1
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1570-1609. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Jaiswal N, Liao C, Hewavidana AI, Mengiste T. GCN5-related histone acetyltransferase HOOKLESS2 regulates fungal resistance and growth in tomato. THE NEW PHYTOLOGIST 2025; 246:1217-1235. [PMID: 40022479 PMCID: PMC11982796 DOI: 10.1111/nph.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
The functions of histone acetyltransferases (HATs) in the genetic control of crop traits and the underlying mechanisms are poorly understood. We studied the function of tomato HOOKLESS2 (SlHLS2), a member of the GCN5 family of HATs, through genetic, molecular and genomic approaches. Tomato hls2 mutants generated through CRISPR-cas9 gene editing show enhanced susceptibility to fungal infection, accelerated dark-induced senescence, grossly altered plant architecture, and loss of fertility accompanied by high levels of auxin accumulation. Components of the basal and induced transcriptome underlying the extensive phenotypic impact of HLS2 were uncovered. HLS2-dependent differentially expressed genes were enriched for genes implicated in photosynthesis, protein ubiquitination, oxylipin biosynthesis, autophagy, and response to biotic stimuli. In particular, induced expressions of the BTB/POZ and TAZ domain-containing protein gene (SlBT1), AUTOPHAGY-RELATED PROTEIN 11, ACYLSUGAR ACYLTRANSFERASE 3 (ASAT3), and multiple jasmonate biosynthesis genes require functional HLS2. SlHLS2 associates with the SlBT1 promoter, and histone acetylation at the chromatin of SlBT1 was reduced in the Slhls2 mutant suggesting direct regulation of SlBTB1 by HLS2. SlBTB1 is an adapter of an E3 ubiquitin-protein ligase complex (CUL3-RBX1-BTB), which mediates ubiquitination and proteasomal degradation of proteins. HLS2 is degraded after fungal inoculation, which is stabilized by inhibition of the 26S proteasome. Overall, tomato HLS2 functions in pathogen responses, plant architecture, and fertility.
Collapse
Affiliation(s)
- Namrata Jaiswal
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| | - Chao‐Jan Liao
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| | | | - Tesfaye Mengiste
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
3
|
De Smet B, Yang X, Plskova Z, Castell C, Fernández-Fernández A, Dard A, Masood J, Mhamdi A, Huang J, Vertommen D, Chan KX, Pyr Dit Ruys S, Messens J, Kerchev PI, Van Breusegem F. The nuclear sulfenome of Arabidopsis: spotlight on histone acetyltransferase GCN5 regulation through functional thiols. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1569-1584. [PMID: 39726278 DOI: 10.1093/jxb/erae514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signalling by oxidizing crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM). Until now, the impact of the nucleus on cellular redox homeostasis has been relatively unexplored. The regulation of histone-modifying enzymes by oxidative PTMs at redox-sensitive cysteine or tyrosine residues is particularly intriguing because it allows the integration of redox signalling mechanisms with chromatin control of transcriptional activity. One of the most extensively studied histone acetyltransferases is the conserved GENERAL CONTROL NONDEPRESSIBLE 5 (GCN5) complex. This study investigated the nuclear sulfenome in Arabidopsis thaliana by expressing a nuclear variant of the Yeast Activation Protein-1 (YAP1) probe and identified 225 potential redox-active proteins undergoing S-sulfenylation. Mass spectrometry analysis further confirmed the S-sulfenylation of GCN5 at Cys293, Cys368, and Cys400, and their functional significance and impact on the GCN5 protein-protein interaction network were assessed using cysteine-to-serine mutagenesis.
Collapse
Affiliation(s)
- Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Structural Biology Brussels Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
| | - Xi Yang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Zuzana Plskova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Carmen Castell
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Alvaro Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jan Masood
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Didier Vertommen
- de Duve Institute and MASSPROT platform, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Research School of Biology, The Australian National University, Acton ACT 2601, Australia
| | - Sébastien Pyr Dit Ruys
- de Duve Institute and MASSPROT platform, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Joris Messens
- Structural Biology Brussels Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
| | - Pavel I Kerchev
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
4
|
Zhang G, Zhai N, Zhu M, Zheng K, Sang Y, Li X, Xu L. Cell wall remodeling during plant regeneration. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1060-1076. [PMID: 40213916 DOI: 10.1111/jipb.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Plant regeneration is the process during which differentiated tissues or cells can reverse or alter their developmental trajectory to repair damaged tissues or form new organs. In the plant regeneration process, the cell wall not only functions as a foundational barrier and scaffold supporting plant cells but also influences cell fates and identities. Cell wall remodeling involves the selective degradation of certain cell wall components or the integration of new components. Recently, accumulating evidence has underscored the importance of cell wall remodeling in plant regeneration. Wounding signals, transmitted by transcription factors, trigger the expressions of genes responsible for cell wall loosening, which is essential for tissue repair. In de novo organ regeneration and somatic embryogenesis, phytohormones orchestrate a transcriptional regulatory network to induce cell wall remodeling, which promotes cell fate reprogramming and organ formation. This review summarizes the effects of cell wall remodeling on various regenerative processes and provides novel insights into the future research of uncharacterized roles of cell wall in plant regeneration.
Collapse
Affiliation(s)
- Guifang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Ning Zhai
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mulan Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Keyuan Zheng
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yalin Sang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaojuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Lin Xu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Aldowigh F, Matus R, Agneessens J, Gao H, Wei W, Topping J, Lindsey K. MDF Regulates a Network of Auxin-Dependent and Auxin-Independent Pathways of Adventitious Root Regeneration in Arabidopsis. PLANT DIRECT 2025; 9:e70050. [PMID: 40275872 PMCID: PMC12018534 DOI: 10.1002/pld3.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 04/26/2025]
Abstract
Plants exhibit strong plasticity in growth and development, seen clearly in lateral and adventitious root development from differentiated tissues in response to environmental stresses. Previous studies have demonstrated the role of both auxin-dependent and auxin-independent signaling pathways in regulating the de novo formation of adventitious roots (ARs) from differentiated tissues, such as leaf petiole in Arabidopsis. One important question is how the auxin-dependent and auxin-independent pathways are coordinated. To investigate this question, we used a combined approach of inducible gene expression, mutant, and signaling reporter gene analysis during AR regeneration in the Arabidopsis petiole to understand regulatory relationships. Auxin signaling components AXR1 and AXR3 are each required for both AR and subsequent lateral root (LR) initiation, as is the ethylene signaling repressor POLARIS, but not EIN2. The PIN trafficking SNARE protein VAMP714 is required for LR rather than AR formation, through effects on auxin-induced gene expression. We identify the RNA splicing regulator MDF and the transcription factor RAP2.7 as new positive regulators of both the auxin-independent and auxin-dependent pathways, and show that MDF regulates RAP2.7, WOX5, and NAC1 while RAP2.7 regulates WOX5 but not NAC1 or YUC1. NAC1 is required for de novo root formation in a pathway independent of YUC1, WOX5, or RAP2.7. We propose a model in which MDF represents a point of molecular crosstalk between auxin-dependent and auxin-independent regeneration processes.
Collapse
Affiliation(s)
| | | | | | - Haozhan Gao
- Department of BiosciencesDurham UniversityDurhamUK
| | - Wenbin Wei
- Department of BiosciencesDurham UniversityDurhamUK
| | | | | |
Collapse
|
6
|
Sasidharan Y, Suryavanshi V, Smit ME. A space for time. Exploring temporal regulation of plant development across spatial scales. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70130. [PMID: 40163327 PMCID: PMC11956849 DOI: 10.1111/tpj.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Plants continuously undergo change during their life cycle, experiencing dramatic phase transitions altering plant form, and regulating the assignment and progression of cell fates. The relative timing of developmental events is tightly controlled and involves integration of environmental, spatial, and relative age-related signals and actors. While plant phase transitions have been studied extensively and many of their regulators have been described, less is known about temporal regulation on a smaller, cell-level scale. Here, using examples from both plant and animal systems, we outline time-dependent changes. Looking at systemic scale changes, we discuss the timing of germination, juvenile-to-adult transition, flowering, and senescence, together with regeneration timing. Switching to temporal regulation on a cellular level, we discuss several instances from the animal field in which temporal control has been examined extensively at this scale. Then, we switch back to plants and summarize examples where plant cell-level changes are temporally regulated. As time cannot easily be separated from signaling derived from the environment and tissue context, we next discuss factors that have been implicated in controlling the timing of developmental events, reviewing temperature, photoperiod, nutrient availability, as well as tissue context and mechanical cues on the cellular scale. Afterwards, we provide an overview of mechanisms that have been shown or implicated in the temporal control of development, considering metabolism, division control, mobile signals, epigenetic regulation, and the action of transcription factors. Lastly, we look at remaining questions for the future study of developmental timing in plants and how recent technical advancement can enable these efforts.
Collapse
Affiliation(s)
- Yadhusankar Sasidharan
- Department of Developmental Genetics, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTuebingenD‐72076Germany
| | - Vijayalakshmi Suryavanshi
- Department of Developmental Genetics, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTuebingenD‐72076Germany
| | - Margot E. Smit
- Department of Developmental Genetics, Centre for Plant Molecular Biology (ZMBP)Eberhard Karls UniversityTuebingenD‐72076Germany
| |
Collapse
|
7
|
Pan Q, Huang R, Xiao Q, Wu X, Jian B, Xiang Y, Gan L, Liu Z, Li Y, Gu T, Liu H. Inhibition of histone deacetylase in Arabidopsis root calli promotes de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2025; 15:1500573. [PMID: 39931333 PMCID: PMC11807735 DOI: 10.3389/fpls.2024.1500573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 02/13/2025]
Abstract
De novo organogenesis from somatic cells to the entire plant represents a remarkable biological phenomenon, but the underlying regulatory mechanism, particularly at the epigenetic level, remains obscure. In this work, we demonstrate the important role of histone deacetylases (HDACs) in shoot organogenesis. HDAC inhibition by trichostatin A (an HDAC inhibitor) at the callus induction stage promotes shoot formation in wounded roots and circumvents tissue wounding to initiate shoot regeneration in unwounded roots. This HDAC inhibition-mediated promotion of shoot organogenesis in wounded roots is associated with the concomitant upregulation of the wound signaling pathway (WOUND INDUCED DEDIFFERENTIATION 4, ENHANCER OF SHOOT REGENERATION1, ISOPENTENYLTRANSFERASE 5, CUP-SHAPED COTYLEDON 2 etc.) and the ARF-LBD pathway (AUXIN RESPONSE FACTOR 19, LATERAL ORGAN BOUNDARIES-DOMAIN 29, etc.) and the downregulation of auxin biosynthesis and reduced auxin content. Furthermore, inhibiting HDACs enhances the local enrichment of histone 3 lysine 9/lysine 14 acetylation at ISOPENTENYLTRANSFERASE 5, supporting the role of histone acetylation in its transcriptional regulation. On the other hand, the HDAC inhibition-associated activation of shoot organogenesis from unwounded roots is coupled with increased expression of the ARF-LBD pathway gene LATERAL ORGAN BOUNDARIES-DOMAIN 29 while bypassing the wound signaling or auxin biosynthetic genes. These findings provide novel insights into the regulatory mechanisms underlying de novo shoot organogenesis and lay a foundation for the improvement of plant transformation technologies.
Collapse
Affiliation(s)
- Qinwei Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruirui Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qiong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Baoxia Jian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yanan Xiang
- Laboratory of Plant Hormone, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lijun Gan
- Laboratory of Plant Hormone, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zongrang Liu
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Huawei Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
8
|
Park SH, Jeong YJ, Kim S, Lee J, Kim CY, Jeong JC. Trichostatin A promotes de novo shoot regeneration from Arabidopsis root explants via a cytokinin related pathway. Sci Rep 2025; 15:978. [PMID: 39762325 PMCID: PMC11704266 DOI: 10.1038/s41598-024-84860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
De novo shoot regeneration, characterized by the emergence of adventitious shoots from excised or damaged tissues or organs in vitro, is regulated by the complex interplay between genetic and epigenetic regulatory mechanisms. However, the specific effect of histone deacetylation on shoot regeneration remains poorly understood. This study investigated the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on shoot regeneration in callus derived from root explants. TSA-treated root explants exhibited pronounced callus greening and substantially increasing in multiple shoot formations per callus compared with the control group. Additionally, TSA treatment upregulated shoot apical meristem-specific genes, including WUSCHELL (WUS), RELATED TO AP2.6 L (Rap2.6 L), SHOOT MERISTEMLESS (STM), CUP SHAPED COTYLEDON 2 (CUC2). Notably, TSA treatment enhanced the sensitivity to cytokinins, leading to increase expression of the cytokinin signaling reporter TCS::GFP in the callus. Concomitantly, type-B ARABIDOPSIS RESPONSE REGULATOR (ARR) 10 and 12, which are key regulators of cytokinin signaling, were upregulated in TSA-treated callus, whereas the downstream targets of type-B ARRs, such as ARR5, ARR7, and ARR15, were significantly upregulated during shoot regeneration. Furthermore, mutants deficient in ARR10 and ARR12 showed diminished responsiveness to shoot regenerative capacity, a phenotype that was enhanced by TSA treatment. Our findings underscore the crucial role of histone deacetylation in mediating cytokinin responses and controlling de novo shoot regeneration in plants.
Collapse
Affiliation(s)
- Su Hyun Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Yu Jeong Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Soyoung Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
9
|
Lee S, Bae SH, Jeon Y, Seo PJ, Choi Y. DEMETER DNA demethylase reshapes the global DNA methylation landscape and controls cell identity transition during plant regeneration. BMC Genomics 2024; 25:1234. [PMID: 39716048 DOI: 10.1186/s12864-024-11144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Plants possess a high potential for somatic cell reprogramming, enabling the transition from differentiated tissue to pluripotent callus, followed by the formation of de novo shoots during plant regeneration. Despite extensive studies on the molecular network and key genetic factors involved in this process, the underlying epigenetic landscape remains incompletely understood. RESULTS Here, we explored the dynamics of the methylome and transcriptome during the two-step plant regeneration process. During the leaf-to-callus transition in Arabidopsis Ler, CG methylation shifted across genic regions, exhibiting a similar number of differentially methylated regions (DMRs) for both hypo- and hypermethylation. Pericentromeric regions underwent substantial CG and extensive CHH hypomethylation, alongside some CHG hypermethylation. Upon shoot regeneration from callus, genic regions displayed extensive reconfiguration of CG methylation, while pericentromeric methylation levels highly increased across all cytosine contexts, coinciding with the activation of the RNA-directed DNA methylation (RdDM) pathway. However, mutation in DEMETER (DME) DNA demethylase gene resulted in significant genic CG redistribution and global non-CG hypomethylation in pericentromeric regions, particularly during shoot regeneration. This non-CG hypomethylation observed in dme-2 mutants was, at least partly, due to RdDM downregulation. The dme-2 mutants affected gene expression involved in pluripotency and shoot meristem development, resulting in enhanced shoot regeneration through a reprogrammed state established by pericentromeric hypomethylation compared to wild type. CONCLUSION Our study demonstrates epigenetic changes, accompanied by transcriptome alterations, during pluripotency acquisition (leaf-to-callus) and regeneration (callus-to-de novo shoot). Additionally, it highlights the functions of the DME demethylase, particularly its close association with the RdDM pathway, which underlies pericentromeric non-CG methylation maintenance. These results provide important insights into the epigenetic reconfiguration associated with cell identity transition during somatic cell reprogramming.
Collapse
Affiliation(s)
- Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Yunji Jeon
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea.
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
10
|
Feng T, Wang Y, Zhang M, Zhuang J, Zhou Y, Duan L. ZmSCE1a positively regulates drought tolerance by enhancing the stability of ZmGCN5. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2101-2112. [PMID: 39462465 DOI: 10.1111/tpj.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Drought stress impairs plant growth and poses a serious threat to maize (Zea mays) production and yield. Nevertheless, the elucidation of the molecular basis of drought resistance in maize is still uncertain. In this study, we identified ZmSCE1a, a SUMO E2-conjugating enzyme, as a positive regulator of drought tolerance in maize. Molecular and biochemical assays indicated that E3 SUMO ligase ZmMMS21 acts together with ZmSCE1a to SUMOylate histone acetyltransferase complexes (ZmGCN5-ZmADA2b). SUMOylation of ZmGCN5 enhances its stability through the 26S proteasome pathway. Furthermore, ZmGCN5-overexpressing plants showed drought tolerance performance. It alleviatedO 2 - accumulation, malondialdehyde content, and ion permeability. What's more, the transcripts of stress-responsive genes and abscisic acid (ABA)-dependent genes were also significantly upregulated in ZmGCN5-overexpressing plants under drought stress. Overexpression of ZmGCN5 enhanced drought-induced ABA production in seedlings. Taken together, our results indicate that ZmSCE1a enhances the stability of ZmGCN5, thereby alleviating drought-induced oxidative damage and enhancing drought stress response in maize.
Collapse
Affiliation(s)
- Tianyu Feng
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuxian Wang
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Junhong Zhuang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
11
|
Tersenidis C, Poulios S, Komis G, Panteris E, Vlachonasios K. Roles of Histone Acetylation and Deacetylation in Root Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2760. [PMID: 39409630 PMCID: PMC11478958 DOI: 10.3390/plants13192760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
Roots are usually underground plant organs, responsible for anchoring to the soil, absorbing water and nutrients, and interacting with the rhizosphere. During root development, roots respond to a variety of environmental signals, contributing to plant survival. Histone post-translational modifications play essential roles in gene expression regulation, contributing to plant responses to environmental cues. Histone acetylation is one of the most studied post-translational modifications, regulating numerous genes involved in various biological processes, including development and stress responses. Although the effect of histone acetylation on plant responses to biotic and abiotic stimuli has been extensively reviewed, no recent reviews exist focusing on root development regulation by histone acetylation. Therefore, this review brings together all the knowledge about the impact of histone acetylation on root development in several plant species, mainly focusing on Arabidopsis thaliana. Here, we summarize the role of histone acetylation and deacetylation in numerous aspects of root development, such as stem cell niche maintenance, cell division, expansion and differentiation, and developmental zone determination. We also emphasize the gaps in current knowledge and propose new perspectives for research toward deeply understanding the role of histone acetylation in root development.
Collapse
Affiliation(s)
- Christos Tersenidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Stylianos Poulios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - George Komis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Konstantinos Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 57001 Thessaloniki, Greece
| |
Collapse
|
12
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
13
|
Yang Y, Liu C, Yu Y, Ran G, Zhai N, Pi L. WUSCHEL RELATED HOMEOBOX5 and 7 maintain callus development by promoting cell division in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112133. [PMID: 38795752 DOI: 10.1016/j.plantsci.2024.112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
In tissue culture, a high concentration of auxin in the callus induction medium (CIM) stimulates cell division and subsequent callus formation, which acquires root primordium-like characteristics necessary for cell pluripotency. In Arabidopsis, WUSCHEL-RELATED HOMEOBOX5 (WOX5) and its closest homolog WOX7, which are abundant in the middle cell layer of mature callus, play a crucial role in maintaining pluripotency by promoting auxin accumulation and enhancing cytokinin sensitivity. However, the mechanism by which WOX5/7 regulate callus formation remains unclear. In this study, we found that mutations in WOX5/7 resulted in a significant down-regulation of genes involved in the G2M and S phases during callus induction. Loss-of-function mutants of WOX5/7 exhibited reduced callus formation, which was correlated with decreased expression of CYCB1;1 compared to the wild-type. Furthermore, we provided evidence that WOX5 physically interacts with PHYTOCHROME A SIGNAL TRANSDUCTION1 (PAT1), which spatio-temporally co-expresses with WOX5 in early-induced callus, and up-regulates a subset of cycle-regulating genes targeted by PAT1. Collectively, our findings suggest a critical role for the WOX5-PAT1 protein complex in regulating cell cycle progression, thereby promoting the continuous growth capacity of pluripotent callus.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Caifeng Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guiping Ran
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ning Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
14
|
Shilpa, Thakur R, Prasad P. Epigenetic regulation of abiotic stress responses in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130661. [PMID: 38885816 DOI: 10.1016/j.bbagen.2024.130661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Plants face a wide array of challenges in their environment, both from living organisms (biotic stresses) and non-living factors (abiotic stresses). Among the major abiotic stressors affecting crop plants, variations in temperature, water availability, salinity, and cold pose significant threats to crop yield and the quality of produce. Plants possess remarkable adaptability and resilience, and they employ a range of genetic and epigenetic mechanisms to respond and cope with abiotic stresses. A few crucial set of epigenetic mechanisms that support plants in their battle against these stresses includes DNA methylation and histone modifications. These mechanisms play a pivotal role in enabling plants to endure and thrive under challenging environmental conditions. The mechanisms of different epigenetic mechanisms in responding to the abiotic stresses vary. Each plant species and type of stress may trigger distinct epigenetic responses, highlighting the complexity of the plant's ability to adapt under stress conditions. This review focuses on the paramount importance of epigenetics in enhancing a plant's ability to survive and excel under various abiotic stresses. It highlights recent advancements in our understanding of the epigenetic mechanisms that contribute to abiotic stress tolerance in plants. This growing knowledge is pivotal for shaping future efforts aimed at mitigating the impact of abiotic stresses on diverse crop plants.
Collapse
Affiliation(s)
- Shilpa
- Department of Biotechnology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Rajnikant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla-2, Himachal Pradesh, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla-2, Himachal Pradesh, India.
| |
Collapse
|
15
|
Yin R, Chen R, Xia K, Xu X. A single-cell transcriptome atlas reveals the trajectory of early cell fate transition during callus induction in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100941. [PMID: 38720464 PMCID: PMC11369778 DOI: 10.1016/j.xplc.2024.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024]
Abstract
The acquisition of pluripotent callus from somatic cells plays an important role in plant development studies and crop genetic improvement. This developmental process incorporates a series of cell fate transitions and reprogramming. However, our understanding of cell heterogeneity and mechanisms of cell fate transition during callus induction remains quite limited. Here, we report a time-series single-cell transcriptome experiment on Arabidopsis root explants that were induced in callus induction medium for 0, 1, and 4 days, and the construction of a detailed single-cell transcriptional atlas of the callus induction process. We identify the cell types responsible for initiating the early callus: lateral root primordium-initiating (LRPI)-like cells and quiescent center (QC)-like cells. LRPI-like cells are derived from xylem pole pericycle cells and are similar to lateral root primordia. We delineate the developmental trajectory of the dedifferentiation of LRPI-like cells into QC-like cells. QC-like cells are undifferentiated pluripotent acquired cells that appear in the early stages of callus formation and play a critical role in later callus development and organ regeneration. We also identify the transcription factors that regulate QC-like cells and the gene expression signatures that are related to cell fate decisions. Overall, our cell-lineage transcriptome atlas for callus induction provides a distinct perspective on cell fate transitions during callus formation, significantly improving our understanding of callus formation.
Collapse
Affiliation(s)
- Ruilian Yin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China; BGI Research, Beijing 102601, China
| | - Ruiying Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China; BGI Research, Beijing 102601, China
| | - Keke Xia
- BGI Research, Beijing 102601, China.
| | - Xun Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China; BGI Research, Beijing 102601, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, Guangdong, China.
| |
Collapse
|
16
|
Plskova Z, Van Breusegem F, Kerchev P. Redox regulation of chromatin remodelling in plants. PLANT, CELL & ENVIRONMENT 2024; 47:2780-2792. [PMID: 38311877 DOI: 10.1111/pce.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Changes in the cellular redox balance that occur during plant responses to unfavourable environmental conditions significantly affect a myriad of redox-sensitive processes, including those that impact on the epigenetic state of the chromatin. Various epigenetic factors, like histone modifying enzymes, chromatin remodelers, and DNA methyltransferases can be targeted by oxidative posttranslational modifications. As their combined action affects the epigenetic regulation of gene expression, they form an integral part of plant responses to (a)biotic stress. Epigenetic changes triggered by unfavourable environmental conditions are intrinsically linked with primary metabolism that supplies intermediates and donors, such acetyl-CoA and S-adenosyl-methionine, that are critical for the epigenetic decoration of histones and DNA. Here, we review the recent advances in our understanding of redox regulation of chromatin remodelling, dynamics of epigenetic marks, and the interplay between epigenetic control of gene expression, redox signalling and primary metabolism within an (a)biotic stress context.
Collapse
Affiliation(s)
- Zuzana Plskova
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- VIB Center of Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Ghent, Belgium
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
17
|
Wittmer J, Heidstra R. Appreciating animal induced pluripotent stem cells to shape plant cell reprogramming strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4373-4393. [PMID: 38869461 PMCID: PMC11263491 DOI: 10.1093/jxb/erae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development. A major breakthrough was the discovery of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells by expressing a limited set of transcription factors. This discovery enabled the generation of an unlimited supply of cells that can be differentiated into specific cell types and tissues. Equally, a keen interest in the connection between plant stem cells and regeneration has been developed in the last decade, driven by the demand to enhance plant traits such as yield, resistance to pathogens, and the opportunities provided by CRISPR/Cas-mediated gene editing. Here we discuss how knowledge of stem cell biology benefits regeneration technology, and we speculate on the creation of a universal genotype-independent iPSC system for plants to overcome regenerative recalcitrance.
Collapse
Affiliation(s)
- Jana Wittmer
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
18
|
Chu W, Chang S, Lin J, Zhang C, Li J, Liu X, Liu Z, Liu D, Yang Q, Zhao D, Liu X, Guo W, Xin M, Yao Y, Peng H, Xie C, Ni Z, Sun Q, Hu Z. Methyltransferase TaSAMT1 mediates wheat freezing tolerance by integrating brassinosteroid and salicylic acid signaling. THE PLANT CELL 2024; 36:2607-2628. [PMID: 38537937 PMCID: PMC11218785 DOI: 10.1093/plcell/koae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/23/2024] [Indexed: 07/04/2024]
Abstract
Cold injury is a major environmental stress affecting the growth and yield of crops. Brassinosteroids (BRs) and salicylic acid (SA) play important roles in plant cold tolerance. However, whether or how BR signaling interacts with the SA signaling pathway in response to cold stress is still unknown. Here, we identified an SA methyltransferase, TaSAMT1 that converts SA to methyl SA (MeSA) and confers freezing tolerance in wheat (Triticum aestivum). TaSAMT1 overexpression greatly enhanced wheat freezing tolerance, with plants accumulating more MeSA and less SA, whereas Tasamt1 knockout lines were sensitive to freezing stress and accumulated less MeSA and more SA. Spraying plants with MeSA conferred freezing tolerance to Tasamt1 mutants, but SA did not. We revealed that BRASSINAZOLE-RESISTANT 1 (TaBZR1) directly binds to the TaSAMT1 promoter and induces its transcription. Moreover, TaBZR1 interacts with the histone acetyltransferase TaHAG1, which potentiates TaSAMT1 expression via increased histone acetylation and modulates the SA pathway during freezing stress. Additionally, overexpression of TaBZR1 or TaHAG1 altered TaSAMT1 expression and improved freezing tolerance. Our results demonstrate a key regulatory node that connects the BR and SA pathways in the plant cold stress response. The regulatory factors or genes identified could be effective targets for the genetic improvement of freezing tolerance in crops.
Collapse
Affiliation(s)
- Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Shumin Chang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Chenji Zhang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Zehui Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Debiao Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Qun Yang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Danyang Zhao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Xiaoyu Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, No. 2 Yuanmingyuan Xi Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
19
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
20
|
García-Gómez ML, Ten Tusscher K. Multi-scale mechanisms driving root regeneration: From regeneration competence to tissue repatterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38824611 DOI: 10.1111/tpj.16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Plants possess an outstanding capacity to regenerate enabling them to repair damages caused by suboptimal environmental conditions, biotic attacks, or mechanical damages impacting the survival of these sessile organisms. Although the extent of regeneration varies greatly between localized cell damage and whole organ recovery, the process of regeneration can be subdivided into a similar sequence of interlinked regulatory processes. That is, competence to regenerate, cell fate reprogramming, and the repatterning of the tissue. Here, using root tip regeneration as a paradigm system to study plant regeneration, we provide a synthesis of the molecular responses that underlie both regeneration competence and the repatterning of the root stump. Regarding regeneration competence, we discuss the role of wound signaling, hormone responses and synthesis, and rapid changes in gene expression observed in the cells close to the cut. Then, we consider how this rapid response is followed by the tissue repatterning phase, where cells experience cell fate changes in a spatial and temporal order to recreate the lost stem cell niche and columella. Lastly, we argue that a multi-scale modeling approach is fundamental to uncovering the mechanisms underlying root regeneration, as it allows to integrate knowledge of cell-level gene expression, cell-to-cell transport of hormones and transcription factors, and tissue-level growth dynamics to reveal how the bi-directional feedbacks between these processes enable self-organized repatterning of the root apex.
Collapse
Affiliation(s)
- Monica L García-Gómez
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
- Translational Plant Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
| |
Collapse
|
21
|
Hong C, Lee HG, Shim S, Park OS, Kim JH, Lee K, Oh E, Kim J, Jung YJ, Seo PJ. Histone modification-dependent production of peptide hormones facilitates acquisition of pluripotency during leaf-to-callus transition in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:1068-1083. [PMID: 38406998 DOI: 10.1111/nph.19637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024]
Abstract
Chromatin configuration is critical for establishing tissue identity and changes substantially during tissue identity transitions. The crucial scientific and agricultural technology of in vitro tissue culture exploits callus formation from diverse tissue explants and tissue regeneration via de novo organogenesis. We investigated the dynamic changes in H3ac and H3K4me3 histone modifications during leaf-to-callus transition in Arabidopsis thaliana. We analyzed changes in the global distribution of H3ac and H3K4me3 during the leaf-to-callus transition, focusing on transcriptionally active regions in calli relative to leaf explants, defined by increased accumulation of both H3ac and H3K4me3. Peptide signaling was particularly activated during callus formation; the peptide hormones RGF3, RGF8, PIP1 and PIPL3 were upregulated, promoting callus proliferation and conferring competence for de novo shoot organogenesis. The corresponding peptide receptors were also implicated in peptide-regulated callus proliferation and regeneration capacity. The effect of peptide hormones in plant regeneration is likely at least partly conserved in crop plants. Our results indicate that chromatin-dependent regulation of peptide hormone production not only stimulates callus proliferation but also establishes pluripotency, improving the overall efficiency of two-step regeneration in plant systems.
Collapse
Affiliation(s)
- Cheljong Hong
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Ok-Sun Park
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea
| | - Kyounghee Lee
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, 08826, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong, 17579, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
22
|
Li J, Gu W, Yang Z, Chen J, Yi F, Li T, Li J, Zhou Y, Guo Y, Song W, Lai J, Zhao H. ZmELP1, an Elongator complex subunit, is required for the maintenance of histone acetylation and RNA Pol II phosphorylation in maize kernels. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1251-1268. [PMID: 38098341 PMCID: PMC11022810 DOI: 10.1111/pbi.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/26/2024]
Abstract
The Elongator complex was originally identified as an interactor of hyperphosphorylated RNA polymerase II (RNAPII) in yeast and has histone acetyltransferase (HAT) activity. However, the genome-wide regulatory roles of Elongator on transcriptional elongation and histone acetylation remain unclear. We characterized a maize miniature seed mutant, mn7 and map-based cloning revealed that Mn7 encodes one of the subunits of the Elongator complex, ZmELP1. ZmELP1 deficiency causes marked reductions in the kernel size and weight. Molecular analyses showed that ZmELP1 interacts with ZmELP3, which is required for H3K14 acetylation (H3K14ac), and Elongator complex subunits interact with RNA polymerase II (RNAPII) C-terminal domain (CTD). Genome-wide analyses indicated that loss of ZmELP1 leads to a significant decrease in the deposition of H3K14ac and the CTD of phosphorylated RNAPII on Ser2 (Ser2P). These chromatin changes positively correlate with global transcriptomic changes. ZmELP1 mutation alters the expression of genes involved in transcriptional regulation and kernel development. We also showed that the decrease of Ser2P depends on the deposition of Elongator complex-mediated H3K14ac. Taken together, our results reveal an important role of ZmELP1 in the H3K14ac-dependent transcriptional elongation, which is critical for kernel development.
Collapse
Affiliation(s)
- Jianrui Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Wei Gu
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Crop Breeding, Cultivation Research Institution/CIMMYT‐China Specialty Maize Research Center, Shanghai Engineering Research Center of Specialty Maize, Shanghai Key Laboratory of Agricultural Genetics and BreedingShanghai Academy of Agricultural SciencesShanghaiChina
| | - Zhijia Yang
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jian Chen
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Fei Yi
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Tong Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Weibin Song
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Haiming Zhao
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
23
|
Yan X, Zheng K, Li P, Zhong X, Zhu Z, Zhou H, Zhu M. An efficient in vitro organogenesis protocol for the endangered relic tree species Bretschneidera sinensis and genetic fidelity assessment using DNA markers. FRONTIERS IN PLANT SCIENCE 2024; 15:1259925. [PMID: 38660444 PMCID: PMC11039884 DOI: 10.3389/fpls.2024.1259925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Bretschneidera sinensis is a monotypic species of rare and tertiary relic trees mainly distributed in China. B. sinensis is a potentially valuable horticultural plant, which has significant ornamental and research value, and is a crucial tool for the study of phylogeography. The artificial cultivation of B. sinensis is of great scientific value and practical significance. In this study, we developed a direct organogenesis process of B. sinensis using mature zygotic embryos as initial materials. The highest sterile germination induction (54.5%) from the mature zygotic embryo was obtained in a Murashige and Skoog (MS) medium with 2.0 mg·L-1 6-benzylaminopurine (6-BA) and 0.2 mg·L-1 α-naphthaleneacetic acid (NAA). The highest percentage of shoot regeneration (90.37%) was attained using 1.0 mg·L-1 6-BA and 0.01 mg·L-1 NAA in the MS medium. The Woody Plant Medium (WPM) had the greatest adventitious shoot elongation rate of 93.33%. The most optimized rooting rate was 88.89% in a half-strength MS medium containing 2.0 mg·L-1 indole-3-butyric acid (IBA) and 1.0 mg·L-1 NAA. The genetic fidelity of in vitro regenerated plantlets was assessed using inter-simple sequence repeats and random amplified polymorphic DNA molecular markers, confirming the genetic uniformity and stability of regenerated B. sinensis plantlets. Our research presents an effective in vitro propagation system for B. sinensis, laying the groundwork for its germplasm conservation and large-scale production while maintaining high genetic integrity.
Collapse
Affiliation(s)
- Xuetong Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Keyuan Zheng
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zongwei Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huijing Zhou
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Mulan Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| |
Collapse
|
24
|
Li J, Zhang Q, Wang Z, Liu Q. The roles of epigenetic regulators in plant regeneration: Exploring patterns amidst complex conditions. PLANT PHYSIOLOGY 2024; 194:2022-2038. [PMID: 38290051 PMCID: PMC10980418 DOI: 10.1093/plphys/kiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Plants possess remarkable capability to regenerate upon tissue damage or optimal environmental stimuli. This ability not only serves as a crucial strategy for immobile plants to survive through harsh environments, but also made numerous modern plant improvements techniques possible. At the cellular level, this biological process involves dynamic changes in gene expression that redirect cell fate transitions. It is increasingly recognized that chromatin epigenetic modifications, both activating and repressive, intricately interact to regulate this process. Moreover, the outcomes of epigenetic regulation on regeneration are influenced by factors such as the differences in regenerative plant species and donor tissue types, as well as the concentration and timing of hormone treatments. In this review, we focus on several well-characterized epigenetic modifications and their regulatory roles in the expression of widely studied morphogenic regulators, aiming to enhance our understanding of the mechanisms by which epigenetic modifications govern plant regeneration.
Collapse
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Petersen M, Ebstrup E, Rodriguez E. Going through changes - the role of autophagy during reprogramming and differentiation. J Cell Sci 2024; 137:jcs261655. [PMID: 38393817 DOI: 10.1242/jcs.261655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Somatic cell reprogramming is a complex feature that allows differentiated cells to undergo fate changes into different cell types. This process, which is conserved between plants and animals, is often achieved via dedifferentiation into pluripotent stem cells, which have the ability to generate all other types of cells and tissues of a given organism. Cellular reprogramming is thus a complex process that requires extensive modification at the epigenetic and transcriptional level, unlocking cellular programs that allow cells to acquire pluripotency. In addition to alterations in the gene expression profile, cellular reprogramming requires rearrangement of the proteome, organelles and metabolism, but these changes are comparatively less studied. In this context, autophagy, a cellular catabolic process that participates in the recycling of intracellular constituents, has the capacity to affect different aspects of cellular reprogramming, including the removal of protein signatures that might hamper reprogramming, mitophagy associated with metabolic reprogramming, and the supply of energy and metabolic building blocks to cells that undergo fate changes. In this Review, we discuss advances in our understanding of the role of autophagy during cellular reprogramming by drawing comparisons between plant and animal studies, as well as highlighting aspects of the topic that warrant further research.
Collapse
Affiliation(s)
- Morten Petersen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Elise Ebstrup
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Eleazar Rodriguez
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
26
|
Lee K, Koo D, Park OS, Seo PJ. The HOS1-PIF4/5 module controls callus formation in Arabidopsis leaf explants. PLANT SIGNALING & BEHAVIOR 2023; 18:2261744. [PMID: 37747842 PMCID: PMC10761175 DOI: 10.1080/15592324.2023.2261744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
A two-step plant regeneration has been widely exploited to genetic manipulation and genome engineering in plants. Despite technical importance, understanding of molecular mechanism underlying in vitro plant regeneration remains to be fully elucidated. Here, we found that the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1)-PHYTOCHROME INTERACTING FACTOR 4/5 (PIF4/5) module participates in callus formation. Consistent with the repressive role of HOS1 in PIF transcriptional activation activity, hos1-3 mutant leaf explants exhibited enhanced callus formation, whereas pif4-101 pif5-3 mutant leaf explants showed reduced callus size. The HOS1-PIF4/5 function would be largely dependent on auxin biosynthesis and signaling, which are essential for callus initiation and proliferation. Our findings suggest that the HOS1-PIF4/5 module plays a pivotal role in auxin-dependent callus formation in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
| | - Dohee Koo
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Ok-Sun Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
27
|
Xu C, Chang P, Guo S, Yang X, Liu X, Sui B, Yu D, Xin W, Hu Y. Transcriptional activation by WRKY23 and derepression by removal of bHLH041 coordinately establish callus pluripotency in Arabidopsis regeneration. THE PLANT CELL 2023; 36:158-173. [PMID: 37804093 PMCID: PMC10734573 DOI: 10.1093/plcell/koad255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Induction of the pluripotent cell mass termed callus from detached organs or tissues is an initial step in typical in vitro plant regeneration, during which auxin-induced ectopic activation of root stem cell factors is required for subsequent de novo shoot regeneration. While Arabidopsis (Arabidopsis thaliana) AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 and their downstream transcription factors LATERAL ORGAN BOUNDARIES DOMAIN (LBD) are known to play key roles in directing callus formation, the molecules responsible for activation of root stem cell factors and thus establishment of callus pluripotency are unclear. Here, we identified Arabidopsis WRKY23 and BASIC HELIX-LOOP-HELIX 041 (bHLH041) as a transcriptional activator and repressor, respectively, of root stem cell factors during establishment of auxin-induced callus pluripotency. We show that auxin-induced WRKY23 downstream of ARF7 and ARF19 directly activates the transcription of PLETHORA 3 (PLT3) and PLT7 and thus that of the downstream genes PLT1, PLT2, and WUSCHEL-RELATED HOMEOBOX 5 (WOX5), while LBD-induced removal of bHLH041 derepresses the transcription of PLT1, PLT2, and WOX5. We provide evidence that transcriptional activation by WRKY23 and loss of bHLH041-imposed repression act synergistically in conferring shoot-regenerating capability on callus cells. Our findings thus disclose a transcriptional mechanism underlying auxin-induced cellular reprogramming, which, together with previous studies, outlines the molecular framework of auxin-induced pluripotent callus formation for in vitro plant regeneration programs.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
| | - Pengjie Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchun Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofeng Sui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxue Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
28
|
Pírek P, Kryštofová K, Kováčová I, Kromerová A, Zachová D, Helia O, Panzarová K, Fajkus J, Zdráhal Z, Lochmanová G, Fojtová M. Unraveling Epigenetic Changes in A. thaliana Calli: Impact of HDAC Inhibitors. PLANTS (BASEL, SWITZERLAND) 2023; 12:4177. [PMID: 38140504 PMCID: PMC10747063 DOI: 10.3390/plants12244177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The ability for plant regeneration from dedifferentiated cells opens up the possibility for molecular bioengineering to produce crops with desirable traits. Developmental and environmental signals that control cell totipotency are regulated by gene expression via dynamic chromatin remodeling. Using a mass spectrometry-based approach, we investigated epigenetic changes to the histone proteins during callus formation from roots and shoots of Arabidopsis thaliana seedlings. Increased levels of the histone H3.3 variant were found to be the major and most prominent feature of 20-day calli, associated with chromatin relaxation. The methylation status in root- and shoot-derived calli reached the same level during long-term propagation, whereas differences in acetylation levels provided a long-lasting imprint of root and shoot origin. On the other hand, epigenetic signs of origin completely disappeared during 20 days of calli propagation in the presence of histone deacetylase inhibitors (HDACi), sodium butyrate, and trichostatin A. Each HDACi affected the state of post-translational histone modifications in a specific manner; NaB-treated calli were epigenetically more similar to root-derived calli, and TSA-treated calli resembled shoot-derived calli.
Collapse
Affiliation(s)
- Pavlína Pírek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Karolína Kryštofová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Ingrid Kováčová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Anna Kromerová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
| | - Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Klára Panzarová
- PSI (Photon Systems Instruments), spol. s.r.o., 66424 Drásov, Czech Republic;
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic; (P.P.); (K.K.); (I.K.); (D.Z.); (J.F.); (Z.Z.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| |
Collapse
|
29
|
Chen Y, Hung FY, Sugimoto K. Epigenomic reprogramming in plant regeneration: Locate before you modify. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102415. [PMID: 37437389 DOI: 10.1016/j.pbi.2023.102415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plants possess remarkable abilities for regeneration, and this developmental capability is strongly influenced by environmental conditions. Previous research has highlighted the positive effects of wound signaling and warm temperature on plant regeneration, and recent studies suggest that light and nutrient signals also influence the regenerative efficiencies. Several epigenetic factors, such as histone acetyl-transferases (HATs), POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), and H2A variants, play crucial roles in regulating the expression of genes implicated in plant regeneration. However, how these epigenetic factors recognize specific genomic regions to regulate regeneration genes is still unclear. In this article, we describe the latest studies of epigenetic regulation and discuss the functional coordination between transcription factors and epigenetic modifiers in plant regeneration.
Collapse
Affiliation(s)
- Yu Chen
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Fu-Yu Hung
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
30
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
31
|
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. BIOLOGY 2023; 12:1076. [PMID: 37626962 PMCID: PMC10451976 DOI: 10.3390/biology12081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Bromodomain-containing proteins (BRD-proteins) are the "readers" of histone lysine acetylation, translating chromatin state into gene expression. They act alone or as components of larger complexes and exhibit diverse functions to regulate gene expression; they participate in chromatin remodeling complexes, mediate histone modifications, serve as scaffolds to recruit transcriptional regulators or act themselves as transcriptional co-activators or repressors. Human BRD-proteins have been extensively studied and have gained interest as potential drug targets for various diseases, whereas in plants, this group of proteins is still not well investigated. In this review, we aimed to concentrate scientific knowledge on these chromatin "readers" with a focus on Arabidopsis. We organized plant BRD-proteins into groups based on their functions and domain architecture and summarized the published work regarding their interactions, activity and diverse functions. Overall, it seems that plant BRD-proteins are indispensable components and fine-tuners of the complex network plants have built to regulate development, flowering, hormone signaling and response to various biotic or abiotic stresses. This work will facilitate the understanding of their roles in plants and highlight BRD-proteins with yet undiscovered functions.
Collapse
Affiliation(s)
- Eirini Bardani
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Martha Tselika
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| |
Collapse
|
32
|
Morinaka H, Sakamoto Y, Iwase A, Sugimoto K. How do plants reprogramme the fate of differentiated cells? CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102377. [PMID: 37167921 DOI: 10.1016/j.pbi.2023.102377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
Being able to change cell fate after differentiation highlights the remarkable developmental plasticity of plant cells. Recent studies show that phytohormones, such as auxin and cytokinin, promote cell cycle reactivation, a critical first step to reprogramme mitotically inactive, differentiated cells into organogenic stem cells. Accumulating evidence suggests that wounding provides an additional cue to convert the identity of differentiated cells by promoting the loss of existing cell fate and/or acquisition of new cell fate. Differentiated cells can also alter cell fate without undergoing cell division and in this case, wounding and phytohormones induce master regulators that can directly assign new cell fate.
Collapse
Affiliation(s)
- Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Yuki Sakamoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
33
|
Wang J, Tan M, Wang X, Jia L, Wang M, Huang A, You L, Li C, Zhang Y, Zhao Y, Wang G. WUS-RELATED HOMEOBOX 14 boosts de novo plant shoot regeneration. PLANT PHYSIOLOGY 2023; 192:748-752. [PMID: 36843039 PMCID: PMC10231361 DOI: 10.1093/plphys/kiad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/01/2023]
Abstract
WUS-RELATED HOMEOBOX 14 and its putative rice ortholog boost de novo plant shoot regeneration
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mingfang Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuening Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingyu Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengping Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Aixia Huang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lei You
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Chen Li
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
34
|
Guo F, Wang H, Lian G, Cai G, Liu W, Zhang H, Li D, Zhou C, Han N, Zhu M, Su Y, Seo PJ, Xu L, Bian H. Initiation of scutellum-derived callus is regulated by an embryo-like developmental pathway in rice. Commun Biol 2023; 6:457. [PMID: 37100819 PMCID: PMC10130139 DOI: 10.1038/s42003-023-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
In rice (Oryza sativa) tissue culture, callus can be induced from the scutellum in embryo or from the vasculature of non-embryonic organs such as leaves, nodes, or roots. Here we show that the auxin signaling pathway triggers cell division in the epidermis of the scutellum to form an embryo-like structure, which leads to callus formation. Our transcriptome data show that embryo-, stem cell-, and auxin-related genes are upregulated during scutellum-derived callus initiation. Among those genes, the embryo-specific gene OsLEC1 is activated by auxin and involved in scutellum-derived callus initiation. However, OsLEC1 is not required for vasculature-derived callus initiation from roots. In addition, OsIAA11 and OsCRL1, which are involved in root development, are required for vasculature-derived callus formation but not for scutellum-derived callus formation. Overall, our data indicate that scutellum-derived callus initiation is regulated by an embryo-like development program, and this is different from vasculature-derived callus initiation which borrows a root development program.
Collapse
Affiliation(s)
- Fu Guo
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Yazhou Bay Seed Laboratory, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Guiwei Lian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Haidao Zhang
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Dandan Li
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Chun Zhou
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ning Han
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muyuan Zhu
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinghua Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Nakashima Y, Kobayashi Y, Murao M, Kato R, Endo H, Higo A, Iwasaki R, Kojima M, Takebayashi Y, Sato A, Nomoto M, Sakakibara H, Tada Y, Itami K, Kimura S, Hagihara S, Torii KU, Uchida N. Identification of a pluripotency-inducing small compound, PLU, that induces callus formation via Heat Shock Protein 90-mediated activation of auxin signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1099587. [PMID: 36968385 PMCID: PMC10030974 DOI: 10.3389/fpls.2023.1099587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Plants retain the ability to generate a pluripotent tissue called callus by dedifferentiating somatic cells. A pluripotent callus can also be artificially induced by culturing explants with hormone mixtures of auxin and cytokinin, and an entire body can then be regenerated from the callus. Here we identified a pluripotency-inducing small compound, PLU, that induces the formation of callus with tissue regeneration potency without the external application of either auxin or cytokinin. The PLU-induced callus expressed several marker genes related to pluripotency acquisition via lateral root initiation processes. PLU-induced callus formation required activation of the auxin signaling pathway though the amount of active auxin was reduced by PLU treatment. RNA-seq analysis and subsequent experiments revealed that Heat Shock Protein 90 (HSP90) mediates a significant part of the PLU-initiated early events. We also showed that HSP90-dependent induction of TRANSPORT INHIBITOR RESPONSE 1, an auxin receptor gene, is required for the callus formation by PLU. Collectively, this study provides a new tool for manipulating and investigating the induction of plant pluripotency from a different angle from the conventional method with the external application of hormone mixtures.
Collapse
Affiliation(s)
- Yuki Nakashima
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuka Kobayashi
- Center for Gene Research, Nagoya University, Nagoya, Japan
- School of Science, Nagoya University, Nagoya, Japan
| | - Mizuki Murao
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Rika Kato
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Asuka Higo
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Rie Iwasaki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Mikiko Kojima
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Science, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| |
Collapse
|
36
|
Zhai N, Pan X, Zeng M, Xu L. Developmental trajectory of pluripotent stem cell establishment in Arabidopsis callus guided by a quiescent center-related gene network. Development 2023; 150:286991. [PMID: 36762604 DOI: 10.1242/dev.200879] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
In plant tissue culture, callus formation is induced by a high auxin concentration. Among the three cell layers (the outer, middle and inner cell layers) of the callus, pluripotency acquisition in the middle cell layer is required for the potential ability of the callus to regenerate organs. Here, we reveal the developmental trajectory of middle cell layer initiation and maintenance in callus tissue originating from Arabidopsis thaliana hypocotyls. The S phase of the cell cycle is essential for the expression of quiescent center-related SCARECROW (SCR), PLETHORA1 (PLT1) and WUSCHEL-RELATED HOMEOBOX5 (WOX5) genes during the division of callus founder cells to initiate the callus primordium. After callus initiation, SHOOT-ROOT (SHR) proteins move from the inner to the middle cell layer and act together with SCR to promote the expression of PLT1 and WOX5. WOX5 represses the expression of VASCULAR-RELATED NAC-DOMAIN (VND) genes, thereby preventing callus tissue from differentiating into xylem cells. PLT1 and PLT2 directly activate JACKDAW (JKD), which is necessary for pluripotency acquisition in the middle cell layer. We hypothesize that the middle cell layer could have pluripotent stem cell activity and its establishment requires the quiescent center-related SCR-SHR-WOX5-PLT1/2-JKD gene network.
Collapse
Affiliation(s)
- Ning Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xuan Pan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Minhuan Zeng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
37
|
Liu X, Zhu K, Xiao J. Recent advances in understanding of the epigenetic regulation of plant regeneration. ABIOTECH 2023; 4:31-46. [PMID: 37220541 PMCID: PMC10199984 DOI: 10.1007/s42994-022-00093-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/27/2022] [Indexed: 05/22/2023]
Abstract
Ever since the concept of "plant cell totipotency" was first proposed in the early twentieth century, plant regeneration has been a major focus of study. Regeneration-mediated organogenesis and genetic transformation are important topics in both basic research and modern agriculture. Recent studies in the model plant Arabidopsis thaliana and other species have expanded our understanding of the molecular regulation of plant regeneration. The hierarchy of transcriptional regulation driven by phytohormone signaling during regeneration is associated with changes in chromatin dynamics and DNA methylation. Here, we summarize how various aspects of epigenetic regulation, including histone modifications and variants, chromatin accessibility dynamics, DNA methylation, and microRNAs, modulate plant regeneration. As the mechanisms of epigenetic regulation are conserved in many plants, research in this field has potential applications in boosting crop breeding, especially if coupled with emerging single-cell omics technologies.
Collapse
Affiliation(s)
- Xuemei Liu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kehui Zhu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
38
|
Zhao H, Ge Z, Zhou M, Bai R, Zeng H, Wei Y, He C, Shi H. Histone acetyltransferase HAM1 interacts with molecular chaperone DNAJA2 and confers immune responses through salicylic acid biosynthetic genes in cassava. PLANT, CELL & ENVIRONMENT 2023; 46:635-649. [PMID: 36451539 DOI: 10.1111/pce.14501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Cassava bacterial blight (CBB) is one of the most serious diseases in cassava production, so it is essential to explore the underlying mechanism of immune responses. Histone acetylation is an important epigenetic modification, however, its relationship with cassava disease resistance remains unclear. Here, we identified 10 histone acetyltransferases in cassava and found that the transcript of MeHAM1 showed the highest induction to CBB. Functional analysis showed that MeHAM1 positively regulated disease resistance to CBB through modulation of salicylic acid (SA) accumulation. Further investigation revealed that MeHAM1 directly activated SA biosynthetic genes' expression via promoting lysine 9 of histone 3 (H3K9) acetylation and lysine 5 of histone 4 (H4K5) acetylation of these genes. In addition, molecular chaperone MeDNAJA2 physically interacted with MeHAM1, and MeDNAJA2 also regulated plant immune responses and SA biosynthetic genes. In conclusion, this study illustrates that MeHAM1 and MeDNAJA2 confer immune responses through transcriptional programming of SA biosynthetic genes via histone acetylation. The MeHAM1 & MeDNAJA2-SA biosynthesis module not only constructs the direct relationship between histone acetylation and cassava disease resistance, but also provides gene network with potential value for genetic improvement of cassava disease resistance.
Collapse
Affiliation(s)
- Huiping Zhao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Zhongyuan Ge
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Mengmeng Zhou
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Ruoyu Bai
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Chaozu He
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
39
|
Liang Y, Heyman J, Lu R, De Veylder L. Evolution of wound-activated regeneration pathways in the plant kingdom. Eur J Cell Biol 2023; 102:151291. [PMID: 36709604 DOI: 10.1016/j.ejcb.2023.151291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Regeneration serves as a self-protective mechanism that allows a tissue or organ to recover its entire form and function after suffering damage. However, the regenerative capacity varies greatly within the plant kingdom. Primitive plants frequently display an amazing regenerative ability as they have developed a complex system and strategy for long-term survival under extreme stress conditions. The regenerative ability of dicot species is highly variable, but that of monocots often exhibits extreme recalcitrance to tissue replenishment. Recent studies have revealed key factors and signals that affect cell fate during plant regeneration, some of which are conserved among the plant lineage. Among these, several members of the ETHYLENE RESPONSE FACTOR (ERF) transcription factors have been implicated in wound signaling, playing crucial roles in the regenerative mechanisms after different types of wounding. An understanding of plant regeneration may ultimately lead to an increased regenerative potential of recalcitrant species, producing more high-yielding, multi-resistant and environmentally friendly crops and ensuring the long-term development of global agriculture.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Ran Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium.
| |
Collapse
|
40
|
Peng J, Zhang WJ, Zhang Q, Su YH, Tang LP. The dynamics of chromatin states mediated by epigenetic modifications during somatic cell reprogramming. Front Cell Dev Biol 2023; 11:1097780. [PMID: 36727112 PMCID: PMC9884706 DOI: 10.3389/fcell.2023.1097780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Somatic cell reprogramming (SCR) is the conversion of differentiated somatic cells into totipotent or pluripotent cells through a variety of methods. Somatic cell reprogramming also provides a platform to investigate the role of chromatin-based factors in establishing and maintaining totipotency or pluripotency, since high expression of totipotency- or pluripotency-related genes usually require an active chromatin state. Several studies in plants or mammals have recently shed light on the molecular mechanisms by which epigenetic modifications regulate the expression of totipotency or pluripotency genes by altering their chromatin states. In this review, we present a comprehensive overview of the dynamic changes in epigenetic modifications and chromatin states during reprogramming from somatic cells to totipotent or pluripotent cells. In addition, we illustrate the potential role of DNA methylation, histone modifications, histone variants, and chromatin remodeling during somatic cell reprogramming, which will pave the way to developing reliable strategies for efficient cellular reprogramming.
Collapse
Affiliation(s)
| | | | | | - Ying Hua Su
- *Correspondence: Ying Hua Su, ; Li Ping Tang,
| | | |
Collapse
|
41
|
Temman H, Sakamoto T, Ueda M, Sugimoto K, Migihashi M, Yamamoto K, Tsujimoto-Inui Y, Sato H, Shibuta MK, Nishino N, Nakamura T, Shimada H, Taniguchi YY, Takeda S, Aida M, Suzuki T, Seki M, Matsunaga S. Histone deacetylation regulates de novo shoot regeneration. PNAS NEXUS 2023; 2:pgad002. [PMID: 36845349 PMCID: PMC9944245 DOI: 10.1093/pnasnexus/pgad002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
During de novo plant organ regeneration, auxin induction mediates the formation of a pluripotent cell mass called callus, which regenerates shoots upon cytokinin induction. However, molecular mechanisms underlying transdifferentiation remain unknown. Here, we showed that the loss of HDA19, a histone deacetylase (HDAC) family gene, suppresses shoot regeneration. Treatment with an HDAC inhibitor revealed that the activity of this gene is essential for shoot regeneration. Further, we identified target genes whose expression was regulated through HDA19-mediated histone deacetylation during shoot induction and found that ENHANCER OF SHOOT REGENERATION 1 and CUP-SHAPED COTYLEDON 2 play important roles in shoot apical meristem formation. Histones at the loci of these genes were hyperacetylated and markedly upregulated in hda19. Transient ESR1 or CUC2 overexpression impaired shoot regeneration, as observed in hda19. Therefore, HDA19 mediates direct histone deacetylation of CUC2 and ESR1 loci to prevent their overexpression at the early stages of shoot regeneration.
Collapse
Affiliation(s)
| | | | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kaoru Sugimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masako Migihashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kazunari Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yayoi Tsujimoto-Inui
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Mio K Shibuta
- Academic Assembly (Faculty of Science), Yamagata University, Kojirakawa, Yamagata 990-8560, Japan
| | - Norikazu Nishino
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan
| | - Tomoe Nakamura
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan,Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669–1337, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 60-8522, Japan,Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Centre, 74 Kitaina Yazuma Oji, Seika, Kyoto 619-0244, Japan
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan,International Research Center for Agricultural and Environmental Biology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-855, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
42
|
Wan Q, Zhai N, Xie D, Liu W, Xu L. WOX11: the founder of plant organ regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:1. [PMID: 36596978 PMCID: PMC9810776 DOI: 10.1186/s13619-022-00140-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023]
Abstract
De novo organ regeneration is the process in which adventitious roots or shoots regenerate from detached or wounded organs. De novo organ regeneration can occur either in natural conditions, e.g. adventitious root regeneration from the wounded sites of detached leaves or stems, or in in-vitro tissue culture, e.g. organ regeneration from callus. In this review, we summarize recent advances in research on the molecular mechanism of de novo organ regeneration, focusing on the role of the WUSCHEL-RELATED HOMEOBOX11 (WOX11) gene in the model plant Arabidopsis thaliana. WOX11 is a direct target of the auxin signaling pathway, and it is expressed in, and regulates the establishment of, the founder cell during de novo root regeneration and callus formation. WOX11 activates the expression of its target genes to initiate root and callus primordia. Therefore, WOX11 links upstream auxin signaling to downstream cell fate transition during regeneration. We also discuss the role of WOX11 in diverse species and its evolution in plants.
Collapse
Affiliation(s)
- Qihui Wan
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Ning Zhai
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Dixiang Xie
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Wu Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| | - Lin Xu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
43
|
Nunez-Vazquez R, Desvoyes B, Gutierrez C. Histone variants and modifications during abiotic stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:984702. [PMID: 36589114 PMCID: PMC9797984 DOI: 10.3389/fpls.2022.984702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Plants have developed multiple mechanisms as an adaptive response to abiotic stresses, such as salinity, drought, heat, cold, and oxidative stress. Understanding these regulatory networks is critical for coping with the negative impact of abiotic stress on crop productivity worldwide and, eventually, for the rational design of strategies to improve plant performance. Plant alterations upon stress are driven by changes in transcriptional regulation, which rely on locus-specific changes in chromatin accessibility. This process encompasses post-translational modifications of histone proteins that alter the DNA-histones binding, the exchange of canonical histones by variants that modify chromatin conformation, and DNA methylation, which has an implication in the silencing and activation of hypervariable genes. Here, we review the current understanding of the role of the major epigenetic modifications during the abiotic stress response and discuss the intricate relationship among them.
Collapse
Affiliation(s)
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Programa de Dinámica y Función del Genoma, Madrid, Spain
| |
Collapse
|
44
|
Guan X, Qian H, Qu W, Shu S, Pang Y, Chen N, Zhang X, Mao Y, Poestch A, Wang D. Histone acetylation functions in the wound-induced spore formation in nori. FRONTIERS IN PLANT SCIENCE 2022; 13:1064300. [PMID: 36570923 PMCID: PMC9773553 DOI: 10.3389/fpls.2022.1064300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 06/02/2023]
Abstract
The red macroalgae Pyropia yezoensis is one of the most economically important marine crops. In the asexual reproduction process, released archeospores could provide secondary seedling resources in nori farming and be used to establish asexual seeding strategies. We previously found that wounds could induce the somatic cells in sectioned Pyropia thalli to develop into large number of asexual wound-induced spores (WIS) in a short time. Many genes involved in signaling pathways, cell division, cell wall remodeling, etc. exhibited transcriptional variation in this cell fate transition process. However, the regulatory mechanisms controlling gene transcription remain elusive. In this study, we found that suberoylanilide hydroxamic acid (SAHA), the inhibitor of histone deacetylase, strongly repressed WIS formation after wounding. The lack of a sharp increase in HDAC activity after wounding, as well as the hyperacetylated status of histone H3 and H4, were observed in SAHA-treated thalli fragments, thus confirming a histone deacetylation-related epigenetic mechanism of wound-induced cell fate reprogramming. Moreover, histone deacetylation is required in the whole process of WIS formation and release. We further compared the genome-wide transcriptional variations after SAHA treatment. SAHA-responsive genes were identified, including some transcriptional factors, chromatin remodeling complex proteins, protein kinases, etc. Transcription of RBOH genes was also altered by SAHA, and moreover, ROS signals in cut fragments were attenuated, both indicating that the ROS systematic signaling pathway is closely associated with histone deacetylation. Our findings provide insights into the biological significance of dynamic histone acetylation states in WIS formation in P. yezoensis.
Collapse
Affiliation(s)
- Xiaowei Guan
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huijuan Qian
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Weihua Qu
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Shu
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Pang
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Nianci Chen
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoqian Zhang
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya, China
| | - Ansgar Poestch
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding Ocean University of China (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
45
|
Ma J, Li Q, Zhang L, Cai S, Liu Y, Lin J, Huang R, Yu Y, Wen M, Xu T. High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2425-2437. [PMID: 36250442 DOI: 10.1111/jipb.13387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Callus induction, which results in fate transition in plant cells, is considered as the first and key step for plant regeneration. This process can be stimulated in different tissues by a callus-inducing medium (CIM), which contains a high concentration of phytohormone auxin. Although a few key regulators for callus induction have been identified, the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation. Here, we find that high auxin induces callus through a H3K36 histone methylation-dependent mechanism, which requires the methyltransferase SET DOMAIN GROUP 8 (SDG8). During callus induction, the increased auxin accumulates SDG8 expression through a TIR1/AFBs-based transcriptional regulation. SDG8 then deposits H3K36me3 modifications on the loci of callus-related genes, including a master regulator WOX5 and the cell proliferation-related genes, such as CYCB1.1. This epigenetic regulation in turn is required for the transcriptional activation of these genes during callus formation. These findings suggest that the massive transcriptional reprogramming for cell fate transition by auxin during callus formation requires epigenetic modifications including SDG8-mediated histone H3K36 methylation. Our results provide insight into the coordination between auxin signaling and epigenetic regulation during fundamental processes in plant development.
Collapse
Affiliation(s)
- Jun Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Li
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Lei Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Liu
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juncheng Lin
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongfeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongqiang Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingzhang Wen
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tongda Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Plant Synthetic Biology Center, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
46
|
Lee K, Kim JH, Park OS, Jung YJ, Seo PJ. Ectopic expression of WOX5 promotes cytokinin signaling and de novo shoot regeneration. PLANT CELL REPORTS 2022; 41:2415-2422. [PMID: 36219248 DOI: 10.1007/s00299-022-02932-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
WOX5 has a potential in activating cytokinin signaling and shoot regeneration, in addition to its role in pluripotency acquisition. Thus, overexpression of WOX5 maximizes plant regeneration capacity during tissue culture. In vitro plant regeneration involves two steps: callus formation and de novo shoot organogenesis. The WUSCHEL-RELATED HOMEOBOX 5 (WOX5) homeodomain transcription factor is known to be mainly expressed during incubation on callus-inducing medium (CIM) and involved in pluripotency acquisition in callus, but whether WOX5 also affects de novo shoot regeneration on cytokinin-rich shoot-inducing medium (SIM) remains unknown. Based on the recent finding that WOX5 promotes cytokinin signaling, we hypothesized that ectopic expression of WOX5 beyond CIM would further enhance overall plant regeneration capacity, because intense cytokinin signaling is particularly required for shoot regeneration on SIM. Here, we found that overexpression of the WOX5 gene on SIM drastically promoted de novo shoot regeneration from callus with the repression of type-A ARABIDOPSIS RESPONSE REGULATOR (ARR) genes, negative regulators of cytokinin signaling. The enhanced shoot regeneration phenotypes were indeed dependent on cytokinin signaling, which were partially suppressed in the progeny derived from crossing WOX5-overexpressing plants with cytokinin-insensitive 35S:ARR7 plants. The function of WOX5 in enhancing cytokinin-dependent shoot regeneration is evolutionarily conserved, as conditional overexpression of OsWOX5 on SIM profoundly enhanced shoot regeneration in rice callus. Overall, our results provide the technical advance that maximizes in vitro plant regeneration by constitutively expressing WOX5, which unequivocally promotes both callus pluripotency and de novo shoot regeneration.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea
| | - Ok-Sun Park
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
47
|
Shu H, Zhang Y, He C, Altaf MA, Hao Y, Liao D, Li L, Li C, Fu H, Cheng S, Zhu G, Wang Z. Establishment of in vitro regeneration system and molecular analysis of early development of somatic callus in Capsicum chinense and Capsicum baccatum. FRONTIERS IN PLANT SCIENCE 2022; 13:1025497. [PMID: 36466290 PMCID: PMC9714296 DOI: 10.3389/fpls.2022.1025497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Regeneration is extremely important to pepper genetic development; however, the molecular mechanisms of how the callus reactivates cell proliferation and promotes cell reprogramming remain elusive in pepper. In the present study, C. baccatum (HNUCB81 and HNUCB226) and C. chinense (HNUCC22 and HNUCC16) were analyzed to reveal callus initiation by in vitro regeneration, histology, and transcriptome. We successfully established an efficient in vitro regeneration system of two cultivars to monitor the callus induction of differential genotypes, and the regenerated plants were obtained. Compared to C. chinense, there was a higher callus induction rate in C. baccatum. The phenotype of C. baccatum changed significantly and formed vascular tissue faster than C. chinense. The KEGG enrichment analysis found that plant hormone transduction and starch and sucrose metabolism pathways were significantly enriched. In addition, we identified that the WOX7 gene was significantly up-regulated in HNUCB81 and HNUCB226 than that in HNUCC22 and HNUCC16, which may be a potential function in callus formation. These results provided a promising strategy to improve the regeneration and transformation of pepper plants.
Collapse
Affiliation(s)
- Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yu Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Chengyao He
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Daolong Liao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Institute of Vegetables, Hainan Province Academy of Agricultural Sciences, Haikou, China
| | - Lin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Caichao Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
48
|
Müller-Xing R, Xing Q. The plant stem-cell niche and pluripotency: 15 years of an epigenetic perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:1018559. [PMID: 36388540 PMCID: PMC9659954 DOI: 10.3389/fpls.2022.1018559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pluripotent stem-cells are slowly dividing cells giving rise to daughter cells that can either differentiate to new tissues and organs, or remain stem-cells. In plants, stem-cells are located in specific niches of the shoot and root apical meristems (SAMs and RAMs). After ablation of stem-cell niches, pluripotent meristematic cells can establish new stem-cells, whereas the removal of the whole meristem destructs the regeneration process. In tissue cultures, after detached plant organs are transferred to rooting or callus induction medium (G5 or CIM), vasculature-associated pluripotent cells (VPCs) immediately start proliferation to form adventitious roots or callus, respectively, while other cell types of the organ explants basically play no part in the process. Hence, in contrast to the widely-held assumption that all plant cells have the ability to reproduce a complete organism, only few cell types are pluripotent in practice, raising the question how pluripotent stem-cells differ from differentiated cells. It is now clear that, in addition to gene regulatory networks of pluripotency factors and phytohormone signaling, epigenetics play a crucial role in initiation, maintenance and determination of plant stem-cells. Although, more and more epigenetic regulators have been shown to control plant stem-cell fate, only a few studies demonstrate how they are recruited and how they change the chromatin structure and transcriptional regulation of pluripotency factors. Here, we highlight recent breakthroughs but also revisited classical studies of epigenetic regulation and chromatin dynamics of plant stem-cells and their pluripotent precursor-cells, and point out open questions and future directions.
Collapse
|
49
|
Sakamoto Y, Kawamura A, Suzuki T, Segami S, Maeshima M, Polyn S, De Veylder L, Sugimoto K. Transcriptional activation of auxin biosynthesis drives developmental reprogramming of differentiated cells. THE PLANT CELL 2022; 34:4348-4365. [PMID: 35922895 PMCID: PMC9614439 DOI: 10.1093/plcell/koac218] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 05/26/2023]
Abstract
Plant cells exhibit remarkable plasticity of their differentiation states, enabling regeneration of whole plants from differentiated somatic cells. How they revert cell fate and express pluripotency, however, remains unclear. In this study, we demonstrate that transcriptional activation of auxin biosynthesis is crucial for reprogramming differentiated Arabidopsis (Arabidopsis thaliana) leaf cells. Our data show that interfering with the activity of histone acetyltransferases dramatically reduces callus formation from leaf mesophyll protoplasts. Histone acetylation permits transcriptional activation of PLETHORAs, leading to the induction of their downstream YUCCA1 gene encoding an enzyme for auxin biosynthesis. Auxin biosynthesis is in turn required to accomplish initial cell division through the activation of G2/M phase genes mediated by MYB DOMAIN PROTEIN 3-RELATED (MYB3Rs). We further show that the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19 and INDOLE-3-ACETIC ACID INDUCIBLE 3 (IAA3)/IAA18-mediated auxin signaling pathway is responsible for cell cycle reactivation by transcriptionally upregulating MYB3R4. These findings provide a mechanistic model of how differentiated plant cells revert their fate and reinitiate the cell cycle to become pluripotent.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Ayako Kawamura
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Shoji Segami
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masayoshi Maeshima
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | | |
Collapse
|
50
|
Song N, Lin J, Liu X, Liu Z, Liu D, Chu W, Li J, Chen Y, Chang S, Yang Q, Liu X, Guo W, Xin M, Yao Y, Peng H, Ni Z, Xie C, Sun Q, Hu Z. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat. THE NEW PHYTOLOGIST 2022; 236:590-607. [PMID: 35832009 PMCID: PMC9795918 DOI: 10.1111/nph.18372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/06/2022] [Indexed: 05/24/2023]
Abstract
Plants have evolved a two-branched innate immune system to detect and cope with pathogen attack, which are initiated by cell-surface and intracellular immune receptors leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. A core transducer including PAD4-EDS1 node is proposed as the convergence point for a two-tiered immune system in conferring pathogen immunity. However, the transcriptional regulatory mechanisms controlling expression of these key transducers remain largely unknown. Here, we identified histone acetyltransferase TaHAG1 as a positive regulator of powdery mildew resistance in wheat. TaHAG1 regulates expression of key transducer gene TaPAD4 and promotes SA and reactive oxygen species accumulation to accomplish resistance to Bgt infection. Moreover, overexpression and CRISPR-mediated knockout of TaPAD4 validate its role in wheat powdery mildew resistance. Furthermore, TaHAG1 physically interacts with TaPLATZ5, a plant-specific zinc-binding protein. TaPLATZ5 directly binds to promoter of TaPAD4 and together with TaHAG1 to potentiate the expression of TaPAD4 by increasing the levels of H3 acetylation. Our study revealed a key transcription regulatory node in which TaHAG1 acts as an epigenetic modulator and interacts with TaPLATZ5 that confers powdery mildew resistance in wheat through activating a convergence point gene between PTI and ETI, which could be effective for genetic improvement of disease resistance in wheat and other crops.
Collapse
Affiliation(s)
- Na Song
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zehui Liu
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Debiao Liu
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Shumin Chang
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Qun Yang
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Xiaoyu Liu
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| |
Collapse
|