Alfradique-Dunham I, Moritz M, Bhagat R, Marsh J, Verbeck A, Galasso G, Starr E, Agard DA, Cruchaga C, Karch CM. A novel lncRNA FAM151B-DT regulates autophagy and degradation of aggregation prone proteins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.22.25320997. [PMID: 39974060 PMCID: PMC11838976 DOI: 10.1101/2025.01.22.25320997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurodegenerative diseases share common features of protein aggregation along with other pleiotropic traits, including shifts in transcriptional patterns, neuroinflammation, disruptions in synaptic signaling, mitochondrial dysfunction, oxidative stress, and impaired clearance mechanisms like autophagy. However, key regulators of these pleotropic traits have yet to be identified. Here, we discovered a novel long non-coding RNA (lncRNA), FAM151B-DT, that is reduced in a stem cell model of frontotemporal dementia with tau inclusions (FTLD-tau) and in brains from FTLD-tau, progressive supranuclear palsy, Alzheimer's disease, and Parkinson's disease patients. We show that silencing FAM151B-DT in vitro is sufficient to enhance tau aggregation. To begin to understand the mechanism by which FAM151B-DT mediates tau aggregation and contributes to several neurodegenerative diseases, we deeply characterized this novel lncRNA and found that FAM151B-DT resides in the cytoplasm where it interacts with tau, α-synuclein, HSC70, and other proteins enriched in protein homeostasis. When silenced, FAM151B-DT blocks autophagy, leading to the accumulation of tau and α-synuclein. Importantly, we discovered that increasing FAM151B-DT expression is sufficient to promote autophagic flux, reduce phospho-tau and α-synuclein, and reduce tau aggregation. Overall, these findings pave the way for further exploration of FAM151B-DT as a promising molecular target for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Matthew Broder
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | | | - Michelle Moritz
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Reshma Bhagat
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Grant Galasso
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Emma Starr
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO
| |
Collapse
|
20
|
Kuo G, Kumbhar R, Blair W, Dawson VL, Dawson TM, Mao X. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions. Mol Neurodegener 2025; 20:10. [PMID: 39849529 PMCID: PMC11756073 DOI: 10.1186/s13024-025-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn. Recognizing the intricate complexity and multifactorial etiology of α-synucleinopathy, the review illuminates the potential of various membrane receptors, proteins, intercellular spreading pathways, and pathological agents for therapeutic interventions. While significant progress has been made in understanding α-synucleinopathy, the pursuit of efficacious treatments remains challenging. Several strategies involving decreasing α-syn production and aggregation, increasing α-syn degradation, lowering extracellular α-syn, and inhibiting cellular uptake of α-syn are presented. The paper underscores the necessity of meticulous and comprehensive investigations to advance our knowledge of α-synucleinopathy pathology and ultimately develop innovative therapeutic strategies for α-synucleinopathies.
Collapse
Affiliation(s)
- Grace Kuo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William Blair
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
21
|
Szablewski L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int J Mol Sci 2025; 26:542. [PMID: 39859258 PMCID: PMC11765393 DOI: 10.3390/ijms26020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Different mechanisms of associations between these diseases and diabetes mellitus have been suggested. For example, it is postulated that an impaired intracellular insulin signaling pathway, together with hyperglycemia and hyperinsulinemia, may cause pathological changes, such as dysfunction of the mitochondria, oxidative stress inflammatory responses, etc. The association between diabetes mellitus and neurodegenerative diseases, as well as the mechanisms of these associations, needs further investigation. The aim of this review is to describe the associations between diabetes mellitus, especially type 1 (T1DM) and type 2 diabetes mellitus, and selected neurodegenerative diseases, i.e., Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Suggested mechanisms of these associations are also described.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
22
|
Choi Y, Park JH, Jo A, Lim CW, Park JM, Hwang JW, Lee KS, Kim YS, Lee H, Moon J. Blood-derived APLP1 + extracellular vesicles are potential biomarkers for the early diagnosis of brain diseases. SCIENCE ADVANCES 2025; 11:eado6894. [PMID: 39742488 DOI: 10.1126/sciadv.ado6894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
The early detection of neurodegenerative diseases necessitates the identification of specific brain-derived biomolecules in peripheral blood. In this context, our investigation delineates the role of amyloid precursor-like protein 1 (APLP1)-a protein predominantly localized in oligodendrocytes and neurons-as a previously unidentified biomarker in extracellular vesicles (EVs). Through rigorous analysis, APLP1+ EVs from human sera were unequivocally determined to be of cerebral origin. This assertion was corroborated by distinctive small RNA expression patterns of APLP1+ EVs. The miRNAs' putative targets within these EVs manifested pronounced expression in the brain, fortifying their neurospecific provenance. We subjected our findings to stringent validation using Thy-1 GFP M line mice, transgenic models wherein GFP expression is confined to hippocampal neurons. An amalgamation of these results with an exhaustive data analysis accentuates the potential of APLP1+ EVs as cerebrally originated biomarkers. Synthesizing our findings, APLP1+ EVs are postulated not merely as diagnostic markers but as seminal entities shaping the future trajectory of neurodegenerative disease diagnostics.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jae Hyun Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ala Jo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chul-Woo Lim
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jin Woo Hwang
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
23
|
Park H, Kam TI, Dawson VL, Dawson TM. α-Synuclein pathology as a target in neurodegenerative diseases. Nat Rev Neurol 2025; 21:32-47. [PMID: 39609631 DOI: 10.1038/s41582-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration. We also highlight the existence of disease-specific α-synuclein strains and their mechanisms of pathological spread, and discuss seed amplification assays and PET tracers as emerging diagnostic tools for detecting pathological α-synuclein in clinical settings. We also discuss α-synuclein aggregation and clearance mechanisms, and review cell-autonomous and non-cell-autonomous processes that contribute to neuronal death, including the roles of adaptive and innate immunity in α-synuclein-driven neurodegeneration. Finally, we highlight promising therapeutic approaches that target pathological α-synuclein and provide insights into emerging areas of research.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin and Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Zhu Y, Wang F, Xia Y, Wang L, Lin H, Zhong T, Wang X. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev Neurosci 2024; 35:855-875. [PMID: 38889403 DOI: 10.1515/revneuro-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
Collapse
Affiliation(s)
- Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fangsheng Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
25
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Hetta HF, Saad HM, Batiha GES. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol Neurobiol 2024; 61:10198-10215. [PMID: 38703341 DOI: 10.1007/s12035-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, M.B.Ch.B, FRCP, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, P.O. Box 13, Kufa, Najaf, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
26
|
Sankaranarayanan J, Lee SC, Kim HK, Kang JY, Kuppa SS, Seon JK. Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine-A Review. Int J Stem Cells 2024; 17:381-396. [PMID: 38246659 PMCID: PMC11612219 DOI: 10.15283/ijsc23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Osteoarthritis (OA) is a joint disorder caused by wear and tear of the cartilage that cushions the joints. It is a progressive condition that can cause significant pain and disability. Currently, there is no cure for OA, though there are treatments available to manage symptoms and slow the progression of the disease. A chondral defect is a common and devastating lesion that is challenging to treat due to its avascular and aneural nature. However, there are conventional therapies available, ranging from microfracture to cell-based therapy. Anyhow, its efficiency in cartilage defects is limited due to unclear cell viability. Exosomes have emerged as a potent therapeutic tool for chondral defects because they are a complicated complex containing cargo of proteins, DNA, and RNA as well as the ability to target cells due to their phospholipidic composition and the altering exosomal contents that boost regeneration potential. Exosomes are used in a variety of applications, including tissue healing and anti-inflammatory therapy. As in recent years, biomaterials-based bio fabrication has gained popularity among the many printable polymer-based hydrogels, tissue-specific decellularized extracellular matrix might boost the effects rather than an extracellular matrix imitating environment, a short note has been discussed. Exosomes are believed to be the greatest alternative option for current cell-based therapy, and future progress in exosome-based therapy could have a greater influence in the field of orthopaedics. The review focuses extensively on the insights of exosome use and scientific breakthroughs centered OA.
Collapse
Affiliation(s)
- Jaishree Sankaranarayanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Seok Cheol Lee
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hyung Keun Kim
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Yeon Kang
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, Korea
- Department of Orthopaedic Surgery, Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
27
|
Sadeghdoust M, Das A, Kaushik DK. Fueling neurodegeneration: metabolic insights into microglia functions. J Neuroinflammation 2024; 21:300. [PMID: 39551788 PMCID: PMC11571669 DOI: 10.1186/s12974-024-03296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, emerge in the brain during early embryonic development and persist throughout life. They play essential roles in brain homeostasis, and their dysfunction contributes to neuroinflammation and the progression of neurodegenerative diseases. Recent studies have uncovered an intricate relationship between microglia functions and metabolic processes, offering fresh perspectives on disease mechanisms and possible treatments. Despite these advancements, there are still significant gaps in our understanding of how metabolic dysregulation affects microglial phenotypes in these disorders. This review aims to address these gaps, laying the groundwork for future research on the topic. We specifically examine how metabolic shifts in microglia, such as the transition from oxidative phosphorylation and mitochondrial metabolism to heightened glycolysis during proinflammatory states, impact the disease progression in Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Additionally, we explore the role of iron, fatty and amino acid metabolism in microglial homeostasis and repair. Identifying both distinct and shared metabolic adaptations in microglia across neurodegenerative diseases could reveal common therapeutic targets and provide a deeper understanding of disease-specific mechanisms underlying multiple CNS disorders.
Collapse
Affiliation(s)
- Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Aysika Das
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Deepak Kumar Kaushik
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
28
|
Rokad D, Harischandra DS, Samidurai M, Chang YT, Luo J, Lawana V, Sarkar S, Palanisamy BN, Manne S, Kim D, Zenitsky G, Jin H, Anantharam V, Willette A, Kanthasamy A, Kanthasamy AG. Manganese Exposure Enhances the Release of Misfolded α-Synuclein via Exosomes by Impairing Endosomal Trafficking and Protein Degradation Mechanisms. Int J Mol Sci 2024; 25:12207. [PMID: 39596274 PMCID: PMC11594990 DOI: 10.3390/ijms252212207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Excessive exposure to manganese (Mn) increases the risk of chronic neurological diseases, including Parkinson's disease (PD) and other related Parkinsonisms. Aggregated α-synuclein (αSyn), a hallmark of PD, can spread to neighboring cells by exosomal release from neurons. We previously discovered that Mn enhances its spread, triggering neuroinflammatory and neurodegenerative processes. To better understand the Mn-induced release of exosomal αSyn, we examined the effect of Mn on endosomal trafficking and misfolded protein degradation. Exposing MN9D dopaminergic neuronal cells stably expressing human wild-type (WT) αSyn to 300 μM Mn for 24 h significantly suppressed protein and mRNA expression of Rab11a, thereby downregulating endosomal recycling, forcing late endosomes to mature into multivesicular bodies (MVBs). Ectopic expression of WT Rab11a significantly mitigated exosome release, whereas ectopic mutant Rab11a (S25N) increased it. Our in vitro and in vivo studies reveal that Mn exposure upregulated (1) mRNA and protein levels of endosomal Rab27a, which mediates the fusion of MVBs with the plasma membrane; and (2) expression of the autophagosomal markers Beclin-1 and p62, but downregulated the lysosomal marker LAMP2, thereby impairing autophagolysosome formation as confirmed by LysoTracker, cathepsin, and acridine orange assays. Our novel findings demonstrate that Mn promotes the exosomal release of misfolded αSyn by impairing endosomal trafficking and protein degradation.
Collapse
Affiliation(s)
- Dharmin Rokad
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Dilshan S. Harischandra
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Manikandan Samidurai
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Yuan-Teng Chang
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Jie Luo
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Vivek Lawana
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Souvarish Sarkar
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Bharathi N. Palanisamy
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Sireesha Manne
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Dongsuk Kim
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Auriel Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 07101, USA;
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (D.R.); (D.S.H.); (J.L.); (V.L.); (S.S.); (B.N.P.); (S.M.); (D.K.)
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA; (M.S.); (Y.-T.C.); (G.Z.); (H.J.); (V.A.); (A.K.)
| |
Collapse
|
29
|
Ghosh M, Pearse DD. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024; 13:1834. [PMID: 39594583 PMCID: PMC11592485 DOI: 10.3390/cells13221834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury-whether beneficial or harmful-largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
30
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
31
|
Scorziello A, Sirabella R, Sisalli MJ, Tufano M, Giaccio L, D’Apolito E, Castellano L, Annunziato L. Mitochondrial Dysfunction in Parkinson's Disease: A Contribution to Cognitive Impairment? Int J Mol Sci 2024; 25:11490. [PMID: 39519043 PMCID: PMC11546611 DOI: 10.3390/ijms252111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Among the non-motor symptoms associated with Parkinson's disease (PD), cognitive impairment is one of the most common and disabling. It can occur either early or late during the disease, and it is heterogeneous in terms of its clinical manifestations, such as Subjective Cognitive Dysfunction (SCD), Mild Cognitive Impairment (MCI), and Parkinson's Disease Dementia (PDD). The aim of the present review is to delve deeper into the molecular mechanisms underlying cognitive decline in PD. This is extremely important to delineate the guidelines for the differential diagnosis and prognosis of the dysfunction, to identify the molecular and neuronal mechanisms involved, and to plan therapeutic strategies that can halt cognitive impairment progression. Specifically, the present review will discuss the pathogenetic mechanisms involved in the progression of cognitive impairment in PD, with attention to mitochondria and their contribution to synaptic dysfunction and neuronal deterioration in the brain regions responsible for non-motor manifestations of the disease.
Collapse
Affiliation(s)
- Antonella Scorziello
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Rossana Sirabella
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80138 Napoli, Italy;
| | - Michele Tufano
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Lucia Giaccio
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Elena D’Apolito
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | - Lorenzo Castellano
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.S.); (M.T.); (L.G.); (E.D.); (L.C.)
| | | |
Collapse
|
32
|
Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Zhu S, Zhang Z, Wang Y. Exosome Cargo in Neurodegenerative Diseases: Leveraging Their Intercellular Communication Capabilities for Biomarker Discovery and Therapeutic Delivery. Brain Sci 2024; 14:1049. [PMID: 39595812 PMCID: PMC11591915 DOI: 10.3390/brainsci14111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The inexorable progression of neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis, is closely related to irreversible brain decline. Accurately characterizing pathophysiological features and identifying reliable biomarkers for early diagnosis and optimized treatment are critical. Hindered by the blood-brain barrier (BBB), obtaining sensitive monitoring indicators for disease progression and achieving efficient drug delivery remain significant challenges. Exosomes, endogenous nanoscale vesicles that carry key bioactive substances, reflect the intracellular environment and play an important role in cell signaling. They have shown promise in traversing the BBB, serving dual roles as potential biomarkers for NDs and vehicles for targeted drug delivery. However, the specific mechanisms by which exosome influence NDs are not fully understood, necessitating further investigation into their attributes and functionalities in the context of NDs. This review explores how exosomes mediate multifaceted interactions, particularly in exacerbating pathogenic processes such as oxidative stress, neuronal dysfunction, and apoptosis integral to NDs. It provides a comprehensive analysis of the profound impact of exosomes under stress and disease states, assessing their prospective utility as biomarkers and drug delivery vectors, offering new perspectives for tackling these challenging diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.)
| |
Collapse
|
33
|
Zhang X, Yu H, Feng J. Emerging role of microglia in inter-cellular transmission of α-synuclein in Parkinson's disease. Front Aging Neurosci 2024; 16:1411104. [PMID: 39444806 PMCID: PMC11496080 DOI: 10.3389/fnagi.2024.1411104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, significantly prejudicing the health and quality of life of elderly patients. The main pathological characteristics of PD are the loss of dopaminergic neurons in the substantia nigra (SN) as well as abnormal aggregation of α-synuclein (α-syn) monomers and oligomers, which results in formation of Lewy bodies (LBs). Intercellular transmission of α-syn is crucial for PD progression. Microglia play diverse roles in physiological and pathological conditions, exhibiting neuroprotective or neurotoxic effects; moreover, they may directly facilitate α-syn propagation. Various forms of extracellular α-syn can be taken up by microglia through multiple mechanisms, degraded or processed into more pathogenic forms, and eventually released into extracellular fluid or adjacent cells. This review discusses current literature regarding the molecular mechanisms underlying the uptake, degradation, and release of α-syn by microglia.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Riley JF, Holzbaur ELF. Cell-to-cell tunnels rescue neurons from degeneration. Nature 2024; 634:38-40. [PMID: 39261692 DOI: 10.1038/d41586-024-02862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
35
|
Lázaro DF, Lee VMY. Navigating through the complexities of synucleinopathies: Insights into pathogenesis, heterogeneity, and future perspectives. Neuron 2024; 112:3029-3042. [PMID: 38861985 PMCID: PMC11427175 DOI: 10.1016/j.neuron.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
The aggregation of alpha-synuclein (aSyn) represents a neuropathological hallmark observed in a group of neurodegenerative disorders collectively known as synucleinopathies. Despite their shared characteristics, these disorders manifest diverse clinical and pathological phenotypes. The mechanism underlying this heterogeneity is thought to be due to the diversity in the aSyn strains present across the diseases. In this perspective, we will explore recent findings on aSyn strains and discuss recent discoveries about Lewy bodies' composition. We further discuss the current hypothesis for aSyn spreading and emphasize the emerging biomarker field demonstrating promising results. A comprehension of these mechanisms holds substantial promise for future clinical applications. This understanding can pave the way for the development of personalized medicine strategies, specifically targeting the unique underlying causes of each synucleinopathy. Such advancements can revolutionize therapeutic approaches and significantly contribute to more effective interventions in the intricate landscape of neurodegenerative disorders.
Collapse
Affiliation(s)
- Diana F Lázaro
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Medicine, University of Pennsylvania, Perelman School of Medicine at University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA 19104, USA.
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Medicine, University of Pennsylvania, Perelman School of Medicine at University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Scheiblich H, Eikens F, Wischhof L, Opitz S, Jüngling K, Cserép C, Schmidt SV, Lambertz J, Bellande T, Pósfai B, Geck C, Spitzer J, Odainic A, Castro-Gomez S, Schwartz S, Boussaad I, Krüger R, Glaab E, Di Monte DA, Bano D, Dénes Á, Latz E, Melki R, Pape HC, Heneka MT. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024; 112:3106-3125.e8. [PMID: 39059388 DOI: 10.1016/j.neuron.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Frederik Eikens
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Opitz
- Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Csaba Cserép
- Institute of Experimental Medicine, Budapest, Hungary
| | - Susanne V Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Tracy Bellande
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Balázs Pósfai
- Institute of Experimental Medicine, Budapest, Hungary
| | - Charlotte Geck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Jasper Spitzer
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ádám Dénes
- Institute of Experimental Medicine, Budapest, Hungary
| | - Eike Latz
- German Center for Neurodegenerative Diseases, Bonn, Germany; Institute of innate immunity, University Hospital Bonn, Bonn, Germany
| | - Ronald Melki
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases, Bonn, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg; Institute of innate immunity, University Hospital Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts, Medical School, Worcester, MA, USA.
| |
Collapse
|
37
|
Choi SG, Tittle T, Barot R, Betts D, Gallagher J, Kordower JH, Chu Y, Killinger BA. Comparing alpha-synuclein-interactomes between multiple systems atrophy and Parkinson's disease reveals unique and shared pathological features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.613717. [PMID: 39345456 PMCID: PMC11429994 DOI: 10.1101/2024.09.20.613717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Introduction Primary synucleinopathies, such as Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are neurodegenerative disorders with some shared clinical and pathological features. Aggregates of alpha-synuclein (αsyn) phosphorylated at serine 129 (PSER129) are the hallmark of synucleinopathies, which for PD/DLB are found predominantly in neurons (Neuronal cytoplasmic inclusions "NCIs"), but for MSA, aggregates are primarily found in oligodendroglia (Glial cytoplasmic inclusions "GCIs"). It remains unclear if the distinct pathological presentation of PD/DLB and MSA are manifestations of distinct or shared pathological processes. We hypothesize that the distinct synucleinopathies MSA and PD/DLB share common molecular features. Methods Using the in-situ proximity labeling technique biotinylation by antibody recognition (BAR), we compare aggregated αsyn-interactomes (BAR-PSER129) and total αsyn-interactomes (BAR-MJFR1) between MSA (n=5) and PD/DLB (n=10) in forebrain and midbrain structures. Results For BAR-PSER129 and BAR-MJFR1 captures, αsyn was the most significantly enriched protein in PD/DLB and MSA. In PD/DLB, BAR-PSER129 identified 194 αsyn-aggregate-interacting proteins, while BAR-MJFR1 identified 245 αsyn interacting proteins. In contrast, in the MSA brain, only 38 and 175 proteins were identified for each capture, respectively. When comparing MSA and PD/DLB, a high overlap (59.5%) was observed between BAR-MJFR1 captured proteins, whereas less overlap (14.4%) was observed for BAR-PSER129. Direct comparison between MSA and PD/DLB revealed 79 PD/DLB-associated proteins and only three MSA-associated proteins (CBR1, CRYAB, and GFAP). Pathway enrichment analysis revealed PD/DLB interactions were dominated by vesicle/SNARE-associated pathways, in contrast to MSA, which strongly enriched for metabolic/catabolic, iron, and cellular oxidant detoxification pathways. A subnetwork of cytosolic antioxidant enzymes called peroxiredoxins drove cellular detoxification pathways in MSA. A common network of 26 proteins, including neuronal-specific proteins (e.g., SNYGR3) with HSPA8 at the core, was shared between MSA and DLB/PD. Extracellular exosome pathways were universally enriched regardless of disease or BAR target protein. Conclusion Synucleinopathies have divergent and convergent αsyn-aggregate interactions, indicating unique and shared pathogenic mechanisms. MSA uniquely involves oxidant detoxification processes in glial cells, while vesicular processes in neurons dominate PD/DLB. Shared interactions, specifically SNYGR3 (i.e., a neuronal protein), between MSA and PD/DLB suggest neuronal axons origin for both diseases. In conclusion, we provide αsyn aggregates protein interaction maps for two distinct synucleinopathies.
Collapse
Affiliation(s)
- S G Choi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - T Tittle
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - R Barot
- University of Illinois at Chicago. Chicago IL, USA
| | - D Betts
- University of Michigan, Ann Arbor, MI, USA
| | - J Gallagher
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - J H Kordower
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Y Chu
- ASU-Banner Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - B A Killinger
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
38
|
Kakiuchi K, Nakamura Y, Sawai T, Arawaka S. Effects of selegiline on neuronal autophagy involving α-synuclein secretion. Biochem Biophys Res Commun 2024; 725:150267. [PMID: 38908065 DOI: 10.1016/j.bbrc.2024.150267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Cell-to-cell transmission of α-synuclein (α-syn) pathology underlies the spread of neurodegeneration in Parkinson's disease. α-Syn secretion is an important factor in the transmission of α-syn pathology. However, it is unclear how α-syn secretion is therapeutically modulated. Here, we investigated effects of monoamine oxidase (MAO)-B inhibitor selegiline on α-syn secretion. Treatment with selegiline promoted α-syn secretion in mouse primary cortical neuron cultures, and this increase was kept under glial cell-eliminated condition by Ara-C. Selegiline-induced α-syn secretion was blocked by cytosolic Ca2+ chelator BAPTA-AM in primary neurons. Selegiline-induced α-syn secretion was retained in MAOA siRNA knockdown, whereas it was abrogated by ATG5 knockdown in SH-SY5Y cells. Selegiline increased LC3-II generation with a reduction in intracellular p62/SQSTM1 levels in primary neurons. The increase in LC3-II generation was blocked by co-treatment with BAPTA-AM in primary neurons. Additionally, fractionation experiments showed that selegiline-induced α-syn secretion occurred in non-extracellular vesicle fractions of primary neurons and SH-SY5Y cells. Collectively, these findings show that selegiline promotes neuronal autophagy involving secretion of non-exosomal α-syn via a change of cytosolic Ca2+ levels.
Collapse
Affiliation(s)
- Kensuke Kakiuchi
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Yoshitsugu Nakamura
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Taiki Sawai
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Shigeki Arawaka
- Department of Internal Medicine IV, Division of Neurology, Osaka Medical and Pharmaceutical University Faculty of Medicine, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
39
|
Wu S, Schekman RW. Intercellular transmission of alpha-synuclein. Front Mol Neurosci 2024; 17:1470171. [PMID: 39324117 PMCID: PMC11422390 DOI: 10.3389/fnmol.2024.1470171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
An emerging theme in Parkinson's disease (PD) is the propagation of α-synuclein pathology as the disease progresses. Research involving the injection of preformed α-synuclein fibrils (PFFs) in animal models has recapitulated the pathological spread observed in PD patients. At the cellular and molecular levels, this intercellular spread requires the translocation of α-synuclein across various membrane barriers. Recent studies have identified subcellular organelles and protein machineries that facilitate these processes. In this review, we discuss the proposed pathways for α-synuclein intercellular transmission, including unconventional secretion, receptor-mediated uptake, endosome escape and nanotube-mediated transfer. In addition, we advocate for a rigorous examination of the evidence for the localization of α-synuclein in extracellular vesicles.
Collapse
Affiliation(s)
| | - Randy W. Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
40
|
Vestuto V, Conte M, Vietri M, Mensitieri F, Santoro V, Di Muro A, Alfieri M, Moros M, Miranda MR, Amante C, Delli Carri M, Campiglia P, Dal Piaz F, Del Gaudio P, De Tommasi N, Leone A, Moltedo O, Pepe G, Cappetta E, Ambrosone A. Multiomic Profiling and Neuroprotective Bioactivity of Salvia Hairy Root-Derived Extracellular Vesicles in a Cellular Model of Parkinson's Disease. Int J Nanomedicine 2024; 19:9373-9393. [PMID: 39286353 PMCID: PMC11403015 DOI: 10.2147/ijn.s479959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Extracellular vesicles (EVs) are promising tools for nanomedicine and nanobiotechnology. The purification of mammalian-derived EVs involves intensive processes, and their therapeutic application raises multiple safety and regulatory issues. Plants have the potential to serve as nonconventional sources of therapeutically relevant EVs. In this context, we recently identified hairy roots (HRs) of medicinal plants as a novel biotechnological platform to produce EVs for human health. Methods Herein, we report the purification, omics profiling, and bioactivity of EVs isolated from HRs of the medicinal plants S. sclarea and S. dominica. EVs were isolated from conditioned media of HR cultures using differential ultracentrifugation (dUC) and size exclusion chromatography (SEC). The isolated EVs were characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The proteomic and metabolomic profiles of the EVs were determined using mass spectrometry. Uptake studies and bioactivity assays, including confocal microscopy, MTT, flow cytometry, ROS quantification, and untargeted metabolomics analyses, were conducted in SH-SY5Y cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to evaluate the therapeutic potential of EVs in an in vitro model of Parkinson's disease. Results S. sclarea HRs released nanosized round-shaped EVs with a distinctive molecular signature. HR EVs from S. sclarea and S. dominica revealed conserved cargo of secondary metabolites, predominantly triterpenoids, which are known for their antioxidant properties. We showed that HR EVs are safe, enter the cells, and strongly inhibit apoptosis in a cellular model of Parkinson's disease. Cellular metabolomics revealed that EVs preserved metabolic homeostasis and mitigated cellular oxidative stress when co-administered with 6-OHDA. Mechanistically, HR EVs inhibited 6-OHDA autoxidation and substantially reduced the accumulation of its oxidative products, which are responsible for 6-OHDA-induced toxicity. Conclusion Collectively, our findings provide compelling evidence that EVs isolated from the hairy roots of Salvia species are promising, non-mammalian alternative for the design of novel therapies targeting neurological disorders.
Collapse
Affiliation(s)
- Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Mariapia Vietri
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Anna Di Muro
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Mariaevelina Alfieri
- Clinical Pathology, Santobono-Pausilipon Children's Hospital, AORN, Naples, 80122, Italy
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
- Operative Unit of Clinical Pharmacology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | | | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Antonietta Leone
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Elisa Cappetta
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Alfredo Ambrosone
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| |
Collapse
|
41
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
43
|
Filippini F, Galli T. Unveiling defects of secretion mechanisms in Parkinson's disease. J Biol Chem 2024; 300:107603. [PMID: 39059489 PMCID: PMC11378209 DOI: 10.1016/j.jbc.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of specific sets of neurons. While extensive research has focused on elucidating the genetic and epigenetic factors and molecular mechanisms underlying these disorders, emerging evidence highlights the critical role of secretion in the pathogenesis, possibly even onset, and progression of neurodegenerative diseases, suggesting the occurrence of non-cell-autonomous mechanisms. Secretion is a fundamental process that regulates intercellular communication, supports cellular homeostasis, and orchestrates various physiological functions in the body. Defective secretion can impair the release of neurotransmitters and other signaling molecules, disrupting synaptic transmission and compromising neuronal survival. It can also contribute to the accumulation, misfolding, and aggregation of disease-associated proteins, leading to neurotoxicity and neuronal dysfunction. In this review, we discuss the implications of defective secretion in the context of Parkinson's disease, emphasizing its role in protein aggregation, synaptic dysfunction, extracellular vesicle secretion, and neuroinflammation. We propose a multiple-hit model whereby protein accumulation and secretory defects must be combined for the onset and progression of the disease.
Collapse
Affiliation(s)
- Francesca Filippini
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
44
|
Petersen I, Godec A, Ranjbarian F, Hofer A, Mirabello C, Hultqvist G. A charged tail on anti-α-Synuclein antibodies does not enhance their affinity to α-Synuclein fibrils. PLoS One 2024; 19:e0308521. [PMID: 39208301 PMCID: PMC11361660 DOI: 10.1371/journal.pone.0308521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The aggregation of α-Synuclein (αSyn) is strongly linked to neuronal death in Parkinson's disease and other synucleinopathies. The spreading of aggregated αSyn between neurons is at least partly dependent on electrostatic interactions between positively charged stretches on αSyn fibrils and the negatively charged heparan sulphate proteoglycans on the cell surface. To date there is still no therapeutic option available that could halt the progression of Parkinson's disease and one of the major limitations is likely the relatively low proportion of αSyn aggregates accessible to drugs in the extracellular space. Here, we investigated whether a negatively charged peptide tail fused to the αSyn aggregate-specific antibodies SynO2 and 9E4 could enhance the antibodies' avidity to αSyn aggregates in order to improve their potential therapeutic effect through inhibiting cell-to-cell spreading and enhancing the clearance of extracellular aggregates. We performed ELISAs to test the avidity to αSyn aggregates of both monovalent and bivalent antibody formats with and without the peptide tail. Our results show that the addition of the negatively charged peptide tail decreased the binding strength of both antibodies to αSyn aggregates at physiological salt conditions, which can likely be explained by intermolecular repulsions between the tail and the negatively charged C-terminus of αSyn. Additionally, the tail might interact with the paratopes of the SynO2 antibody abolishing its binding to αSyn aggregates. Conclusively, our peptide tail did not fulfil the required characteristics to improve the antibodies' binding to αSyn aggregates. Fine-tuning the design of the peptide tail to avoid its interaction with the antibodies' CDR and to better mimic relevant characteristics of heparan sulphates for αSyn aggregate binding may help overcome the limitations observed in this study.
Collapse
Affiliation(s)
- Inga Petersen
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ana Godec
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Farahnaz Ranjbarian
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Claudio Mirabello
- Department of Physics, Chemistry and Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, Linköping, Sweden
| | | |
Collapse
|
45
|
Gonçalves MO, Di Iorio JF, Marin GV, Meneghetti P, Negreiros NGS, Torrecilhas AC. Extracellular vesicles. CURRENT TOPICS IN MEMBRANES 2024; 94:1-31. [PMID: 39370203 DOI: 10.1016/bs.ctm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cells, pathogens, and other systems release extracellular vesicles (EVs). The particles promote intercellular communication and contain proteins, lipids, RNA and DNA. Initially considered to be cellular waste in the twentieth century, EVs were becoming recognized for their function in biological communication and control. EVs are divided into many subtypes: exosomes, microvesicles, and apoptotic bodies. Exosomes form in the late endosome/multivesicular body and are released when the compartments fuse with the plasma membrane. Microvesicles are generated by direct budding of the plasma membrane, whereas apoptotic bodies are formed after cellular apoptosis. The new guideline for EVs that describes alternate nomenclature for EVs. The particles modulate the immune response by affecting both innate and adaptive immunity, and their specific the structure allows them to be used as biomarkers to diagnose a variety of diseases. EVs have a wide range of applications, for example, delivery systems for medications and genetic therapies because of their ability to convey specific cellular material. In anti-tumor therapy, EVs deliver therapeutic chemicals to tumor cells. The EVs promote transplant compatibility and reduce organ rejection. Host-parasite interactions, therapeutic and diagnostic for cancer, cardiovascular disease, cardiac tissue regeneration, and the treatment of neurological diseases such as Alzheimer's and Parkinson's. The study of EVs keeps on expanding, revealing new functions and beneficial options. EVs have the potential to change drug delivery, diagnostics, and specific therapeutics, creating a new frontier in biomedical.
Collapse
Affiliation(s)
- Mariana Ottaiano Gonçalves
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Fortes Di Iorio
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gabriela Villa Marin
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paula Meneghetti
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Náthani Gabrielly Silva Negreiros
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
46
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
47
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
48
|
Vieira TCRG, Barros CA, Domingues R, Outeiro TF. PrP meets alpha-synuclein: Molecular mechanisms and implications for disease. J Neurochem 2024; 168:1625-1639. [PMID: 37855859 DOI: 10.1111/jnc.15992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
The discovery of prions has challenged dogmas and has revolutionized our understanding of protein-misfolding diseases. The concept of self-propagation via protein conformational changes, originally discovered for the prion protein (PrP), also applies to other proteins that exhibit similar behavior, such as alpha-synuclein (aSyn), a central player in Parkinson's disease and in other synucleinopathies. aSyn pathology appears to spread from one cell to another during disease progression, and involves the misfolding and aggregation of aSyn. How the transfer of aSyn between cells occurs is still being studied, but one important hypothesis involves receptor-mediated transport. Interestingly, recent studies indicate that the cellular prion protein (PrPC) may play a crucial role in this process. PrPC has been shown to act as a receptor/sensor for protein aggregates in different neurodegenerative disorders, including Alzheimer's disease and amyotrophic lateral sclerosis. Here, we provide a comprehensive overview of the current state of knowledge regarding the interaction between aSyn and PrPC and discuss its role in synucleinopathies. We examine the properties of PrP and aSyn, including their structure, function, and aggregation. Additionally, we discuss the current understanding of PrPC's role as a receptor/sensor for aSyn aggregates and identify remaining unanswered questions in this area of research. Ultimately, we posit that exploring the interaction between aSyn and PrPC may offer potential treatment options for synucleinopathies.
Collapse
Affiliation(s)
- Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline A Barros
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Domingues
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
49
|
Ketata I, Ellouz E. From pathological mechanisms in Krabbe disease to cutting-edge therapy: A comprehensive review. Neuropathology 2024; 44:255-277. [PMID: 38444347 DOI: 10.1111/neup.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Since its initial documentation by Knud Krabbe in 1916, numerous studies have scrutinized the characteristics of Krabbe disease (KD) until the identification of the mutation in the GALC gene. In alignment with that, we investigated the natural history of KD spanning eight decades to gain a deeper understanding of the evolutionary trajectory of its mechanisms. Through our comprehensive analysis, we unearthed additional novel elements in molecular biology involving the micropathological mechanism of the disease. This review offers an updated perspective on the metabolic disorder that defines KD. Recently, extracellular vesicles (EVs), autophagy impairment, and α-synuclein have emerged as pivotal players in the neuropathological processes. EVs might serve as a cellular mechanism to avoid or alleviate the detrimental impacts of excessive toxic psychosine levels, and extracting EVs could contribute to synapse dysfunction. Autophagy impairment was found to be independent of psychosine and reliant on AKT and B-cell lymphoma 2. Additionally, α-synuclein has been recognized for inducing cellular death and dysfunction in common biological pathways. Our objective is to assess the effectiveness of advanced therapies in addressing this particular condition. While hematopoietic stem cells have been a primary treatment, its administration proves challenging, particularly in the presymptomatic phase. In this review, we have compiled information from over 10 therapy trials, comparing them based on their benefits and disadvantage.
Collapse
Affiliation(s)
- Imen Ketata
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| | - Emna Ellouz
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| |
Collapse
|
50
|
Ashique S, Kumar N, Mishra N, Muthu S, Rajendran RL, Chandrasekaran B, Obeng BF, Hong CM, Krishnan A, Ahn BC, Gangadaran P. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol Res Pract 2024; 260:155451. [PMID: 39002435 DOI: 10.1016/j.prp.2024.155451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are a subgroup of extracellular vesicles that function as transmitters, allowing cells to communicate more effectively with each other. However, exosomes may have both beneficial and harmful impacts on central nervous system disorders. Hence, the fundamental molecular mechanisms of the origin of illness and its progression are currently being investigated. The involvement of exosomes in the origin and propagation of neurodegenerative illness has been demonstrated recently. Exosomes provide a representation of the intracellular environment since they include various essential bioactive chemicals. The latest studies have demonstrated that exosomes transport several proteins. Additionally, these physiological vesicles are important in the regeneration of nervous tissue and the healing of neuronal lesions. They also offer a microenvironment to stimulate the conformational variation of concerning proteins for aggregation, resulting in neurodegenerative diseases. The biosynthesis, composition, and significance of exosomes as extracellular biomarkers in neurodegenerative disorders are discussed in this article, with a particular emphasis on their neuroprotective effects.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal 713212, India; Research Scholar, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh 474005, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | | | - Brenya Francis Obeng
- Faculty of Science, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea.
| |
Collapse
|