1
|
Peng Y, Xu N, Su H, Rao Q, Cheng C, Chen J, Wen X, Xie P. Dissolved organic carbon and microplastics decrease the biodiversity effect on resource use efficiency of crustacean zooplankton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118290. [PMID: 40347729 DOI: 10.1016/j.ecoenv.2025.118290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
The relationship between biodiversity and ecosystem functioning has always been the focus of attention in ecology. Although many studies have indicated positive effects of species and functional diversity on ecosystem functioning, our understanding of how the relationships are altered in the face of environmental changes remains limited. In recent years, human activities such as urbanization have led to a significant influx of dissolved organic carbon (DOC) and microplastics into lake ecosystems, which altered the lake's water quality and ecosystem services. Here, by conducting a two-month mesocosm experiment, we found that increasing DOC concentration generally increased the crustacean zooplankton taxonomic species richness, functional richness, resource use efficiency (RUE) and body size. In addition, we found that species richness, functional richness and body size have a positive relationship with zooplankton RUE, indicating higher biodiversity and larger body size are essential for maintaining high ecosystem functions. More importantly, we found that increasing the pressure of DOC and microplastic reduced the biodiversity effect on trophic transfer efficiency, especially for the relationship between functional richness and zooplankton RUE. Our results suggested that biodiversity effects on ecosystem functioning could be probably reduced in the current global environment change context, indicating that we may underestimate the negative impact of diversity loss on ecosystem functions and services. Therefore, more efforts are needed to conserve biodiversity and to maintain the valuable services that the ecosystem provides.
Collapse
Affiliation(s)
- Yongchao Peng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ninghui Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haojie Su
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China.
| | - Qingyang Rao
- School of Life Sciences, Hebei University, Baoding, China
| | - Chaoyue Cheng
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xinli Wen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
2
|
Hu X, Tlili A, Schirmer K, Bao M, Bürgmann H. Metal concentration in freshwater sediments is linked to microbial biodiversity and community composition. ENVIRONMENT INTERNATIONAL 2025; 199:109465. [PMID: 40253931 DOI: 10.1016/j.envint.2025.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/21/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
The effect of metals on freshwater microbiomes is poorly understood compared to other factors, such as nutrients or climate. While deleterious effects of metals on plant and animal biodiversity are well documented, the role of metals in shaping the biodiversity, composition and functional potential of sediment microbial communities remains unknown. Therefore, we explored if metal concentrations can be linked to alterations in biodiversity and composition of freshwater sediment microbial communities. We collected sediments from 34 streams and lakes in Switzerland and grouped them based on their metal content. Microbial diversity and community composition were determined using 16S rRNA gene amplicon sequencing. Most of the sediments were not contaminated with metals according to Sediment Environmental Quality Criteria, although some stations exceeded the limits for Cu, Zn, and Pb. Nevertheless, correlational analysis indicated links of metal concentrations to various aspects of sediment microbial biodiversity. Al concentrations were significantly (p < 0.05) correlated with microbial richness. We further observed a predominantly negative correlation between some metals and abundances of dominant taxa. Predicted microbial functional potential analysis indicated that different types of metals have different effects on microbial functional potential. For example, Mn exhibited a significant positive correlation with nitrogen fixation potential, whereas Cu, Pb, and Zn displayed a significant negative correlation. Overall, our findings indicate that metal concentrations may alter microbial community diversity and functional potential in freshwater sediments even at ambient concentrations. Further research into the role of metals as drivers of microbial biodiversity and factors in biodiversity loss is warranted.
Collapse
Affiliation(s)
- Xin Hu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Chinese Academy of Fishery Sciences, Beijing 100141, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Ahmed Tlili
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum 6047, Switzerland.
| |
Collapse
|
3
|
Meyer A, Billoir E, Archaimbault V, Mondy CP, Usseglio-Polatera P. Individual and combined effects of design and inter-operator variability on stream ecological assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179218. [PMID: 40157090 DOI: 10.1016/j.scitotenv.2025.179218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
In the context of long-term monitoring of stream ecological quality at large spatial extent, it is important to assess the overall reliability of a biotic index and to mitigate its uncertainty to ensure the effectiveness of stakeholder assessments and decisions. Only few studies have focused on the uncertainties associated to both the design of the method used to assess ecological status and the different steps of biological data acquisition. In this study we investigated the uncertainty associated with the design of a multimetric index (i.e., the uncertainty related to index parameter values because of the development dataset characteristics and calculation method), as well as the field data uncertainty because of inter-operator variability (i.e., associated with the sampling, sorting and identification steps of the applied protocol). We examined how the combined sources of uncertainty propagate to the index values and the final ecological assessment of water bodies. For this study, we focused on the I2M2, a multimetric index based on benthic macroinvertebrate assemblages and used to assess the ecological quality of French wadeable streams in the context of the European Water Framework Directive. We have shown that inter-operator variability was always the main source of uncertainty. The uncertainty related to the index design remained very limited. This study has highlighted the importance of robust index design combined with standardisation of the field and laboratory steps for the overall reliability of a biotic index, especially for long-term, spatially extensive monitoring of stream ecological health.
Collapse
Affiliation(s)
- Albin Meyer
- INRAE, EABX, ECOVEA, F-33612 Cestas, France; Université de Lorraine, CNRS, LIEC, F-57000 Metz, France.
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | - Cédric P Mondy
- Office Français de la Biodiversité, Direction Régionale d'Ile-de-France, F-94300 Vincennes, France
| | | |
Collapse
|
4
|
Luo Q, Li S, Kinouchi T, Wu N, Fu X, Ling C, Cai Q, Chiu MC, Resh VH. Existing levels of biodiversity and river location may determine changes from small hydropower developments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120697. [PMID: 38565031 DOI: 10.1016/j.jenvman.2024.120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/18/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Global ecosystems are facing anthropogenic threats that affect their ecological functions and biodiversity. However, we still lack an understanding of how biodiversity can mediate the responses of ecosystems or communities to human disturbance across spatial gradients. Here, we examined how existing, spatial patterns of biodiversity influence the ecological effects of small hydropower plants (SHPs) on macroinvertebrates in river ecosystems. This study found that levels of biodiversity (e.g., number of species) can influence the degrees of its alterations by SHPs occurring along elevational gradients. The results of the study reveal that the construction of SHPs has various effects on biodiversity. For example, low-altitude areas with low biodiversity (species richness less than 12) showed a small increase in biodiversity compared to high-altitude areas (species richness more than 12) under SHP disturbances. The increases in the effective habitat area of the river segment could be a driver of the enhanced biodiversity in response to SHP effects. Changes in the numerically dominant species contributed to the overall level of community variation from disturbances. Location-specific strategies may mitigate the effects of SHPs and perhaps other disturbances.
Collapse
Affiliation(s)
- Qingyi Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430061, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Shuyin Li
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan, 430010, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China.
| | - Xiaocheng Fu
- Shanghai Nuclear Engineering Research & Design Institute Co., LTD., Shanghai, 200233, China.
| | - Chang Ling
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430061, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China.
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430061, China.
| | - Ming-Chih Chiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430061, China.
| | - Vincent H Resh
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, 94720, USA.
| |
Collapse
|
5
|
Thomson-Laing G, Schallenberg L, Kelly D, Howarth JD, Wood SA. An integrative approach to assess the impact of disturbance on native fish in lakes. Biol Rev Camb Philos Soc 2024; 99:85-109. [PMID: 37621123 DOI: 10.1111/brv.13013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Freshwater fish are in a perilous state with more than 30% of species considered critically endangered. Yet significant ecological and methodological complexities constrain our ability to determine how disturbances are impacting native fish communities. We review current methods used to assess the responses of fish communities, especially native fish, to disturbances, with a focus on lakes. These methods include contemporary population surveys, manipulative experimental approaches, paleolimnological approaches and Indigenous Knowledge and social histories. We identify knowledge gaps, such as a lack of baseline data for native fish, an inability to assess the impact of historical disturbances, stressor response dynamics in contemporary multi-stressor environments, and natural disturbance regimes. Our assessment of the current methods highlights challenges to filling these knowledge gaps using the reviewed methods. We advocate strongly for the implementation of an integrative approach that combines emerging technologies (i.e. molecular-based techniques in contemporary surveys and paleolimnology) and underutilised knowledge streams (i.e. Indigenous Knowledge and social histories) which should be used in concert with conventional methods. This integrative approach will allow researchers to determine the key drivers of decline and the degree of change, which will enable more informed and successful management actions.
Collapse
Affiliation(s)
- Georgia Thomson-Laing
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson, 7010, New Zealand
- Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | | | - David Kelly
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson, 7010, New Zealand
| | - Jamie D Howarth
- Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Susanna A Wood
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson, 7010, New Zealand
| |
Collapse
|
6
|
Cen F, Xu S, Yin G, Dong M. Metabarcoding of zooplankton communities of Dianchi Lake based on the mitochondrial cytochrome oxidase subunit 1 gene. Front Microbiol 2024; 14:1291632. [PMID: 38328581 PMCID: PMC10847577 DOI: 10.3389/fmicb.2023.1291632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Freshwater lakes as an essential component of the ecosystem, provide ecological resources in addition to economic source for humans. Under recent climate change scenario, preserving the biodiversity of freshwater ecosystems is crucial. This study aimed to characterize the diversity of zooplankton communities in Dianchi Lake, located in Kunming Municipality, Yunnan Province, China, using Illumina high-throughput sequencing of the cytochrome oxidase subunit 1 (COI) gene marker. A total of 18 water samples were collected including 16 from the outer sea area of Dianchi Lake: 4 from the east (E1-4), 4 from the west (W1-4), 4 from the south (S1-4), and 4 from the north (N1-4), and: 2 from the Caohai area (C1-2) as research sites. All environmental parameters including pH, ammonium (NH4+), total nitrogen (TN), total phosphorus (TP), chlorophyll a content (CHLA) were found to be insignificant (p > 0.05), except for chemical oxygen demand (COD) and transparency (T), which were found to be significant (p < 0.05). Alpha diversity indices including ACE, Chao1, Shannon, and Simpson showed non-significant differences (p > 0.05), indicating no variation in the richness of zooplankton communities at different locations of Dianchi Lake. However, principal coordinate analysis (PCoA) showed that most of the samples from East, West, and South groups were close to each other, showing more similarities among them, while Caohai and North group samples were distant from each other, showing more differences with other groups. Rotifera, Arthropoda, and Chordata were the top three phyla, while Keratella, Macrothrix, and Brachionus were the dominant genera. Mantel test analysis showed that COD and transparency were important environmental factors that shaped the Rotifera community structure of Dianchi Lake. In conclusion, this study provides insights on conserving the diversity of zooplankton communities in Dianchi Lake, especially by controlling COD and maintaining water transparency, in order to preserve its ecological resources and economic significance.
Collapse
Affiliation(s)
- Fu Cen
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Shan Xu
- Kunming Key Laboratory of Hydro-Ecology Restoration of Dianchi Lake, Kunming University, Kunming, Yunnan, China
| | - Genshen Yin
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| | - Minghua Dong
- School of Agriculture and Biotechnology, Kunming University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Morim T, Henriques S, Vasconcelos R, Dolbeth M. A roadmap to define and select aquatic biological traits at different scales of analysis. Sci Rep 2023; 13:22947. [PMID: 38135700 PMCID: PMC10746726 DOI: 10.1038/s41598-023-50146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Trait-based approaches are a powerful tool, as they not only improve understanding of ecological complexity and functioning but also allow comparison across different ecosystems and biogeographical regions. They may be used to unveil ecosystem processes and assess community structures, but their great potential becomes limited when dealing with scattered trait data and historically unstandardised trait nomenclature. The lack of standardisation allows authors to use the terminology of their preference, which inevitably leads to ambiguous misunderstandings and limits comparison between different studies. There have been some attempts to organise the trait vocabulary, but even these are mostly created from the perspective of a single ecosystem, which limits their applicability. In this work, we conducted a systematic literature review that identified and compiled 1127 traits across 37 datasets of fishes, invertebrates and zooplankton from freshwater, marine and transitional ecosystems. This dataset was then used to build on the Marine Species Traits Wiki and to propose a new, unified approach to a trait vocabulary based directly on readily available trait data. We propose a single standardised designation for all the different traits identified and provide a list of all the different synonyms commonly used for these traits. A roadmap to help the trait selection process is also provided, offering a guide through four main steps and important questions for choosing an adequate set of traits at the beginning of any study, which constitutes one of the main challenges in functional ecology research. Overall, this proposal will provide a solid baseline for tackling gaps in trait nomenclature and ensuring a clearer future for functional ecology studies.
Collapse
Affiliation(s)
- Teófilo Morim
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Sofia Henriques
- IPMA - Instituto Português do Mar e da Atmosfera, Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Rita Vasconcelos
- IPMA - Instituto Português do Mar e da Atmosfera, Av. Dr. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal
| | - Marina Dolbeth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
8
|
Hopper GW, Bucholz JR, DuBose TP, Fogelman KJ, Keogh SM, Kubala ME, Lodato MB, Nichols DH, Sánchez González I, Pfeiffer JM, Stoeckel JA, Lozier JD, Atkinson CL. A trait dataset for freshwater mussels of the United States of America. Sci Data 2023; 10:745. [PMID: 37891169 PMCID: PMC10611710 DOI: 10.1038/s41597-023-02635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The United States of America has a diverse collection of freshwater mussels comprising 301 species distributed among 59 genera and two families (Margaritiferidae and Unionidae), each having a unique suite of traits. Mussels are among the most imperilled animals and are critical components of their ecosystems, and successful management, conservation and research requires a cohesive and widely accessible data source. Although trait-based analysis for mussels has increased, only a small proportion of traits reflecting mussel diversity in this region has been collated. Decentralized and non-standardized trait information impedes large-scale analysis. Assembling trait data in a synthetic dataset enables comparison across species and lineages and identification of data gaps. We collated data from the primary literature, books, state and federal reports, theses and dissertations, and museum collections into a centralized dataset covering information on taxonomy, morphology, reproductive ecology and life history, fish hosts, habitats, thermal tolerance, geographic distribution, available genetic information, and conservation status. By collating these traits, we aid researchers in assessing variation in mussel traits and modelling ecosystem change.
Collapse
Affiliation(s)
- Garrett W Hopper
- School of Renewable Natural Resources, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA.
| | - Jamie R Bucholz
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Traci P DuBose
- ORISE Postdoctoral Research Fellow, United States Forest Service, Frankfort, KY, 40601, USA
| | - Kaelyn J Fogelman
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, 36082, USA
| | - Sean M Keogh
- Field Museum of Natural History, Chicago, IL, 60605, USA
| | - Megan E Kubala
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Matthew B Lodato
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - David H Nichols
- National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA
| | | | - John M Pfeiffer
- National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA
| | - James A Stoeckel
- College of Agriculture, Auburn University, Auburn, AL, 36849, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Carla L Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
9
|
Putnam JG, Steiner JN, Richard JC, Leis E, Goldberg TL, Dunn CD, Agbalog R, Knowles S, Waller DL. Mussel mass mortality in the Clinch River, USA: metabolomics detects affected pathways and biomarkers of stress. CONSERVATION PHYSIOLOGY 2023; 11:coad074. [PMID: 37680611 PMCID: PMC10482074 DOI: 10.1093/conphys/coad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Biologists monitoring freshwater mussel (order Unionida) populations rely on behavioral, often subjective, signs to identify moribund ("sick") or stressed mussels, such as gaping valves and slow response to probing, and they lack clinical indicators to support a diagnosis. As part of a multi-year study to investigate causes of reoccurring mortality of pheasantshell (Ortmanniana pectorosa; synonym Actinonaias pectorosa) in the Clinch River, Virginia and Tennessee, USA, we analyzed the hemolymph metabolome of a subset of mussels from the 2018 sampling period. Mussels at the mortality sites were diagnosed in the field as affected (case) or unaffected (control) based on behavioral and physical signs. Hemolymph was collected in the field by non-lethal methods from the anterior adductor muscle for analysis. We used ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectroscopy to detect targeted and untargeted metabolites in hemolymph and compared metabolomic profiles by field assessment of clinical status. Targeted biomarker analysis found 13 metabolites associated with field assessments of clinical status. Of these, increased gamma-linolenic acid and N-methyl-l-alanine were most indicative of case mussels, while adenine and inosine were the best indicators of control mussels. Five pathways in the targeted analysis differed by clinical status; two of these, purine metabolism and glycerophospholipid metabolism, were also indicated in the untargeted analysis. In the untargeted nalysis, 22 metabolic pathways were associated with clinical status. Many of the impacted pathways in the case group were catabolic processes, such as degradation of amino acids and fatty acids. Hierarchical clustering analysis matched clinical status in 72% (18 of 25) of mussels, with control mussels more frequently (5 of 16) not matching clinical status. Our study demonstrated that metabolomic analysis of hemolymph is suitable for assessing mussel condition and complements field-based indicators of health.
Collapse
Affiliation(s)
- Joel G Putnam
- Conagen, Inc., 15 Deangelo Drive, Bedford, MA 01730, USA
| | - John N Steiner
- US Geological Survey, Upper Midwest Environmental Science Center, 2630 Fanta Reed Road, La Crosse WI 54603, USA
| | - Jordan C Richard
- US Fish and Wildlife Service, Southwestern Virginia Field Office, 330 Cummings Street, Abingdon, VA 24210, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison WI 53706, USA
| | - Eric Leis
- US Fish and Wildlife Service, Midwest Fisheries Center, La Crosse Fish Health Center, 555 Lester Ave., Onalaska, WI 54650, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison WI 53706, USA
- Global Health Institute, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | - Christopher D Dunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison WI 53706, USA
| | - Rose Agbalog
- US Fish and Wildlife Service, Southwestern Virginia Field Office, 330 Cummings Street, Abingdon, VA 24210, USA
| | - Susan Knowles
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI 53711, USA
| | - Diane L Waller
- US Geological Survey, Upper Midwest Environmental Science Center, 2630 Fanta Reed Road, La Crosse WI 54603, USA
| |
Collapse
|
10
|
Hopper GW, Gido KB, Vaughn CC. Indirect functional effects of neighbors on food web compartments could not overcome density-dependent limited growth of a grazing minnow. FOOD WEBS 2023. [DOI: 10.1016/j.fooweb.2023.e00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
11
|
Kim DW, Chung EG, Kim K. Impact assessment of on-site swine wastewater treatment facilities on spatiotemporal variations of nitrogen loading in an intensive livestock farming watershed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39994-40011. [PMID: 35113382 DOI: 10.1007/s11356-022-18968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Excess nitrogen (N) resulting from human activity causes environmental issues, including eutrophication in agricultural watersheds with intensive livestock farming. Among the N sources in Korea, on-site swine wastewater treatment facilities (OSWTFs) tend to be densely distributed in watersheds with intensive livestock farming. Therefore, it is critical to sustainably manage livestock excreta. This study used the Soil and Water Assessment Tool (SWAT) to investigate the effects of various pollution sources, including OSWTFs, on N loads in rivers in the Cheongmi watershed, which is an intensive livestock farming and agricultural area in Korea. The simulated hydrological and water quality outputs were calibrated and validated for 2012-2019 using Sequential Uncertainty Fitting ver. 2 in the SWAT-Calibration and Uncertainty Program. The hydrological simulations agreed with the observations, with a correlation coefficient (R2) of ≥ 0.8 and Nash-Sutcliffe coefficient of 0.67-0.86. The simulated total N (TN) was also strongly correlated with the observed monthly average loading (R2, 0.36-0.73) and annual average concentration (R2 ≥ 0.5), demonstrating the reliability of the model constructed herein. A simulation of management scenarios indicates that, if the permissible N concentration in effluent from OSWTFs was reduced to 60 mg N/L, the TN concentrations in rivers would decrease by up to 50%. The findings of this study indicate that more stringent effluent water quality standards are required for OSWTFs to protect water quality and aquatic ecosystems in intensive swine farming watersheds.
Collapse
Affiliation(s)
- Deok-Woo Kim
- Water Pollution Load Management Research Division, National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon 22,689, Republic of Korea
| | - Eu Gene Chung
- Water Pollution Load Management Research Division, National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon 22,689, Republic of Korea.
| | - Kyunghyun Kim
- Water Pollution Load Management Research Division, National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon 22,689, Republic of Korea
| |
Collapse
|
12
|
Hopper GW, Buchanan JK, Sánchez González I, Kubala ME, Bucholz JR, Lodato MB, Lozier JD, Atkinson CL. Little clams with big potential: nutrient release by invasive Corbicula fluminea can exceed co-occurring freshwater mussel (Unionidae) assemblages. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Wilcox RC, Tarwater CE. Space use patterns and the extent of complementarity across scales in introduced seed dispersers. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02786-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Iñiguez-Armijos C, Tapia-Armijos MF, Wilhelm F, Breuer L. Urbanisation process generates more independently-acting stressors and ecosystem functioning impairment in tropical Andean streams. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114211. [PMID: 34864418 DOI: 10.1016/j.jenvman.2021.114211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
The tropical Andes are experiencing rapid population growth and urbanisation has become a major driver impairing stream ecosystems. However, knowledge about multiple-stressors effects on urbanised Andean streams is lacking. In southern Ecuador, we assessed how multiple stressors determine the structural (aquatic invertebrate metrics) and functional (organic matter breakdown and delta N of primary consumers) attributes of streams in a densely populated watershed without wastewater treatment and with contrasting land uses. We found that urbanised streams exhibited individual-stressor effects and that stressor interactions were rare. While structural and function attributes responded negatively to urbanisation, ecosystem functioning metrics were influenced most. Stream ecosystem functions were influenced by water-chemistry stressors, whereas aquatic invertebrate metrics were influenced by physical-habitat stressors. We suggest that managers of urbanised streams in the Andes immediately focus on the most important stressors by reducing inputs of inorganic N and P, re-establishing stream flow and substrate heterogeneity, and restoring riparian vegetation instead of attempting to elucidate intricate interactions among stressors. Our result also demonstrate that stream biomonitoring programs would benefit from a combination of structural and functional indicators to assess anthropogenic effects in a multiple-stressors scenario.
Collapse
Affiliation(s)
- Carlos Iñiguez-Armijos
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto S/n, 1101608, Loja, Ecuador.
| | - María Fernanda Tapia-Armijos
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto S/n, 1101608, Loja, Ecuador
| | - Frank Wilhelm
- Department of Fish and Wildlife Sciences. University of Idaho, 83843, Moscow, ID, USA
| | - Lutz Breuer
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for Biosystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich Buff-Ring 26, 35392, Giessen, Germany; Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany
| |
Collapse
|
15
|
Biofilm Bacterial Dynamics and Changes in Inorganic Nitrogen Density Due to the Presence of Freshwater Pearl Mussels. mSphere 2022; 7:e0083421. [PMID: 35138127 PMCID: PMC8826952 DOI: 10.1128/msphere.00834-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The freshwater pearl mussel (genus Margaritifera) has shown severe declines, while the mussels play important roles in the translocation of nutrients and materials in river water ecosystems. We hypothesized that the biofilm bacterial composition and nutrient flow may reflect the differences in the existence of mussels. We analyzed water from 14 rivers from in multiple regions of Japan, including eight rivers, where the two species of freshwater pearl mussels (Margaritifera laevis and Margaritifera togakushiensis) are predominantly found, to analyze the microbial and nutritional nature of the biofilm artificially formed in the river. Field-produced biofilms, including the bacterial community structure, were examined, using next-generation sequencing of bacterial 16S rRNA gene amplicons followed by analyzing the genomic DNA extracted from the samples, inorganic nitrogen compounds, and chlorophyll a concentration. Compared to those in the control river without freshwater pearl mussels, biofilms of the existing river contained less inorganic nitrogen (ammonia and nitrate), suggesting the involvement of mussels in regulating the river water nutrient flow. Distinct changes were found in biofilms, depending on mussel existence, particularly in biofilms containing fewer photosynthetic bacterial groups, such as Betaproteobacteria and Cyanobacteria. Conversely, bacteria belonging to Bacteroidales in Bacteroidetes and Clostridiales in Firmicutes were predominantly found in biofilm samples where the mussels existed. Mussels alleviated strict nitrogen limitation in streams and possibly caused a concomitant change in the bacterial communities, where populations of bacterial groups exchanging inorganic nitrogen were low. We demonstrate the profound influence of freshwater mussel species on ecosystem processes and community dynamics across rivers. IMPORTANCE The abundance of freshwater unioid mussels exhibited more diverse patterns of inorganic nitrogen flow and bacterial communities than the areas without mussels. This study demonstrates the effect of mussels on different freshwater ecosystem processes with variable organismal densities and biogeochemical factors. Freshwater unionid mussels significantly affect the ecosystem and community dynamics by modulating the relationships, altering nutrient availability, and indirectly manipulating the downstream ecological members, eventually expanding their role in the river ecosystems.
Collapse
|
16
|
Higgins E, Parr TB, Vaughn CC. Mussels and Local Conditions Interact to Influence Microbial Communities in Mussel Beds. Front Microbiol 2022; 12:790554. [PMID: 35095802 PMCID: PMC8793333 DOI: 10.3389/fmicb.2021.790554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Microbiomes are increasingly recognized as widespread regulators of function from individual organism to ecosystem scales. However, the manner in which animals influence the structure and function of environmental microbiomes has received considerably less attention. Using a comparative field study, we investigated the relationship between freshwater mussel microbiomes and environmental microbiomes. We used two focal species of unionid mussels, Amblema plicata and Actinonaias ligamentina, with distinct behavioral and physiological characteristics. Mussel microbiomes, those of the shell and biodeposits, were less diverse than both surface and subsurface sediment microbiomes. Mussel abundance was a significant predictor of sediment microbial community composition, but mussel species richness was not. Our data suggest that local habitat conditions which change dynamically along streams, such as discharge, water turnover, and canopy cover, work in tandem to influence environmental microbial community assemblages at discreet rather than landscape scales. Further, mussel burrowing activity and mussel shells may provide habitat for microbial communities critical to nutrient cycling in these systems.
Collapse
Affiliation(s)
- Edward Higgins
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, OK, United States
- *Correspondence: Edward Higgins,
| | - Thomas B. Parr
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, OK, United States
- National Park Service, Great Lakes Inventory and Monitoring Network, Ashland, WI, United States
| | - Caryn C. Vaughn
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
17
|
Assessing the impacts of agricultural conservation practices on freshwater biodiversity under changing climate. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Beattie RE, Hristova KR. Manure derived nutrients alter microbial community composition and increase the presence of potential pathogens in freshwater sediment. J Appl Microbiol 2021; 132:747-757. [PMID: 34312944 DOI: 10.1111/jam.15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022]
Abstract
AIM To determine the impact of an acute, pulse disturbance of nutrients from manure on freshwater sediment microbiomes in an experimental system. METHODS AND RESULTS A controlled freshwater mesocosm experiment was designed to compare the effect of disturbance from nutrients derived from sterile manure (SM), disturbance from equivalent concentrations of laboratory-derived nutrients, and a nondisturbed control on freshwater sediment microbial community composition and function using 16S rRNA amplicon sequencing. Sediment microbiomes impacted by nutrients from SM showed no sign of compositional recovery after 28 days but those impacted by laboratory-derived chemicals lead to a new steady-state (p < 0.05). Carbon and nitrate sources within disturbed mesocosms were the primary drivers of altered microbial community composition. Additionally, multiple potential pathogens (based on exact sequence matching at the species level) were enriched in mesocosms treated with SM. CONCLUSIONS Nutrient disturbance from SM, in the absence of the manure microbial community, alters the microbiome of sediments without recovery after 28 days and enriches potential pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY These results suggest manure land application practices should be re-evaluated to account for impact of nutrient disturbance on environmental microbiomes in addition to the impact of the manure microbial community.
Collapse
Affiliation(s)
- Rachelle E Beattie
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
19
|
Sarà G, Giommi C, Giacoletti A, Conti E, Mulder C, Mangano MC. Multiple climate-driven cascading ecosystem effects after the loss of a foundation species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144749. [PMID: 33736396 DOI: 10.1016/j.scitotenv.2020.144749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Climate change is evolving so fast that the related adverse effects on the environment are becoming noticeable. Thus, there is an urgent need to explore and understand the effects generated by multiple extreme climatic events (MECEs) on marine ecosystem functioning and the services provided. Accordingly, we combined long-term in-situ empirical observations in the Mediterranean Sea with a mesocosm manipulation to investigate the concurrence of increasing temperature and hypoxia events. By focussing on a foundation mussel species, we were able to detect several cascade events triggered by a mass mortality event caused by stressful temperature and oxygen conditions, and resulting in a loss of ecosystem services. The measured rates of chlorophyll-a, carbohydrates, proteins and lipids - in both particulate and sedimentary organic matter - were used as proxies of ecosystem functioning during pre- and post- disturbance events (MECEs). In the past, MECEs were crucial for individual performance, mussel population dynamics and biomass. Their effect propagated along the ecological hierarchy negatively affecting the associated community and ecosystem. Our results suggest that the protection and/or restoration of coastal areas requires careful consideration of ecosystem functioning. SIGNIFICANCE STATEMENT: Our decadal time-series recorded by a near-term ecological forecasting network of thermal sensor allowed us to record and monitor multiple extreme climatic events (MECEs; heat wave and hypoxia events), warning on the environmental change recorded on a pond system. By integrating observational and manipulative approaches, we showed how a MECE triggered cascade events, from individual-based impaired functioning up to biodiversity loss (community composition and structure changes). Our results emphasize the key role played by a foundation species in driving ecosystem functioning, and the synergistic effects of climatic drivers acting simultaneously.
Collapse
Affiliation(s)
- Gianluca Sarà
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo Viale delle Scienze Ed. 16, 90128 Palermo, Italy.
| | - Chiara Giommi
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Antonio Giacoletti
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Erminia Conti
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 71, 95124 Catania, Italy
| | - Christian Mulder
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 71, 95124 Catania, Italy
| | - M Cristina Mangano
- Stazione Zoologica Anton Dohrn, Dipartimento Ecologia Marina Integrata, Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142 Palermo, Italy
| |
Collapse
|
20
|
Oppong SK, Nsor CA, Buabeng GK. Response of benthic invertebrate assemblages to seasonal and habitat condition in the Wewe River, Ashanti region (Ghana). Open Life Sci 2021; 16:336-353. [PMID: 33889756 PMCID: PMC8042921 DOI: 10.1515/biol-2021-0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022] Open
Abstract
Aquatic macro-invertebrates play a vital role in the food chain of river ecosystem at several trophic guilds and consumer levels, and are used as biomonitoring tools for aquatic ecosystem health. However, hydrologic conditions of these ecosystems have been severely altered because of the increase in urban development and agricultural expansion. This study examined benthic invertebrate response to processes that structure their community in the Wewe River, segmented into intact, medium, and severe condition zones. We sampled in 100 stations in a period of 4 months in the wet (June–September, 2019) and 3 months in the dry (January–March, 2020) seasons. Geometric series, rarefaction, and Hill numbers models were used to quantify invertebrate assemblages, while ordination technique, canonical correspondence analysis, was used to evaluate the influence of predictive factors on their assemblages. A total of 2,075 individuals belonging to 20 family taxa were registered. There was no significant difference in benthic assemblages between the dry and wet seasons. Predictive factors accounted for 47.04 and 50.84% variances, respectively. Taxa distribution patterns differed significantly only in the severely disturbed zone during the wet season. Neptidae, Libellulidae, and Chironomidae were the most abundant taxa, indicating their broad range habitat preference and their ability to adapt to seasonal changes. Asellidae and Perlidae were the least detected, suggesting their sensitivity to elevated levels of some water quality parameters. The findings highlight the threats to the benthic community and overall functional state of the Wewe River, with the need to consider the proposed conservation interventions indicated in this study.
Collapse
Affiliation(s)
- Samuel K Oppong
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame University of Science and Technology, Kumasi, Ghana
| | - Collins Ayine Nsor
- Department Forest, Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gabriel Kwabena Buabeng
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
21
|
Abstract
Lampreys spend their larval stage within fine sand fluvial sediments, where they burrow and act as filter feeders. Lamprey larvae (ammocoetes) can significantly affect benthic-pelagic coupling and nutrient cycling in rivers, due to high densities. However, their bioturbation, feeding and excretion activities are still poorly explored. These aspects were investigated by means of laboratory incubations of intact sediments added with ammocoetes and of animals alone. Oxygen respiration, nutrient fluxes and excretion rates were determined. Individual ammocoete incubations suggested that biomass-specific oxygen consumption and ammonium, reactive phosphorus and silica excretion were size-dependent, and greater in small compared to large individuals. The comparison of ammocoetes metabolic rates with rates measured in intact sediments revealed that ammocoetes activity decreases significantly when they are burrowed in sediments. Furthermore, results suggest that a major fraction of ammonium excreted by ammocoetes was assimilated by benthic microbes or microalgae to overcome in situ N-limitation. Alternatively, part of the excreted ammonium was oxidized and denitrified within sediments, as nitrate uptake rather increased along with ammocoetes density. Ammocoetes excreted reactive phosphorus and silica but such production was not apparent in bioturbated sediments, likely due to microbial or microalgal uptake or to immobilization in sediments.
Collapse
|
22
|
Hopper GW, Chen S, Sánchez González I, Bucholz JR, Lu Y, Atkinson CL. Aggregated filter‐feeders govern the flux and stoichiometry of locally available energy and nutrients in rivers. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Garrett W. Hopper
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| | - Shuo Chen
- Department of Geological Sciences University of Alabama Tuscaloosa AL USA
| | | | - Jamie R. Bucholz
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| | - YueHan Lu
- Department of Geological Sciences University of Alabama Tuscaloosa AL USA
| | - Carla L. Atkinson
- Department of Biological Sciences University of Alabama Tuscaloosa AL USA
| |
Collapse
|
23
|
An Overview of DNA-Based Applications for the Assessment of Benthic Macroinvertebrates Biodiversity in Mediterranean Aquatic Ecosystems. DIVERSITY 2021. [DOI: 10.3390/d13030112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The loss of aquatic biodiversity is increasing at a rapid rate globally. There is a worldwide effort to protect, preserve and restore aquatic ecosystems. For efficient biodiversity monitoring and reliable management tools, comprehensive biodiversity data are required. The abundance and species diversity of benthic macroinvertebrates are commonly used as indicators of the aquatic ecosystem condition. Currently, macroinvertebrate species biodiversity assessment is based on morpho-taxonomy, which could be enhanced by recent advances in DNA-based tools for species identification. In particular, DNA metabarcoding has the potential to identify simultaneously many different taxa in a pool of species and to improve aquatic biomonitoring significantly, especially for indicator species. This review is focused on the current state of DNA-based aquatic biomonitoring using benthic macroinvertebrates in the Mediterranean region.
Collapse
|
24
|
Li F, Altermatt F, Yang J, An S, Li A, Zhang X. Human activities' fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. GLOBAL CHANGE BIOLOGY 2020; 26:6867-6879. [PMID: 32936984 DOI: 10.1111/gcb.15357] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Human-induced global change dramatically alters individual aspects of river biodiversity, such as taxonomic, phylogenetic or functional diversity, and is predicted to lead to losses of associated ecosystem functions. Understanding these losses and dependencies are critical to human well-being. Until now, however, most studies have only looked either at individual organismal groups or single functions, and little is known on the effect of human activities on multitrophic biodiversity and on ecosystem multifunctionality in riverine ecosystem. Here we profiled biodiversity from bacteria to invertebrates based on environmental DNA (hereafter, 'eDNA') samples across a major river catchment in China, and analysed their dependencies with multiple ecosystem functions, especially linked to C/N/P-cycling. Firstly, we found a spatial cross-taxon congruence pattern of communities' structure in the network of the Shaying river, which was related to strong environmental filtering due to human land use. Secondly, human land use explained the decline of multitrophic and multifaceted biodiversity and ecosystem functions, but increased functional redundancy in the riverine ecosystem. Thirdly, biodiversity and ecosystem function relationships at an integrative level showed a concave-up (non-saturating) shape. Finally, structural equation modeling suggested that land use affects ecosystem functions through biodiversity-mediated pathways, including biodiversity loss and altered community interdependence in multitrophic groups. Our study highlights the value of a complete and inclusive assessment of biodiversity and ecosystem functions for an integrated land-use management of riverine ecosystems.
Collapse
Affiliation(s)
- Feilong Li
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| | - Shuqing An
- School of Life Sciences and Institute of Wetland Ecology, Nanjing University, Nanjing, P. R. China
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, P. R. China
| | - Aimin Li
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China
| |
Collapse
|
25
|
Gutierrez MF, Simões NR, Frau D, Saigo M, Licursi M. Responses of stream zooplankton diversity metrics to eutrophication and temporal environmental variability in agricultural catchments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:792. [PMID: 33242179 DOI: 10.1007/s10661-020-08766-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Eutrophication of rivers and streams in agricultural lands is one of the main threats for biodiversity and ecosystem functions. This study was focused on seven subtropical streams where agriculture is the predominant land use. We tested the hypothesis that (i) eutrophication causes a decrease in taxonomic and functional diversity of zooplankton, leading to potential consequences for the ecosystem integrity. Furthermore, given that the temporal variability in the environmental conditions of each stream may influence the species sorting mechanisms, we also hypothesized that (ii) streams with higher temporal environmental variability have greater taxonomic and functional alpha (α) and temporal beta (βt) diversity measures regardless of the trophic state. Thus, we characterized the streams according to their trophic state and analyzed the zooplankton composition, α and βt by using taxonomic and functional perspectives. We found differences in the zooplankton composition between mesotrophic and eutrophic streams. However, eutrophic streams supported similar taxonomic and functional α diversity and similar taxonomic βt diversity to mesotrophic ones. These results were mainly explained by the occurrence of rare species occupying different temporal niches in eutrophic systems. On the contrary, functional βt diversity was lower in the eutrophic streams, being nestedness the ecological mechanisms underlying the variability in the zooplankton functional groups. Streams with higher temporal environmental variability supported greater α taxonomic diversity. However, the βt diversity metrics showed no correlation with the environmental variability, suggesting that the environmental filters of the studied systems were the overriding determinants of species turnover. Our study suggests that both taxonomic and functional perspectives should be considered to improve our knowledge on the biotic responses to environmental changes. Also, among all metrics analyzed on the zooplankton community, functional βt diversity was the most sensitive indicator of the eutrophication impact.
Collapse
Affiliation(s)
- María Florencia Gutierrez
- Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, 3000, Santa Fe, Argentina.
- Escuela Superior de Sanidad "Dr. Ramón Carrillo", Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina.
| | - Nadson R Simões
- Centro de Formação em Ciências Agroflorestais Rod. Ilhéus - Vitória da Conquista, km 39, BR 415, Ferradas, Itabuna, Bahia, 45613-204, Brazil
| | - Diego Frau
- Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Miguel Saigo
- Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, 3000, Santa Fe, Argentina
- Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Magdalena Licursi
- Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, 3000, Santa Fe, Argentina
| |
Collapse
|
26
|
De Castro-Català N, Dolédec S, Kalogianni E, Skoulikidis NT, Paunovic M, Vasiljević B, Sabater S, Tornés E, Muñoz I. Unravelling the effects of multiple stressors on diatom and macroinvertebrate communities in European river basins using structural and functional approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140543. [PMID: 32721725 DOI: 10.1016/j.scitotenv.2020.140543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Rivers suffer from more severe decreases in species diversity compared to other aquatic and terrestrial ecosystems due to a variety of pressures related to human activities. Species provide different roles in the functioning of the ecosystem, and their loss may reduce the capacity of the ecosystems to respond to multiple stressors. The effects on diversity will differ based on the type, combination and severity of stressors, as well as on the characteristics of the community composition and tolerance. Multiple trait-based approaches (MTBAs) can help to unravel the effects of multiple stressors on communities, providing a mechanistic interpretation, and, thus, complementing traditional biodiversity assessments using community structure. We studied the relationships between diversity indexes and trait composition of macroinvertebrate and diatom communities, as well as environmental variables that described the hydrological and geomorphological alterations and toxic pollution (pesticides and pharmaceuticals) of three different European river basins: the Adige, the Sava, and the Evrotas. These river basins can be considered representative cases of different situations in European freshwater systems. Hydrological variables were the main drivers determining the community structure and function in the rivers, for both diatoms and macroinvertebrates. For diatom communities, pharmaceutical active compound (PhAC) toxic units were also identified as a very important driver of diversity changes, explaining up to 57% of the variance in taxonomic richness. For macroinvertebrates, river geomorphology was an important driver of structural changes, particularly affecting Plecoptera richness. In addition, PhAC and pesticide toxic units were also identified as stressors for macroinvertebrate communities. MTBA provided a detailed picture of the effects of the stressors on the communities and confirmed the importance of hydrological variables in shaping the functional attributes of the communities.
Collapse
Affiliation(s)
- Núria De Castro-Català
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain.
| | - Sylvain Dolédec
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Eleni Kalogianni
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece
| | - Nikolaos Th Skoulikidis
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece
| | - Momir Paunovic
- University of Belgrade, Institute for Biological Research Siniša Stanković (IBISS), Belgrade, Serbia
| | - Božica Vasiljević
- University of Belgrade, Institute for Biological Research Siniša Stanković (IBISS), Belgrade, Serbia
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), Girona, Spain; Institute of Aquatic Ecology, Universitat de Girona, Girona, Spain
| | | | - Isabel Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Zúñiga-Sarango W, Gaona FP, Reyes-Castillo V, Iñiguez-Armijos C. Disrupting the Biodiversity–Ecosystem Function Relationship: Response of Shredders and Leaf Breakdown to Urbanization in Andean Streams. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.592404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Alkimin GD, Soares AMVM, Barata C, Nunes B. Can salicylic acid modulate biochemical, physiological and population alterations in a macrophyte species under chemical stress by diclofenac? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139715. [PMID: 32534307 DOI: 10.1016/j.scitotenv.2020.139715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Salicylic acid (SA) is a pharmaceutical drug that may exert toxic effects by its own; however, simultaneous exposure of plants to SA and to other substances, often results in the significant changes in the patterns of toxic response/resistance to these other sources of chemical stress. Thus, the aim of this work was to investigate the capacity of SA of modulating Lemna minor responses co-exposed to the pharmaceutical drug, diclofenac - DCF. To attain this objective, L. minor was exposed for 7 days, to DCF alone, and to combinations of DCF with SA. After exposure, biochemical, physiological and population endpoints were analyzed as follows: catalase (CAT) and glutathione S-transferases (GSTs) activities, pigments content (chlorophyll a (Chl a), b (Chl b) and total (TChl), carotenoids (Car) and [Chl a]/[Chl b] and [TChl]/[Car] ratios), and growth specific rate, fresh weight and root length. Single exposures to DCF were capable of causing effects in all analyzed endpoints. However, co-exposure of DCF with SA partially reverted these effects. Finally, we may suggest that SA is capable to prevent the toxicity of DCF in macrophytes, by modulating the toxic response of exposed plants.
Collapse
Affiliation(s)
- G D Alkimin
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A M V M Soares
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - C Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - B Nunes
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
de Carvalho DR, Alves CBM, Moreira MZ, Pompeu PS. Trophic diversity and carbon sources supporting fish communities along a pollution gradient in a tropical river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139878. [PMID: 32535283 DOI: 10.1016/j.scitotenv.2020.139878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/14/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic activities can have a great influence on water quality and in the availability of habitat and food resources, which can promote changes in the trophic diversity and carbon sources sustaining aquatic communities. The objective of this study was to evaluate if the trophic diversity and the main carbon sources sustaining fish communities change along a pollution gradient. The study was carried out at eight sites distributed along the Rio das Velhas, a Brazilian river highly impacted by anthropogenic activities, in which the discharge of domestic and industrial sewage from the Metropolitan Region of Belo Horizonte (MRBH) presents a major source of pollution. Using carbon (δ13C) and nitrogen (δ15N) isotope ratios, we identified the major carbon sources/food sources of common fish species and calculated six metrics of trophic diversity. Autochthonous primary producers (algae, periphyton, and macrophytes) were the main carbon sources for all trophic guilds at all sites, but notably, sewage-derived organic matter was an additional significant carbon source to the fish community in the most polluted testing site. Here, the community was composed mainly by detritivorous and omnivorous fishes and exhibited greater ranges of carbon and nitrogen isotopic values, large total areas, high trophic diversity, small trophic redundancy, and less even distribution of trophic niches than the less polluted sites. We conclude that the trophic guilds, trophic diversity metrics, and carbon sources sustaining fish communities in the Rio das Velhas are highly influenced by the presence of pollution. Besides favoring omnivorous and detritivorous fishes, the input of sewage also provided an important food source to sustain the fish community from sites close to the MRBH.
Collapse
Affiliation(s)
- Débora Reis de Carvalho
- Laboratório de Ecologia de Peixes, Setor de Ecologia, Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, CEP 37200-000 Lavras, MG, Brasil.
| | - Carlos Bernardo Mascarenhas Alves
- Laboratório Nuvelhas, Projeto Manuelzão, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brasil.
| | - Marcelo Zacharias Moreira
- Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura - CENA, Universidade de São Paulo, Av. Centenário, 303, Caixa Postal 96, CEP 13400-970 Piracicaba, SP, Brasil.
| | - Paulo Santos Pompeu
- Laboratório de Ecologia de Peixes, Setor de Ecologia, Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Caixa Postal 3037, CEP 37200-000 Lavras, MG, Brasil.
| |
Collapse
|
30
|
Linløkken AN, Garlie S, Johansen W, Wilson RC. Assessing Evolutionary Significant Units (ESU) of the Endangered Freshwater Pearl Mussel ( Margaritifera margaritifera) in Southeast Norway on the Basis of Genetic Analysis. Genes (Basel) 2020; 11:E1061. [PMID: 32911821 PMCID: PMC7565849 DOI: 10.3390/genes11091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
A total of 312 specimens of freshwater pearl mussel (Margaritifera margaritifera) were sampled from 11 populations, located in four different river systems in Southeast Norway, and analyzed for 11 simple sequence repeat (SSR) (microsatellite) markers. All study populations have landlocked brown trout (Salmo trutta) as the only possible host. Several populations had experienced recruitment failure, probably due to low pH (about 6.0) and calcium concentration. STRUCTURE clustering analysis revealed two genetic clusters, of which one cluster occurred mainly in the western river systems, and totally dominated in one population (Fallselva (A-FAL)) that had higher genetic diversity than the others. Cluster 2 completely dominated in the populations of the eastern river systems, and all of them had low genetic diversity. Bottleneck events were indicated in all populations and the inbreeding coefficient FIS was significant in all populations, except for the southernmost population (Sørkedalselva (B-SØR)), which was the only population with genotypes in Hardy-Weinberg equilibrium. FIS were especially high in the populations of the eastern river systems, and maximum shell length was negatively correlated to FIS. If artificially breeding and stocking should become necessary for future preservation, it should be based on single populations; alternatively, the eastern populations should be based on cross-breeding of populations within the cluster to increase their genetic diversity.
Collapse
Affiliation(s)
- Arne N. Linløkken
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway; (S.G.); (W.J.); (R.C.W.)
| | | | | | | |
Collapse
|
31
|
Richard JC, Leis E, Dunn CD, Agbalog R, Waller D, Knowles S, Putnam J, Goldberg TL. Mass mortality in freshwater mussels (Actinonaias pectorosa) in the Clinch River, USA, linked to a novel densovirus. Sci Rep 2020; 10:14498. [PMID: 32879395 PMCID: PMC7468154 DOI: 10.1038/s41598-020-71459-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Freshwater mussels (order Unionida) are among the world's most biodiverse but imperiled taxa. Recent unionid mass mortality events around the world threaten ecosystem services such as water filtration, nutrient cycling, habitat stabilization, and food web enhancement, but causes have remained elusive. To examine potential infectious causes of these declines, we studied mussels in Clinch River, Virginia and Tennessee, USA, where the endemic and once-predominant pheasantshell (Actinonaias pectorosa) has suffered precipitous declines since approximately 2016. Using metagenomics, we identified 17 novel viruses in Clinch River pheasantshells. However, only one virus, a novel densovirus (Parvoviridae; Densovirinae), was epidemiologically linked to morbidity. Clinch densovirus 1 was 11.2 times more likely to be found in cases (moribund mussels) than controls (apparently healthy mussels from the same or matched sites), and cases had 2.7 (log10) times higher viral loads than controls. Densoviruses cause lethal epidemic disease in invertebrates, including shrimp, cockroaches, crickets, moths, crayfish, and sea stars. Viral infection warrants consideration as a factor in unionid mass mortality events either as a direct cause, an indirect consequence of physiological compromise, or a factor interacting with other biological and ecological stressors to precipitate mortality.
Collapse
Affiliation(s)
- Jordan C Richard
- U.S. Fish and Wildlife Service, Southwestern Virginia Field Office, 330 Cummings Street, Abingdon, VA, 24210, USA.,Department of Pathobiological Sciences and Freshwater and Marine Sciences Program, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI, 53706, USA
| | - Eric Leis
- La Crosse Fish Health Center, Midwest Fisheries Center, U.S. Fish and Wildlife Service, 555 Lester Ave, Onalaska, WI, 54650, USA
| | - Christopher D Dunn
- Department of Pathobiological Sciences and Freshwater and Marine Sciences Program, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI, 53706, USA
| | - Rose Agbalog
- U.S. Fish and Wildlife Service, Southwestern Virginia Field Office, 330 Cummings Street, Abingdon, VA, 24210, USA
| | - Diane Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Rd, La Crosse, WI, 54603, USA
| | - Susan Knowles
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd, Madison, WI, 53711, USA
| | - Joel Putnam
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Rd, La Crosse, WI, 54603, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences and Freshwater and Marine Sciences Program, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI, 53706, USA. .,Global Health Institute, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
32
|
Principal Threats to the Conservation of Running Water Habitats in the Continental Biogeographical Region of Central Europe. JOURNAL OF LANDSCAPE ECOLOGY 2020. [DOI: 10.2478/jlecol-2020-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
This paper discusses the threats to the running water habitats that are highly important to biodiversity the European Community in the Continental Biogeographical Region (CBR) of Europe, specifically in Poland. This study covers four water course habitat types distinguished in Natura 2000, which is a network of nature protection areas in the territory (3260, 3220, 3240, 3270 - the code of the habitat, as in Annex I of the Habitat Directive), occurring in 806 Special Areas of Conservation in Poland. Based on a multivariate analysis, we found significant differences in the conservation status of running water habitats resulting from a variety of threats, pressures, and activities. Agriculture has a number of negative impacts on running water habitats, which are most evident for the following habitats: 3260 > 3270. Forest management may have both negative (3260) and positive effects on habitats (3270). Natural system modifications strongly affect habitats 3240, 3270 > 3260. Among the negative anthropogenic influences are pollution (3260 > 3220); human intrusions, disturbances, and tourism (reported most often) (3260, 3270); transportation and service corridors (3260, and 3270); urbanization, residential, and commercial development tourism (3260); biological resource use other than for agriculture and forestry (3270 > 3260); and mining, extraction of materials, and energy production (3270). Geological events and natural catastrophes—most often inundation—were identified as important hazards for habitat 3240. The development of alien and invasive species strongly affects habitats 3240 > 3260, 3270, and natural biotic and abiotic processes affect habitats 3220 > 3260. Negative impacts associated with climate change were detected mostly for habitat 3260. Taking into account the threats identified, a list of recommended practices for running water habitat types is presented, to be considered in habitat conservation programmes.
Collapse
|
33
|
Challenges in Biodiversity Conservation in a Highly Modified Tropical River Basin in Sri Lanka. WATER 2019. [DOI: 10.3390/w12010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kelani River is the fourth longest river in the South-Asian island, Sri Lanka. It originates from the central hills and flows through a diverse array of landscapes, including some of the most urbanized regions and intensive land uses. Kelani River suffers a multitude of environmental issues: illegal water diversions and extractions, impoundment for hydroelectricity generation, and pollution, mostly from agrochemicals, urban runoff, industrial discharges, and domestic waste. Moreover, loss of riparian forest cover, sand-mining, and unplanned development in floodplains have accentuated the environmental damage. In this study, based on Kelani River basin, we reviewed the status of biodiversity, threats encountered, conservation challenges, and provided guidance for science-based conservation planning. Kelani River basin is high in biodiversity and endemism, which includes 60 freshwater fish species of which 30 are endemic. Urbanization related threats are more severe in the middle and lower reaches while agriculture and impoundments peril the river in upper reaches. Documentation of these threats can be dated back to 1980, yet, Sri Lankan government has failed to take substantial actions for sustainable management of Kelani River basin, despite the presence of nearly 50 legislations pertaining to water and land management. Given high biodiversity richness, human dependency, and evident ecological deterioration, Kelani River basin should be prioritized for biodiversity conservation and sustainable resource management. Conservation and wise use of freshwater resources is a global concern, particularly for developing nations in Asia. Therefore, our review and guidance for scientifically informed conservation would serve as a prototype for basin-wide river management for Sri Lanka as well as for other developing nations of tropical Asia.
Collapse
|
34
|
Escalas A, Catherine A, Maloufi S, Cellamare M, Hamlaoui S, Yéprémian C, Louvard C, Troussellier M, Bernard C. Drivers and ecological consequences of dominance in periurban phytoplankton communities using networks approaches. WATER RESEARCH 2019; 163:114893. [PMID: 31351356 DOI: 10.1016/j.watres.2019.114893] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Evaluating the causes and consequences of dominance by a limited number of taxa in phytoplankton communities is of huge importance in the current context of increasing anthropogenic pressures on natural ecosystems. This is of particular concern in densely populated urban areas where usages and impacts of human populations on water ecosystems are strongly interconnected. Microbial biodiversity is commonly used as a bioindicator of environmental quality and ecosystem functioning, but there are few studies at the regional scale that integrate the drivers of dominance in phytoplankton communities and their consequences on the structure and functioning of these communities. Here, we studied the causes and consequences of phytoplankton dominance in 50 environmentally contrasted waterbodies, sampled over four summer campaigns in the highly-populated Île-de-France region (IDF). Phytoplankton dominance was observed in 32-52% of the communities and most cases were attributed to Chlorophyta (35.5-40.6% of cases) and Cyanobacteria (30.3-36.5%). The best predictors of dominance were identified using multinomial logistic regression and included waterbody features (surface, depth and connection to the hydrological network) and water column characteristics (total N, TN:TP ratio, water temperature and stratification). The consequences of dominance were dependent on the identity of the dominant organisms and included modifications of biological attributes (richness, cohesion) and functioning (biomass, RUE) of phytoplankton communities. We constructed co-occurrence networks using high resolution phytoplankton biomass and demonstrated that networks under dominance by Chlorophyta and Cyanobacteria exhibited significantly different structure compared with networks without dominance. Furthermore, dominance by Cyanobacteria was associated with more profound network modifications (e.g. cohesion, size, density, efficiency and proportion of negative links), suggesting a stronger disruption of the structure and functioning of phytoplankton communities in the conditions in which this group dominates. Finally, we provide a synthesis on the relationships between environmental drivers, dominance status, community attributes and network structure.
Collapse
Affiliation(s)
- Arthur Escalas
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France; UMR 9190 MARBEC, CNRS-Université de Montpellier-IRD-IFREMER, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| | - Arnaud Catherine
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Selma Maloufi
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Maria Cellamare
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France; Phyto-Quality, 15 Rue Pétrarque, 75116, Paris, France
| | - Sahima Hamlaoui
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Claude Yéprémian
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Clarisse Louvard
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France
| | - Marc Troussellier
- UMR 9190 MARBEC, CNRS-Université de Montpellier-IRD-IFREMER, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Cécile Bernard
- UMR 7245 MCAM, CNRS-MNHN, Muséum National D'Histoire Naturelle, 12 Rue Buffon, CP 39, 75231, Paris Cedex 05, France.
| |
Collapse
|
35
|
Daam MA, Teixeira H, Lillebø AI, Nogueira AJA. Establishing causal links between aquatic biodiversity and ecosystem functioning: Status and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1145-1156. [PMID: 30625646 DOI: 10.1016/j.scitotenv.2018.11.413] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Understanding how changes in biodiversity affects ecosystem functioning is imperative in allowing Ecosystem-Based Management (EBM), especially when addressing global change and environmental degradation. Research into the link between biodiversity and ecosystem functioning (BEF) has indeed increased considerably over the past decades. BEF research has focussed on terrestrial ecosystems and aquatic ecosystems have received considerably less attention. Due to differences in phylogenetic diversity, ecological processes and reported BEF relationships, however, it may at least be questionable whether BEF relationships are exchangeable between these ecosystems (i.e. terrestrial and aquatic). The aim of the present paper was therefore to pinpoint key areas and bottlenecks in establishing BEF relationships for aquatic ecosystems (freshwater, transitional, and marine). To this end, the available literature with special emphasis on the last 10 years was assessed to evaluate: i) reported mechanisms and shapes of aquatic BEF relationships; ii) to what extent BEF relations are interchangeable or ecosystem-specific; and iii) contemporary gaps and needs in aquatic BEF research. Based on our analysis, it may be concluded that despite considerable progress in BEF research over the past decades, several bottlenecks still need to be tackled, namely incorporating the multitude of functions supported by ecosystems, functional distinctiveness of rare species, multitrophic interactions and spatial-temporal scales, before BEF relationships can be used in ecosystem-based management.
Collapse
Affiliation(s)
- Michiel A Daam
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal
| | - Heliana Teixeira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal
| | - Ana I Lillebø
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal
| | - António J A Nogueira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-191 Aveiro, Portugal.
| |
Collapse
|
36
|
Guo Y, Schöb C, Ma W, Mohammat A, Liu H, Yu S, Jiang Y, Schmid B, Tang Z. Increasing water availability and facilitation weaken biodiversity-biomass relationships in shrublands. Ecology 2019; 100:e02624. [PMID: 30644535 PMCID: PMC6850503 DOI: 10.1002/ecy.2624] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 11/07/2022]
Abstract
Positive biodiversity–ecosystem‐functioning (BEF) relationships are commonly found in experimental and observational studies, but how they vary in different environmental contexts and under the influence of coexisting life forms is still controversial. Investigating these variations is important for making predictions regarding the dynamics of plant communities and carbon pools under global change. We conducted this study across 433 shrubland sites in northern China. We fitted structural equation models (SEMs) to analyze the variation in the species‐richness–biomass relationships of shrubs and herbs along a wetness gradient and general liner models (GLMs) to analyze how shrub or herb biomass affected the species‐richness–biomass relationship of the other life form. We found that the positive species‐richness–biomass relationships for both shrubs and herbs became weaker or even negative with higher water availability, likely indicating stronger interspecific competition within life forms under more benign conditions. After accounting for variation in environmental contexts using residual regression, we found that the benign effect of greater facilitation by a larger shrub biomass reduced the positive species‐richness–biomass relationships of herbs, causing them to become nonsignificant. Different levels of herb biomass, however, did not change the species‐richness–biomass relationship of shrubs, possibly because greater herb biomass did not alter the stress level for shrubs. We conclude that biodiversity in the studied plant communities is particularly important for plant biomass production under arid conditions and that it might be possible to use shrubs as nurse plants to facilitate understory herb establishment in ecological restoration.
Collapse
Affiliation(s)
- Yanpei Guo
- Institute of EcologyCollege of Urban and Environmental Sciences and Key Laboratory for Earth Surface ProcessesPeking UniversityBeijingChina
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Christian Schöb
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Environmental Systems ScienceSwiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
| | - Wenhong Ma
- School of Life SciencesInner Mongolia UniversityHohhotChina
| | - Anwar Mohammat
- Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Hongyan Liu
- Institute of EcologyCollege of Urban and Environmental Sciences and Key Laboratory for Earth Surface ProcessesPeking UniversityBeijingChina
| | - Shunli Yu
- State Key Laboratory of Vegetation and Environmental ChangesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Youxu Jiang
- Institute of EcologyCollege of Urban and Environmental Sciences and Key Laboratory for Earth Surface ProcessesPeking UniversityBeijingChina
- Key Laboratory of Forest Ecology and EnvironmentState Forestry Administration, Research Institute of Forest EcologyEnvironment and ProtectionChinese Academy of ForestryBeijingChina
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of GeographyUniversity of ZurichZurichSwitzerland
| | - Zhiyao Tang
- Institute of EcologyCollege of Urban and Environmental Sciences and Key Laboratory for Earth Surface ProcessesPeking UniversityBeijingChina
| |
Collapse
|
37
|
Cao Y, Hawkins CP. Weighting effective number of species measures by abundance weakens detection of diversity responses. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Cao
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign Illinois
| | - Charles P. Hawkins
- Department of Watershed Sciences, Ecology Center National Aquatic Monitoring Center Utah State University Logan Utah
| |
Collapse
|
38
|
Waraniak JM, Marsh TL, Scribner KT. 18S rRNA metabarcoding diet analysis of a predatory fish community across seasonal changes in prey availability. Ecol Evol 2019; 9:1410-1430. [PMID: 30805170 PMCID: PMC6374664 DOI: 10.1002/ece3.4857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Predator-prey relationships are important ecological interactions, affecting biotic community composition and energy flow through a system, and are of interest to ecologists and managers. Morphological diet analysis has been the primary method used to quantify the diets of predators, but emerging molecular techniques using genetic data can provide more accurate estimates of relative diet composition. This study used sequences from the 18S V9 rRNA barcoding region to identify prey items in the gastrointestinal (GI) tracts of predatory fishes. Predator GI samples were taken from the Black River, Cheboygan Co., MI, USA (n = 367 samples, 12 predator species) during periods of high prey availability, including the larval stage of regionally threatened lake sturgeon (Acipenser fulvescens Rafinesque 1817) in late May/early June of 2015 and of relatively lower prey availability in early July of 2015. DNA was extracted and sequenced from 355 samples (96.7%), and prey DNA was identified in 286 of the 355 samples (80.6%). Prey were grouped into 33 ecologically significant taxonomic groups based on the lowest taxonomic level sequences that could be identified using sequences available on GenBank. Changes in the makeup of diet composition, dietary overlap, and predator preference were analyzed comparing the periods of high and low prey abundance. Some predator species exhibited significant seasonal changes in diet composition. Dietary overlap was slightly but significantly higher during the period of high prey abundance; however, there was little change in predator preference. This suggests that change in prey availability was the driving factor in changing predator diet composition and dietary overlap. This study demonstrates the utility of molecular diet analysis and how temporal variability in community composition adds complexity to predator-prey interactions.
Collapse
Affiliation(s)
- Justin M. Waraniak
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | - Terence L. Marsh
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichigan
| | - Kim T. Scribner
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
- Department of Integrative BiologyMichigan State UniversityEast LansingMichigan
| |
Collapse
|
39
|
Wang J, Jiang X, Li Z, Meng X, Heino J, Xie Z, Wang X, Yu J. Changes in multiple facets of macroinvertebrate alpha diversity are linked to afforestation in a subtropical riverine natural reserve. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36124-36135. [PMID: 30357726 DOI: 10.1007/s11356-018-3491-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Land use change is one of the major factors impacting freshwater biodiversity. Afforestation could convert new lands from agriculture or urban land uses to reduce erosion and lead to landscape alterations and biodiversity changes. Here, we examined the changes in the three facets of macroinvertebrate alpha diversity (i.e., taxonomic, functional, and phylogenetic diversity) and further explored possible mechanisms driving their variations before (2007) and after (2016) afforestation along the undammed Chishui River, the core of the National Nature Reserve of Rare and Endemic Fishes in the Upper Yangtze River. We found that taxonomic diversity measures (e.g., species richness, Shannon-Wiener index and Simpson index) increased but all measures of functional diversity (e.g., FRic, FEve, FDiv, and RaoQ) and phylogenetic diversity (e.g., indices of taxonomic distinctness) exhibited stability after the afforestation practice. We also found that only significant taxonomic diversity variation was detected and it showed a relationship to alterations of land use rather than local environmental condition changes across the 10-year afforestation practice. Moreover, hydrology and nutrients levels showed changes after afforestation, but these changes had no effect on the biodiversity changes based on multiple linear regression models. In each survey, the three facets of alpha diversity were significantly explained by natural physical factors and showed inconsistent responses to these underlying environmental variables. In addition, the biodiversity-environment relationships remained stable before and after afforestation, indicating that the inherent mechanisms that drive macroinvertebrate community variation have not changed. Our findings highlight that different alpha diversity measures of lotic macroinvertebrates provide different information about biodiversity and respond differently to various environmental variables. Thus, it is necessary to integrate them into one framework when applying routine monitoring, assessment, and conservation procedures based on lotic macroinvertebrates.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingliang Meng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jani Heino
- Biodiversity Centre, Finnish Environment Institute, Paavo Havaksen Tie 3, P.O. Box 413, FI-90014, Oulu, Finland
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaoming Wang
- China Three Gorges Projects Development Co., Ltd, Chengdu, 610000, China
| | - Jiang Yu
- China Three Gorges Projects Development Co., Ltd, Chengdu, 610000, China
| |
Collapse
|
40
|
Vaughn CC, Hoellein TJ. Bivalve Impacts in Freshwater and Marine Ecosystems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062703] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bivalve molluscs are abundant in marine and freshwater ecosystems and perform important ecological functions. Bivalves have epifaunal or infaunal lifestyles but are largely filter feeders that couple the water column and benthos. Bivalve ecology is a large field of study, but few comparisons among aquatic ecosystems or lifestyles have been conducted. Bivalves impact nutrient cycling, create and modify habitat, and affect food webs directly (i.e., prey) and indirectly (i.e., movement of nutrients and energy). Materials accumulated in soft tissue and shells are used as environmental monitors. Freshwater mussel and oyster aggregations in rivers and estuaries are hot spots for biodiversity and biogeochemical transformations. Historically, human use includes food, tools, currency, and ornamentation. Bivalves provide direct benefits to modern cultures as food, building materials, and jewelry and provide indirect benefits by stabilizing shorelines and mitigating nutrient pollution. Research on bivalve-mediated ecological processes is diverse, and future synthesis will require collaboration across conventional disciplinary boundaries.
Collapse
Affiliation(s)
- Caryn C. Vaughn
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Timothy J. Hoellein
- Department of Biology, Loyola University Chicago, Chicago, Illinois 60660, USA
| |
Collapse
|
41
|
Moore AP, Bringolf RB. Effects of nitrate on freshwater mussel glochidia attachment and metamorphosis success to the juvenile stage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:807-813. [PMID: 30032077 DOI: 10.1016/j.envpol.2018.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Water quality and contaminants have been frequently identified as critical stressors for freshwater mussels, many species of which are highly imperiled throughout North America and the world. Nutrient pollution, specifically nitrate, has become one of the most prevalent causes of water quality degradation globally, with increasing anthropogenic input from suburban and agricultural runoff, municipal wastewater, and industrial waste. Nitrate acute toxicity is generally low for aquatic species, but the potential effects of nitrate exposure are largely unknown for freshwater mussels, particularly during the parasitic stage of their complex lifecycle. Therefore, this study was designed to determine the effects of short-term nitrate exposure at environmentally relevant concentrations on juvenile production in two freshwater mussel species. Lampsilis siliquoidea and L. fasciola glochidia were exposed to nitrate (0, 11, or 56 mg NO3-N/L) for 24 h before inoculation on a primary host, Largemouth Bass (Micropterus salmoides). Glochidia attachment, metamorphosis success, and total number of juveniles produced were monitored on individual fish. Exposure of L. siliquoidea glochidia to 56 mg NO3-N/L nitrate resulted in a significant (p = 0.02) 35% reduction of total juveniles produced, a combined result of moderate decreases in both glochidia attachment and metamorphosis success. A similar trend (28% reduction; p = 0.06) was evident with 11 mg NO3-N/L. No effects were apparent for L. fasciola, suggesting species-specific differences in responses even among closely related species. These results are the first to suggest that glochidia exposure to nitrate may adversely affect juvenile recruitment in some species. Findings from these studies are important for improving characterization of the hazards of nitrate pollution to aquatic life and this work will help better define the role of water quality in assessing habitat suitability for mussel conservation efforts.
Collapse
Affiliation(s)
- Adrian P Moore
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Robert B Bringolf
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|
42
|
Irmscher P, Vaughn CC. Effects of Juvenile Settling and Drift Rates on Freshwater Mussel Dispersal. AMERICAN MIDLAND NATURALIST 2018. [DOI: 10.1674/0003-0031-180.2.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Pascal Irmscher
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman 73019
| | - Caryn C. Vaughn
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, Norman 73019
| |
Collapse
|
43
|
Galbraith HS, Devers JL, Blakeslee CJ, Cole JC, St John White B, Minkkinen S, Lellis WA. Reestablishing a host-affiliate relationship: migratory fish reintroduction increases native mussel recruitment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1841-1852. [PMID: 29992698 DOI: 10.1002/eap.1775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/09/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Co-extirpation among host-affiliate species is thought to be a leading cause of biodiversity loss worldwide. Freshwater mussels (Unionida) are at risk globally and face many threats to survival, including limited access to viable host fish required to complete their life history. We examine the relationship between the common eastern elliptio mussel (Elliptio complanata) and its migratory host fish the American eel (Anguilla rostrata), whose distribution in the Chesapeake Bay watershed is limited, in part, by dams. We examined population demographics of E. complanata across locations in the Chesapeake Bay watershed, primarily in the Susquehanna River in the absence of American eels, and conducted experimental restocking of eels to assess potential impacts on mussel recruitment. Compared to surveys completed ~20 yr prior, E. complanata could be experiencing declines at several historically abundant sites. These sites also had extremely limited evidence of recruitment. Restoration of host fish improved recruitment, but results were not equivalent between stocking sites, indicating that host reintroduction alone may not be fully effective in reestablishing mussel populations. One site where eels were introduced (Pine Creek, Tioga County, Pennsylvania, USA) experienced an increase from 0 juveniles found during quantitative surveys prior to eel stocking to 151 (21% of individuals collected during quantitative surveys) E. complanata juveniles found four years after stocking. A second site (Buffalo Creek, Union County, Pennsylvania) experienced a more moderate increase from 2 to 7 juveniles found during 2010 and 2014 quantitative surveys, respectively. Continued examination of other potential interacting factors affecting recruitment, including water quality or habitat conditions, is necessary to target favorable sites for successful restoration.
Collapse
Affiliation(s)
- Heather S Galbraith
- Leetown Science Center, Northern Appalachian Research Laboratory, U.S. Geological Survey, 176 Straight Run Road, Wellsboro, Pennsylvania, 16901, USA
| | - Julie L Devers
- Maryland Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, 177 Admiral Cochrane Drive, Annapolis, Maryland, 21401, USA
| | - Carrie J Blakeslee
- Leetown Science Center, Northern Appalachian Research Laboratory, U.S. Geological Survey, 176 Straight Run Road, Wellsboro, Pennsylvania, 16901, USA
| | - Jeffrey C Cole
- Leetown Science Center, Northern Appalachian Research Laboratory, U.S. Geological Survey, 176 Straight Run Road, Wellsboro, Pennsylvania, 16901, USA
| | - Barbara St John White
- Leetown Science Center, Northern Appalachian Research Laboratory, U.S. Geological Survey, 176 Straight Run Road, Wellsboro, Pennsylvania, 16901, USA
| | - Steve Minkkinen
- Maryland Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, 177 Admiral Cochrane Drive, Annapolis, Maryland, 21401, USA
| | - William A Lellis
- Ecosystems Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, MS-300, Reston, Virginia, 20192, USA
| |
Collapse
|
44
|
Baloğlu B, Clews E, Meier R. NGS barcoding reveals high resistance of a hyperdiverse chironomid (Diptera) swamp fauna against invasion from adjacent freshwater reservoirs. Front Zool 2018; 15:31. [PMID: 30127839 PMCID: PMC6092845 DOI: 10.1186/s12983-018-0276-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Macroinvertebrates such as non-biting midges (Chironomidae: Diptera) are important components of freshwater ecosystems. However, they are often neglected in biodiversity and conservation research because invertebrate species richness is difficult and expensive to quantify with traditional methods. We here demonstrate that Next Generation Sequencing barcodes ("NGS barcodes") can provide relief because they allow for fast and large-scale species-level sorting of large samples at low cost. RESULTS We used NGS barcoding to investigate the midge fauna of Singapore's swamp forest remnant (Nee Soon Swamp Forest). Based on > 14.000 barcoded specimens, we find that the swamp forest maintains an exceptionally rich fauna composed of an observed number of 289 species (estimated 336 species) in a very small area (90 ha). We furthermore barcoded the chironomids from three surrounding reservoirs that are located in close proximity. Although the swamp forest remnant is much smaller than the combined size of the freshwater reservoirs in the study (90 ha vs. > 450 ha), the latter only contains 33 (estimated 61) species. We show that the resistance of the swamp forest species assemblage is high because only 8 of the 314 species are shared despite the close proximity. Moreover, shared species are not very abundant (3% of all specimens). A redundancy analysis revealed that ~ 21% of the compositional variance of midge communities within the swamp forest was explained by a range of variables with conductivity, stream order, stream width, temperature, latitude (flow direction), and year being significant factors influencing community structure. An LME analysis demonstrates that the total species richness decreased with increasing conductivity. CONCLUSION Our study demonstrates that midge diversity of a swamp forest can be so high that it questions global species diversity estimates for Chironomidae, which are an important component of many freshwater ecosystems. We furthermore demonstrate that small and natural habitat remnants can have high species turnover and can be very resistant to the invasion of species from neighboring reservoirs. Lastly, the study shows how NGS barcodes can be used to integrate specimen- and species-rich invertebrate taxa in biodiversity and conservation research.
Collapse
Affiliation(s)
- Bilgenur Baloğlu
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G2W1 Canada
| | - Esther Clews
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Block S2S, Singapore, 119222 Singapore
| | - Rudolf Meier
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G2W1 Canada
- Lee Kong Chian Natural History Museum, 2 Conservatory Drive, Singapore, 117377 Singapore
| |
Collapse
|
45
|
Jeffrey JD, Hannan KD, Hasler CT, Suski CD. Hot and bothered: effects of elevated Pco2 and temperature on juvenile freshwater mussels. Am J Physiol Regul Integr Comp Physiol 2018; 315:R115-R127. [DOI: 10.1152/ajpregu.00238.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiple environmental stressors may interact in complex ways to exceed or diminish the impacts of individual stressors. In the present study, the interactive effects of two ecologically relevant stressors [increased temperature and partial pressure of carbon dioxide (Pco2)] were assessed for freshwater mussels, a group of organisms that are among the most sensitive and rapidly declining worldwide. The individual and combined effects of elevated temperature (22°C–34°C) and Pco2 (~230, 58,000 µatm) on juvenile Lampsilis siliquoidea were quantified over a 5- or 14-day period, during which physiological and whole animal responses were measured. Exposure to elevated temperature induced a series of physiological responses, including an increase in oxygen consumption rates following 5 days of exposure at 31°C and an increase in carbonic anhydrase ( ca) and heat shock protein 70 mRNA levels following 14 days of exposure at 28°C and 34°C, respectively. Treatment with elevated Pco2 activated acid-base regulatory responses including increases in CA and Na+-K+-ATPase activity and a novel mechanism for acid-base regulation during Pco2 exposure in freshwater mussels was proposed. Thermal and CO2 stressors also interacted such that responses to the thermal stressor were diminished in mussels exposed to elevated Pco2, resulting in the greatest level of mortality. Additionally, larger mussels were more likely to survive treatment with elevated Pco2 and/or temperature. Together, exposure to elevated Pco2 may compromise the ability of juvenile freshwater mussels to respond to additional stressors, such as increased temperatures, highlighting the importance of considering not only the individual but also the interactive effects of multiple environmental stressors.
Collapse
Affiliation(s)
- Jennifer D. Jeffrey
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana–Champaign, Urbana, Illinois
| | - Kelly D. Hannan
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana–Champaign, Urbana, Illinois
| | - Caleb T. Hasler
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana–Champaign, Urbana, Illinois
| | - Cory D. Suski
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana–Champaign, Urbana, Illinois
| |
Collapse
|
46
|
Zając K, Florek J, Zając T, Adamski P, Bielański W, Ćmiel AM, Klich M, Lipińska AM. On the reintroduction of the endangered thick-shelled river mussel Unio crassus: The importance of the river's longitudinal profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:273-282. [PMID: 29253775 DOI: 10.1016/j.scitotenv.2017.11.346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Freshwater mussels of the order Unionida provide important ecosystem functions and services. Unfortunately, some previously widespread species are now seriously endangered. To restore the historical range of the population of Unio crassus in the Biała River, southern Poland, the species was reintroduced into a series of 'stepping stones' joining two remnant populations. During the first phase of the study, the relationships between the abundance of U. crassus, physical habitat, and water quality were studied to assess reintroduction potential. In general, chemical water quality improved upstream from the existing population, favouring the decision for reintroduction, whereas morphological variables worsened. Mussel abundance was correlated negatively with the elevation and slope of channel, organic matter contents, and pH (exceeding 8.0), but positively with silt presence, water conductivity, and concentrations of HCO3-, Ca2+, and NO3-. During the second phase, adult individuals were introduced into one type of functional habitat-marginal channel sectors with still water and fine sediment. Despite the initial very high rate of reproduction in some parts of the upper reach of the river, the juveniles were ultimately recruited only in the lower part of the restored range, resulting in a very rapid change in recruitment at a channel slope of 1.8‰. Recruitment was positively related to silt content, conductivity, and Ca2+ and HCO3- ions, negatively to channel elevation and slope, and water pH. The host fish species showed no correlation with abiotic habitat features within the studied reach. These results imply that most of the habitat traits related to U. crassus occurrence depended on the river's longitudinal profile, not on the chemical water quality, and that final success of introduction should be evaluated after several years.
Collapse
Affiliation(s)
- Katarzyna Zając
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland.
| | - Jacek Florek
- Department of Hydraulic Engineering and Geotechnics, University of Agriculture, al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Tadeusz Zając
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
| | - Paweł Adamski
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
| | - Wojciech Bielański
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
| | - Adam M Ćmiel
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
| | - Mariusz Klich
- State Higher Vocational School in Tarnów, al. Mickiewicza 8, 33-100 Tarnów, Poland
| | - Anna M Lipińska
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
| |
Collapse
|
47
|
Collas FPL, Buijse AD, Hendriks AJ, Velde G, Leuven RSEW. Sensitivity of native and alien freshwater bivalve species in Europe to climate‐related environmental factors. Ecosphere 2018. [DOI: 10.1002/ecs2.2184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Frank P. L. Collas
- Department of Environmental Science Institute in Water and Wetland Research Radboud University P.O. Box 9010 6500 GL Nijmegen The Netherlands
- Netherlands Centre of Expertise for Exotic Species (NEC‐E) Nature Plaza P.O. Box 9010, 6500 GL Nijmegen The Netherlands
- Department of Animal Ecology and Physiology Institute for Water and Wetland Research Radboud University P.O. Box 9010 6500 GL Nijmegen The Netherlands
| | - Anthonie D. Buijse
- Department of Freshwater Ecology and Water Quality Deltares P.O. Box 177, 2600 MH Delft The Netherlands
| | - A. Jan Hendriks
- Department of Environmental Science Institute in Water and Wetland Research Radboud University P.O. Box 9010 6500 GL Nijmegen The Netherlands
| | - Gerard Velde
- Netherlands Centre of Expertise for Exotic Species (NEC‐E) Nature Plaza P.O. Box 9010, 6500 GL Nijmegen The Netherlands
- Department of Animal Ecology and Physiology Institute for Water and Wetland Research Radboud University P.O. Box 9010 6500 GL Nijmegen The Netherlands
- Naturalis Biodiversity Center P.O. Box 9517, 2300 RA Leiden The Netherlands
| | - Rob S. E. W. Leuven
- Netherlands Centre of Expertise for Exotic Species (NEC‐E) Nature Plaza P.O. Box 9010, 6500 GL Nijmegen The Netherlands
- Department of Animal Ecology and Physiology Institute for Water and Wetland Research Radboud University P.O. Box 9010 6500 GL Nijmegen The Netherlands
| |
Collapse
|
48
|
Collas FPL, Buijse AD, van den Heuvel L, van Kessel N, Schoor MM, Eerden H, Leuven RSEW. Longitudinal training dams mitigate effects of shipping on environmental conditions and fish density in the littoral zones of the river Rhine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1183-1193. [PMID: 29734597 DOI: 10.1016/j.scitotenv.2017.10.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 06/08/2023]
Abstract
The stability of habitat conditions in littoral zones of navigated rivers is strongly affected by shipping induced waves and water displacements. In particular, the increase of variability in flow conditions diminishes the suitability of these habitats for juvenile fishes. Recently, a novel ecosystem based river management strategy has resulted in the replacement of traditional river training structures (i.e., groynes) by longitudinal training dams (LTDs), and the creation of shore channels in the river Waal, the main, free-flowing and intensively navigated distributary of the river Rhine in the Netherlands. It was hypothesized that these innovative LTDs mitigated the effects of shipping on fishes by maintaining the natural variability of habitat conditions in the littoral zones during ship passages whereby shore channels served as refugia for juvenile fishes. Measurements of abiotic conditions showed a significantly lower water level fluctuation and significantly higher flow stability in shore channels compared to groyne fields. Flow velocity did not differ, nor did the variation in flow velocity fluctuation during ship passage between these habitats. Densities of fish were found to be significantly higher in the littoral zones of shore channels compared to nearby groyne fields. Moreover, electrofishing along the inner side of the newly constructed LTD showed a significant linear relationship between fish density and distance from highly dynamic in- and outflow sections and to lowered inflow sections in the LTD. Results of our field sampling clearly indicate successful ecological rehabilitation of littoral zones that coincides with a facilitation of navigation in the main river channel and increased flood safety.
Collapse
Affiliation(s)
- F P L Collas
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands; Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands; Netherlands Centre of Expertise on Exotic Species (NEC-E), Nijmegen, The Netherlands.
| | - A D Buijse
- Department of Freshwater Ecology and Water Quality, Deltares, Delft, The Netherlands.
| | - L van den Heuvel
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
| | - N van Kessel
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands; Netherlands Centre of Expertise on Exotic Species (NEC-E), Nijmegen, The Netherlands; Bureau Waardenburg bv, Culemborg, The Netherlands.
| | - M M Schoor
- Rijkswaterstaat Oost Nederland, Arnhem, The Netherlands.
| | - H Eerden
- Rijkswaterstaat Oost Nederland, Arnhem, The Netherlands.
| | - R S E W Leuven
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands; Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands; Netherlands Centre of Expertise on Exotic Species (NEC-E), Nijmegen, The Netherlands.
| |
Collapse
|
49
|
Blakeslee CJ, Silldorff EL, Galbraith HS. Changes in Freshwater Mussel Communities Linked to Legacy Pollution in the Lower Delaware River. Northeast Nat (Steuben) 2018. [DOI: 10.1656/045.025.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carrie J. Blakeslee
- US Geological Survey, Leetown Science Center, Northern Appalachian Research Laboratory, Wellsboro, PA 16901
| | - Erik L. Silldorff
- Delaware River Basin Commission, West Trenton, NJ 08628
- Current address - Delaware Riverkeeper Network, Bristol, PA 19007
| | - Heather S. Galbraith
- US Geological Survey, Leetown Science Center, Northern Appalachian Research Laboratory, Wellsboro, PA 16901
| |
Collapse
|
50
|
Jeffrey JD, Hannan KD, Hasler CT, Suski CD. Chronic exposure of a freshwater mussel to elevated pCO 2 : Effects on the control of biomineralization and ion-regulatory responses. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:538-550. [PMID: 28971536 DOI: 10.1002/etc.3991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/17/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Freshwater mussels may be exposed to elevations in mean partial pressure of carbon dioxide (pCO2 ) caused by both natural and anthropogenic factors. The goal of the present study was to assess the effects of a 28-d elevation in pCO2 at 15 000 and 50 000 μatm on processes associated with biomineralization, ion regulation, and cellular stress in adult Lampsilis siliquoidea (Barnes, 1823). In addition, the capacity for mussels to compensate for acid-base disturbances experienced after exposure to elevated pCO2 was assessed over a 14-d recovery period. Overall, exposure to 50 000 μatm pCO2 had more pronounced physiological consequences compared with 15 000 μatm pCO2 . Over the first 7 d of exposure to 50 000 μatm pCO2 , the mRNA abundance of chitin synthase (cs), calmodulin (cam), and calmodulin-like protein (calp) were significantly affected, suggesting that shell formation and integrity may be altered during pCO2 exposure. After the removal of the pCO2 treatment, mussels may compensate for the acid-base and ion disturbances experienced during pCO2 exposure, and transcript levels of some regulators of biomineralization (carbonic anhydrase [ca], cs, cam, calp) as well as ion regulation (na+ -k+ -ATPase [nka]) were modulated. Effects of elevated pCO2 on heat shock protein 70 (hsp70) were limited in the present study. Overall, adult L. siliquoidea appeared to regulate factors associated with the control of biomineralization and ion regulation during and/or after the removal of pCO2 exposure. Environ Toxicol Chem 2018;37:538-550. © 2017 SETAC.
Collapse
Affiliation(s)
- Jennifer D Jeffrey
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kelly D Hannan
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Caleb T Hasler
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Cory D Suski
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|