1
|
Ma J, Wang S, Zhang P, Zheng S, Li X, Li J, Pei H. Emerging roles for fatty acid oxidation in cancer. Genes Dis 2025; 12:101491. [PMID: 40290117 PMCID: PMC12022645 DOI: 10.1016/j.gendis.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 04/30/2025] Open
Abstract
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape.
Collapse
Affiliation(s)
- Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Liao W, Zai X, Zhang J, Xu J. Hematopoietic stem cell state and fate in trained immunity. Cell Commun Signal 2025; 23:182. [PMID: 40229653 PMCID: PMC11995595 DOI: 10.1186/s12964-025-02192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025] Open
Abstract
Trained immunity serves as a de facto memory for innate immune responses, resulting in long-term functional reprogramming of innate immune cells. It enhances resistance to pathogens and augments immunosurveillance under physiological conditions. Given that innate immune cells typically have a short lifespan and do not divide, persistent innate immune memory may be mediated by epigenetic and metabolic changes in long-lived hematopoietic stem cells (HSCs) in the bone marrow. HSCs fine-tune their state and fate in various training conditions, thereby generating functionally adapted progeny cells that orchestrate innate immune plasticity. Notably, both beneficial and maladaptive trained immunity processes can comprehensively influence HSC state and fate, leading to divergent hematopoiesis and immune outcomes. However, the underlying mechanisms are still not fully understood. In this review, we summarize recent advances regarding HSC state and fate in the context of trained immunity. By elucidating the stem cell-intrinsic and extrinsic regulatory network, we aim to refine current models of innate immune memory and provide actionable insights for developing targeted therapies against infectious diseases and chronic inflammation. Furthermore, we propose a conceptual framework for engineering precision-trained immunity through HSC-targeted interventions.
Collapse
Affiliation(s)
- Weinian Liao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
3
|
Kim BR, Rauckhorst AJ, Chimenti MS, Rehman T, Keen HL, Karp PH, Taylor EB, Welsh MJ. The oxygen level in air directs airway epithelial cell differentiation by controlling mitochondrial citrate export. SCIENCE ADVANCES 2025; 11:eadr2282. [PMID: 39854459 PMCID: PMC11759043 DOI: 10.1126/sciadv.adr2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Oxygen controls most metazoan metabolism, yet in mammals, tissue O2 levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O2 levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O2 levels in the body. We asked how the O2 level in air controls differentiation of airway basal stem cells into the ciliated epithelial cells essential for clearing airborne pathogens from the lung. Through a metabolomics screen and 13C tracing on primary cultures of human airway basal cells, we found that the O2 level in air directs ciliated cell differentiation by increasing mitochondrial citrate export. Unexpectedly, disrupting mitochondrial citrate export elicited hypoxia transcriptional responses independently of HIF1α stabilization and at O2 levels that would be hyperoxic for most tissues. These findings identify mitochondrial citrate export as a cellular mechanism for responding to physiologically high O2 levels.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Adam J. Rauckhorst
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Tayyab Rehman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Henry L. Keen
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Philip H. Karp
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Eric B. Taylor
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael J. Welsh
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
4
|
Yvan-Charvet L, Barouillet T, Borowczyk C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01108-9. [PMID: 39743562 DOI: 10.1038/s41569-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of 'haematometabolism' (metabolic-dependent haematopoietic stem cell skewing) and 'efferotabolism' (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
5
|
Hong YP, Yan X, Ding QZ, Zhang ZB. ATP citrate lyase ablation hampers exocrine regeneration via TLR4/NF-kappaB signaling after acute pancreatitis in mice. Int Immunopharmacol 2024; 143:113485. [PMID: 39486178 DOI: 10.1016/j.intimp.2024.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND ATP citrate lyase (Acly) is widely expressed in many tissues, has been proved to be involved in the pathogenesis of many inflammatory diseases. So far, the importance of Acly in acute pancreatitis(AP) has not been clearly determined. The purpose of this study is to clarify whether Acly can evoke inflammatory cascades in the progression of AP and hamper the subsequent regeneration process of pancreas. METHODS Experimental pancreatitis in mice with a specific deficiency of Acly in the pancreas and in control mice through repetitive cerulein injections in vivo. The pancreas pathological grading, cell proliferative potential and the formation of acinar-to-ductal metaplasia (ADM) were evaluated. The levels of inflammatory cytokines in plasma were qualified by enzyme-linked immuno sorbent assay (ELISA). Pancreatic malondialdehyde (MDA), superoxide dismutase (SOD) activity and reduced glutathione (GSH) contents were measured for oxidative stress. The infiltration of macrophages and neutrophils, the expression of Toll like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and the activation of nuclear factor kappaB (NF-κB) and cleaved Caspase-3, were measured using immunostaining. The mRNA transcription levels of TLR4, TNF-α, and IL-1β in pancreatic tissues were detected by quantitative real-time PCR as well. Additionally, inhibition of TLR4 signaling by TAK-242 in AP mice with a pancreas-specific deletion of Acly was conducted in vivo. RESULTS The results demonstrated that the elimination of pancreatic Acly not only exacerbated the severity of pancreatitis in mice during the initial inflammatory phase, as evidenced by more severe pathological damage, but also impeded the healing process of the exocrine pancreas by enhancing the formation of ADM and decreasing the ability of acinar cells to proliferate. In addition, deficiency of Acly increased the circulating TNF-α, IL-1β and IL-6, the infiltration of macrophages and neutrophils, agumented the activation of nuclear factor kappaB (NF-κB) p65, the expression of TLR4, TNF-α, IL-1β and cleaved Caspase-3, and exacerbated excessive oxidative stress in the pancreas at specific time points of AP mice. However, TLR4 inhibition significantly attenuated the structural and functional damage of the pancreas induced by AP in mice with a pancreas-specific deletion of Acly, as indicated by improvement of the above indexes. CONCLUSIONS The present study demonstrated that ablation of pancreatic Acly intensified inflammatory reaction and cell death, and dampened exocrine regeneration following AP, due to the positive regulation of TLR4/NF-κB signaling activation.
Collapse
Affiliation(s)
- Yu-Pu Hong
- Department of Hepatopancreatobiliary Surgery, Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Hepatopancreatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Xin Yan
- Department of Hepatopancreatobiliary Surgery, Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qing-Zhu Ding
- Department of Hepatopancreatobiliary Surgery, Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhi-Bo Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Hepatopancreatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
6
|
Gao W, Zhang L, Li Z, Wu T, Lang C, Mulholland MW, Zhang W. Nuclear Acly protects the liver from ischemia-reperfusion injury. Hepatology 2024; 80:1087-1103. [PMID: 37983829 PMCID: PMC11102925 DOI: 10.1097/hep.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (IR) injury is the most common complication that occurs in liver surgery and hemorrhagic shock. ATP citrate lyase (Acly) plays a pivotal role in chromatin modification via generating acetyl-CoA for histone acetylation to influence biological processes. We aim to examine the roles of Acly, which is highly expressed in hepatocytes, in liver IR injury. APPROACH AND RESULTS The functions of Acly in hepatic IR injury were examined in the mouse model with a hepatocyte-specific knockout of Acly . The Acly target genes were analyzed by CUT&RUN assay and RNA sequencing. The relationship between the susceptibility of the steatotic liver to IR and Acly was determined by the gain of function studies in mice. Hepatic deficiency of Acly exacerbated liver IR injury. IR induced Acly nuclear translocation in hepatocytes, which spatially fueled nuclear acetyl-CoA. This alteration was associated with enhanced acetylation of H3K9 and subsequent activation of the Foxa2 signaling pathway. Nuclear localization of Acly enabled Foxa2-mediated protective effects after hypoxia-reperfusion in cultured hepatocytes, while cytosolic Acly demonstrated no effect. The presence of steatosis disrupted Acly nuclear translocation. In the steatotic liver, restoration of Acly nuclear localization through overexpression of Rspondin-1 or Rspondin-3 ameliorated the IR-induced injury. CONCLUSIONS Our results indicate that Acly regulates histone modification by means of nuclear AcCoA production in hepatic IR. Disruption of Acly nuclear translocation increases the vulnerability of the steatotic liver to IR. Nuclear Acly thus may serve as a potential therapeutic target for future interventions in hepatic IR injury, particularly in the context of steatosis.
Collapse
Affiliation(s)
- Wenbin Gao
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Wu Z, Lyu T, Wu L, Yang H, Li W. The Role of SIRT1 in Leukemia. Curr Treat Options Oncol 2024; 25:1283-1288. [PMID: 39356446 DOI: 10.1007/s11864-024-01265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
OPINION STATEMENT Leukemia is a type of hematological malignancy (HM) caused by uncontrolled proliferation, apoptosis, and differentiation of hematopoietic stem cells (HSCs). Leukemia cells proliferate greatly in the bone marrow (BM), infiltrate other tissues and organs, and affect the normal hematopoietic function. Although the emergence of new targeted agents and immune agents has improved the prognosis of patients, due to the complex pathogenic factors and heterogeneity of leukemia, there are still some patients with poor prognosis. Recent studies have shown that silent information regulator 1 (SIRT1) is involved in the proliferation, apoptosis, metabolism, and senescence of leukemia cells. As a double-edged sword in leukemia cells, SIRT1 can both promote and inhibit the growth of leukemia cells. Since its mechanism of action has not been elucidated, it is urgent to explore the regulatory mechanism of SIRT1 in leukemia. In this review, we discussed the mechanisms of SIRT1 in different aspects of leukemia, providing a theoretical basis for the treatment of patients with leukemia.
Collapse
Affiliation(s)
- Zhongqi Wu
- Department of Psychiatry, Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453002, China
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianxin Lyu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Leizhen Wu
- Xinxiang Siwei Brain Science Research Institute, Xinxiang, 453002, China
| | - Hui Yang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China.
| | - Wenqiang Li
- Department of Psychiatry, Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453002, China.
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
8
|
Johansson A, Khalilnezhad A, Takizawa H, Mizuno H, Suda T, Umemoto T. Mobilization dynamics of bone marrow hematopoietic stem cells during hematopoietic regeneration. Exp Hematol 2024; 138:104281. [PMID: 39009278 DOI: 10.1016/j.exphem.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Under stress hematopoiesis, previous studies have suggested the migration of hematopoietic stem cells (HSCs) from bone marrow (BM) to extramedullary sites such as the spleen. However, there is little direct evidence of HSC migration from the BM to the spleen. Here, we induced myeloablation via 5-fluorouracil (5-FU) and showed direct evidence of HSC migration from BM to spleen during hematopoietic regeneration via a photoconvertible fluorophore. Moreover, during steady state, HSCs preferentially migrated to BM rather than spleen, but during hematopoietic regeneration, HSCs preferred spleen as a migration site equivalently or greater. Furthermore, in the early phase, HSCs egressed from BM through the attenuated HSC retention. However, HSCs in the late phase gained significantly enhanced cell-autonomous motility, which was independent of chemotaxis. Collectively, HSC mobilization from BM, before the migration to the spleen, was dynamically changed from passive to active events during hematopoietic regeneration.
Collapse
Affiliation(s)
- Alban Johansson
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Chuo-Ku, Kumamoto, Japan; Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan
| | - Ahad Khalilnezhad
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Mizuno
- Laboratory of Multi-dimensional imaging, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan
| | - Toshio Suda
- Laboratory of Stem Cell Regulation, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Chuo-Ku, Kumamoto, Japan.
| |
Collapse
|
9
|
Saito K, van der Garde M, Umemoto T, Miharada N, Sjöberg J, Sigurdsson V, Shirozu H, Kamei S, Radulovic V, Suzuki M, Nakano S, Lang S, Hansson J, Olsson ML, Minami T, Gouras G, Flygare J, Miharada K. Lipoprotein metabolism mediates hematopoietic stem cell responses under acute anemic conditions. Nat Commun 2024; 15:8131. [PMID: 39284836 PMCID: PMC11405780 DOI: 10.1038/s41467-024-52509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Hematopoietic stem cells (HSCs) react to various stress conditions. However, it is unclear whether and how HSCs respond to severe anemia. Here, we demonstrate that upon induction of acute anemia, HSCs rapidly proliferate and enhance their erythroid differentiation potential. In severe anemia, lipoprotein profiles largely change and the concentration of ApoE increases. In HSCs, transcription levels of lipid metabolism-related genes, such as very low-density lipoprotein receptor (Vldlr), are upregulated. Stimulation of HSCs with ApoE enhances their erythroid potential, whereas HSCs in Apoe knockout mice do not respond to anemia induction. VldlrhighHSCs show higher erythroid potential, which is enhanced after acute anemia induction. VldlrhighHSCs are epigenetically distinct because of their low chromatin accessibility, and more chromatin regions are closed upon acute anemia induction. Chromatin regions closed upon acute anemia induction are mainly binding sites of Erg. Inhibition of Erg enhanced the erythroid differentiation potential of HSCs. Our findings indicate that lipoprotein metabolism plays an important role in HSC regulation under severe anemic conditions.
Collapse
Affiliation(s)
- Kiyoka Saito
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mark van der Garde
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Medicine III, Hematology and Oncology, Technical University of Munich, Munich, Germany
| | - Terumasa Umemoto
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Natsumi Miharada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Julia Sjöberg
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Valgardur Sigurdsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haruki Shirozu
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kamei
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Visnja Radulovic
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mitsuyoshi Suzuki
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoshi Nakano
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Stefan Lang
- StemTherapy Bioinformatics Core facility, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jenny Hansson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martin L Olsson
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Takashi Minami
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Gunnar Gouras
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Johan Flygare
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Wang Y, Barthez M, Chen D. Mitochondrial regulation in stem cells. Trends Cell Biol 2024; 34:685-694. [PMID: 37919163 PMCID: PMC11193947 DOI: 10.1016/j.tcb.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Stem cells persist throughout the lifespan to repair and regenerate tissues due to their unique ability to self-renew and differentiate. Here we reflect on the recent discoveries in stem cells that highlight a mitochondrial metabolic checkpoint at the restriction point of the stem cell cycle. Mitochondrial activation supports stem cell proliferation and differentiation by providing energy supply and metabolites as signaling molecules. Concomitant mitochondrial stress can lead to loss of stem cell self-renewal and requires the surveillance of various mitochondrial quality control mechanisms. During aging, a mitochondrial protective program mediated by several sirtuins becomes dysregulated and can be targeted to reverse stem cell aging and tissue degeneration, giving hope for targeting the mitochondrial metabolic checkpoint for treating tissue degenerative diseases.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Marine Barthez
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Morganti C, Bonora M, Ito K. Metabolism and HSC fate: what NADPH is made for. Trends Cell Biol 2024:S0962-8924(24)00141-7. [PMID: 39054107 PMCID: PMC11757803 DOI: 10.1016/j.tcb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Mitochondrial metabolism plays a central role in the regulation of hematopoietic stem cell (HSC) biology. Mitochondrial fatty acid oxidation (FAO) is pivotal in controlling HSC self-renewal and differentiation. Herein, we discuss recent evidence suggesting that NADPH generated in the mitochondria can influence the fate of HSCs. Although NADPH has multiple functions, HSCs show high levels of NADPH that are preferentially used for cholesterol biosynthesis. Endogenous cholesterol supports the biogenesis of extracellular vesicles (EVs), which are essential for maintaining HSC properties. We also highlight the significance of EVs in hematopoiesis through autocrine signaling. Elucidating the mitochondrial NADPH-cholesterol axis as part of the metabolic requirements of healthy HSCs will facilitate the development of new therapies for hematological disorders.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA.
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA.
| |
Collapse
|
12
|
Zhang Y, Chen X, Wang X, Chen J, Du C, Wang J, Liao W. Insights into ionizing radiation-induced bone marrow hematopoietic stem cell injury. Stem Cell Res Ther 2024; 15:222. [PMID: 39039566 PMCID: PMC11265359 DOI: 10.1186/s13287-024-03853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024] Open
Abstract
With the widespread application of nuclear technology across various fields, ionizing radiation-induced injuries are becoming increasingly common. The bone marrow (BM) hematopoietic tissue is a primary target organ of radiation injury. Recent researches have confirmed that ionizing radiation-induced hematopoietic dysfunction mainly results from BM hematopoietic stem cells (HSCs) injury. Additionally, disrupting and reshaping BM microenvironment is a critical factor impacting both the injury and regeneration of HSCs post radiation. However, the regulatory mechanisms of ionizing radiation injury to BM HSCs and their microenvironment remain poorly understood, and prevention and treatment of radiation injury remain the focus and difficulty in radiation medicine research. In this review, we aim to summarize the effects and mechanisms of ionizing radiation-induced injury to BM HSCs and microenvironment, thereby enhancing our understanding of ionizing radiation-induced hematopoietic injury and providing insights for its prevention and treatment in the future.
Collapse
Affiliation(s)
- Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu, 610008, Sichuan, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
13
|
Kubota S, Sun Y, Morii M, Bai J, Ideue T, Hirayama M, Sorin S, Eerdunduleng, Yokomizo-Nakano T, Osato M, Hamashima A, Iimori M, Araki K, Umemoto T, Sashida G. Chromatin modifier Hmga2 promotes adult hematopoietic stem cell function and blood regeneration in stress conditions. EMBO J 2024; 43:2661-2684. [PMID: 38811851 PMCID: PMC11217491 DOI: 10.1038/s44318-024-00122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.
Collapse
Affiliation(s)
- Sho Kubota
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuqi Sun
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Mariko Morii
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jie Bai
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Ideue
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mayumi Hirayama
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Supannika Sorin
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eerdunduleng
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takako Yokomizo-Nakano
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motomi Osato
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of General Internal Medicine, Kumamoto Kenhoku Hospital, Kumamoto, Japan
| | - Ai Hamashima
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mihoko Iimori
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
14
|
Lazaropoulos MP, Gibb AA, Chapski DJ, Nair AA, Reiter AN, Roy R, Eaton DM, Bedi KC, Margulies KB, Wellen KE, Estarás C, Vondriska TM, Elrod JW. Nuclear ATP-citrate lyase regulates chromatin-dependent activation and maintenance of the myofibroblast gene program. NATURE CARDIOVASCULAR RESEARCH 2024; 3:869-882. [PMID: 39196175 PMCID: PMC11358007 DOI: 10.1038/s44161-024-00502-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/31/2024] [Indexed: 08/29/2024]
Abstract
Differentiation of cardiac fibroblasts to myofibroblasts is necessary for matrix remodeling and fibrosis in heart failure. We previously reported that mitochondrial calcium signaling drives α-ketoglutarate-dependent histone demethylation, promoting myofibroblast formation. Here we investigate the role of ATP-citrate lyase (ACLY), a key enzyme for acetyl-CoA biosynthesis, in histone acetylation regulating myofibroblast fate and persistence in cardiac fibrosis. We show that inactivation of ACLY prevents myofibroblast differentiation and reverses myofibroblasts towards quiescence. Genetic deletion of Acly in post-activated myofibroblasts prevents fibrosis and preserves cardiac function in pressure-overload heart failure. TGFβ stimulation enhances ACLY nuclear localization and ACLY-SMAD2/3 interaction, and increases H3K27ac at fibrotic gene loci. Pharmacological inhibition of ACLY or forced nuclear expression of a dominant-negative ACLY mutant prevents myofibroblast formation and H3K27ac. Our data indicate that nuclear ACLY activity is necessary for myofibroblast differentiation and persistence by maintaining histone acetylation at TGFβ-induced myofibroblast genes. These findings provide targets to prevent and reverse pathological fibrosis.
Collapse
Affiliation(s)
- Michael P Lazaropoulos
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Andrew A Gibb
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Douglas J Chapski
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Abheya A Nair
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Allison N Reiter
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Rajika Roy
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Deborah M Eaton
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth C Bedi
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Conchi Estarás
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Departments Medicine/Cardiology and Physiology, and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John W Elrod
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Watanuki S, Kobayashi H, Sugiura Y, Yamamoto M, Karigane D, Shiroshita K, Sorimachi Y, Fujita S, Morikawa T, Koide S, Oshima M, Nishiyama A, Murakami K, Haraguchi M, Tamaki S, Yamamoto T, Yabushita T, Tanaka Y, Nagamatsu G, Honda H, Okamoto S, Goda N, Tamura T, Nakamura-Ishizu A, Suematsu M, Iwama A, Suda T, Takubo K. Context-dependent modification of PFKFB3 in hematopoietic stem cells promotes anaerobic glycolysis and ensures stress hematopoiesis. eLife 2024; 12:RP87674. [PMID: 38573813 PMCID: PMC10994660 DOI: 10.7554/elife.87674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.
Collapse
Affiliation(s)
- Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of MedicineSendaiJapan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of MedicineTokyoJapan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of MedicineKyotoJapan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular CenterOsakaJapan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and EngineeringTokyoJapan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of TokyoTokyoJapan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of TokyoTokyoJapan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of MedicineKanagawaJapan
| | - Koichi Murakami
- Department of Immunology, Yokohama City University Graduate School of MedicineKanagawaJapan
- Advanced Medical Research Center, Yokohama City UniversityKanagawaJapan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of MedicineTokyoJapan
| | - Tomohiro Yabushita
- Division of Cellular Therapy, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yosuke Tanaka
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of YamanashiYamanashiJapan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencySaitamaJapan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical UniversityTokyoJapan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and EngineeringTokyoJapan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of MedicineKanagawaJapan
- Advanced Medical Research Center, Yokohama City UniversityKanagawaJapan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical UniversityTokyoJapan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of MedicineTokyoJapan
- Live Imaging Center, Central Institute for Experimental AnimalsKanagawaJapan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of TokyoTokyoJapan
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
17
|
Bonora M, Morganti C, van Gastel N, Ito K, Calura E, Zanolla I, Ferroni L, Zhang Y, Jung Y, Sales G, Martini P, Nakamura T, Lasorsa FM, Finkel T, Lin CP, Zavan B, Pinton P, Georgakoudi I, Romualdi C, Scadden DT, Ito K. A mitochondrial NADPH-cholesterol axis regulates extracellular vesicle biogenesis to support hematopoietic stem cell fate. Cell Stem Cell 2024; 31:359-377.e10. [PMID: 38458178 PMCID: PMC10957094 DOI: 10.1016/j.stem.2024.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA
| | - Enrica Calura
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - Ilaria Zanolla
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Yookyung Jung
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriele Sales
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Takahisa Nakamura
- Divisions of Endocrinology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Francesco Massimo Lasorsa
- Department of Biosciences Biotechnologies and Environment University of Bari and Institute of Biomembranes Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70125 Bari, Italy
| | - Toren Finkel
- Aging Institute and Department of Medicine, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35121 Padua, Italy
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
18
|
Jackson BT, Finley LWS. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024; 31:161-180. [PMID: 38306993 PMCID: PMC10842269 DOI: 10.1016/j.stem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Stem cells perform many different functions, each of which requires specific metabolic adaptations. Over the past decades, studies of pluripotent and tissue stem cells have uncovered a range of metabolic preferences and strategies that correlate with or exert control over specific cell states. This review aims to describe the common themes that emerge from the study of stem cell metabolism: (1) metabolic pathways supporting stem cell proliferation, (2) metabolic pathways maintaining stem cell quiescence, (3) metabolic control of cellular stress responses and cell death, (4) metabolic regulation of stem cell identity, and (5) metabolic requirements of the stem cell niche.
Collapse
Affiliation(s)
- Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
21
|
Papa L, Martin TC, Djedaini M, Zangui M, Ozbek U, Parsons R, Hoffman R, Schaniel C. Ex vivo reprogramming of human hematopoietic stem cells is accompanied by increased transcripts of genes regulating metabolic integrity. Exp Hematol 2023:S0301-472X(23)00157-1. [PMID: 37001723 DOI: 10.1016/j.exphem.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
The regenerative potential of human hematopoietic stem cells (HSCs) is functionally defined by their ability to provide life-long blood cell production and to repopulate myeloablated allogeneic transplant recipients. The expansion of HSC numbers is dependent not only on HSC divisions but also on a coordinated adaptation of HSCs to metabolic stress. These variables are especially critical during the ex vivo culture of HSCs with cytokine combinations, which frequently results in HSC exhaustion. We have previously reported that human CD34+ hematopoietic stem and progenitor cells (HSPCs) can be efficiently reprogrammed ex vivo and that the number of phenotypic HSCs with long-term repopulation capacity is expanded in the presence of a combination of cytokines and an epigenetic modifier. Here, we present evidence that ex vivo HSC reprogramming and maintenance is accompanied by increased transcripts of genes regulating metabolic integrity, including SIRT1 and SIRT3.
Collapse
|
22
|
Jovankić JV, Nikodijević DD, Milutinović MG, Nikezić AG, Kojić VV, Cvetković AM, Cvetković DM. Potential of Orlistat to induce apoptotic and antiangiogenic effects as well as inhibition of fatty acid synthesis in breast cancer cells. Eur J Pharmacol 2023; 939:175456. [PMID: 36528070 DOI: 10.1016/j.ejphar.2022.175456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Breast cancer as most often women's cancer is the second cause of mortality worldwide. Research interest increased in testing non-standard drugs to suppress breast cancer progression and become significant supplements in anticancer therapy. The anti-obesity drug Orlistat showed significant ability for modulation of cancer cell metabolism via antiproliferative, proapoptotic, antiangiogenic, antimetastatic, and hypolipidemic effects. The anticancer potential of Orlistat was evaluated by cytotoxicity (MTT assay), type of cell death (AO/EB double staining), determination of redox status parameters (superoxide, hydrogen peroxide, lipid peroxidation, reduced glutathione), and total lipid levels with colorimetric methods, as well on angiogenesis-related (VEGF, MMP-9, CXCR4/CXCL12) and fatty acid synthesis-related (ACLY, ACC, FASN) parameters on gene and protein levels (immunocytochemistry and qPCR). Based on obtained results Orlistat induces significant cytotoxic, proapoptotic, and anti-angiogenic effects in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells, without significant cytotoxic effects on normal MRC-5 cells. It decreased total lipid levels and changed redox status parameters and cancer cell metabolism via suppression of genes and proteins involved and fatty acid synthesis. Based on showed, Orlistat may be an important supplement in antiangiogenic therapy against breast cancer with no side effects on normal cells, making it a good candidate for future clinical trials.
Collapse
Affiliation(s)
- Jovana V Jovankić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Danijela D Nikodijević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milena G Milutinović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Aleksandra G Nikezić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put Dr Goldmana 4, Sremska Kamenica, 21204, Serbia
| | - Aleksandar M Cvetković
- University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela M Cvetković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| |
Collapse
|
23
|
Greenwood DL, Ramsey HE, Nguyen PTT, Patterson AR, Voss K, Bader JE, Sugiura A, Bacigalupa ZA, Schaefer S, Ye X, Dahunsi DO, Madden MZ, Wellen KE, Savona MR, Ferrell PB, Rathmell JC. Acly Deficiency Enhances Myelopoiesis through Acetyl Coenzyme A and Metabolic-Epigenetic Cross-Talk. Immunohorizons 2022; 6:837-850. [PMID: 36547387 PMCID: PMC9935084 DOI: 10.4049/immunohorizons.2200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Hematopoiesis integrates cytokine signaling, metabolism, and epigenetic modifications to regulate blood cell generation. These processes are linked, as metabolites provide essential substrates for epigenetic marks. In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is of clinical interest, can regulate chromatin accessibility to limit myeloid differentiation. Acly was tested for a role in murine hematopoiesis by small-molecule inhibition or genetic deletion in lineage-depleted, c-Kit-enriched hematopoietic stem and progenitor cells from Mus musculus. Treatments increased the abundance of cell populations that expressed the myeloid integrin CD11b and other markers of myeloid differentiation. When single-cell RNA sequencing was performed, we found that Acly inhibitor-treated hematopoietic stem and progenitor cells exhibited greater gene expression signatures for macrophages and enrichment of these populations. Similarly, the single-cell assay for transposase-accessible chromatin sequencing showed increased chromatin accessibility at genes associated with myeloid differentiation, including CD11b, CD11c, and IRF8. Mechanistically, Acly deficiency altered chromatin accessibility and expression of multiple C/EBP family transcription factors known to regulate myeloid differentiation and cell metabolism, with increased Cebpe and decreased Cebpa and Cebpb. This effect of Acly deficiency was accompanied by altered mitochondrial metabolism with decreased mitochondrial polarization but increased mitochondrial content and production of reactive oxygen species. The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support alternate compensatory pathways to produce acetyl-CoA reversed this phenotype. Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP transcription factor family activity for myeloid differentiation.
Collapse
Affiliation(s)
- Dalton L. Greenwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Haley E. Ramsey
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Phuong T. T. Nguyen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrew R. Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Samuel Schaefer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Debolanle O. Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kathryn E. Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael R. Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - P. Brent Ferrell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
24
|
Kobayashi H, Watanuki S, Takubo K. Approaches towards Elucidating the Metabolic Program of Hematopoietic Stem/Progenitor Cells. Cells 2022; 11:cells11203189. [PMID: 36291056 PMCID: PMC9600258 DOI: 10.3390/cells11203189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in bone marrow continuously supply a large number of blood cells throughout life in collaboration with hematopoietic progenitor cells (HPCs). HSCs and HPCs are thought to regulate and utilize intracellular metabolic programs to obtain metabolites, such as adenosine triphosphate (ATP), which is necessary for various cellular functions. Metabolites not only provide stem/progenitor cells with nutrients for ATP and building block generation but are also utilized for protein modification and epigenetic regulation to maintain cellular characteristics. In recent years, the metabolic programs of tissue stem/progenitor cells and their underlying molecular mechanisms have been elucidated using a variety of metabolic analysis methods. In this review, we first present the advantages and disadvantages of the current approaches applicable to the metabolic analysis of tissue stem/progenitor cells, including HSCs and HPCs. In the second half, we discuss the characteristics and regulatory mechanisms of HSC metabolism, including the decoupling of ATP production by glycolysis and mitochondria. These technologies and findings have the potential to advance stem cell biology and engineering from a metabolic perspective and to establish therapeutic approaches.
Collapse
|
25
|
Zhang T, Fang Q, Liu P, Wang P, Feng C, Wang J. Heme oxygenase 1 overexpression induces immune evasion of acute myeloid leukemia against natural killer cells by inhibiting CD48. J Transl Med 2022; 20:394. [PMID: 36058936 PMCID: PMC9441067 DOI: 10.1186/s12967-022-03589-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Given the high relapse rate, more effective treatments are needed to improve clinical outcomes. We previously demonstrated that heme oxygenase 1 (HO1) is overexpressed in AML, while the functional roles of HO1 remain unclear. Methods Bioinformatics analysis and flow cytometry were conducted to assess the association between HO1 levels and immune cells or immune checkpoint/ligand molecules in AML patients. Primary natural killer (NK) cells were purified and subsequently co-cultured in vitro with transduced AML cells to determine the effects of HO1 expression on NK cell functions. AML mice models were established to investigate the effects of HO1 expression on cytotoxic effects of NK cells in vivo. The molecular mechanism was studied by flow cytometry, quantitative real-time PCR (qRT-PCR), western blotting, and immunoprecipitation. Results Bioinformatics analysis indicated a correlation between HO1 expression and the AML immune microenvironment. The present study findings indicated that HO1 specifically downregulates the expression of CD48, a ligand of the NK cell-activating receptor 2B4, thus decreasing the cytotoxic effect of NK cells. HO1 overexpression promoted tumor growth and inhibited the cytotoxic effect of NK cells in the AML mice model. Mechanistic investigations found that HO1 directly interacted with Sirt1 and increased its expression and deacetylase activity. With the overexpression of HO1, increased Sirt1 in AML cells enabled histone H3K27 deacetylation to suppress CD48 transcription and expression. Administration of Sirt1 inhibitor restored the expression of CD48. Conclusions Collectively, HO1 promotes NK cell dysfunction in AML. Therefore, restoring NK cell function by inhibiting HO1 activity is a potential immunotherapeutic approach against AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03589-z.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, 550004, China
| | - Ping Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, 550004, China
| | - Cheng Feng
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, China.,Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, 550004, China
| | - Jishi Wang
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, 550004, China. .,Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China. .,Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, 550004, China.
| |
Collapse
|
26
|
Morganti C, Cabezas-Wallscheid N, Ito K. Metabolic Regulation of Hematopoietic Stem Cells. Hemasphere 2022; 6:e740. [PMID: 35785147 PMCID: PMC9242402 DOI: 10.1097/hs9.0000000000000740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022] Open
Abstract
Cellular metabolism is a key regulator of hematopoietic stem cell (HSC) maintenance. HSCs rely on anaerobic glycolysis for energy production to minimize the production of reactive oxygen species and shift toward mitochondrial oxidative phosphorylation upon differentiation. However, increasing evidence has shown that HSCs still maintain a certain level of mitochondrial activity in quiescence, and exhibit high mitochondrial membrane potential, which both support proper HSC function. Since glycolysis and the tricarboxylic acid (TCA) cycle are not directly connected in HSCs, other nutrient pathways, such as amino acid and fatty acid metabolism, generate acetyl-CoA and provide it to the TCA cycle. In this review, we discuss recent insights into the regulatory roles of cellular metabolism in HSCs. Understanding the metabolic requirements of healthy HSCs is of critical importance to the development of new therapies for hematological disorders.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
27
|
Lisi‐Vega LE, Méndez‐Ferrer S. Stem cells "aclymatise" to regenerate the blood system. EMBO J 2022; 41:e110942. [PMID: 35274751 PMCID: PMC9016344 DOI: 10.15252/embj.2022110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
How blood stem cells balance fate decisions between quiescence maintenance and differentiation during recovery from cancer treatment remains poorly understood. A recent study by Umemoto et al (2022) uncovers an unexpected linkage between metabolic and epigenetic regulation of haematopoiesis, suggesting new targets in haematopoietic regeneration, with possible implications in leukaemogenesis and therapy resistance.
Collapse
Affiliation(s)
- Livia E Lisi‐Vega
- Wellcome‐MRC Cambridge Stem Cell InstituteCambridgeUK
- Department of HematologyUniversity of CambridgeCambridgeUK
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUK
| | - Simón Méndez‐Ferrer
- Wellcome‐MRC Cambridge Stem Cell InstituteCambridgeUK
- Department of HematologyUniversity of CambridgeCambridgeUK
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUK
| |
Collapse
|
28
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|