1
|
Somaiya RD, Po MA, Feller MB, Shekhar K. Cholinergic waves have a modest influence on the transcriptome of retinal ganglion cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.627027. [PMID: 39713433 PMCID: PMC11661095 DOI: 10.1101/2024.12.05.627027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In the early stages of development, correlated activity known as retinal waves causes periodic depolarizations of retinal ganglion cells (RGCs). The β2KO mouse, which lacks the β2 subunit of the nicotinic acetylcholine receptor, serves as a model for understanding the role of these cholinergic waves. β2KO mice have disruptions in several developmental processes of the visual system, including reduced retinotopic and eye-specific refinement of RGC axonal projections to their primary brain targets and an impact on the retinal circuits underlying direction selectivity. However, the effects of this mutation on gene expression in individual functional RGC types remain unclear. Here, we performed single-cell RNA sequencing on RGCs isolated at the end of the first postnatal week from wild-type and β2KO mice. We found that in β2KO mice, the molecular programs governing RGC differentiation were not impacted and the magnitude of transcriptional changes was modest compared to those observed during two days of normal postnatal maturation. This contrasts with the substantial transcriptomic changes seen in downstream visual system areas under wave disruption in recent studies. However, we identified ∼238 genes whose expression was altered in a type-specific manner. We confirmed this result via in situ hybridization and whole-cell recording by focusing on one of the downregulated genes in aRGCs, Kcnk9 , which encodes the two-pore domain leak potassium channel TASK3. Our study reveals a limited transcriptomic impact of cholinergic signaling in the retina and instead of affecting all RGCs uniformly, these waves show subtle modulation of molecular programs in a type-specific manner. SIGNIFICANCE STATEMENT Spontaneous retinal waves are critical for the development of the mammalian visual system. However, their role in transcriptional regulation in the retina across the diverse retinal ganglion cell (RGC) types that underpin the detection and transmission of visual features is unclear. Using single-cell RNA sequencing, we analyzed RGC transcriptome from wild-type mice and mice with disrupted retinal waves. We identified several genes that show RGC-type-specific regulation in their expression, including multiple neuropeptides and ion channels. However, wave-dependent changes in the transcriptome were more subtle than developmental changes, indicating that spontaneous activity-dependent molecular changes in retinal ganglion cells are not primarily manifested at the transcriptomic level.
Collapse
|
2
|
Stawikowska A, Dziembowska M, Kuzniewska B. Metabolic Phenotyping of Synaptic Mitochondria Using MitoPlates™ and Synaptoneurosomes. Methods Mol Biol 2025; 2878:67-74. [PMID: 39546257 DOI: 10.1007/978-1-0716-4264-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mitochondrial functional assays using MitoPlates™ S-1 allow us to characterize mitochondria in terms of substrate metabolism. MitoPlates™ are 96-well microplates pre-coated with a diverse set of substrates. The electron flow from NADH and FADH2 producing mitochondrial substrates is measured based on the reduction of redox dye, that acts as a terminal electron acceptor. Here, we describe the application of MitoPlates™ to characterize the metabolism of synaptic mitochondria enclosed in isolated pre- and postsynaptic terminals (synaptoneurosomes).
Collapse
Affiliation(s)
- Aleksandra Stawikowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Dziembowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bozena Kuzniewska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Kwon HJ, Santhosh D, Huang Z. A novel monomeric amyloid β-activated signaling pathway regulates brain development via inhibition of microglia. eLife 2024; 13:RP100446. [PMID: 39635981 PMCID: PMC11620749 DOI: 10.7554/elife.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Amyloid β (Aβ) forms aggregates in the Alzheimer's disease brain and is well known for its pathological roles. Recent studies show that it also regulates neuronal physiology in the healthy brain. Whether Aβ also regulates glial physiology in the normal brain, however, has remained unclear. In this article, we describe the discovery of a novel signaling pathway activated by the monomeric form of Aβ in vitro that plays essential roles in the regulation of microglial activity and the assembly of neocortex during mouse development in vivo. We find that activation of this pathway depends on the function of amyloid precursor and the heterotrimeric G protein regulator Ric8a in microglia and inhibits microglial immune activation at transcriptional and post-transcriptional levels. Genetic disruption of this pathway during neocortical development results in microglial dysregulation and excessive matrix proteinase activation, leading to basement membrane degradation, neuronal ectopia, and laminar disruption. These results uncover a previously unknown function of Aβ as a negative regulator of brain microglia and substantially elucidate the underlying molecular mechanisms. Considering the prominence of Aβ and neuroinflammation in the pathology of Alzheimer's disease, they also highlight a potentially overlooked role of Aβ monomer depletion in the development of the disease.
Collapse
Affiliation(s)
- Hyo Jun Kwon
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Devi Santhosh
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Zhen Huang
- Departments of Neurology and Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
4
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
5
|
Kaczmarek KT, Protokowicz K, Kaczmarek L. Matrix metalloproteinase-9: A magic drug target in neuropsychiatry? J Neurochem 2024; 168:1842-1853. [PMID: 37791997 DOI: 10.1111/jnc.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Neuropsychiatric conditions represent a major medical and societal challenge. The etiology of these conditions is very complex and combines genetic and environmental factors. The latter, for example, excessive maternal or early postnatal inflammation, as well as various forms of psychotrauma, often act as triggers leading to mental illness after a prolonged latent period (sometimes years). Matrix metalloproteinase-9 (MMP-9) is an extracellularly and extrasynaptic operating protease that is markedly activated in response to the aforementioned environmental insults. MMP-9 has also been shown to play a pivotal role in the plasticity of excitatory synapses, which, in its aberrant form, has repeatedly been implicated in the etiology of mental illness. In this conceptual review, we evaluate the experimental and clinical evidence supporting the claim that MMP-9 is uniquely positioned to be considered a drug target for ameliorating the adverse effects of environmental insults on the development of a variety of neuropsychiatric conditions, such as schizophrenia, bipolar disorder, major depression, autism spectrum disorders, addiction, and epilepsy. We also identify specific challenges and bottlenecks hampering the translation of knowledge on MMP-9 into new clinical treatments for the conditions above and suggest ways to overcome these barriers.
Collapse
|
6
|
Janusz-Kaminska A, Brzozowska A, Tempes A, Urbanska M, Blazejczyk M, Miłek J, Kuzniewska B, Zeng J, Wesławski J, Kisielewska K, Bassell GJ, Jaworski J. Rab11 regulates autophagy at dendritic spines in an mTOR- and NMDA-dependent manner. Mol Biol Cell 2024; 35:ar43. [PMID: 38294869 PMCID: PMC10916872 DOI: 10.1091/mbc.e23-02-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Synaptic plasticity is a process that shapes neuronal connections during neurodevelopment and learning and memory. Autophagy is a mechanism that allows the cell to degrade its unnecessary or dysfunctional components. Autophagosomes appear at dendritic spines in response to plasticity-inducing stimuli. Autophagy defects contribute to altered dendritic spine development, autistic-like behavior in mice, and neurological disease. While several studies have explored the involvement of autophagy in synaptic plasticity, the initial steps of the emergence of autophagosomes at the postsynapse remain unknown. Here, we demonstrate a postsynaptic association of autophagy-related protein 9A (Atg9A), known to be involved in the early stages of autophagosome formation, with Rab11, a small GTPase that regulates endosomal trafficking. Rab11 activity was necessary to maintain Atg9A-positive structures at dendritic spines. Inhibition of mTOR increased Rab11 and Atg9A interaction and increased the emergence of LC3 positive vesicles, an autophagosome membrane-associated protein marker, in dendritic spines when coupled to NMDA receptor stimulation. Dendritic spines with newly formed LC3+ vesicles were more resistant to NMDA-induced morphologic change. Rab11 DN overexpression suppressed appearance of LC3+ vesicles. Collectively, these results suggest that initiation of autophagy in dendritic spines depends on neuronal activity and Rab11a-dependent Atg9A interaction that is regulated by mTOR activity.
Collapse
Affiliation(s)
- Aleksandra Janusz-Kaminska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Agnieszka Brzozowska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Aleksandra Tempes
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Malgorzata Urbanska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Magdalena Blazejczyk
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Jacek Miłek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Juan Zeng
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Jan Wesławski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Katarzyna Kisielewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warszawa, Poland
| |
Collapse
|
7
|
Legutko D, Kuźniewska B, Kalita K, Yasuda R, Kaczmarek L, Michaluk P. BDNF signaling requires Matrix Metalloproteinase-9 during structural synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.569797. [PMID: 38106209 PMCID: PMC10723398 DOI: 10.1101/2023.12.08.569797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity underlies learning and memory processes as well as contributes, in its aberrant form, to neuropsychiatric disorders. One of its major forms is structural long-term potentiation (sLTP), an activity-dependent growth of dendritic spines that harbor excitatory synapses. The process depends on the release of brain-derived neurotrophic factor (BDNF), and activation of its receptor, TrkB. Matrix metalloproteinase-9 (MMP-9), an extracellular protease is essential for many forms of neuronal plasticity engaged in physiological as well as pathological processes. Here, we utilized two-photon microscopy and two-photon glutamate uncaging to demonstrate that MMP-9 activity is essential for sLTP and is rapidly (~seconds) released from dendritic spines in response to synaptic stimulation. Moreover, we show that either chemical or genetic inhibition of MMP-9 impairs TrkB activation, as measured by fluorescence lifetime imaging microscopy of FRET sensor. Furthermore, we provide evidence for a cell-free cleavage of proBDNF into mature BDNF by MMP-9. Our findings point to the autocrine mechanism of action of MMP-9 through BDNF maturation and TrkB activation during sLTP.
Collapse
Affiliation(s)
- Diana Legutko
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, Florida 33458, USA
| | - Bożena Kuźniewska
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
- Current address: Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katarzyna Kalita
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, Florida 33458, USA
| | - Leszek Kaczmarek
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | - Piotr Michaluk
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| |
Collapse
|
8
|
Chojnacka M, Beroun A, Magnowska M, Stawikowska A, Cysewski D, Milek J, Dziembowska M, Kuzniewska B. Impaired synaptic incorporation of AMPA receptors in a mouse model of fragile X syndrome. Front Mol Neurosci 2023; 16:1258615. [PMID: 38025260 PMCID: PMC10665894 DOI: 10.3389/fnmol.2023.1258615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of Fmr1 KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties. Using high-resolution quantitative proteomics of synaptoneurosomes isolated from the adult, developed brains of Fmr1 KO mice, we show a differential abundance of proteins regulating the postsynaptic receptor activity of glutamatergic synapses. We investigated the AMPA receptor composition and shuttling in adult Fmr1 KO and WT mice using a variety of complementary experimental strategies such as surface protein crosslinking, immunostaining of surface receptors, and electrophysiology. We discovered that the activity-dependent synaptic delivery of AMPARs is impaired in adult Fmr1 KO mice. Furthermore, we show that Fmr1 KO synaptic AMPARs contain more GluA2 subunits that can be interpreted as a switch in the synaptic AMPAR subtype toward an increased number of Ca2+-impermeable receptors in adult Fmr1 KO synapses.
Collapse
Affiliation(s)
- Magdalena Chojnacka
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Stawikowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Dziembowska M. How dendritic spines shape is determined by MMP-9 activity in FXS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:171-185. [PMID: 37993177 DOI: 10.1016/bs.irn.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to the family of endopeptidases expressed in neurons and secreted at the synapse in response to neuronal activity. It regulates the pericellular environment by cleaving its protein components. MMP9 is involved in activity-dependent reorganization of spine architecture. In the mouse model of fragile X syndrome (FXS), the most common inherited intellectual disability and the most common single-gene cause of autism, increased synaptic expression of MMP-9 is responsible for the observed dendritic spine abnormalities. In this chapter, I summarize the current data on the molecular regulatory pathways responsible for synaptic MMP-9 expression and discuss the fact that MMP-9 is extracellularly localized, making it a particularly attractive potential target for therapeutic pharmacological intervention in FXS.
Collapse
|
10
|
Olson ML, Badenoch B, Blatti M, Buching C, Glewwe N. Muscarinic Cholinergic Receptor Antagonism Impairs Spatial Memory Retrieval and Minimizes Retrieval-Induced Alterations in Matrix Metalloproteinase-9. Behav Brain Res 2023; 448:114460. [PMID: 37119978 DOI: 10.1016/j.bbr.2023.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Cholinergic dysfunction in the hippocampus causes memory impairment, and degradation of the forebrain cholinergic system has been implicated in several neurological disorders. One such disorder, Alzheimer's Disease (AD) is associated with the abnormal expression of various proteins including matrix metalloproteinase-9 (MMP-9), an enzyme known to regulate hippocampus-dependent memory. Memory involves several stages including acquisition, consolidation, and retrieval, but the neurobiological correlates of retrieval have been studied much less than other stages of memory. We sought to investigate the potential relationship between cholinergic signaling and hippocampal MMP-9 expression and the involvement of each in spatial memory retrieval. We trained rats in the water maze until the task was well-learned, then, seven days later, we allowed some to retrieve the memory after an intracerebroventricular injection of scopolamine or vehicle. Western blot analysis of hippocampal tissue shows elevated levels of a truncated form of MMP-9 associated with spatial memory retrieval. Additionally, our results indicate that centrally administered scopolamine both impairs spatial memory retrieval and prevents retrieval-induced elevations in MMP-9. These findings provide evidence for a potential link between cholinergic dysregulation and abnormal MMP-9 levels seen in the brains of AD patients. An important, yet unresolved question is whether MMP-9 serves to support memory retrieval itself or if it is involved in maintaining the ongoing stability of a retrieved memory.
Collapse
Affiliation(s)
- Mikel L Olson
- Department of Psychology, Concordia College, Moorhead, MN.
| | | | - Megan Blatti
- Department of Psychology, Concordia College, Moorhead, MN.
| | | | - Nic Glewwe
- Department of Psychology, Concordia College, Moorhead, MN.
| |
Collapse
|
11
|
Kutsarova E, Schohl A, Munz M, Wang A, Zhang YY, Bilash OM, Ruthazer ES. BDNF signaling in correlation-dependent structural plasticity in the developing visual system. PLoS Biol 2023; 21:e3002070. [PMID: 37011100 PMCID: PMC10101647 DOI: 10.1371/journal.pbio.3002070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
During development, patterned neural activity instructs topographic map refinement. Axons with similar patterns of neural activity converge onto target neurons and stabilize their synapses with these postsynaptic partners, restricting exploratory branch elaboration (Hebbian structural plasticity). On the other hand, non-correlated firing in inputs leads to synapse weakening and increased exploratory growth of axons (Stentian structural plasticity). We used visual stimulation to control the correlation structure of neural activity in a few ipsilaterally projecting (ipsi) retinal ganglion cell (RGC) axons with respect to the majority contralateral eye inputs in the optic tectum of albino Xenopus laevis tadpoles. Multiphoton live imaging of ipsi axons, combined with specific targeted disruptions of brain-derived neurotrophic factor (BDNF) signaling, revealed that both presynaptic p75NTR and TrkB are required for Stentian axonal branch addition, whereas presumptive postsynaptic BDNF signaling is necessary for Hebbian axon stabilization. Additionally, we found that BDNF signaling mediates local suppression of branch elimination in response to correlated firing of inputs. Daily in vivo imaging of contralateral RGC axons demonstrated that p75NTR knockdown reduces axon branch elongation and arbor spanning field volume.
Collapse
Affiliation(s)
- Elena Kutsarova
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Anne Schohl
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Martin Munz
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alex Wang
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Interdepartmental Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Yuan Yuan Zhang
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Olesia M Bilash
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- NYU Neuroscience Institute, New York University, New York, New York, United States of America
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Yin LT, Feng RR, Xie XY, Yang XR, Yang ZF, Hu JJ, Wu SF, Zhang C. Matrix metalloproteinase-9 overexpression in the hippocampus reduces alcohol-induced conditioned-place preference by regulating synaptic plasticity in mice. Behav Brain Res 2023; 442:114330. [PMID: 36746309 DOI: 10.1016/j.bbr.2023.114330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Extracellular matrix proteins appear to be necessary for the synaptic plasticity that underlies addiction memory. In the brain, matrix metalloproteinases (MMPs), especially matrix metalloproteinase-9 (MMP-9), have been recently implicated in processes involving alcohol reward and memory. Here, we showed for the first time, the positive effects of MMP-9 on alcohol-induced conditioned place preference (CPP) behavior and hippocampal neuron plasticity in C57BL/6 mice. Using recombinant adeno-associated viruses to overexpress MMP-9 in the hippocampus, we investigated the NMDAR, PSD-95, and cellular cytoskeleton proteins F-actin/G-actin in the modulation of alcohol reward behavior in mice exposed to CPP. We found that hippocampal infusions of MMP-9 decreased alcohol-induced place preference suggesting a reduction in alcohol reward. Western blot analysis demonstrated that protein expression of NMDA receptors (GluN1, GluN2A and GluN2B) in the hippocampus of alcohol-exposed mice were higher than that of the saline group. Further, the expression of these proteins was decreased in MMP-9 overexpressing mice. MMP-9 also regulated the ratio of F-actin/G-actin (dendritic spines cytoskeleton proteins), which might be the key mediator for behavioral changes in mice. Consequently, our results highlight new evidence that MMP-9 may play an important role in the molecular mechanism underlying alcohol reward and preference.
Collapse
Affiliation(s)
- Li-Tian Yin
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Rui-Rui Feng
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiao-Yan Xie
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiao-Rong Yang
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhuan-Fang Yang
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jia-Jia Hu
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Shu-Fen Wu
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ce Zhang
- Key Laboratory for Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
13
|
Lekk I, Cabrera-Cabrera F, Turconi G, Tuvikene J, Esvald EE, Rähni A, Casserly L, Garton DR, Andressoo JO, Timmusk T, Koppel I. Untranslated regions of brain-derived neurotrophic factor mRNA control its translatability and subcellular localization. J Biol Chem 2023; 299:102897. [PMID: 36639028 PMCID: PMC9943900 DOI: 10.1016/j.jbc.2023.102897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and growth during development. In the adult nervous system, BDNF is important for synaptic function in several biological processes such as memory formation and food intake. In addition, BDNF has been implicated in development and maintenance of the cardiovascular system. The Bdnf gene comprises several alternative untranslated 5' exons and two variants of 3' UTRs. The effects of these entire alternative UTRs on translatability have not been established. Using reporter and translating ribosome affinity purification analyses, we show that prevalent Bdnf 5' UTRs, but not 3' UTRs, exert a repressive effect on translation. However, contrary to previous reports, we do not detect a significant effect of neuronal activity on BDNF translation. In vivo analysis via knock-in conditional replacement of Bdnf 3' UTR by bovine growth hormone 3' UTR reveals that Bdnf 3' UTR is required for efficient Bdnf mRNA and BDNF protein production in the brain, but acts in an inhibitory manner in lung and heart. Finally, we show that Bdnf mRNA is enriched in rat brain synaptoneurosomes, with higher enrichment detected for exon I-containing transcripts. In conclusion, these results uncover two novel aspects in understanding the function of Bdnf UTRs. First, the long Bdnf 3' UTR does not repress BDNF expression in the brain. Second, exon I-derived 5' UTR has a distinct role in subcellular targeting of Bdnf mRNA.
Collapse
Affiliation(s)
- Ingrid Lekk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Giorgio Turconi
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Annika Rähni
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Laoise Casserly
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daniel R. Garton
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios Llc, Tallinn, Estonia.
| | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
14
|
Gale JR, Gedeon JY, Donnelly CJ, Gold MS. Local translation in primary afferents and its contribution to pain. Pain 2022; 163:2302-2314. [PMID: 35438669 PMCID: PMC9579217 DOI: 10.1097/j.pain.0000000000002658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic pain remains a significant problem due to its prevalence, impact, and limited therapeutic options. Progress in addressing chronic pain is dependent on a better understanding of underlying mechanisms. Although the available evidence suggests that changes within the central nervous system contribute to the initiation and maintenance of chronic pain, it also suggests that the primary afferent plays a critical role in all phases of the manifestation of chronic pain in most of those who suffer. Most notable among the changes in primary afferents is an increase in excitability or sensitization. A number of mechanisms have been identified that contribute to primary afferent sensitization with evidence for both increases in pronociceptive signaling molecules, such as voltage-gated sodium channels, and decreases in antinociceptive signaling molecules, such as voltage-dependent or calcium-dependent potassium channels. Furthermore, these changes in signaling molecules seem to reflect changes in gene expression as well as posttranslational processing. A mechanism of sensitization that has received far less attention, however, is the local or axonal translation of these signaling molecules. A growing body of evidence indicates that this process not only is dynamically regulated but also contributes to the initiation and maintenance of chronic pain. Here, we review the biology of local translation in primary afferents and its relevance to pain pathobiology.
Collapse
Affiliation(s)
- Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Michael S Gold
- Corresponding author: Michael S Gold, PhD, Department of Neurobiology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, P: 412-383-5367,
| |
Collapse
|
15
|
Tewari BP, Chaunsali L, Prim CE, Sontheimer H. A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front Cell Neurosci 2022; 16:1022754. [PMID: 36339816 PMCID: PMC9630365 DOI: 10.3389/fncel.2022.1022754] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
A structural scaffold embedding brain cells and vasculature is known as extracellular matrix (ECM). The physical appearance of ECM in the central nervous system (CNS) ranges from a diffused, homogeneous, amorphous, and nearly omnipresent matrix to highly organized distinct morphologies such as basement membranes and perineuronal nets (PNNs). ECM changes its composition and organization during development, adulthood, aging, and in several CNS pathologies. This spatiotemporal dynamic nature of the ECM and PNNs brings a unique versatility to their functions spanning from neurogenesis, cell migration and differentiation, axonal growth, and pathfinding cues, etc., in the developing brain, to stabilizing synapses, neuromodulation, and being an active partner of tetrapartite synapses in the adult brain. The malleability of ECM and PNNs is governed by both intrinsic and extrinsic factors. Glial cells are among the major extrinsic factors that facilitate the remodeling of ECM and PNN, thereby acting as key regulators of diverse functions of ECM and PNN in health and diseases. In this review, we discuss recent advances in our understanding of PNNs and how glial cells are central to ECM and PNN remodeling in normal and pathological states of the CNS.
Collapse
|
16
|
Kuzniewska B, Rejmak K, Nowacka A, Ziółkowska M, Milek J, Magnowska M, Gruchota J, Gewartowska O, Borsuk E, Salamian A, Dziembowski A, Radwanska K, Dziembowska M. Disrupting interaction between miR-132 and Mmp9 3'UTR improves synaptic plasticity and memory in mice. Front Mol Neurosci 2022; 15:924534. [PMID: 35992198 PMCID: PMC9389266 DOI: 10.3389/fnmol.2022.924534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
As microRNAs have emerged to be important regulators of molecular events occurring at the synapses, the new questions about their regulatory effect on the behavior have araised. In the present study, we show for the first time that the dysregulated specific targeting of miR132 to Mmp9 mRNA in the mouse brain results in the increased level of Mmp9 protein, which affects synaptic plasticity and has an effect on memory formation. Our data points at the importance of complex and precise regulation of the Mmp9 level by miR132 in the brain.
Collapse
Affiliation(s)
- Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Karolina Rejmak
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Borsuk
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Targeted therapy of cognitive deficits in fragile X syndrome. Mol Psychiatry 2022; 27:2766-2776. [PMID: 35354925 PMCID: PMC7612812 DOI: 10.1038/s41380-022-01527-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
Breaking an impasse in finding mechanism-based therapies of neuropsychiatric disorders requires a strategic shift towards alleviating individual symptoms. Here we present a symptom and circuit-specific approach to rescue deficits of reward learning in Fmr1 knockout mice, a model of Fragile X syndrome (FXS), the most common monogenetic cause of inherited mental disability and autism. We use high-throughput, ecologically-relevant automated tests of cognition and social behavior to assess effectiveness of the circuit-targeted injections of designer nanoparticles, loaded with TIMP metalloproteinase inhibitor 1 protein (TIMP-1). Further, to investigate the impact of our therapeutic strategy on neuronal plasticity we perform long-term potentiation recordings and high-resolution electron microscopy. We show that central amygdala-targeted delivery of TIMP-1 designer nanoparticles reverses impaired cognition in Fmr1 knockouts, while having no impact on deficits of social behavior, hence corroborating symptom-specificity of the proposed approach. Moreover, we elucidate the neural correlates of the highly specific behavioral rescue by showing that the applied therapeutic intervention restores functional synaptic plasticity and ultrastructure of neurons in the central amygdala. Thus, we present a targeted, symptom-specific and mechanism-based strategy to remedy cognitive deficits in Fragile X syndrome.
Collapse
|
18
|
Eisen TJ, Li JJ, Bartel DP. The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. RNA (NEW YORK, N.Y.) 2022; 28:808-831. [PMID: 35273099 PMCID: PMC9074895 DOI: 10.1261/rna.079046.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Neurons provide a rich setting for studying post-transcriptional control. Here, we investigate the landscape of translational control in neurons and search for mRNA features that explain differences in translational efficiency (TE), considering the interplay between TE, mRNA poly(A)-tail lengths, microRNAs, and neuronal activation. In neurons and brain tissues, TE correlates with tail length, and a few dozen mRNAs appear to undergo cytoplasmic polyadenylation upon light or chemical stimulation. However, the correlation between TE and tail length is modest, explaining <5% of TE variance, and even this modest relationship diminishes when accounting for other mRNA features. Thus, tail length appears to affect TE only minimally. Accordingly, miRNAs, which accelerate deadenylation of their mRNA targets, primarily influence target mRNA levels, with no detectable effect on either steady-state tail lengths or TE. Larger correlates with TE include codon composition and predicted mRNA folding energy. When combined in a model, the identified correlates explain 38%-45% of TE variance. These results provide a framework for considering the relative impact of factors that contribute to translational control in neurons. They indicate that when examined in bulk, translational control in neurons largely resembles that of other types of post-embryonic cells. Thus, detection of more specialized control might require analyses that can distinguish translation occurring in neuronal processes from that occurring in cell bodies.
Collapse
Affiliation(s)
- Timothy J Eisen
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jingyi Jessica Li
- Department of Statistics, Department of Biostatistics, Department of Computational Medicine, and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
19
|
Namba MD, Phillips MN, Neisewander JL, Olive MF. Nuclear factor kappa B signaling within the rat nucleus accumbens core sex-dependently regulates cue-induced cocaine seeking and matrix metalloproteinase-9 expression. Brain Behav Immun 2022; 102:252-265. [PMID: 35259426 PMCID: PMC9116481 DOI: 10.1016/j.bbi.2022.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic drug self-administration and withdrawal are associated with distinct neuroimmune adaptations that may increase drug craving and relapse vulnerability in humans. The nuclear factor kappa-B (NF-κB) pathway is a critical regulator of many immune- and addiction-related genes such as the extracellular matrix enzyme matrix metalloproteinase-9 (MMP-9), which is a known modulator of learning, memory, and synaptic plasticity. While some studies suggest striatal NF-κB signaling may regulate drug-conditioned behavior, no studies to date have examined whether NF-κB signaling within the nucleus accumbens core (NAc core) alters downstream neuroimmune function and cue-motivated cocaine seeking following a period of forced abstinence, whether any effects are specific to cocaine over other reinforcers, or whether sex differences exist. Here, we examined whether viral-mediated knockdown of the p65 subunit of NF-κB within the NAc core would alter MMP-9 expression and cue-induced cocaine- and sucrose-seeking behavior following a period of forced abstinence in male and female rats. We demonstrate that NAc core p65 knockdown results in a significant decrease in cue-induced cocaine seeking in males but not females. This effect was specific to cocaine, as p65 knockdown did not significantly affect cue-induced sucrose seeking in either males or females. Moreover, we demonstrate that males express higher levels of MMP-9 within the NAc core and nucleus accumbens shell (NAcSh) compared to females, and that p65 knockdown significantly decreases MMP-9 in the NAc core of males but not females among cocaine cue-exposed animals. Altogether, these results suggest that NAc core NF-κB signaling exerts modulatory control over cue-motivated drug-seeking behavior and downstream neuroimmune function in a sex-specific manner. These findings highlight the need to consider sex as an important biological variable when examining immunomodulatory mechanisms of cocaine seeking.
Collapse
Affiliation(s)
- Mark D Namba
- School of Life Science, Arizona State University, Tempe, AZ, USA.
| | - Megan N Phillips
- School of Life Science, Arizona State University, Tempe, AZ, USA
| | | | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
20
|
Dankovich TM, Rizzoli SO. Extracellular Matrix Recycling as a Novel Plasticity Mechanism With a Potential Role in Disease. Front Cell Neurosci 2022; 16:854897. [PMID: 35431813 PMCID: PMC9008140 DOI: 10.3389/fncel.2022.854897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) stabilizes neural circuits and synapses in the healthy brain, while also retaining the ability to be remodeled, to allow synapses to be plastic. A well-described mechanism for ECM remodeling is through the regulated secretion of proteolytic enzymes at the synapse, together with the synthesis of new ECM molecules. The importance of this process is evidenced by the large number of brain disorders that are associated with a dysregulation of ECM-cleaving protease activity. While most of the brain ECM molecules are indeed stable for remarkable time periods, evidence in other cell types, as cancer cells, suggests that at least a proportion of the ECM molecules may be endocytosed regularly, and could even be recycled back to the ECM. In this review, we discuss the involvement of such a mechanism in the brain, under physiological activity conditions and in relation to synapse and brain disease.
Collapse
Affiliation(s)
- Tal M. Dankovich
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- *Correspondence: Tal M. Dankovich,
| | - Silvio O. Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- Silvio O. Rizzoli,
| |
Collapse
|
21
|
Dankovich TM, Rizzoli SO. The Synaptic Extracellular Matrix: Long-Lived, Stable, and Still Remarkably Dynamic. Front Synaptic Neurosci 2022; 14:854956. [PMID: 35350469 PMCID: PMC8957932 DOI: 10.3389/fnsyn.2022.854956] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
In the adult brain, synapses are tightly enwrapped by lattices of the extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the extracellular matrix (ECM) at synapses. Here, we review recent evidence for such a process based on the constitutive recycling of synaptic ECM molecules. We discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| |
Collapse
|
22
|
The cell adhesion protein dystroglycan affects the structural remodeling of dendritic spines. Sci Rep 2022; 12:2506. [PMID: 35169214 PMCID: PMC8847666 DOI: 10.1038/s41598-022-06462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Dystroglycan (DG) is a cell membrane protein that binds to the extracellular matrix in various mammalian tissues. The function of DG has been well defined in embryonic development as well as in the proper migration of differentiated neuroblasts in the central nervous system (CNS). Although DG is known to be a target for matrix metalloproteinase-9 (MMP-9), cleaved in response to enhanced synaptic activity, the role of DG in the structural remodeling of dendritic spines is still unknown. Here, we report for the first time that the deletion of DG in rat hippocampal cell cultures causes pronounced changes in the density and morphology of dendritic spines. Furthermore, we noted a decrease in laminin, one of the major extracellular partners of DG. We have also observed that the lack of DG evokes alterations in the morphological complexity of astrocytes accompanied by a decrease in the level of aquaporin 4 (AQP4), a protein located within astrocyte endfeet surrounding neuronal dendrites and synapses. Regardless of all of these changes, we did not observe any effect of DG silencing on either excitatory or inhibitory synaptic transmission. Likewise, the knockdown of DG had no effect on Psd-95 protein expression. Our results indicate that DG is involved in dendritic spine remodeling that is not functionally reflected. This may suggest the existence of unknown mechanisms that maintain proper synaptic signaling despite impaired structure of dendritic spines. Presumably, astrocytes are involved in these processes.
Collapse
|
23
|
Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021; 10:cells10082055. [PMID: 34440823 PMCID: PMC8391609 DOI: 10.3390/cells10082055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.
Collapse
|
24
|
Venturino A, Schulz R, De Jesús-Cortés H, Maes ME, Nagy B, Reilly-Andújar F, Colombo G, Cubero RJA, Schoot Uiterkamp FE, Bear MF, Siegert S. Microglia enable mature perineuronal nets disassembly upon anesthetic ketamine exposure or 60-Hz light entrainment in the healthy brain. Cell Rep 2021; 36:109313. [PMID: 34233180 PMCID: PMC8284881 DOI: 10.1016/j.celrep.2021.109313] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Perineuronal nets (PNNs), components of the extracellular matrix, preferentially coat parvalbumin-positive interneurons and constrain critical-period plasticity in the adult cerebral cortex. Current strategies to remove PNN are long-lasting, invasive, and trigger neuropsychiatric symptoms. Here, we apply repeated anesthetic ketamine as a method with minimal behavioral effect. We find that this paradigm strongly reduces PNN coating in the healthy adult brain and promotes juvenile-like plasticity. Microglia are critically involved in PNN loss because they engage with parvalbumin-positive neurons in their defined cortical layer. We identify external 60-Hz light-flickering entrainment to recapitulate microglia-mediated PNN removal. Importantly, 40-Hz frequency, which is known to remove amyloid plaques, does not induce PNN loss, suggesting microglia might functionally tune to distinct brain frequencies. Thus, our 60-Hz light-entrainment strategy provides an alternative form of PNN intervention in the healthy adult brain.
Collapse
Affiliation(s)
- Alessandro Venturino
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Rouven Schulz
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Héctor De Jesús-Cortés
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret E Maes
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Bálint Nagy
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Francis Reilly-Andújar
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gloria Colombo
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ryan John A Cubero
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra Siegert
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
25
|
Grochecki P, Smaga I, Lopatynska-Mazurek M, Gibula-Tarlowska E, Kedzierska E, Listos J, Talarek S, Marszalek-Grabska M, Hubalewska-Mazgaj M, Korga-Plewko A, Dudka J, Marzec Z, Filip M, Kotlinska JH. Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis. Int J Mol Sci 2021; 22:E589. [PMID: 33435576 PMCID: PMC7827725 DOI: 10.3390/ijms22020589] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
A synthetic cathinone, mephedrone is widely abused by adolescents and young adults. Despite its widespread use, little is known regarding its long-term effects on cognitive function. Therefore, we assessed, for the first time, whether (A) repeated mephedrone (30 mg/kg, i.p., 10 days, once a day) exposure during adolescence (PND 40) induces deleterious effects on spatial memory and reversal learning (Barnes maze task) in adult (PND 71-84) rats and whether (B) these effects were comparable to amphetamine (2.5 mg/kg, i.p.). Furthermore, the influence of these drugs on MMP-9, NMDA receptor subunits (GluN1, GluN2A/2B) and PSD-95 protein expression were assessed in adult rats. The drug effects were evaluated at doses that per se induce rewarding/reinforcing effects in rats. Our results showed deficits in spatial memory (delayed effect of amphetamine) and reversal learning in adult rats that received mephedrone/amphetamine in adolescence. However, the reversal learning impairment may actually have been due to spatial learning rather than cognitive flexibility impairments. Furthermore, mephedrone, but not amphetamine, enhanced with delayed onset, MMP-9 levels in the prefrontal cortex and the hippocampus. Mephedrone given during adolescence induced changes in MMP-9 level and up-regulation of the GluN2B-containing NMDA receptor (prefrontal cortex and hippocampus) in young adult (PND 63) and adult (PND 87) rats. Finally, in adult rats, PSD-95 expression was increased in the prefrontal cortex and decreased in the hippocampus. In contrast, in adult rats exposed to amphetamine in adolescence, GluN2A subunit and PSD-95 expression were decreased (down-regulated) in the hippocampus. Thus, in mephedrone-but not amphetamine-treated rats, the deleterious effects on spatial memory were associated with changes in MMP-9 level. Because the GluN2B-containing NMDA receptor dominates in adolescence, mephedrone seems to induce more harmful effects on cognition than amphetamine does during this period of life.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | - Malgorzata Lopatynska-Mazurek
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, 20-090 Lublin, Poland;
| | - Magdalena Hubalewska-Mazgaj
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | | | - Jaroslaw Dudka
- Department of Toxicology, Medical University, 20-090 Lublin, Poland;
| | - Zbigniew Marzec
- Department of Food and Nutrition, Medical University, 20-093 Lublin, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| |
Collapse
|
26
|
Puścian A, Winiarski M, Łęski S, Charzewski Ł, Nikolaev T, Borowska J, Dzik JM, Bijata M, Lipp HP, Dziembowska M, Knapska E. Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. Br J Pharmacol 2021; 178:672-688. [PMID: 33171527 DOI: 10.1111/bph.15319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The therapeutic effects of fluoxetine are believed to be due to increasing neuronal plasticity and reversing some learning deficits. Nevertheless, a growing amount of evidence shows adverse effects of this drug on cognition and some forms of neuronal plasticity. EXPERIMENTAL APPROACH To study the effects of chronic fluoxetine treatment, we combine an automated assessment of motivation and learning in mice with an investigation of neuronal plasticity in the central amygdala and basolateral amygdala. We use immunohistochemistry to visualize neuronal types and perineuronal nets, along with DI staining to assess dendritic spine morphology. Gel zymography is used to test fluoxetine's impact on matrix metalloproteinase-9, an enzyme involved in synaptic plasticity. KEY RESULTS We show that chronic fluoxetine treatment in non-stressed mice increases perineuronal nets-dependent plasticity in the basolateral amygdala, while impairing MMP-9-dependent plasticity in the central amygdala. Further, we illustrate how the latter contributes to anhedonia and deficits of reward learning. Behavioural impairments are accompanied by alterations in morphology of dendritic spines in the central amygdala towards an immature state, most likely reflecting animals' inability to adapt. We strengthen the link between the adverse effects of fluoxetine and its influence on MMP-9 by showing that behaviour of MMP-9 knockout animals remains unaffected by the drug. CONCLUSION AND IMPLICATIONS Chronic fluoxetine treatment differentially affects various forms of neuronal plasticity, possibly explaining its opposing effects on brain and behaviour. These findings are of immediate clinical relevance since reported side effects of fluoxetine pose a potential threat to patients.
Collapse
Affiliation(s)
- Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Winiarski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Szymon Łęski
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Charzewski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Borowska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub M Dzik
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
27
|
The soluble neurexin-1β ectodomain causes calcium influx and augments dendritic outgrowth and synaptic transmission. Sci Rep 2020; 10:18041. [PMID: 33093500 PMCID: PMC7582164 DOI: 10.1038/s41598-020-75047-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Classically, neurexins are thought to mediate synaptic connections through trans interactions with a number of different postsynaptic partners. Neurexins are cleaved by metalloproteases in an activity-dependent manner, releasing the soluble extracellular domain. Here, we report that in both immature (before synaptogenesis) and mature (after synaptogenesis) hippocampal neurons, the soluble neurexin-1β ectodomain triggers acute Ca2+-influx at the dendritic/postsynaptic side. In both cases, neuroligin-1 expression was required. In immature neurons, calcium influx required N-type calcium channels and stimulated dendritic outgrowth and neuronal survival. In mature glutamatergic neurons the neurexin-1β ectodomain stimulated calcium influx through NMDA-receptors, which increased presynaptic release probability. In contrast, prolonged exposure to the ectodomain led to inhibition of synaptic transmission. This secondary inhibition was activity- and neuroligin-1 dependent and caused by a reduction in the readily-releasable pool of vesicles. A synthetic peptide modeled after the neurexin-1β:neuroligin-1 interaction site reproduced the cellular effects of the neurexin-1β ectodomain. Collectively, our findings demonstrate that the soluble neurexin ectodomain stimulates growth of neurons and exerts acute and chronic effects on trans-synaptic signaling involved in setting synaptic strength.
Collapse
|
28
|
Kuzniewska B, Cysewski D, Wasilewski M, Sakowska P, Milek J, Kulinski TM, Winiarski M, Kozielewicz P, Knapska E, Dadlez M, Chacinska A, Dziembowski A, Dziembowska M. Mitochondrial protein biogenesis in the synapse is supported by local translation. EMBO Rep 2020; 21:e48882. [PMID: 32558077 PMCID: PMC7403725 DOI: 10.15252/embr.201948882] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/21/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Synapses are the regions of the neuron that enable the transmission and propagation of action potentials on the cost of high energy consumption and elevated demand for mitochondrial ATP production. The rapid changes in local energetic requirements at dendritic spines imply the role of mitochondria in the maintenance of their homeostasis. Using global proteomic analysis supported with complementary experimental approaches, we show that an essential pool of mitochondrial proteins is locally produced at the synapse indicating that mitochondrial protein biogenesis takes place locally to maintain functional mitochondria in axons and dendrites. Furthermore, we show that stimulation of synaptoneurosomes induces the local synthesis of mitochondrial proteins that are transported to the mitochondria and incorporated into the protein supercomplexes of the respiratory chain. Importantly, in a mouse model of fragile X syndrome, Fmr1 KO mice, a common disease associated with dysregulation of synaptic protein synthesis, we observed altered morphology and respiration rates of synaptic mitochondria. That indicates that the local production of mitochondrial proteins plays an essential role in synaptic functions.
Collapse
Affiliation(s)
- Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic PlasticityCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | | | - Michal Wasilewski
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
- ReMedy International Research Agenda UnitUniversity of WarsawWarsawPoland
| | - Paulina Sakowska
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic PlasticityCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Tomasz M Kulinski
- Institute of Biochemistry and BiophysicsPASWarsawPoland
- Laboratory of RNA BiologyInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Pawel Kozielewicz
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Michal Dadlez
- Institute of Biochemistry and BiophysicsPASWarsawPoland
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
- ReMedy International Research Agenda UnitUniversity of WarsawWarsawPoland
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Andrzej Dziembowski
- Institute of Biochemistry and BiophysicsPASWarsawPoland
- Laboratory of RNA BiologyInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic PlasticityCentre of New TechnologiesUniversity of WarsawWarsawPoland
| |
Collapse
|
29
|
Ganguly K, Trigun SK. Mapping Connectome in Mammalian Brain: A Novel Approach by Bioengineering Neuro-Glia specific Vectors. J Theor Biol 2020; 496:110244. [PMID: 32171712 DOI: 10.1016/j.jtbi.2020.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
The connectome is the comprehensive map of the brain represented by wiring diagram of the full set of neuro-glia and synapses within entire brain of an organism. Some recent scientific efforts have successfully been made to visualize such map at neuro-glial networking level, however, capturing it as one unit of the entire brain have never been elucidated. Moreover, in order to derive structure-function relationship of different brain regions in response to a defined stimulus, there is a need to elucidate the connectome at single neuro-glial ensemble level after brain is challenged with the known memory function. This needs developing molecular approaches to tag neuro-glial activities in response to a conditioned brain function. Such approaches of using specific molecular tags have been tried to visualize independently neuron and glial specific events in response to a memory function, however, they could not tag the connectome together at single neuro-glia ensemble level. Therefore, there is a need to develop new methods for mapping entire connectome up to a single neuro-glial precision and resolution, with a purpose of tagging specific brain region accountable to execute a special memory formation process. The present hypothetical paper aims to propose a novel molecular method to generate the structural connectome at neuro-glial level in mice brain. Herein, we propose to tag the entire connectome at neuro-glia precision by generating a transgenic mice via transposing and recombining engineered novel "Neuro-Glia specific Vectors" (NGVs: specific to excitatory neurons, inhibitory neurons and glial cells) vis a vis "Transcriptional/ Translational Messenger (TMs: specific to metalloproteinases, MMP-9) coupled with different color protein tags, followed by the Clarity. Herein, the NGVs will be translated via Neuro-glia specific promoters, while TMs will be translated via endogenous MMP-9 promoter in all neuro-glial cells. The viability of all constructs will be verified in cortical/ hippocampal culture by inducing them to undergo chemically induced long term potentionation (cLTP) following visualization of different colored pattern. This will be further confirmed by Immunostaning, Western Blot and RT-PCR analysis. Additionally, in this approach, one can decipher the dynamics of molecular and cellular events associated with MMP-9 seretome by monitoring the trafficking of tagged endogenous MMP-9 protein after neuronal stimulation by cLTP in vitro. However, for visualizing complete connectome, the adult transgenic mice will be challenged with fear consolidation (Fear context and contextual cue) tests followed by Clarity coupled Light Sheet Microscopy to analyze neuro-glia ensemble following whole brain imaging.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Surendra Kumar Trigun
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India.
| |
Collapse
|
30
|
Emerging Roles for 3' UTRs in Neurons. Int J Mol Sci 2020; 21:ijms21103413. [PMID: 32408514 PMCID: PMC7279237 DOI: 10.3390/ijms21103413] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
The 3′ untranslated regions (3′ UTRs) of mRNAs serve as hubs for post-transcriptional control as the targets of microRNAs (miRNAs) and RNA-binding proteins (RBPs). Sequences in 3′ UTRs confer alterations in mRNA stability, direct mRNA localization to subcellular regions, and impart translational control. Thousands of mRNAs are localized to subcellular compartments in neurons—including axons, dendrites, and synapses—where they are thought to undergo local translation. Despite an established role for 3′ UTR sequences in imparting mRNA localization in neurons, the specific RNA sequences and structural features at play remain poorly understood. The nervous system selectively expresses longer 3′ UTR isoforms via alternative polyadenylation (APA). The regulation of APA in neurons and the neuronal functions of longer 3′ UTR mRNA isoforms are starting to be uncovered. Surprising roles for 3′ UTRs are emerging beyond the regulation of protein synthesis and include roles as RBP delivery scaffolds and regulators of alternative splicing. Evidence is also emerging that 3′ UTRs can be cleaved, leading to stable, isolated 3′ UTR fragments which are of unknown function. Mutations in 3′ UTRs are implicated in several neurological disorders—more studies are needed to uncover how these mutations impact gene regulation and what is their relationship to disease severity.
Collapse
|
31
|
Bouquier N, Girard B, Aparicio Arias J, Fagni L, Bertaso F, Perroy J. Gelatinase Biosensor Reports Cellular Remodeling During Epileptogenesis. Front Synaptic Neurosci 2020; 12:15. [PMID: 32372941 PMCID: PMC7186352 DOI: 10.3389/fnsyn.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
Epileptogenesis is the gradual process responsible for converting a healthy brain into an epileptic brain. This process can be triggered by a wide range of factors, including brain injury or tumors, infections, and status epilepticus. Epileptogenesis results in aberrant synaptic plasticity, neuroinflammation and seizure-induced cell death. As Matrix Metalloproteinases (MMPs) play a crucial role in cellular plasticity by remodeling the extracellular matrix (ECM), gelatinases (MMP-2 and MMP-9) were recently highlighted as key players in epileptogenesis. In this work, we engineered a biosensor to report in situ gelatinase activity in a model of epileptogenesis. This biosensor encompasses a gelatinase-sensitive activatable cell penetrating peptide (ACPP) coupled to a TAMRA fluorophore, allowing fluorescence uptake in cells displaying endogenous gelatinase activities. In a preclinical mouse model of temporal lobe epilepsy (TLE), the intrahippocampal kainate injection, ACPPs revealed a localized distribution of gelatinase activities, refining temporal cellular changes during epileptogenesis. The activity was found particularly but not only in the ipsilateral hippocampus, starting from the CA1 area and spreading to dentate gyrus from the early stages throughout chronic epilepsy, notably in neurons and microglial cells. Thus, our work shows that ACPPs are suitable molecular imaging probes for detecting the spatiotemporal pattern of gelatinase activity during epileptogenesis, suggesting their possible use as vectors to target cellular reactive changes with treatment for epileptogenesis.
Collapse
Affiliation(s)
| | - Benoit Girard
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Laurent Fagni
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Federica Bertaso
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
32
|
Bitanihirwe BKY, Woo TUW. A conceptualized model linking matrix metalloproteinase-9 to schizophrenia pathogenesis. Schizophr Res 2020; 218:28-35. [PMID: 32001079 DOI: 10.1016/j.schres.2019.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase 9 (MMP-9) is an extracellularly operating zinc-dependent endopeptidase that is commonly expressed in the brain, other tissues. It is synthesized in a latent zymogen form known as pro-MMP-9 that is subsequently converted to the active MMP-9 enzyme following cleavage of the pro-domain. Within the central nervous system, MMP-9 is localized and released from neurons, astrocytes and microglia where its expression levels are modulated by cytokines and growth factors during both normal and pathological conditions as well as by reactive oxygen species generated during oxidative stress. MMP-9 is involved in a number of key neurodevelopmental processes that are thought to be affected in schizophrenia, including maturation of the inhibitory neurons that contain the calcium-binding protein parvalbumin, developmental formation of the specialized extracellular matrix structure perineuronal net, synaptic pruning, and myelination. In this context, the present article provides a narrative synthesis of the existing evidence linking MMP-9 dysregulation to schizophrenia pathogenesis. We start by providing an overview of MMP-9 involvement in brain development and physiology. We then discuss the potential mechanisms through which MMP-9 dysregulation may affect neural circuitry maturation as well as how these anomalies may contribute to the disease process of schizophrenia. We conclude by articulating a comprehensive, cogent, and experimentally testable hypothesis linking MMP-9 to the developmental pathophysiologic cascade that triggers the onset and sustains the chronicity of the illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Murase S, Winkowski D, Liu J, Kanold PO, Quinlan EM. Homeostatic regulation of perisynaptic matrix metalloproteinase 9 (MMP9) activity in the amblyopic visual cortex. eLife 2019; 8:52503. [PMID: 31868167 PMCID: PMC6961978 DOI: 10.7554/elife.52503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
Dark exposure (DE) followed by light reintroduction (LRx) reactivates robust synaptic plasticity in adult mouse primary visual cortex (V1), which allows subsequent recovery from amblyopia. Previously we showed that perisynaptic proteolysis by MMP9 mediates the enhancement of plasticity by LRx in binocular adult mice (Murase et al., 2017). However, it was unknown if a visual system compromised by amblyopia could engage this pathway. Here we show that LRx to adult amblyopic mice induces perisynaptic MMP2/9 activity and extracellular matrix (ECM) degradation in deprived and non-deprived V1. Indeed, LRx restricted to the amblyopic eye is sufficient to induce robust MMP2/9 activity at thalamo-cortical synapses and ECM degradation in deprived V1. Two-photon live imaging demonstrates that the history of visual experience regulates MMP2/9 activity in V1, and that DE lowers the threshold for the proteinase activation. The homeostatic reduction of the MMP2/9 activation threshold by DE enables visual input from the amblyopic pathway to trigger robust perisynaptic proteolysis.
Collapse
Affiliation(s)
- Sachiko Murase
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Dan Winkowski
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Ji Liu
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| | - Elizabeth M Quinlan
- Department of Biology, University of Maryland, College Park, United States.,Neuroscience Cognitive Sciences Program, University of Maryland, College Park, United States
| |
Collapse
|
34
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
35
|
Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 2019; 76:3207-3228. [PMID: 31172215 PMCID: PMC6647627 DOI: 10.1007/s00018-019-03180-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of over twenty proteases, operating chiefly extracellularly to cleave components of the extracellular matrix, cell adhesion molecules as well as cytokines and growth factors. By virtue of their expression and activity patterns in animal models and clinical investigations, as well as functional studies with gene knockouts and enzyme inhibitors, MMPs have been demonstrated to play a paramount role in many physiological and pathological processes in the brain. In particular, they have been shown to influence learning and memory processes, as well as major neuropsychiatric disorders such as schizophrenia, various kinds of addiction, epilepsy, fragile X syndrome, and depression. A possible link connecting all those conditions is either physiological or aberrant synaptic plasticity where some MMPs, e.g., MMP-9, have been demonstrated to contribute to the structural and functional reorganization of excitatory synapses that are located on dendritic spines. Another common theme linking the aforementioned pathological conditions is neuroinflammation and MMPs have also been shown to be important mediators of immune responses.
Collapse
Affiliation(s)
- Anna Beroun
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Piotr Michaluk
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | - Barbara Pijet
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
36
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
37
|
Yin L, Li F, Li J, Yang X, Xie X, Xue L, Li Y, Zhang C. Chronic Intermittent Ethanol Exposure Induces Upregulation of Matrix Metalloproteinase-9 in the Rat Medial Prefrontal Cortex and Hippocampus. Neurochem Res 2019; 44:1593-1601. [PMID: 30915602 DOI: 10.1007/s11064-019-02783-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9, Gelatinase B), an extracellular-acting Zn2+-dependent endopeptidase, are involved in brain pathologies including ischemia, glioma, and epilepsy. Recent studies suggested that MMP-9 plays an important role in neuronal plasticity, specifically in learning and memory. To determine whether and how MMP-9 plays role in alcohol-related behaviors, male Sprague-Dawley (SD) rats were subjected to chronic intermittent ethanol (CIE) exposure for 4 weeks, following which we collected tissue samples from the hippocampus, medial prefrontal cortex (mPFC), and amygdala at different stages (acute and chronic exposure) during alcohol exposure. Real-time PCR and western blot assays were used to detect changes in the mRNA and protein expression of MMP-9. Our results indicated that both acute and chronic alcohol exposure induced up-regulation of MMP-9 mRNA levels in the hippocampus and mPFC, but not in the amygdala. Furthermore, acute and chronic alcohol exposure up regulated the expression of total MMP-9 and active MMP-9 in these two brain regions. Moreover, the increase of active MMP-9 expression was larger than those in total MMP-9 expression. Immunoprecipitation analyses identified potential MMP-9-interacting proteins, including Itgb1, Src, Eef1a2, tubulin, actin, and histone H2B. These results demonstrate that both acute and CIE exposure induced increases in MMP-9 expression in the mPFC and hippocampus, suggesting that MMP-9 plays a key role in chronic alcohol exposure and dependence.
Collapse
Affiliation(s)
- Litian Yin
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Fengqing Li
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jue Li
- School of Clinic, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaorong Yang
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Xie
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Linyuan Xue
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Li
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ce Zhang
- Key Laboratory for Cellular Physiology of Ministry of Education, Department of Physiology, National Key Disciplines, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
38
|
Alaiyed S, Bozzelli PL, Caccavano A, Wu JY, Conant K. Venlafaxine stimulates PNN proteolysis and MMP-9-dependent enhancement of gamma power; relevance to antidepressant efficacy. J Neurochem 2019; 148:810-821. [PMID: 30697747 DOI: 10.1111/jnc.14671] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/30/2018] [Accepted: 01/23/2019] [Indexed: 01/15/2023]
Abstract
Drugs that target monoaminergic transmission represent a first-line treatment for major depression. Though a full understanding of the mechanisms that underlie antidepressant efficacy is lacking, evidence supports a role for enhanced excitatory transmission. This can occur through two non-mutually exclusive mechanisms. The first involves increased function of excitatory neurons through relatively direct mechanisms such as enhanced dendritic arborization. Another mechanism involves reduced inhibitory function, which occurs with the rapid antidepressant ketamine. Consistent with this, GABAergic interneuron-mediated cortical inhibition is linked to reduced gamma oscillatory power, a rhythm also diminished in depression. Remission of depressive symptoms correlates with restoration of gamma power. As a result of strong excitatory input, reliable GABA release, and fast firing, PV-expressing neurons (PV neurons) represent critical pacemakers for synchronous oscillations. PV neurons also represent the predominant GABAergic population enveloped by perineuronal nets (PNNs), lattice-like structures that localize glutamatergic input. Disruption of PNNs reduces PV excitability and enhances gamma activity. Studies suggest that monoamine reuptake inhibitors reduce integrity of the PNN. Mechanisms by which these inhibitors reduce PNN integrity, however, remain largely unexplored. A better understanding of these issues might encourage development of therapeutics that best up-regulate PNN-modulating proteases. We observe that the serotonin/norepinephrine reuptake inhibitor venlafaxine increases hippocampal matrix metalloproteinase (MMP)-9 levels as determined by ELISA and concomitantly reduces PNN integrity in murine hippocampus as determined by analysis of sections following their staining with a fluorescent PNN-binding lectin. Moreover, venlafaxine-treated mice (30 mg/kg/day) show an increase in carbachol-induced gamma power in ex vivo hippocampal slices as determined by local field potential recording and Matlab analyses. Studies with mice deficient in matrix metalloproteinase 9 (MMP-9), a protease linked to PNN disruption in other settings, suggest that MMP-9 contributes to venlafaxine-enhanced gamma power. In conclusion, our results support the possibility that MMP-9 activity contributes to antidepressant efficacy through effects on the PNN that may in turn enhance neuronal population dynamics involved in mood and/or memory. Cover Image for this issue: doi: 10.1111/jnc.14498.
Collapse
Affiliation(s)
- Seham Alaiyed
- Departments of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - P Lorenzo Bozzelli
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adam Caccavano
- Departments of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jian Young Wu
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Katherine Conant
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
39
|
Khoutorsky A, Price TJ. Translational Control Mechanisms in Persistent Pain. Trends Neurosci 2018; 41:100-114. [PMID: 29249459 DOI: 10.1016/j.tins.2017.11.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Persistent pain, which is poorly treated and estimated to afflict one third of the world's population, is largely mediated by the sensitization of nociceptive neurons. This sensitization involves de novo gene expression to support biochemical and structural changes required to maintain amplified pain signaling that frequently persists even after injury to tissue resolves. While transcription-dependent changes in gene expression are important, recent work demonstrates that activity-dependent regulation of mRNA translation is key to controlling the cellular proteome and the development and maintenance of persistent pain. In this review, we highlight recent advances in translational regulation of gene expression in nociceptive circuits, with a focus on key signaling pathways and mRNA targets that may be tractable for the creation of next-generation pain therapeutics.
Collapse
Affiliation(s)
- Arkady Khoutorsky
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, H3A 0G1, Canada.
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
40
|
Raz L, Yang Y, Thompson J, Hobson S, Pesko J, Mobashery S, Chang M, Rosenberg G. MMP-9 inhibitors impair learning in spontaneously hypertensive rats. PLoS One 2018; 13:e0208357. [PMID: 30533010 PMCID: PMC6289411 DOI: 10.1371/journal.pone.0208357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Vascular cognitive impairment dementia (VCID) is a major cause of cognitive loss in the elderly. Matrix metalloproteinases (MMPs) are a family of proteases involved in remodeling the extracellular matrix in development, injury and repair. Blood-brain barrier (BBB) disruption due to inflammation mediated by MMPs is a mechanism of white matter injury. Currently there are no treatments besides the control of vascular risk factors. We tested two MMP-9 inhibitors that improved outcome in acute stroke: DP-460 and SB-3CT. We hypothesized that these inhibitors would have a beneficial effect in chronic stroke by reducing edema in white matter and improving behavioral outcomes. Spontaneously hypertensive stroke-prone rats (SHRSPs) with unilateral carotid artery occlusion (UCAO) fed a Japanese Permissive Diet (JPD) were used as a model of VCID. JPD was begun in the 12th week of life. Rats were treated with DP-460 (500 mg/kg) for 4 weeks, or SB-3CT (10 mg/kg) for 8 weeks, beginning at the UCAO/JPD onset. Rats treated with a dextrose or DMSO solution served as vehicle controls. Naïve SHRSPs on a standard diet served as sham control. Magnetic resonance imaging (MRI) analyses of the corpus callosum, external capsule, hippocampus and Morris water maze behavioral tests were conducted. We found an increase in body weight (p = 0.004) and blood pressure (p = 0.007) at 15 weeks with the DP-460 drug. SB-3CT increased body weight at 14 weeks (p = 0.015) and had significant but variable effects on blood pressure. Neither drug affected imaging parameters. Behavioral studies showed an impaired ability to learn with DP-460 (p<0.001) and no effect on learning with SB-3CT. Unchanged MMP-9 levels were detected in DP-460-treated rats via gel zymography. Our findings suggest that MMPs are not major factors in white matter damage in the SHRSP model of VCID and that drugs that are relatively selective for MMP-9 can interfere with learning.
Collapse
Affiliation(s)
- Limor Raz
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| | - Yi Yang
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jeffrey Thompson
- UNM Memory and Aging Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Sasha Hobson
- UNM Memory and Aging Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - John Pesko
- AbbVie, Data and Statistical Sciences, North Chicago, Illinois, United States of America
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gary Rosenberg
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
41
|
Ramírez-Cheyne JA, Duque GA, Ayala-Zapata S, Saldarriaga-Gil W, Hagerman P, Hagerman R, Payán-Gómez C. Fragile X syndrome and connective tissue dysregulation. Clin Genet 2018; 95:262-267. [DOI: 10.1111/cge.13469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/03/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Paul Hagerman
- UC Davis MIND Institute, University of California; Davis California
| | - Randi Hagerman
- UC Davis MIND Institute, University of California; Davis California
| | - César Payán-Gómez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario; Bogotá Colombia
| |
Collapse
|
42
|
Neuroligin 1, 2, and 3 Regulation at the Synapse: FMRP-Dependent Translation and Activity-Induced Proteolytic Cleavage. Mol Neurobiol 2018; 56:2741-2759. [PMID: 30056576 PMCID: PMC6459971 DOI: 10.1007/s12035-018-1243-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
Neuroligins (NLGNs) are cell adhesion molecules located on the postsynaptic side of the synapse that interact with their presynaptic partners neurexins to maintain trans-synaptic connection. Fragile X syndrome (FXS) is a common neurodevelopmental disease that often co-occurs with autism and is caused by the lack of fragile X mental retardation protein (FMRP) expression. To gain an insight into the molecular interactions between the autism-related genes, we sought to determine whether FMRP controls the synaptic levels of NLGNs. We show evidences that FMRP associates with Nlgn1, Nlgn2, and Nlgn3 mRNAs in vitro in both synaptoneurosomes and neuronal cultures. Next, we confirm local translation of Nlgn1, Nlgn2, and Nlgn3 mRNAs to be synaptically regulated by FMRP. As a consequence of elevated Nlgns mRNA translation Fmr1 KO mice exhibit increased incorporation of NLGN1 and NLGN3 into the postsynaptic membrane. Finally, we show that neuroligins synaptic level is precisely and dynamically regulated by their rapid proteolytic cleavage upon NMDA receptor stimulation in both wild type and Fmr1 KO mice. In aggregate, our study provides a novel approach to understand the molecular basis of FXS by linking the dysregulated synaptic expression of NLGNs with FMRP.
Collapse
|
43
|
Abstract
De novo protein synthesis is critical for memory formation. We found that protein synthesis during acquisition is transiently required for contextual memory formation. We identified one candidate gene, Nrgn (encoding protein neurogranin, Ng) with enhanced translation upon novel-context exposure, and found that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. Furthermore, fragile-X mental retardation protein interacts with the 3′UTR of the Nrgn mRNA, which is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Together, these results indicate that experience-dependent and acute translation of Ng in the hippocampus during memory acquisition enables durable context memory encoding. Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3′UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding.
Collapse
|
44
|
Aguayo FI, Pacheco AA, García-Rojo GJ, Pizarro-Bauerle JA, Doberti AV, Tejos M, García-Pérez MA, Rojas PS, Fiedler JL. Matrix Metalloproteinase 9 Displays a Particular Time Response to Acute Stress: Variation in Its Levels and Activity Distribution in Rat Hippocampus. ACS Chem Neurosci 2018; 9:945-956. [PMID: 29361213 DOI: 10.1021/acschemneuro.7b00387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A single stress exposure facilitates memory formation through neuroplastic processes that reshape excitatory synapses in the hippocampus, probably requiring changes in extracellular matrix components. We tested the hypothesis that matrix metalloproteinase 9 (MMP-9), an enzyme that degrades components of extracellular matrix and synaptic proteins such as β-dystroglycan (β-DG43), changes their activity and distribution in rat hippocampus during the acute stress response. After 2.5 h of restraint stress, we found (i) increased MMP-9 levels and potential activity in whole hippocampal extracts, accompanied by β-DG43 cleavage, and (ii) a significant enhancement of MMP-9 immunoreactivity in dendritic fields such as stratum radiatum and the molecular layer of hippocampus. After 24 h of stress, we found that (i) MMP-9 net activity rises at somatic field, i.e., stratum pyramidale and granule cell layers, and also at synaptic field, mainly stratum radiatum and the molecular layer of hippocampus, and (ii) hippocampal synaptoneurosome fractions are enriched with MMP-9, without variation of its potential enzymatic activity, in accordance with the constant level of cleaved β-DG43. These findings indicate that stress triggers a peculiar timing response in the MMP-9 levels, net activity, and subcellular distribution in the hippocampus, suggesting its involvement in the processing of substrates during the stress response.
Collapse
Affiliation(s)
- Felipe I. Aguayo
- Laboratorio de Neuroplasticidad y Neurogenética, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Aníbal A. Pacheco
- Laboratorio de Neuroplasticidad y Neurogenética, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Gonzalo J. García-Rojo
- Laboratorio de Neuroplasticidad y Neurogenética, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Javier A. Pizarro-Bauerle
- Laboratorio de Neuroplasticidad y Neurogenética, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ana V. Doberti
- Laboratorio de Neuroplasticidad y Neurogenética, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Macarena Tejos
- Laboratorio de Neuroplasticidad y Neurogenética, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - María A. García-Pérez
- Laboratorio de Neuroplasticidad y Neurogenética, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Paulina S. Rojas
- Escuela de Quı́mica y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Jenny L. Fiedler
- Laboratorio de Neuroplasticidad y Neurogenética, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
Pijet B, Stefaniuk M, Kostrzewska-Ksiezyk A, Tsilibary PE, Tzinia A, Kaczmarek L. Elevation of MMP-9 Levels Promotes Epileptogenesis After Traumatic Brain Injury. Mol Neurobiol 2018; 55:9294-9306. [PMID: 29667129 PMCID: PMC6208832 DOI: 10.1007/s12035-018-1061-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/03/2018] [Indexed: 12/24/2022]
Abstract
Posttraumatic epilepsy (PTE) is a recurrent seizure disorder that often develops secondary to traumatic brain injury (TBI) that is caused by an external mechanical force. Recent evidence shows that the brain extracellular matrix plays a major role in the remodeling of neuronal connections after injury. One of the proteases that is presumably responsible for this process is matrix metalloproteinase-9 (MMP-9). The levels of MMP-9 are elevated in rodent brain tissue and human blood samples after TBI. However, no studies have described the influence of MMP-9 on the development of PTE. The present study used controlled cortical impact (CCI) as a mouse model of TBI. We examined the detailed kinetics of MMP-9 levels for 1 month after TBI and observed two peaks after injury (30 min and 6 h after injury). We tested the hypothesis that high levels of MMP-9 predispose individuals to the development of PTE, and MMP-9 inhibition would protect against PTE. We used transgenic animals with either MMP-9 knockout or MMP-9 overexpression. MMP-9 overexpression increased the number of mice that exhibited TBI-induced spontaneous seizures, and MMP-9 knockout decreased the appearance of seizures. We also evaluated changes in responsiveness to a single dose of the chemoconvulsant pentylenetetrazol. MMP-9-overexpressing mice exhibited a significantly shorter latency between pentylenetetrazol administration and the first epileptiform spike. MMP-9 knockout mice exhibited the opposite response profile. Finally, we found that the occurrence of PTE was correlated with the size of the lesion after injury. Overall, our data emphasize the contribution of MMP-9 to TBI-induced structural and physiological alterations in brain circuitry that may lead to the development of PTE.
Collapse
Affiliation(s)
- Barbara Pijet
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland.
| | - Marzena Stefaniuk
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Agnieszka Kostrzewska-Ksiezyk
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Photini-Effie Tsilibary
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55405, USA.,Brain Sciences Center, Minneapolis, MN, 55417, USA
| | - Athina Tzinia
- Laboratory of Cell and Matrix Pathobiology, Institute of Bioscience and Applications, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Athens, Greece
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
46
|
Lepeta K, Purzycka KJ, Pachulska-Wieczorek K, Mitjans M, Begemann M, Vafadari B, Bijata K, Adamiak RW, Ehrenreich H, Dziembowska M, Kaczmarek L. A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms. EMBO Mol Med 2018. [PMID: 28623238 PMCID: PMC5538295 DOI: 10.15252/emmm.201707723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Matrix metalloproteinase 9 (MMP‐9) has recently emerged as a molecule that contributes to pathological synaptic plasticity in schizophrenia, but explanation of the underlying mechanisms has been missing. In the present study, we performed a phenotype‐based genetic association study (PGAS) in > 1,000 schizophrenia patients from the Göttingen Research Association for Schizophrenia (GRAS) data collection and found an association between the MMP‐9 rs20544 C/T single‐nucleotide polymorphism (SNP) located in the 3′untranslated region (UTR) and the severity of a chronic delusional syndrome. In cultured neurons, the rs20544 SNP influenced synaptic MMP‐9 activity and the morphology of dendritic spines. We demonstrated that Fragile X mental retardation protein (FMRP) bound the MMP‐9 3′UTR. We also found dramatic changes in RNA structure folding and alterations in the affinity of FMRP for MMP‐9 RNA, depending on the SNP variant. Finally, we observed greater sensitivity to psychosis‐related locomotor hyperactivity in Mmp‐9 heterozygous mice. We propose a novel mechanism that involves MMP‐9‐dependent changes in dendritic spine morphology and the pathophysiology of schizophrenia, providing the first mechanistic insights into the way in which the single base change in the MMP‐9 gene (rs20544) influences gene function and results in phenotypic changes observed in schizophrenia patients.
Collapse
Affiliation(s)
- Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna J Purzycka
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Katarzyna Pachulska-Wieczorek
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Marina Mitjans
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Behnam Vafadari
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krystian Bijata
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of RNA Biology and Functional Genomics, Warsaw, Poland
| | - Ryszard W Adamiak
- Department of RNA Structure and Function, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland‡
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Magdalena Dziembowska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland .,Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Bijata M, Labus J, Guseva D, Stawarski M, Butzlaff M, Dzwonek J, Schneeberg J, Böhm K, Michaluk P, Rusakov DA, Dityatev A, Wilczyński G, Wlodarczyk J, Ponimaskin E. Synaptic Remodeling Depends on Signaling between Serotonin Receptors and the Extracellular Matrix. Cell Rep 2018; 19:1767-1782. [PMID: 28564597 DOI: 10.1016/j.celrep.2017.05.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 02/04/2023] Open
Abstract
Rewiring of synaptic circuitry pertinent to memory formation has been associated with morphological changes in dendritic spines and with extracellular matrix (ECM) remodeling. Here, we mechanistically link these processes by uncovering a signaling pathway involving the serotonin 5-HT7 receptor (5-HT7R), matrix metalloproteinase 9 (MMP-9), the hyaluronan receptor CD44, and the small GTPase Cdc42. We highlight a physical interaction between 5-HT7R and CD44 (identified as an MMP-9 substrate in neurons) and find that 5-HT7R stimulation increases local MMP-9 activity, triggering dendritic spine remodeling, synaptic pruning, and impairment of long-term potentiation (LTP). The underlying molecular machinery involves 5-HT7R-mediated activation of MMP-9, which leads to CD44 cleavage followed by Cdc42 activation. One important physiological consequence of this interaction includes an increase in neuronal outgrowth and elongation of dendritic spines, which might have a positive effect on complex neuronal processes (e.g., reversal learning and neuronal regeneration).
Collapse
Affiliation(s)
- Monika Bijata
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Josephine Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Daria Guseva
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michał Stawarski
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Malte Butzlaff
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joanna Dzwonek
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Jenny Schneeberg
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katrin Böhm
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Piotr Michaluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland; UCL Institute of Neurology, University College of London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College of London, Queen Square, London WC1N 3BG, UK
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Grzegorz Wilczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland
| | - Jakub Wlodarczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Pasteura 3, Warsaw 02-093, Poland.
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
48
|
Smith ACW, Kenny PJ. MicroRNAs regulate synaptic plasticity underlying drug addiction. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12424. [PMID: 28873276 PMCID: PMC5837931 DOI: 10.1111/gbb.12424] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction-relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug-addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain, this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small noncoding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction-relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction.
Collapse
Affiliation(s)
- A. C. W. Smith
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P. J. Kenny
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
49
|
Bach DR, Tzovara A, Vunder J. Blocking human fear memory with the matrix metalloproteinase inhibitor doxycycline. Mol Psychiatry 2018; 23:1584-1589. [PMID: 28373691 PMCID: PMC5507298 DOI: 10.1038/mp.2017.65] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/23/2022]
Abstract
Learning to predict threat is a fundamental ability of many biological organisms, and a laboratory model for anxiety disorders. Interfering with such memories in humans would be of high clinical relevance. On the basis of studies in cell cultures and slice preparations, it is hypothesised that synaptic remodelling required for threat learning involves the extracellular enzyme matrix metalloproteinase (MMP) 9. However, in vivo evidence for this proposal is lacking. Here we investigate human Pavlovian fear conditioning under the blood-brain barrier crossing MMP inhibitor doxycyline in a pre-registered, randomised, double-blind, placebo-controlled trial. We find that recall of threat memory, measured with fear-potentiated startle 7 days after acquisition, is attenuated by ~60% in individuals who were under doxycycline during acquisition. This threat memory impairment is also reflected in increased behavioural surprise signals to the conditioned stimulus during subsequent re-learning, and already late during initial acquisition. Our findings support an emerging view that extracellular signalling pathways are crucially required for threat memory formation. Furthermore, they suggest novel pharmacological methods for primary prevention and treatment of posttraumatic stress disorder.
Collapse
Affiliation(s)
- D R Bach
- Division of Clinical Psychiatry Research, Psychiatric Hospital, University of Zurich, Zurich, Switzerland. .,Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland. .,Wellcome Trust Centre for Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
| | - A Tzovara
- 0000 0004 1937 0650grid.7400.3Division of Clinical Psychiatry Research, Psychiatric Hospital, University of Zurich, Zurich, Switzerland ,0000 0004 1937 0650grid.7400.3Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland ,0000000121901201grid.83440.3bWellcome Trust Centre for Neuroimaging and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - J Vunder
- 0000 0004 1937 0650grid.7400.3Division of Clinical Psychiatry Research, Psychiatric Hospital, University of Zurich, Zurich, Switzerland ,0000 0004 1937 0650grid.7400.3Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Jaworski J, Kalita K, Knapska E. c-Fos and neuronal plasticity: the aftermath of Kaczmarek’s theory. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|