1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Madhukar G, Haque MA, Khan S, Kim JJ, Danishuddin. E3 ubiquitin ligases and their therapeutic potential in disease Management. Biochem Pharmacol 2025; 236:116875. [PMID: 40120724 DOI: 10.1016/j.bcp.2025.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Ubiquitination is a vital post-translational modification that regulates protein stability and various cellular processes through the addition of ubiquitin molecules. Central to this process are E3 ubiquitin ligases, which determine the specificity of ubiquitination by coordinating the attachment of ubiquitin to target proteins, influencing their degradation, localization, and activity. E3 ubiquitin ligases are involved in numerous cellular pathways, including DNA repair, cell proliferation, and immune responses. Dysregulation of E3 ubiquitin ligases is often associated with cancer, contributing to tumor progression and resistance to therapies. The development of targeted protein degraders, such as proteolysis-targeting chimeras (PROTACs), represents a significant advancement in drug discovery, leveraging the specificity of E3 ubiquitin ligases to selectively eliminate pathogenic proteins. However, challenges remain in translating this knowledge into effective therapies, including issues related to tissue-specific targeting and off-target effects. The limitations also include a limited understanding of ligase-substrate interactions that includes both the identification of novel E3 ligases and their substrates, as well as understanding the dynamic, context-dependent nature of these interactions, which can vary across tissue types or disease states This review emphasizes the therapeutic potential of E3 ubiquitin ligases, exploring their diverse roles in disease, their contribution to targeted degradation strategies while highlighting the need for further research to overcome current limitations and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Geet Madhukar
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Alrosan AZ, Heilat GB, Alrosan K, Shannag A, Alshalout EM. NEDD4 signaling: a new frontier in the diagnosis and treatment of breast and ovarian cancers. Med Oncol 2025; 42:200. [PMID: 40327180 DOI: 10.1007/s12032-025-02751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Currently, breast cancer (BC) and ovarian cancer (OC) are the most prevalent forms of cancer among women worldwide. Even though BC has a favorable outlook when detected early and managed appropriately compared to OC, the spread of BC and OC to other parts of the body, known as metastasis, is a significant cause of death. A robust association exists between genetic and protein alterations and post-translational modifications (PTMs), significantly impacting tumor formation, advancement, and prognosis. Ubiquitination, a crucial PTM, regulates almost all aspects of cellular function, and E3-ligase-mediated ubiquitination is a pivotal process that controls the speed of the protein ubiquitination cascade. NEDD4-1, a neural developmentally downregulated protein 4-1, is a crucial E3 ligase that plays a significant role in regulating several proteins that have important functions in the development and progression of BC and OC, thus controlling BC and OC cells' movement, infiltration, and multiplication. This review discusses the latest developments in comprehending NEDD4-1 substrates and their involvement in signal transduction pathways in BC and OC. NEDD4-1 likely serves as a novel diagnostic indicator and a target for therapy in the battle against both cancers.
Collapse
Affiliation(s)
- Amjad Z Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Ghaith B Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Ahmad Shannag
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ehab M Alshalout
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| |
Collapse
|
4
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
5
|
Wagner JP, Sauvé V, Saran A, Gehring K. Structural basis for the pathogenicity of parkin catalytic domain mutants. J Biol Chem 2025; 301:108051. [PMID: 39631693 PMCID: PMC11742612 DOI: 10.1016/j.jbc.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Mutations in the E3 ubiquitin ligase parkin cause a familial form of Parkinson's disease. Parkin and the mitochondrial kinase PTEN-induced kinase 1 assure quality control of mitochondria through selective autophagy of mitochondria (mitophagy). Whereas numerous parkin mutations have been functionally and structurally characterized, several Parkinson's disease mutations found in the catalytic Rcat domain of parkin remain poorly understood. Here, we characterize two pathogenic Rcat mutants, T415N and P437L. We demonstrate that both mutants exhibit impaired activity using autoubiquitination and ubiquitin vinyl sulfone assays. We determine the minimal ubiquitin-binding segment and show that both mutants display impaired binding of ubiquitin charged on the E2 enzyme. Finally, we use AlphaFold 3 to predict a model of the phospho-parkin:phospho-ubiquitin:ubiquitin-charged E2 complex. The model shows the repressor element of parkin and the N-terminal residues of the catalytic domain form a helix to position ubiquitin for transfer from the E2 to parkin. Our results rationalize the pathogenicity of the parkin mutations and deepen our understanding of the active parkin:E2∼Ub complex.
Collapse
Affiliation(s)
- Julian P Wagner
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Véronique Sauvé
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Anshu Saran
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Verma S, Ghatak A. Involvement of E3 Ubiquitin Ligases in Viral Infections of the Human Host. Viral Immunol 2024; 37:419-431. [PMID: 39469796 DOI: 10.1089/vim.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Viral infections are one of the principal causes of global primary health crises, with increased rate of infection and mortality demonstrated by the newer progeny of viruses. Viral invasion of the host involves utilization of various cellular machinery. Ubiquitination is one of a few central regulatory systems used by viruses for establishment of the infections in the host. Members of the ubiquitination system are involved in carrying out proteasomal degradation or functional modification of proteins in numerous cellular processes. E3 ubiquitin ligases play a major role in this system through recognition and recruitment of protein substrates and catalyzing the transfer of ubiquitin to these substrates. The versatility of ubiquitin ligases frequently makes them useful tools for the viruses, for either utilizing or degrading other cellular machineries, for carrying out their multiplication or inactivating the defensive strategies of the host. Therefore, these ligases are important targets for aiming at major pathways causing viral protein degradation or functional modification of the infection process. In this review, we have discussed the role and mechanism of different types of ubiquitin ligases in the context of infections of mainly human viruses, highlighting the viral proteins directly interacting with the ligases. Knowledge about these direct interactions is central in understanding the ubiquitin-dependent processes. This comprehensive account may also be beneficial for pharmaceutical exploration of E3 ligase-based broad-spectrum antiviral treatment.
Collapse
Affiliation(s)
- Suchanda Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Archana Ghatak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
7
|
Kaminskaya AN, Evpak AS, Belogurov AA, Kudriaeva AA. Tracking of Ubiquitin Signaling through 3.5 Billion Years of Combinatorial Conjugation. Int J Mol Sci 2024; 25:8671. [PMID: 39201358 PMCID: PMC11354881 DOI: 10.3390/ijms25168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.
Collapse
Affiliation(s)
- Alena N. Kaminskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alena S. Evpak
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
- Department of Biological Chemistry, Russian University of Medicine, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| |
Collapse
|
8
|
Huq TS, Luo J, Fakih R, Sauvé V, Gehring K. Naturally occurring hyperactive variants of human parkin. Commun Biol 2024; 7:961. [PMID: 39117722 PMCID: PMC11310320 DOI: 10.1038/s42003-024-06656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Although most cases are sporadic and occur later in life, 10-15% of cases are genetic. Loss-of-function mutations in the ring-between-ring E3 ubiquitin ligase parkin, encoded by the PRKN gene, cause autosomal recessive forms of early onset PD. Together with the kinase PINK1, parkin forms a mitochondrial quality control pathway that tags damaged mitochondria for clearance. Under basal conditions, parkin is inhibited and compounds that increase its activity have been proposed as a therapy for PD. Recently, several naturally occurring hyperactive parkin variants were identified, which increased mitophagy in cultured cells. Here, we validate the hyperactivities of these variants in vitro and compare the levels of activity of the variants to those of the wild-type and the well-characterized hyperactive variant, W403A. We also study the effects of mutating the parkin ACT (activating element) on parkin activity in vitro. This work advances our understanding of the pathogenicity of parkin variants and is an important first step in the design of molecules to increase parkin activity.
Collapse
Affiliation(s)
- Tahrima Saiha Huq
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada
- North South University, Dhaka, Bangladesh
| | - Jean Luo
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada
- Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rayan Fakih
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Véronique Sauvé
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montréal, Canada.
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada.
| |
Collapse
|
9
|
Cheng P, Hou Y, Bian M, Fang X, Liu Y, Rao Y, Cao S, Liu Y, Zhang S, Chen Y, Dong X, Liu Z. Parkin-mediated ubiquitination inhibits BAK apoptotic activity by blocking its canonical hydrophobic groove. Commun Biol 2023; 6:1260. [PMID: 38087033 PMCID: PMC10716173 DOI: 10.1038/s42003-023-05650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BAK permeabilizes the mitochondrial outer membrane, causing apoptosis. This apoptotic activity of BAK is stimulated by binding prodeath activators within its canonical hydrophobic groove. Parkin, an E3 ubiquitin (Ub) ligase, can ubiquitinate BAK, which inhibits BAK apoptotic activity. However, the molecular mechanism underlying the inhibition of ubiquitination remains structurally uncharacterized. Here, we utilize truncated and soluble BAK to construct a mimetic of K113-ubiquitinated BAK (disulfide-linked UbG76C ~ BAKK113C) and further present its NMR-derived structure model. The classical L8-I44-H68-V70 hydrophobic patch of the conjugated Ub subunit binds within the canonical hydrophobic groove of BAK. This Ub occludes the binding of prodeath BID activators in the groove and impairs BID-triggered BAK activation and membrane permeabilization. Reduced interaction between Ub and BAK subunits allows BID to activate K113-ubiquitinated BAK. These mechanistic insights suggest a nonsignaling function of Ub in that it directly antagonizes stimuli targeting Ub-modified proteins rather than by recruiting downstream partners for cellular messaging.
Collapse
Affiliation(s)
- Peng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuzhu Hou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxing Bian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueru Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanfang Rao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuo Cao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanke Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xu Dong
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, 430074, China.
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Alrosan AZ, Alrosan K, Heilat GB, Alsharedeh R, Abudalo R, Oqal M, Alqudah A, Elmaghrabi YA. Potential roles of NEDD4 and NEDD4L and their utility as therapeutic targets in high‑incidence adult male cancers (Review). Mol Clin Oncol 2023; 19:68. [PMID: 37614371 PMCID: PMC10442760 DOI: 10.3892/mco.2023.2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023] Open
Abstract
The term 'cancer' refers to >100 disorders that progressively manifest over time and are characterized by uncontrolled cell division. Although malignant growth can occur in virtually any human tissue, the underlying mechanisms underlying all forms of cancer are consistent. The International Agency for Research on Cancer's annual GLOBOCAN 2020 report provided an update on the global cancer incidence and mortality. Excluding non-melanoma skin cancer, the report predicts that there will be 19.3 million new cancer cases and >10 million cancer-related fatalities in 2023. Lung, prostate, and colon cancers are the most prevalent and lethal cancers in males. It was recognized that post-translational modifications (PTMs) of proteins are necessary for almost all cellular biological processes, as well as in cancer development and metastasis to other bodily organs. Thus, PTMs have a considerable impact on how proteins behave. Various PTMs may have harmful roles by affecting the hallmarks of cancer, metabolism and the regulation of the tumor microenvironment. PTMs and genetic changes/mutations are essential in carcinogenesis and cancer development. A pivotal PTM mechanism is protein ubiquitination. Of note, the rate-limiting stage of the protein ubiquitination cascade is hypothesized to be E3-ligase-mediated ubiquitination. Numerous studies revealed that the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) E3 ligase is among the E3 ubiquitin ligases that have essential roles in cellular processes. It regulates protein degradation and substrate ubiquitination. In addition, it has been shown that NEDD4 primarily functions as an oncogene in various malignancies but can also act as a tumor suppressor in certain types of tumor. In the present review, the roles of NEDD4 as an anticancer protein in various high-incidence male malignancies and the significance of NEDD4 as a potential cancer therapeutic target are discussed. In addition, the targeting of NEDD4 as a therapeutic strategy for the treatment of human malignancies is explored.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rawan Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The Yarmouk University, Irbid 21163, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Muna Oqal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, The Hashemite University, Zarqa 13133, Jordan
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | | |
Collapse
|
11
|
Wang Y, Liu P, Cai Y, Li Y, Tang C, Zhu N, Wang P, Zhang S, Wu J. PbrBZR1 interacts with PbrARI2.3 to mediate brassinosteroid-regulated pollen tube growth during self-incompatibility signaling in pear. PLANT PHYSIOLOGY 2023; 192:2356-2373. [PMID: 37010117 PMCID: PMC10315279 DOI: 10.1093/plphys/kiad208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
S-RNase-mediated self-incompatibility (SI) prevents self-fertilization and promotes outbreeding to ensure genetic diversity in many flowering plants, including pear (Pyrus sp.). Brassinosteroids (BRs) have well-documented functions in cell elongation, but their molecular mechanisms in pollen tube growth, especially in the SI response, remain elusive. Here, exogenously applied brassinolide (BL), an active BR, countered incompatible pollen tube growth inhibition during the SI response in pear. Antisense repression of BRASSINAZOLE-RESISTANT1 (PbrBZR1), a critical component of BR signaling, blocked the positive effect of BL on pollen tube elongation. Further analyses revealed that PbrBZR1 binds to the promoter of EXPANSIN-LIKE A3 (PbrEXLA3) to activate its expression. PbrEXLA3 encodes an expansin that promotes pollen tube elongation in pear. The stability of dephosphorylated PbrBZR1 was substantially reduced in incompatible pollen tubes, where it is targeted by ARIADNE2.3 (PbrARI2.3), an E3 ubiquitin ligase that is strongly expressed in pollen. Our results show that during the SI response, PbrARI2.3 accumulates and negatively regulates pollen tube growth by accelerating the degradation of PbrBZR1 via the 26S proteasome pathway. Together, our results show that an ubiquitin-mediated modification participates in BR signaling in pollen and reveal the molecular mechanism by which BRs regulate S-RNase-based SI.
Collapse
Affiliation(s)
- Yicheng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiling Cai
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
12
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Trempe JF, Gehring K. Structural mechanisms of mitochondrial quality control mediated by PINK1 and parkin. J Mol Biol 2023:168090. [PMID: 37054910 DOI: 10.1016/j.jmb.2023.168090] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and represents a looming public health crisis as the global population ages. While the etiology of the more common, idiopathic form of the disease remains unknown, the last ten years have seen a breakthrough in our understanding of the genetic forms related to two proteins that regulate a quality control system for the removal of damaged or non-functional mitochondria. Here, we review the structure of these proteins, PINK1, a protein kinase, and parkin, a ubiquitin ligase with an emphasis on the molecular mechanisms responsible for their recognition of dysfunctional mitochondria and control of the subsequent ubiquitination cascade. Recent atomic structures have revealed the basis of PINK1 substrate specificity and the conformational changes responsible for activation of PINK1 and parkin catalytic activity. Progress in understanding the molecular basis of mitochondrial quality control promises to open new avenues for therapeutic interventions in PD.
Collapse
Affiliation(s)
- Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| |
Collapse
|
14
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Sato Y, Terawaki S, Oikawa D, Shimizu K, Okina Y, Ito H, Tokunaga F. Involvement of heterologous ubiquitination including linear ubiquitination in Alzheimer's disease and amyotrophic lateral sclerosis. Front Mol Biosci 2023; 10:1089213. [PMID: 36726375 PMCID: PMC9884707 DOI: 10.3389/fmolb.2023.1089213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), the progressive accumulation of ubiquitin-positive cytoplasmic inclusions leads to proteinopathy and neurodegeneration. Along with the seven types of Lys-linked ubiquitin chains, the linear ubiquitin chain assembly complex (LUBAC)-mediated Met1-linked linear ubiquitin chain, which activates the canonical NF-κB pathway, is also involved in cytoplasmic inclusions of tau in AD and TAR DNA-binding protein 43 in ALS. Post-translational modifications, including heterologous ubiquitination, affect proteasomal and autophagic degradation, inflammatory responses, and neurodegeneration. Single nucleotide polymorphisms (SNPs) in SHARPIN and RBCK1 (which encodes HOIL-1L), components of LUBAC, were recently identified as genetic risk factors of AD. A structural biological simulation suggested that most of the SHARPIN SNPs that cause an amino acid replacement affect the structure and function of SHARPIN. Thus, the aberrant LUBAC activity is related to AD. Protein ubiquitination and ubiquitin-binding proteins, such as ubiquilin 2 and NEMO, facilitate liquid-liquid phase separation (LLPS), and linear ubiquitination seems to promote efficient LLPS. Therefore, the development of therapeutic approaches that target ubiquitination, such as proteolysis-targeting chimeras (PROTACs) and inhibitors of ubiquitin ligases, including LUBAC, is expected to be an additional effective strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Seigo Terawaki
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan,Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshinori Okina
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan,*Correspondence: Fuminori Tokunaga,
| |
Collapse
|
16
|
Wang XS, Cotton TR, Trevelyan SJ, Richardson LW, Lee WT, Silke J, Lechtenberg BC. The unifying catalytic mechanism of the RING-between-RING E3 ubiquitin ligase family. Nat Commun 2023; 14:168. [PMID: 36631489 PMCID: PMC9834252 DOI: 10.1038/s41467-023-35871-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The RING-between-RING (RBR) E3 ubiquitin ligase family in humans comprises 14 members and is defined by a two-step catalytic mechanism in which ubiquitin is first transferred from an E2 ubiquitin-conjugating enzyme to the RBR active site and then to the substrate. To define the core features of this catalytic mechanism, we here structurally and biochemically characterise the two RBRs HOIL-1 and RNF216. Crystal structures of both enzymes in their RBR/E2-Ub/Ub transthiolation complexes capturing the first catalytic step, together with complementary functional experiments, reveal the defining features of the RBR catalytic mechanism. RBRs catalyse ubiquitination via a conserved transthiolation complex structure that enables efficient E2-to-RBR ubiquitin transfer. Our data also highlight a conserved RBR allosteric activation mechanism by distinct ubiquitin linkages that suggests RBRs employ a feed-forward mechanism. We finally identify that the HOIL-1 RING2 domain contains an unusual Zn2/Cys6 binuclear cluster that is required for catalytic activity and substrate ubiquitination.
Collapse
Affiliation(s)
- Xiangyi S Wang
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Thomas R Cotton
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sarah J Trevelyan
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lachlan W Richardson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wei Ting Lee
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - John Silke
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bernhard C Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
17
|
Characterisation of HOIP RBR E3 ligase conformational dynamics using integrative modelling. Sci Rep 2022; 12:15201. [PMID: 36076045 PMCID: PMC9458678 DOI: 10.1038/s41598-022-18890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Multidomain proteins composed of individual domains connected by flexible linkers pose a challenge for structural studies due to their intrinsic conformational dynamics. Integrated modelling approaches provide a means to characterise protein flexibility by combining experimental measurements with molecular simulations. In this study, we characterise the conformational dynamics of the catalytic RBR domain of the E3 ubiquitin ligase HOIP, which regulates immune and inflammatory signalling pathways. Specifically, we combine small angle X-ray scattering experiments and molecular dynamics simulations to generate weighted conformational ensembles of the HOIP RBR domain using two different approaches based on maximum parsimony and maximum entropy principles. Both methods provide optimised ensembles that are instrumental in rationalising observed differences between SAXS-based solution studies and available crystal structures and highlight the importance of interdomain linker flexibility.
Collapse
|
18
|
Zhang T, Liu C, Li W, Kuang J, Qiu XY, Min L, Zhu L. Targeted protein degradation in mammalian cells: A Promising Avenue toward Future. Comput Struct Biotechnol J 2022; 20:5477-5489. [PMID: 36249565 PMCID: PMC9535385 DOI: 10.1016/j.csbj.2022.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
In the eukaryotic cellular milieu, proteins are continuously synthesized and degraded effectively via endogenous protein degradation machineries such as the ubiquitin–proteasome and lysosome pathways. By reengineering and repurposing these natural protein regulatory mechanisms, the targeted protein degradation (TPD) strategies are presenting biologists with powerful tools to manipulate the abundance of proteins of interest directly, precisely, and reversibly at the post-translational level. In recent years, TPD is gaining massive attention and is recognized as a paradigm shift both in basic research, application-oriented synthetic biology, and pioneering clinical work. In this review, we summarize the updated information, especially the engineering efforts and developmental route, of current state-of-the-art TPD technology such as Trim-Away, LYTACs, and AUTACs. Besides, the general design principle, benefits, problems, and opportunities to be addressed were further analyzed, with the aim of providing guidelines for exploration, discovery, and further application of novel TPD tools in the future.
Collapse
|
19
|
Reiter KH, Zelter A, Janowska MK, Riffle M, Shulman N, MacLean BX, Tamura K, Chambers MC, MacCoss MJ, Davis TN, Guttman M, Brzovic PS, Klevit RE. Cullin-independent recognition of HHARI substrates by a dynamic RBR catalytic domain. Structure 2022; 30:1269-1284.e6. [PMID: 35716664 PMCID: PMC9444911 DOI: 10.1016/j.str.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
Abstract
RING-between-RING (RBR) E3 ligases mediate ubiquitin transfer through an obligate E3-ubiquitin thioester intermediate prior to substrate ubiquitination. Although RBRs share a conserved catalytic module, substrate recruitment mechanisms remain enigmatic, and the relevant domains have yet to be identified for any member of the class. Here we characterize the interaction between the auto-inhibited RBR, HHARI (AriH1), and its target protein, 4EHP, using a combination of XL-MS, HDX-MS, NMR, and biochemical studies. The results show that (1) a di-aromatic surface on the catalytic HHARI Rcat domain forms a binding platform for substrates and (2) a phosphomimetic mutation on the auto-inhibitory Ariadne domain of HHARI promotes release and reorientation of Rcat for transthiolation and substrate modification. The findings identify a direct binding interaction between a RING-between-RING ligase and its substrate and suggest a general model for RBR substrate recognition.
Collapse
Affiliation(s)
- Katherine H Reiter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kaipo Tamura
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Matthew C Chambers
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Orosa-Puente B, Spoel SH. Harnessing the ubiquitin code to respond to environmental cues. Essays Biochem 2022; 66:111-121. [PMID: 35880291 PMCID: PMC9400065 DOI: 10.1042/ebc20210094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Ubiquitination is an essential post-translational signal that allows cells to adapt and respond to environmental stimuli. Substrate modifications range from a single ubiquitin molecule to complex polyubiquitin chains, where diverse chain topologies constitute a code that is utilized to modify the functions of proteins in numerous cellular signalling pathways. Diverse ubiquitin chain topologies are generated by linking the C-terminus of ubiquitin to one of seven lysine residues or the N-terminal methionine 1 residue of the preceding ubiquitin. Cooperative action between a large array of E2 conjugating and E3 ligase enzymes supports the formation of not only homotypic ubiquitin chains but also heterotypic mixed or branched chains. This complex array of chain topologies is recognized by proteins containing linkage-specific ubiquitin-binding domains and regulates numerous cellular pathways. Although many functions of the ubiquitin code in plants remain unknown, recent work suggests that specific chain topologies are associated with particular molecular processes. Deciphering the ubiquitin code and how plants utilize it to cope with the changing environment is essential to understand the regulatory mechanisms that underpin myriad stress responses and establishment of environmental tolerance.
Collapse
Affiliation(s)
- Beatriz Orosa-Puente
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 5JF, U.K
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH16 5JF, U.K
| |
Collapse
|
21
|
Wang MX, Liuyu T, Zhang ZD. Multifaceted Roles of the E3 Ubiquitin Ligase RING Finger Protein 115 in Immunity and Diseases. Front Immunol 2022; 13:936579. [PMID: 35844553 PMCID: PMC9279554 DOI: 10.3389/fimmu.2022.936579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Ubiquitination is a post-translational modification that plays essential roles in various physiological and pathological processes. Protein ubiquitination depends on E3 ubiquitin ligases that catalyze the conjugation of ubiquitin molecules on lysine residues of targeted substrates. RING finger protein 115 (RNF115), also known as breast cancer associated gene 2 (BCA2) and Rab7-interacting RING finger protein (Rabring7), has been identified as a highly expressed protein in breast cancer cells and tissues. Later, it has been demonstrated that RNF115 catalyzes ubiquitination of a series of proteins to modulate a number of signaling pathways, and thereby regulates viral infections, autoimmunity, cell proliferation and death and tumorigenesis. In this review, we introduce the identification, expression and activity regulation of RNF115, summarize the substrates and functions of RNF115 in different pathways, and discuss the roles of RNF115 as a biomarker or therapeutic target in diseases.
Collapse
Affiliation(s)
- Mei-Xia Wang
- The Executive Master of Business Administration (EMBA) Program, School of Management, Fudan University, Shanghai, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Lacoursiere RE, Hadi D, Shaw GS. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Biomolecules 2022; 12:biom12030467. [PMID: 35327659 PMCID: PMC8946176 DOI: 10.3390/biom12030467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is controlled by a series of E1, E2, and E3 enzymes that can ligate ubiquitin to cellular proteins and dictate the turnover of a substrate and the outcome of signalling events such as DNA damage repair and cell cycle. This process is complex due to the combinatorial power of ~35 E2 and ~1000 E3 enzymes involved and the multiple lysine residues on ubiquitin that can be used to assemble polyubiquitin chains. Recently, mass spectrometric methods have identified that most enzymes in the ubiquitination cascade can be further modified through acetylation or phosphorylation under particular cellular conditions and altered modifications have been noted in different cancers and neurodegenerative diseases. This review provides a cohesive summary of ubiquitination, acetylation, and phosphorylation sites in ubiquitin, the human E1 enzyme UBA1, all E2 enzymes, and some representative E3 enzymes. The potential impacts these post-translational modifications might have on each protein function are highlighted, as well as the observations from human disease.
Collapse
|
23
|
Zhang YL, Cao JL, Zhang Y, Liao L, Deng L, Yang SY, Hu SY, Ning Y, Zhang FL, Li DQ. RNF144A exerts tumor suppressor function in breast cancer through targeting YY1 for proteasomal degradation to downregulate GMFG expression. Med Oncol 2022; 39:48. [PMID: 35103856 PMCID: PMC8807444 DOI: 10.1007/s12032-021-01631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Yin-Ling Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin-Ling Cao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ye Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Ning
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Cotton TR, Cobbold SA, Bernardini JP, Richardson LW, Wang XS, Lechtenberg BC. Structural basis of K63-ubiquitin chain formation by the Gordon-Holmes syndrome RBR E3 ubiquitin ligase RNF216. Mol Cell 2021; 82:598-615.e8. [PMID: 34998453 DOI: 10.1016/j.molcel.2021.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of genetic diseases are linked to deregulation of E3 ubiquitin ligases. Loss-of-function mutations in the RING-between-RING (RBR) family E3 ligase RNF216 (TRIAD3) cause Gordon-Holmes syndrome (GHS) and related neurodegenerative diseases. Functionally, RNF216 assembles K63-linked ubiquitin chains and has been implicated in regulation of innate immunity signaling pathways and synaptic plasticity. Here, we report crystal structures of key RNF216 reaction states including RNF216 in complex with ubiquitin and its reaction product, K63 di-ubiquitin. Our data provide a molecular explanation for chain-type specificity and reveal the molecular basis for disruption of RNF216 function by pathogenic GHS mutations. Furthermore, we demonstrate how RNF216 activity and chain-type specificity are regulated by phosphorylation and that RNF216 is allosterically activated by K63-linked di-ubiquitin. These molecular insights expand our understanding of RNF216 function and its role in disease and further define the mechanistic diversity of the RBR E3 ligase family.
Collapse
Affiliation(s)
- Thomas R Cotton
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon A Cobbold
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan P Bernardini
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan W Richardson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiangyi S Wang
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bernhard C Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
25
|
Zhu Q, Huang J, Huang H, Li H, Yi P, Kloeber JA, Yuan J, Chen Y, Deng M, Luo K, Gao M, Guo G, Tu X, Yin P, Zhang Y, Su J, Chen J, Lou Z. RNF19A-mediated ubiquitination of BARD1 prevents BRCA1/BARD1-dependent homologous recombination. Nat Commun 2021; 12:6653. [PMID: 34789768 PMCID: PMC8599684 DOI: 10.1038/s41467-021-27048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
BRCA1-BARD1 heterodimers act in multiple steps during homologous recombination (HR) to ensure the prompt repair of DNA double strand breaks. Dysfunction of the BRCA1 pathway enhances the therapeutic efficiency of poly-(ADP-ribose) polymerase inhibitors (PARPi) in cancers, but the molecular mechanisms underlying this sensitization to PARPi are not fully understood. Here, we show that cancer cell sensitivity to PARPi is promoted by the ring between ring fingers (RBR) protein RNF19A. We demonstrate that RNF19A suppresses HR by ubiquitinating BARD1, which leads to dissociation of BRCA1-BARD1 complex and exposure of a nuclear export sequence in BARD1 that is otherwise masked by BRCA1, resulting in the export of BARD1 to the cytoplasm. We provide evidence that high RNF19A expression in breast cancer compromises HR and increases sensitivity to PARPi. We propose that RNF19A modulates the cancer cell response to PARPi by negatively regulating the BRCA1-BARD1 complex and inhibiting HR-mediated DNA repair.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hongyang Huang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Huan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Peiqiang Yi
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of medicine, Shanghai, 200120, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of medicine, Shanghai, 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Su
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Does it take two to tango? RING domain self-association and activity in TRIM E3 ubiquitin ligases. Biochem Soc Trans 2021; 48:2615-2624. [PMID: 33170204 PMCID: PMC7752041 DOI: 10.1042/bst20200383] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
TRIM proteins form a protein family that is characterized by a conserved tripartite motif domain comprising a RING domain, one or two B-box domains and a coiled-coil region. Members of this large protein family are important regulators of numerous cellular functions including innate immune responses, transcriptional regulation and apoptosis. Key to their cellular role is their E3 ligase activity which is conferred by the RING domain. Self-association is an important characteristic of TRIM protein activity and is mediated by homodimerization via the coiled-coil region, and in some cases higher order association via additional domains of the tripartite motif. In many of the TRIM family proteins studied thus far, RING dimerization is an important prerequisite for E3 ligase enzymatic activity though the propensity of RING domains to dimerize differs significantly between different TRIMs and can be influenced by other regions of the protein.
Collapse
|
27
|
Chain reactions: molecular mechanisms of RBR ubiquitin ligases. Biochem Soc Trans 2021; 48:1737-1750. [PMID: 32677670 PMCID: PMC7458406 DOI: 10.1042/bst20200237] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Ubiquitination is a fundamental post-translational modification that regulates almost all aspects of cellular signalling and is ultimately catalysed by the action of E3 ubiquitin ligases. The RING-between-RING (RBR) family of E3 ligases encompasses 14 distinct human enzymes that are defined by a unique domain organisation and catalytic mechanism. Detailed characterisation of several RBR ligase family members in the last decade has revealed common structural and mechanistic features. At the same time these studies have highlighted critical differences with respect to autoinhibition, activation and catalysis. Importantly, the majority of RBR E3 ligases remain poorly studied, and thus the extent of diversity within the family remains unknown. In this mini-review we outline the current understanding of the RBR E3 mechanism, structure and regulation with a particular focus on recent findings and developments that will shape the field in coming years.
Collapse
|
28
|
Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021; 11:200390. [PMID: 33906413 PMCID: PMC8080017 DOI: 10.1098/rsob.200390] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.
Collapse
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Sohrabi
- Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
29
|
Orr JN, Waugh R, Colas I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:667314. [PMID: 33897750 PMCID: PMC8058418 DOI: 10.3389/fpls.2021.667314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Meiosis is a specialized cell division which is essential to sexual reproduction. The success of this highly ordered process involves the timely activation, interaction, movement, and removal of many proteins. Ubiquitination is an extraordinarily diverse post-translational modification with a regulatory role in almost all cellular processes. During meiosis, ubiquitin localizes to chromatin and the expression of genes related to ubiquitination appears to be enhanced. This may be due to extensive protein turnover mediated by proteasomal degradation. However, degradation is not the only substrate fate conferred by ubiquitination which may also mediate, for example, the activation of key transcription factors. In plant meiosis, the specific roles of several components of the ubiquitination cascade-particularly SCF complex proteins, the APC/C, and HEI10-have been partially characterized indicating diverse roles in chromosome segregation, recombination, and synapsis. Nonetheless, these components remain comparatively poorly understood to their counterparts in other processes and in other eukaryotes. In this review, we present an overview of our understanding of the role of ubiquitination in plant meiosis, highlighting recent advances, remaining challenges, and high throughput methods which may be used to overcome them.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
30
|
Tools for the discovery of biopolymer producing cysteine relays. Biophys Rev 2021; 13:247-258. [PMID: 33927786 DOI: 10.1007/s12551-021-00792-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Cysteine relays, where a protein or small molecule is transferred multiple times via transthiolation, are central to the production of biological polymers. Enzymes that utilise relay mechanisms display broad substrate specificity and are readily engineered to produce new polymers. In this review, I discuss recent advances in the discovery, engineering and biophysical characterisation of cysteine relays. I will focus on eukaryotic ubiquitin (Ub) cascades and prokaryotic polyhydroxyalkanoate (PHA) synthesis. These evolutionarily distinct processes employ similar chemistry and are readily modified for biotechnological applications. Both processes have been studied intensively for decades, yet recent studies suggest we do not fully understand their mechanistic diversity or plasticity. I will discuss the important role that activity-based probes (ABPs) and other chemical tools have had in identifying and delineating Ub cysteine-relays and the potential for ABPs to be applied to PHA synthases. Finally, I will offer a personal perspective on the potential of engineering cysteine-relays for non-native polymer production.
Collapse
|
31
|
Abstract
The ubiquitin–proteasome system (UPS) is responsible for the rapid targeting of proteins for degradation at 26S proteasomes and requires the orchestrated action of E1, E2 and E3 enzymes in a well-defined cascade. F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases that determine which proteins are ubiquitinated. To date, around 70 FBPs have been identified in humans and can be subdivided into distinct families, based on the protein-recruiting domains they possess. The FBXL subfamily is defined by the presence of multiple leucine-rich repeat (LRR) protein-binding domains. But how the 22 FBPs of the FBXL family achieve their individual specificities, despite having highly similar structural domains to recruit their substrates, is not clear. Here, we review and explore the FBXL family members in detail highlighting their structural and functional similarities and differences and how they engage their substrates through their LRRs to adopt unique interactomes.
Collapse
Affiliation(s)
- Bethany Mason
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
| |
Collapse
|
32
|
Lips C, Ritterhoff T, Weber A, Janowska MK, Mustroph M, Sommer T, Klevit RE. Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly-ubiquitylation. EMBO J 2020; 39:e104863. [PMID: 33015833 PMCID: PMC7667886 DOI: 10.15252/embj.2020104863] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Protein modification with poly-ubiquitin chains is a crucial process involved in a myriad of cellular pathways. Chain synthesis requires two steps: substrate modification with ubiquitin (priming) followed by repetitive ubiquitin-to-ubiquitin attachment (elongation). RING-type E3 ligases catalyze both reactions in collaboration with specific priming and elongating E2 enzymes. We provide kinetic insight into poly-ubiquitylation during protein quality control by showing that priming is the rate-determining step in protein degradation as directed by the yeast ERAD RING E3 ligases, Hrd1 and Doa10. Doa10 cooperates with the dedicated priming E2, Ubc6, while both E3s use Ubc7 for elongation. Here, we provide direct evidence that Hrd1 uses Ubc7 also for priming. We found that Ubc6 has an unusually high basal activity that does not require strong stimulation from an E3. Doa10 exploits this property to pair with Ubc6 over Ubc7 during priming. Our work not only illuminates the mechanisms of specific E2/E3 interplay in ERAD, but also offers a basis to understand how RING E3s may have properties that are tailored to pair with their preferred E2s.
Collapse
Affiliation(s)
- Christian Lips
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Tobias Ritterhoff
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Annika Weber
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Maria K Janowska
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| | - Mandy Mustroph
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Thomas Sommer
- Max Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Lady Davies Guest ProfessorTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Rachel E Klevit
- Department of BiochemistrySchool of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
33
|
Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Nat Chem Biol 2020; 16:1227-1236. [PMID: 32747811 PMCID: PMC7610530 DOI: 10.1038/s41589-020-0598-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Abstract
MYCBP2 is a ubiquitin (Ub) E3 ligase (E3) that is essential for neurodevelopment and regulates axon maintenance. MYCBP2 transfers Ub to non-lysine substrates via a newly discovered RING-Cys-Relay (RCR) mechanism where Ub is relayed from an upstream cysteine to a downstream substrate esterification site. The molecular bases for E2-E3 Ub transfer and Ub relay are unknown. Whether these activities are linked to the neural phenotypes is also unclear. We describe the crystal structure of a covalently trapped E2-Ub:MYCBP2 transfer intermediate revealing key structural rearrangements upon E2-E3 Ub transfer and Ub relay. Our data suggest that transfer to the dynamic upstream cysteine, whilst mitigating lysine activity, requires a closed-like E2-Ub conjugate with tempered reactivity, and Ub relay is facilitated by a helix-coil transition. Furthermore, neurodevelopmental defects and delayed injury-induced degeneration in RCR-defective knock-in mice suggest its requirement, and that of substrate esterification activity, for normal neural development and programmed axon degeneration.
Collapse
|
34
|
Green JL, Wu Y, Encheva V, Lasonder E, Prommaban A, Kunzelmann S, Christodoulou E, Grainger M, Truongvan N, Bothe S, Sharma V, Song W, Pinzuti I, Uthaipibull C, Srichairatanakool S, Birault V, Langsley G, Schindelin H, Stieglitz B, Snijders AP, Holder AA. Ubiquitin activation is essential for schizont maturation in Plasmodium falciparum blood-stage development. PLoS Pathog 2020; 16:e1008640. [PMID: 32569299 PMCID: PMC7332102 DOI: 10.1371/journal.ppat.1008640] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/02/2020] [Accepted: 05/17/2020] [Indexed: 11/19/2022] Open
Abstract
Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites.
Collapse
Affiliation(s)
- Judith L. Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Yang Wu
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Vesela Encheva
- Mass Spectrometry Proteomics, The Francis Crick Institute, London, United Kingdom
| | - Edwin Lasonder
- School of Biomedical Science, University of Plymouth, Plymouth, United Kingdom
| | - Adchara Prommaban
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Biochemistry, Chiang Mai University, Chiang Mai, Thailand
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Munira Grainger
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ngoc Truongvan
- Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany
| | - Sebastian Bothe
- Department of Chemistry and Pharmacy, University of Würzburg, Würzburg, Germany
| | - Vikram Sharma
- School of Biomedical Science, University of Plymouth, Plymouth, United Kingdom
| | - Wei Song
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Irene Pinzuti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology, Khlong Luang, Thailand
| | | | | | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Université Paris Descartes, Paris, France
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, Universität Würzburg, Würzburg, Germany
| | - Benjamin Stieglitz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Rennie ML, Chaugule VK, Walden H. Modes of allosteric regulation of the ubiquitination machinery. Curr Opin Struct Biol 2020; 62:189-196. [PMID: 32305021 DOI: 10.1016/j.sbi.2020.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Ubiquitination is a post-translational modification crucial for cellular signaling. A diverse range of enzymes constitute the machinery that mediates attachment of ubiquitin onto target proteins. This diversity allows the targeting of various proteins in a highly regulated fashion. Many of the enzymes have multiple domains or subunits that bind allosteric effectors and exhibit large conformational rearrangements to facilitate regulation. Here we consider recent examples of ubiquitin itself as an allosteric effector of RING and RBR E3 ligases, as well as advances in the understanding of allosteric regulatory elements within HECT E3 ligases.
Collapse
Affiliation(s)
- Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
36
|
Devarajan S, Meurer M, van Roermund CWT, Chen X, Hettema EH, Kemp S, Knop M, Williams C. Proteasome-dependent protein quality control of the peroxisomal membrane protein Pxa1p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183342. [PMID: 32416190 DOI: 10.1016/j.bbamem.2020.183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Peroxisomes are eukaryotic organelles that function in numerous metabolic pathways and defects in peroxisome function can cause serious developmental brain disorders such as adrenoleukodystrophy (ALD). Peroxisomal membrane proteins (PMPs) play a crucial role in regulating peroxisome function. Therefore, PMP homeostasis is vital for peroxisome function. Recently, we established that certain PMPs are degraded by the Ubiquitin Proteasome System yet little is known about how faulty/non-functional PMPs undergo quality control. Here we have investigated the degradation of Pxa1p, a fatty acid transporter in the yeast Saccharomyces cerevisiae. Pxa1p is a homologue of the human protein ALDP and mutations in ALDP result in the severe disorder ALD. By introducing two corresponding ALDP mutations into Pxa1p (Pxa1MUT), fused to mGFP, we show that Pxa1MUT-mGFP is rapidly degraded from peroxisomes in a proteasome-dependent manner, while wild type Pxa1-mGFP remains relatively stable. Furthermore, we identify a role for the ubiquitin ligase Ufd4p in Pxa1MUT-mGFP degradation. Finally, we establish that inhibiting Pxa1MUT-mGFP degradation results in a partial rescue of Pxa1p activity in cells. Together, our data demonstrate that faulty PMPs can undergo proteasome-dependent quality control. Furthermore, our observations may provide new insights into the role of ALDP degradation in ALD.
Collapse
Affiliation(s)
- S Devarajan
- Department of Cell Biochemistry, University of Groningen, the Netherlands
| | - M Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - C W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, the Netherlands
| | - X Chen
- Department of Cell Biochemistry, University of Groningen, the Netherlands
| | - E H Hettema
- Department of Molecular Biology, University of Sheffield, Sheffield, United Kingdom
| | - S Kemp
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centres, the Netherlands
| | - M Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; Cell Morphogenesis and Signal Transduction, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - C Williams
- Department of Cell Biochemistry, University of Groningen, the Netherlands.
| |
Collapse
|
37
|
Oikawa D, Sato Y, Ito H, Tokunaga F. Linear Ubiquitin Code: Its Writer, Erasers, Decoders, Inhibitors, and Implications in Disorders. Int J Mol Sci 2020; 21:ijms21093381. [PMID: 32403254 PMCID: PMC7246992 DOI: 10.3390/ijms21093381] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin ligase composed of the Heme-oxidized IRP2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein (HOIP), and Shank-associated RH domain interactor (SHARPIN) subunits. LUBAC specifically generates the N-terminal Met1-linked linear ubiquitin chain and regulates acquired and innate immune responses, such as the canonical nuclear factor-κB (NF-κB) and interferon antiviral pathways. Deubiquitinating enzymes, OTULIN and CYLD, physiologically bind to HOIP and control its function by hydrolyzing the linear ubiquitin chain. Moreover, proteins containing linear ubiquitin-specific binding domains, such as NF-κB-essential modulator (NEMO), optineurin, A20-binding inhibitors of NF-κB (ABINs), and A20, modulate the functions of LUBAC, and the dysregulation of the LUBAC-mediated linear ubiquitination pathway induces cancer and inflammatory, autoimmune, and neurodegenerative diseases. Therefore, inhibitors of LUBAC would be valuable to facilitate investigations of the molecular and cellular bases for LUBAC-mediated linear ubiquitination and signal transduction, and for potential therapeutic purposes. We identified and characterized α,β-unsaturated carbonyl-containing chemicals, named HOIPINs (HOIP inhibitors), as LUBAC inhibitors. We summarize recent advances in elucidations of the pathophysiological functions of LUBAC-mediated linear ubiquitination and identifications of its regulators, toward the development of LUBAC inhibitors.
Collapse
Affiliation(s)
- Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan;
| | - Hidefumi Ito
- Department of Neurology, Faculty of Medicine, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
- Correspondence: ; Tel.: +81-6-6645-3720
| |
Collapse
|
38
|
Fernandez MA, Belda-Palazon B, Julian J, Coego A, Lozano-Juste J, Iñigo S, Rodriguez L, Bueso E, Goossens A, Rodriguez PL. RBR-Type E3 Ligases and the Ubiquitin-Conjugating Enzyme UBC26 Regulate Abscisic Acid Receptor Levels and Signaling. PLANT PHYSIOLOGY 2020; 182:1723-1742. [PMID: 31699847 PMCID: PMC7140949 DOI: 10.1104/pp.19.00898] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 05/06/2023]
Abstract
The turnover of abscisic acid (ABA) signaling core components modulates the plant's response to ABA and is regulated by ubiquitination. We show that Arabidopsis (Arabidopsis thaliana) RING Finger ABA-Related1 (RFA1) and RFA4 E3 ubiquitin ligases, members of the RING between RING fingers (RBR)-type RSL1/RFA family, are key regulators of ABA receptor stability in root and leaf tissues, targeting ABA receptors for degradation in different subcellular locations. RFA1 is localized both in the nucleus and cytosol, whereas RFA4 shows specific nuclear localization and promotes nuclear degradation of ABA receptors. Therefore, members of the RSL1/RFA family interact with ABA receptors at plasma membrane, cytosol, and nucleus, targeting them for degradation via the endosomal/vacuolar RSL1-dependent pathway or 26S proteasome. Additionally, we provide insight into the physiological function of the relatively unexplored plant RBR-type E3 ligases, and through mutagenesis and biochemical assays we identified cysteine-361 in RFA4 as the putative active site cysteine, which is a distinctive feature of RBR-type E3 ligases. Endogenous levels of PYR1 and PYL4 ABA receptors were higher in the rfa1 rfa4 double mutant than in wild-type plants. UBC26 was identified as the cognate nuclear E2 enzyme that interacts with the RFA4 E3 ligase and forms UBC26-RFA4-receptor complexes in nuclear speckles. Loss-of-function ubc26 alleles and the rfa1 rfa4 double mutant showed enhanced sensitivity to ABA and accumulation of ABA receptors compared with the wild type. Together, our results reveal a sophisticated mechanism by which ABA receptors are targeted by ubiquitin at different subcellular locations, in which the complexity of the ABA receptor family is mirrored in the partner RBR-type E3 ligases.
Collapse
Affiliation(s)
- Maria Angeles Fernandez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Borja Belda-Palazon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jose Julian
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Sabrina Iñigo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Uiversidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
39
|
Cook BW, Lacoursiere RE, Shaw GS. Recruitment of Ubiquitin within an E2 Chain Elongation Complex. Biophys J 2020; 118:1679-1689. [PMID: 32101714 DOI: 10.1016/j.bpj.2020.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022] Open
Abstract
The ubiquitin (Ub) proteolysis pathway uses an E1, E2, and E3 enzyme cascade to label substrate proteins with ubiquitin and target them for degradation. The mechanisms of ubiquitin chain formation remain unclear and include a sequential addition model, in which polyubiquitin chains are built unit by unit on the substrate, or a preassembly model, in which polyubiquitin chains are preformed on the E2 or E3 enzyme and then transferred in one step to the substrate. The E2 conjugating enzyme UBE2K has a 150-residue catalytic core domain and a C-terminal ubiquitin-associated (UBA) domain. Polyubiquitin chains anchored to the catalytic cysteine and free in solution are formed by UBE2K supporting a preassembly model. To study how UBE2K might assemble polyubiquitin chains, we synthesized UBE2K-Ub and UBE2K-Ub2 covalent complexes and analyzed E2 interactions with the covalently attached Ub and Ub2 moieties using NMR spectroscopy. The UBE2K-Ub complex exists in multiple conformations, including the catalytically competent closed state independent of the UBA domain. In contrast, the UBE2K-Ub2 complex takes on a more extended conformation directed by interactions between the classic I44 hydrophobic face of the distal Ub and the conserved MGF hydrophobic patch of the UBA domain. Our results indicate there are distinct differences between the UBE2K-Ub and UBE2K-Ub2 complexes and show how the UBA domain can alter the position of a polyubiquitin chain attached to the UBE2K active site. These observations provide structural insights into the unique Ub chain-building capacity for UBE2K.
Collapse
Affiliation(s)
- Benjamin W Cook
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Rachel E Lacoursiere
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
40
|
Tsai YCI, Johansson H, Dixon D, Martin S, Chung CW, Clarkson J, House D, Rittinger K. Single-Domain Antibodies as Crystallization Chaperones to Enable Structure-Based Inhibitor Development for RBR E3 Ubiquitin Ligases. Cell Chem Biol 2020; 27:83-93.e9. [PMID: 31813847 PMCID: PMC6963773 DOI: 10.1016/j.chembiol.2019.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023]
Abstract
Protein ubiquitination plays a key role in the regulation of cellular processes, and misregulation of the ubiquitin system is linked to many diseases. So far, development of tool compounds that target enzymes of the ubiquitin system has been slow and only a few specific inhibitors are available. Here, we report the selection of single-domain antibodies (single-dAbs) based on a human scaffold that recognize the catalytic domain of HOIP, a subunit of the multi-component E3 LUBAC and member of the RBR family of E3 ligases. Some of these dAbs affect ligase activity and provide mechanistic insight into the ubiquitin transfer mechanism of different E2-conjugating enzymes. Furthermore, we show that the co-crystal structure of a HOIP RBR/dAb complex serves as a robust platform for soaking of ligands that target the active site cysteine of HOIP, thereby providing easy access to structure-based ligand design for this important class of E3 ligases.
Collapse
Affiliation(s)
- Yi-Chun Isabella Tsai
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Henrik Johansson
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - David Dixon
- R&D Medicinal Science & Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Stephen Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Chun-Wa Chung
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; R&D Medicinal Science & Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Jane Clarkson
- R&D Medicinal Science & Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - David House
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
41
|
Bayne AN, Trempe JF. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell Mol Life Sci 2019; 76:4589-4611. [PMID: 31254044 PMCID: PMC11105328 DOI: 10.1007/s00018-019-03203-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a degenerative movement disorder resulting from the loss of specific neuron types in the midbrain. Early environmental and pathophysiological studies implicated mitochondrial damage and protein aggregation as the main causes of PD. These findings are now vindicated by the characterization of more than 20 genes implicated in rare familial forms of the disease. In particular, two proteins encoded by the Parkin and PINK1 genes, whose mutations cause early-onset autosomal recessive PD, function together in a mitochondrial quality control pathway. In this review, we will describe recent development in our understanding of their mechanisms of action, structure, and function. We explain how PINK1 acts as a mitochondrial damage sensor via the regulated proteolysis of its N-terminus and the phosphorylation of ubiquitin tethered to outer mitochondrial membrane proteins. In turn, phospho-ubiquitin recruits and activates Parkin via conformational changes that increase its ubiquitin ligase activity. We then describe how the formation of polyubiquitin chains on mitochondria triggers the recruitment of the autophagy machinery or the formation of mitochondria-derived vesicles. Finally, we discuss the evidence for the involvement of these mechanisms in physiological processes such as immunity and inflammation, as well as the links to other PD genes.
Collapse
Affiliation(s)
- Andrew N Bayne
- Department of Pharmacology and Therapeutics and Centre for Structural Biology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics and Centre for Structural Biology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
42
|
Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease. Trends Mol Med 2019; 25:760-774. [PMID: 31235369 DOI: 10.1016/j.molmed.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
For long-lived contractile cells, such as striated muscle cells, maintaining proteome integrity is a challenging task. These cells require hundreds of components that must be properly synthesized, folded, and incorporated into the basic contractile unit, the sarcomere. Muscle protein quality control in cells is mainly guaranteed by the ubiquitin-proteasome system (UPS), the lysosome-autophagy system, and various molecular chaperones. Recent studies establish the concept of dedicated UPS in the regulation of sarcomere assembly during development and in adult life to maintain the intricate and interwoven organization of protein complexes in muscle. Failure of sarcomere protein quality control often represents the basis of severe myopathies and cardiomyopathies in human, further highlighting its importance in producing and maintaining the contractile machinery of muscle cells in shape.
Collapse
|
43
|
Ubiquitination is required for the initial removal of paternal organelles in C. elegans. Dev Biol 2019; 453:168-179. [PMID: 31153831 DOI: 10.1016/j.ydbio.2019.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/27/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Elimination of paternal mitochondria after fertilization occurs in many species using the process of selective autophagy. The mechanism for targeting paternal mitochondria, but not maternal mitochondria, for elimination in the early embryo is not well understood. The results in this paper suggest that there are at least two different mechanisms for targeting paternal mitochondria for elimination: the first involving ubiquitination and a second involving a mitochondrial associated autophagy receptor, fndc-1. Elimination of paternal mitochondria can be visualized in embryos of the nematode, C. elegans. Paternal mitochondria enter the zygote at fertilization. Initially, they are closely associated with another sperm organelle, the membraneous organelle (MO). The MOs become ubiquitinated within minutes after fertilization. Simultaneous RNAi knockdown of two ubiquitin conjugating enzymes, ubc-18 and ubc-16, reduces MO ubiquitination. Loss of function of ubc-18 alone leads to loss of K48-linked polyubiquitin chains and halts the recruitment of proteasome to MOs. Interestingly, knockdown of ubc-18 or ubc-16 or the combination does not reduce the localization of K63-linked ubiquitin chains to MOs suggesting that some ubiquitin structure other than K63 chains is responsible for recruiting the autophagy machinery to MOs. Double knockdown (ubc-18/ubc-16) inhibits the recruitment of the autophagy protein, LGG-1 (homolog of LC3/GABARAP), to paternal organelles and causes the persistence of paternal mitochondria into the two cell stage. If paternal mitochondria are not eliminated via this early process, they are eventually removed from the embryo in a process that depends on the mitophagy adaptor protein, fndc-1. Thus, there are two redundant, but temporally distinct mechanisms that target paternal mitochondria for elimination in C. elegans. In addition to the involvement of ubiquitination in the elimination of paternal mitochondria, two subunits of the proteasome, rpn-10 and rad-23, are required for elimination of paternal mitochondria. These subunits are known to function as ubiquitin receptors and knockdown of either inhibits the recruitment of proteasome to ubiquitinated MOs. Their knockdown does not affect the localization of LGG-1 to paternal structures indicating that the proteasome is not required for autophagy membrane recruitment but might be involved in autophagosome maturation or its fusion with the lysosome.
Collapse
|
44
|
Abstract
The three distinct types of E3 ubiquitin ligases, RING, HECT, and RBR, employ different modes of ubiquitin transfer including E2∼Ub conjugate type and conformation. In this issue of Structure, Dove et al. (2017) provide a structural rationale for the preference and conformation of the UbcH7∼Ub conjugate by the RBR E3 ligase HHARI.
Collapse
Affiliation(s)
- Karen M Dunkerley
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
45
|
Cook M, Delbecq SP, Schweppe TP, Guttman M, Klevit RE, Brzovic PS. The ubiquitin ligase SspH1 from Salmonella uses a modular and dynamic E3 domain to catalyze substrate ubiquitylation. J Biol Chem 2018; 294:783-793. [PMID: 30459234 DOI: 10.1074/jbc.ra118.004247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
SspH/IpaH bacterial effector E3 ubiquitin (Ub) ligases, unrelated in sequence or structure to eukaryotic E3s, are utilized by a wide variety of Gram-negative bacteria during pathogenesis. These E3s function in a eukaryotic environment, utilize host cell E2 ubiquitin-conjugating enzymes of the Ube2D family, and target host proteins for ubiquitylation. Despite several crystal structures, details of Ube2D∼Ub binding and the mechanism of ubiquitin transfer are poorly understood. Here, we show that the catalytic E3 ligase domain of SspH1 can be divided into two subdomains: an N-terminal subdomain that harbors the active-site cysteine and a C-terminal subdomain containing the Ube2D∼Ub-binding site. SspH1 mutations designed to restrict subdomain motions show rapid formation of an E3∼Ub intermediate, but impaired Ub transfer to substrate. NMR experiments using paramagnetic spin labels reveal how SspH1 binds Ube2D∼Ub and targets the E2∼Ub active site. Unexpectedly, hydrogen/deuterium exchange MS shows that the E2∼Ub-binding region is dynamic but stabilized in the E3∼Ub intermediate. Our results support a model in which both subunits of an Ube2D∼Ub clamp onto a dynamic region of SspH1, promoting an E3 conformation poised for transthiolation. A conformational change is then required for Ub transfer from E3∼Ub to substrate.
Collapse
Affiliation(s)
- Matt Cook
- From the Departments of Biochemistry and
| | | | | | - Miklos Guttman
- Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| | | | | |
Collapse
|
46
|
Condos TE, Dunkerley KM, Freeman EA, Barber KR, Aguirre JD, Chaugule VK, Xiao Y, Konermann L, Walden H, Shaw GS. Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation. EMBO J 2018; 37:embj.2018100014. [PMID: 30446597 PMCID: PMC6276879 DOI: 10.15252/embj.2018100014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/05/2022] Open
Abstract
The E3 ligase parkin ubiquitinates outer mitochondrial membrane proteins during oxidative stress and is linked to early‐onset Parkinson's disease. Parkin is autoinhibited but is activated by the kinase PINK1 that phosphorylates ubiquitin leading to parkin recruitment, and stimulates phosphorylation of parkin's N‐terminal ubiquitin‐like (pUbl) domain. How these events alter the structure of parkin to allow recruitment of an E2~Ub conjugate and enhanced ubiquitination is an unresolved question. We present a model of an E2~Ub conjugate bound to the phospho‐ubiquitin‐loaded C‐terminus of parkin, derived from NMR chemical shift perturbation experiments. We show the UbcH7~Ub conjugate binds in the open state whereby conjugated ubiquitin binds to the RING1/IBR interface. Further, NMR and mass spectrometry experiments indicate the RING0/RING2 interface is re‐modelled, remote from the E2 binding site, and this alters the reactivity of the RING2(Rcat) catalytic cysteine, needed for ubiquitin transfer. Our experiments provide evidence that parkin phosphorylation and E2~Ub recruitment act synergistically to enhance a weak interaction of the pUbl domain with the RING0 domain and rearrange the location of the RING2(Rcat) domain to drive parkin activity.
Collapse
Affiliation(s)
- Tara Ec Condos
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Karen M Dunkerley
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - E Aisha Freeman
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Kathryn R Barber
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Jacob D Aguirre
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Yiming Xiao
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
47
|
Wasilko DJ, Huang Q, Mao Y. Insights into the ubiquitin transfer cascade catalyzed by the Legionella effector SidC. eLife 2018; 7:36154. [PMID: 30015617 PMCID: PMC6063727 DOI: 10.7554/elife.36154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The causative agent of Legionnaires’ disease, Legionella pneumophila, delivers more than 330 virulent effectors to its host to establish an intracellular membrane-bound organelle called the Legionella containing vacuole. Among the army of Legionella effectors, SidC and its paralog SdcA have been identified as novel bacterial ubiquitin (Ub) E3 ligases. To gain insight into the molecular mechanism of SidC/SdcA as Ub ligases, we determined the crystal structures of a binary complex of the N-terminal catalytic SNL domain of SdcA with its cognate E2 UbcH5C and a ternary complex consisting of the SNL domain of SidC with the Ub-linked E2 UbcH7. These two structures reveal the molecular determinants governing the Ub transfer cascade catalyzed by SidC. Together, our data support a common mechanism in the Ub transfer cascade in which the donor Ub is immobilized with its C-terminal tail locked in an extended conformation, priming the donor Ub for catalysis.
Collapse
Affiliation(s)
- David Jon Wasilko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | | | - Yuxin Mao
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| |
Collapse
|
48
|
Walden H, Rittinger K. RBR ligase-mediated ubiquitin transfer: a tale with many twists and turns. Nat Struct Mol Biol 2018; 25:440-445. [PMID: 29735995 DOI: 10.1038/s41594-018-0063-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022]
Abstract
RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and HECT-type E3s and undergo multilevel regulation through autoinhibition, post-translational modifications, multimerization and interaction with binding partners. Here, we summarize recent progress in RBR structures and function, which has uncovered commonalities in the mechanisms by which different family members transfer ubiquitin through a multistep process. However, these studies have also highlighted clear differences in the activity of different family members, suggesting that each RBR ligase has evolved specific properties to fit the biological process it regulates.
Collapse
Affiliation(s)
- Helen Walden
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK.
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
49
|
Budhidarmo R, Zhu J, Middleton AJ, Day CL. The RING domain of RING Finger 11 (RNF11) protein binds Ubc13 and inhibits formation of polyubiquitin chains. FEBS Lett 2018. [PMID: 29537486 DOI: 10.1002/1873-3468.13029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Really Interesting New Gene (RING) Finger protein 11 (RNF11) is a subunit of the A20 ubiquitin-editing complex that ensures the transient nature of inflammatory responses. Although the role of RNF11 as a negative regulator of NF-κB signalling is well-documented, the molecular mechanisms that underpin this function are poorly understood. Here, we show that RNF11 binds both Ubc13 and the Ubc13~ubiquitin conjugate tightly and with similar affinity, but has minimal E3 ligase activity. Remarkably, RNF11 appears to bind Ubc13 so tightly that it outcompetes the E1 and an active E3 ligase. As a consequence, RNF11 may regulate the activity of E3s that rely on Ubc13 for ubiquitin chain assembly by limiting the availability of Ubc13 and its conjugate.
Collapse
Affiliation(s)
- Rhesa Budhidarmo
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jingyi Zhu
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Adam J Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Catherine L Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Determinants of E2-ubiquitin conjugate recognition by RBR E3 ligases. Sci Rep 2018; 8:68. [PMID: 29311602 PMCID: PMC5758712 DOI: 10.1038/s41598-017-18513-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022] Open
Abstract
RING-between-RING (RBR) ubiquitin ligases work with multiple E2 enzymes and function through an E3-ubiquitin thioester intermediate. The RBR module comprises three domains, RING1, IBR and RING2 that collaborate to transfer ubiquitin from the E2~Ub conjugate, recognised by RING1, onto a catalytic cysteine in RING2 and finally onto the substrate in a multi-step reaction. Recent studies have shown that RING1 domains bind E2~Ub conjugates in an open conformation to supress ubiquitin transfer onto lysine residues and promote formation of the E3 thioester intermediate. However, how the nature of the E2 influences the ubiquitin transfer process is currently unclear. We report here a detailed characterization of the RBR/E2-conjugate recognition step that indicates that this mechanism depends on the nature of the E2 enzyme and differs between UbcH5 and UbcH7. In the case of UbcH5~Ub an interaction with ubiquitin is necessary to stabilize the transfer complex while recognition of UbcH7~Ub is driven primarily by E2-RING1 contacts. Furthermore our analysis suggests that RBRs, in isolation and in complex with ubiquitin-loaded E2s, are dynamic species and that their intrinsic flexibility might be a key aspect of their catalytic mechanism.
Collapse
|