1
|
Janosev M, Kosek D, Tekel A, Joshi R, Honzejkova K, Pohl P, Obsil T, Obsilova V. Structural basis of ubiquitin ligase Nedd4-2 autoinhibition and regulation by calcium and 14-3-3 proteins. Nat Commun 2025; 16:4875. [PMID: 40419858 DOI: 10.1038/s41467-025-60207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Nedd4-2 E3 ligase regulates Na+ homeostasis by ubiquitinating various channels and membrane transporters, including the epithelial sodium channel ENaC. In turn, Nedd4-2 dysregulation leads to various conditions, including electrolytic imbalance, respiratory distress, hypertension, and kidney diseases. However, Nedd4-2 regulation remains mostly unclear. The present study aims at elucidating Nedd4-2 regulation by structurally characterizing Nedd4-2 and its complexes using several biophysical techniques. Our cryo-EM reconstruction shows that the C2 domain blocks the E2-binding surface of the HECT domain. This blockage, ubiquitin-binding exosite masking by the WW1 domain, catalytic C922 blockage and HECT domain stabilization provide the structural basis for Nedd4-2 autoinhibition. Furthermore, Ca2+-dependent C2 membrane binding disrupts C2/HECT interactions, but not Ca2+ alone, whereas 14-3-3 protein binds to a flexible region of Nedd4-2 containing the WW2 and WW3 domains, thereby inhibiting its catalytic activity and membrane binding. Overall, our data provide key mechanistic insights into Nedd4-2 regulation toward fostering the development of strategies targeting Nedd4-2 function.
Collapse
Affiliation(s)
- Masa Janosev
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Dalibor Kosek
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Andrej Tekel
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| | - Rohit Joshi
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| | - Pavel Pohl
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Tomas Obsil
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic.
| | - Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
2
|
Kochańczyk T, Fishman M, Lima CD. Chemical Tools for Probing the Ub/Ubl Conjugation Cascades. Chembiochem 2025; 26:e202400659. [PMID: 39313481 PMCID: PMC11727022 DOI: 10.1002/cbic.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Conjugation of ubiquitin (Ub) and structurally related ubiquitin-like proteins (Ubls), essential for many cellular processes, employs multi-step reactions orchestrated by specific E1, E2 and E3 enzymes. The E1 enzyme activates the Ub/Ubl C-terminus in an ATP-dependent process that results in the formation of a thioester linkage with the E1 active site cysteine. The thioester-activated Ub/Ubl is transferred to the active site of an E2 enzyme which then interacts with an E3 enzyme to promote conjugation to the target substrate. The E1-E2-E3 enzymatic cascades utilize labile intermediates, extensive conformational changes, and vast combinatorial diversity of short-lived protein-protein complexes to conjugate Ub/Ubl to various substrates in a regulated manner. In this review, we discuss various chemical tools and methods used to study the consecutive steps of Ub/Ubl activation and conjugation, which are often too elusive for direct studies. We focus on methods developed to probe enzymatic activities and capture and characterize stable mimics of the transient intermediates and transition states, thereby providing insights into fundamental mechanisms in the Ub/Ubl conjugation pathways.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Michael Fishman
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Christopher D. Lima
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
- Howard Hughes Medical Institute1275 York AvenueNew York, New York10065USA
| |
Collapse
|
3
|
Sakamoto Y, Uezu A, Kikuchi K, Kang J, Fujii E, Moroishi T, Suetsugu S, Nakanishi H. The Nedd4L ubiquitin ligase is activated by FCHO2-generated membrane curvature. EMBO J 2024; 43:5883-5909. [PMID: 39402328 PMCID: PMC11612235 DOI: 10.1038/s44318-024-00268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
The C2-WW-HECT domain ubiquitin ligase Nedd4L regulates membrane sorting during endocytosis through the ubiquitination of cargo molecules such as the epithelial sodium channel (ENaC). Nedd4L is catalytically autoinhibited by an intramolecular interaction between its C2 and HECT domains, but the protein's activation mechanism is poorly understood. Here, we show that Nedd4L activation is linked to membrane shape by FCHO2, a Bin-Amphiphysin-Rsv (BAR) domain protein that regulates endocytosis. FCHO2 was required for the Nedd4L-mediated ubiquitination and endocytosis of ENaC, with Nedd4L co-localizing with FCHO2 at clathrin-coated pits. In cells, Nedd4L was specifically recruited to, and activated by, the FCHO2 BAR domain. Furthermore, we reconstituted FCHO2-induced recruitment and activation of Nedd4L in vitro. Both the recruitment and activation were mediated by membrane curvature rather than protein-protein interactions. The Nedd4L C2 domain recognized a specific degree of membrane curvature that was generated by the FCHO2 BAR domain, with this curvature directly activating Nedd4L by relieving its autoinhibition. Thus, we show for the first time a specific function (i.e., recruitment and activation of an enzyme regulating cargo sorting) of membrane curvature by a BAR domain protein.
Collapse
Affiliation(s)
- Yasuhisa Sakamoto
- Department of Molecular Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto, 860-8556, Japan
| | - Akiyoshi Uezu
- Department of Molecular Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto, 860-8556, Japan
| | - Koji Kikuchi
- Department of Molecular Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto, 860-8556, Japan
| | - Jangmi Kang
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Kobe, 658-0001, Japan
| | - Eiko Fujii
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Kobe, 658-0001, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto, 860-8556, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Hiroyuki Nakanishi
- Department of Molecular Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto, 860-8556, Japan.
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Kobe, 658-0001, Japan.
| |
Collapse
|
4
|
Jiang H, Miller BD, Viennet T, Kim H, Lee K, Arthanari H, Cole PA. Protein semisynthesis reveals plasticity in HECT E3 ubiquitin ligase mechanisms. Nat Chem 2024; 16:1894-1905. [PMID: 39030419 DOI: 10.1038/s41557-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
Lys ubiquitination is catalysed by E3 ubiquitin ligases and is central to the regulation of protein stability and cell signalling in normal and disease states. There are gaps in our understanding of E3 mechanisms, and here we use protein semisynthesis, chemical rescue, microscale thermophoresis and other biochemical approaches to dissect the role of catalytic base/acid function and conformational interconversion in HECT-domain E3 catalysis. We demonstrate that there is plasticity in the use of the terminal side chain or backbone carboxylate for proton transfer in HECT E3 ubiquitin ligase reactions, with yeast Rsp5 orthologues appearing to be possible evolutionary intermediates. We also show that the HECT-domain ubiquitin covalent intermediate appears to eject the E2 conjugating enzyme, promoting catalytic turnover. These findings provide key mechanistic insights into how protein ubiquitination occurs and provide a framework for understanding E3 functions and regulation.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bryant D Miller
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Human Biology, Sattler College, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Hyojeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Watanabe SM, Nyenhuis DA, Khan M, Ehrlich LS, Ischenko I, Powell MD, Tjandra N, Carter CA. Tsg101 UEV Interaction with Nedd4 HECT Relieves E3 Ligase Auto-Inhibition, Promoting HIV-1 Assembly and CA-SP1 Maturation Cleavage. Viruses 2024; 16:1566. [PMID: 39459900 PMCID: PMC11512315 DOI: 10.3390/v16101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Tsg101, a component of the endosomal sorting complex required for transport (ESCRT), is responsible for recognition of events requiring the machinery, as signaled by cargo tagging with ubiquitin (Ub), and for recruitment of downstream acting subunits to the site. Although much is known about the latter function, little is known about its role in the earlier event. The N-terminal domain of Tsg101 is a structural homologue of Ub conjugases (E2 enzymes) and the protein associates with Ub ligases (E3 enzymes) that regulate several cellular processes including virus budding. A pocket in the domain recognizes a motif, PT/SAP, that permits its recruitment. PT/SAP disruption makes budding dependent on Nedd4L E3 ligases. Using HIV-1 encoding a PT/SAP mutation that makes budding Nedd4L-dependent, we identified as critical for rescue the residues in the catalytic (HECT) domain of the E3 enzyme that lie in proximity to sites in Tsg101 that bind Ub non-covalently. Mutation of these residues impaired rescue by Nedd4L but the same mutations had no apparent effect in the context of a Nedd4 isomer, Nedd4-2s, whose N-terminal (C2) domain is naturally truncated, precluding C2-HECT auto-inhibition. Surprisingly, like small molecules that disrupt Tsg101 Ub-binding, small molecules that interfered with Nedd4 substrate recognition arrested budding at an early stage, supporting the conclusion that Tsg101-Ub-Nedd4 interaction promotes enzyme activation and regulates Nedd4 signaling for viral egress. Tsg101 regulation of E3 ligases may underlie its broad ability to function as an effector in various cellular activities, including viral particle assembly and budding.
Collapse
Affiliation(s)
- Susan M. Watanabe
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - David A. Nyenhuis
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (D.A.N.); (N.T.)
| | - Mahfuz Khan
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.K.); (M.D.P.)
| | - Lorna S. Ehrlich
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - Irene Ischenko
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| | - Michael D. Powell
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.K.); (M.D.P.)
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (D.A.N.); (N.T.)
| | - Carol A. Carter
- Department of Microbiology & Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.M.W.); (L.S.E.); (I.I.)
| |
Collapse
|
6
|
Perron T, Boissan M, Bièche I, Courtois L, Dingli F, Loew D, Chouchène M, Colasse S, Levy L, Prunier C. CYYR1 promotes the degradation of the E3 ubiquitin ligase WWP1 and is associated with favorable prognosis in breast cancer. J Biol Chem 2024; 300:107601. [PMID: 39059493 PMCID: PMC11399591 DOI: 10.1016/j.jbc.2024.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Ubiquitination plays a crucial role in cellular homeostasis by regulating the degradation, localization, and activity of proteins, ensuring proper cell function and balance. Among E3 ubiquitin ligases, WW domain-containing protein 1 (WWP1) is implicated in cell proliferation, survival, and apoptosis. Notably WWP1 is frequently amplified in breast cancer and associated with poor prognosis. Here, we identify the protein cysteine and tyrosine-rich protein 1 (CYYR1) that had previously no assigned function, as a regulator of WWP1 activity and stability. We show that CYYR1 binds to the WW domains of the E3 ubiquitin ligase WWP1 through its PPxY motifs. This interaction triggers K63-linked autoubiquitination and subsequent degradation of WWP1. We furthermore demonstrate that CYYR1 localizes to late endosomal vesicles and directs polyubiquitinated WWP1 toward lysosomal degradation through binding to ANKyrin repeat domain-containing protein 13 A (ANKRD13A). Moreover, we found that CYYR1 expression attenuates breast cancer cell growth in anchorage-dependent and independent colony formation assays in a PPxY-dependent manner. Finally, we highlight that CYYR1 expression is significantly decreased in breast cancer and is associated with beneficial clinical outcome. Taken together our study suggests tumor suppressor properties for CYYR1 through regulation of WWP1 autoubiquitination and lysosomal degradation.
Collapse
Affiliation(s)
- Tiphaine Perron
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France; APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Biochimie Endocrinienne et Oncologique, Oncobiologie Cellulaire et Moléculaire, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Université Paris Cité, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, Université Paris Cité, Paris, France
| | - Florent Dingli
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Mouna Chouchène
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Sabrina Colasse
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Laurence Levy
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
| | - Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
| |
Collapse
|
7
|
Wang Z, Fan F, Li Z, Ye F, Wang Q, Gao R, Qiu J, Lv Y, Lin M, Xu W, Luo C, Yu X. Structural insights into the functional mechanism of the ubiquitin ligase E6AP. Nat Commun 2024; 15:3531. [PMID: 38670961 PMCID: PMC11053172 DOI: 10.1038/s41467-024-47586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
E6AP dysfunction is associated with Angelman syndrome and Autism spectrum disorder. Additionally, the host E6AP is hijacked by the high-risk HPV E6 to aberrantly ubiquitinate the tumor suppressor p53, which is linked with development of multiple types of cancer, including most cervical cancers. Here we show that E6AP and the E6AP/E6 complex exist, respectively, as a monomer and a dimer of the E6AP/E6 protomer. The short α1-helix of E6AP transforms into a longer helical structure when in complex with E6. The extended α1-helices of the dimer intersect symmetrically and contribute to the dimerization. The two protomers sway around the crossed region of the two α1-helices to promote the attachment and detachment of substrates to the catalytic C-lobe of E6AP, thus facilitating ubiquitin transfer. These findings, complemented by mutagenesis analysis, suggest that the α1-helix, through conformational transformations, controls the transition between the inactive monomer and the active dimer of E6AP.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fengying Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihai Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qingxia Wang
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Rongchao Gao
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxuan Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Lv
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Min Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenwen Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China.
- Department of Pharmacy, Guiyang University of Traditional Chinese Medicine, South Dong Qing Road, Huaxi District, Guizhou, 550025, China.
| | - Xuekui Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
8
|
Zhao W, Li Y, Cheng H, Wang M, Zhang Z, Cai M, Zhao C, Xi X, Zhao X, Zhao W, Yang Y, Shao R. Myofibrillogenesis Regulator-1 Regulates the Ubiquitin Lysosomal Pathway of Notch3 Intracellular Domain Through E3 Ubiquitin-Protein Ligase Itchy Homolog in the Metastasis of Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306472. [PMID: 38342606 PMCID: PMC11022719 DOI: 10.1002/advs.202306472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
Myofibrillogenesis regulator-1 (MR-1) is a multifunctional protein involved in the development of various human tumors. The study is the first to report the promoting effect of MR-1 on the development and metastasis of non-small cell lung cancer (NSCLC). MR-1 is upregulated in NSCLC and positively associated with poor prognosis. The overexpression of MR-1 promotes the metastasis of NSCLC cells by stabilizing the expression of Notch3-ICD (NICD3) in the cytoplasm through enrichment analysis, in vitro and in vivo experimental researches. And Notch3 signaling can upregulate many genes related to metastasis. The stabilizing effect of MR-1 on NICD3 is achieved through the mono-ubiquitin lysosomal pathway and the specific E3 ubiquitin ligase is Itchy homolog (ITCH). There is a certain interaction between MR-1 and NICD3. Elevated MR-1 can affect the level of ITCH phosphorylation, reduce its E3 enzyme activity, and thus lead to reduce the ubiquitination and degradation of NICD3. Interference with the interaction between MR-1 and NICD3 can increase the degradation of NICD3 and impair the metastatic ability of NSCLC cells, which is a previously overlooked treatment option in NSCLC. In summary, interference with the interaction between MR-1 and NICD3 in the progression of lung cancer may be a promising therapeutic target.
Collapse
Affiliation(s)
- Wenxia Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Yang Li
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Hanzeng Cheng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia MedicaPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Mengyan Wang
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
- Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Zhishuo Zhang
- Department of EmergencyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai200092P. R. China
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Meilian Cai
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Cong Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Xiaoming Xi
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Xiaojun Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Wuli Zhao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia MedicaPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Rongguang Shao
- NHC Key Laboratory of Antibiotic Bioengineering, Laboratory of OncologyInstitute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College Beijing100050BeijingP. R. China
| |
Collapse
|
9
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Wright KM, Nathan S, Jiang H, Xia W, Kim H, Chakouri N, Nwafor JN, Fossier L, Srinivasan L, Chen Z, Boronina T, Post J, Paul S, Cole RN, Ben-Johny M, Cole PA, Gabelli SB. NEDD4L intramolecular interactions regulate its auto and substrate Na V1.5 ubiquitination. J Biol Chem 2024; 300:105715. [PMID: 38309503 PMCID: PMC10933555 DOI: 10.1016/j.jbc.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.
Collapse
Affiliation(s)
- Katharine M Wright
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wendy Xia
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - HyoJeon Kim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Justin N Nwafor
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lucile Fossier
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Lakshmi Srinivasan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy Post
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suman Paul
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat Chem Biol 2024; 20:190-200. [PMID: 37620400 PMCID: PMC10830417 DOI: 10.1038/s41589-023-01414-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains. Chains are forged by a UBA domain capturing an acceptor Ub, with its K48 lured into the active site by numerous interactions between the acceptor Ub, manifold UBR5 elements and the donor Ub. The cryo-EM reconstructions allow defining conserved HECT domain conformations catalyzing Ub transfer from E2 to E3 and from E3. Our data show how a full-length E3, ubiquitins to be adjoined, E2 and intermediary products guide a feed-forward HECT domain conformational cycle establishing a highly efficient, broadly targeting, K48-linked Ub chain forging machine.
Collapse
Affiliation(s)
- Laura A Hehl
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David A Pérez Berrocal
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
12
|
Jeong E, Willett R, Rissone A, La Spina M, Puertollano R. TMEM55B links autophagy flux, lysosomal repair, and TFE3 activation in response to oxidative stress. Nat Commun 2024; 15:93. [PMID: 38168055 PMCID: PMC10761734 DOI: 10.1038/s41467-023-44316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Lysosomes have emerged as critical regulators of cellular homeostasis. Here we show that the lysosomal protein TMEM55B contributes to restore cellular homeostasis in response to oxidative stress by three different mechanisms: (1) TMEM55B mediates NEDD4-dependent PLEKHM1 ubiquitination, causing PLEKHM1 proteasomal degradation and halting autophagosome/lysosome fusion; (2) TMEM55B promotes recruitment of components of the ESCRT machinery to lysosomal membranes to stimulate lysosomal repair; and (3) TMEM55B sequesters the FLCN/FNIP complex to facilitate translocation of the transcription factor TFE3 to the nucleus, allowing expression of transcriptional programs that enable cellular adaptation to stress. Knockout of tmem55 genes in zebrafish embryos increases their susceptibility to oxidative stress, causing early death of tmem55-KO animals in response to arsenite toxicity. Altogether, our work identifies a role for TMEM55B as a molecular sensor that coordinates autophagosome degradation, lysosomal repair, and activation of stress responses.
Collapse
Affiliation(s)
- Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rose Willett
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alberto Rissone
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martina La Spina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Deng L, Solichin MR, Adyaksa DNM, Septianastiti MA, Fitri RA, Suwardan GNR, Matsui C, Abe T, Shoji I. Cellular Release of Infectious Hepatitis C Virus Particles via Endosomal Pathways. Viruses 2023; 15:2430. [PMID: 38140670 PMCID: PMC10747773 DOI: 10.3390/v15122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis C virus (HCV) is a positive-sense, single-stranded RNA virus that causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The release of infectious HCV particles from infected hepatocytes is a crucial step in viral dissemination and disease progression. While the exact mechanisms of HCV particle release remain poorly understood, emerging evidence suggests that HCV utilizes intracellular membrane trafficking and secretory pathways. These pathways include the Golgi secretory pathway and the endosomal trafficking pathways, such as the recycling endosome pathway and the endosomal sorting complex required for transport (ESCRT)-dependent multivesicular bodies (MVBs) pathway. This review provides an overview of recent advances in understanding the release of infectious HCV particles, with a particular focus on the involvement of the host cell factors that participate in HCV particle release. By summarizing the current knowledge in this area, this review aims to contribute to a better understanding of endosomal pathways involved in the extracellular release of HCV particles and the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
| | - Muchamad Ridotu Solichin
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dewa Nyoman Murti Adyaksa
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Maria Alethea Septianastiti
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rhamadianti Aulia Fitri
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Gede Ngurah Rsi Suwardan
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Udayana, Bali 80361, Indonesia
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (L.D.); (D.N.M.A.); (M.A.S.); (T.A.)
| |
Collapse
|
14
|
Li J, Zhu K, Gu A, Zhang Y, Huang S, Hu R, Hu W, Lei QY, Wen W. Feedback regulation of ubiquitination and phase separation of HECT E3 ligases. Proc Natl Acad Sci U S A 2023; 120:e2302478120. [PMID: 37549262 PMCID: PMC10438380 DOI: 10.1073/pnas.2302478120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Lipid homeostasis is essential for normal cellular functions and dysregulation of lipid metabolism is highly correlated with human diseases including neurodegenerative diseases. In the ubiquitin-dependent autophagic degradation pathway, Troyer syndrome-related protein Spartin activates and recruits HECT-type E3 Itch to lipid droplets (LDs) to regulate their turnover. In this study, we find that Spartin promotes the formation of Itch condensates independent of LDs. Spartin activates Itch through its multiple PPAY-motif platform generated by self-oligomerization, which targets the WW12 domains of Itch and releases the autoinhibition of the ligase. Spartin-induced activation and subsequent autoubiquitination of Itch lead to liquid-liquid phase separation (LLPS) of the poly-, but not oligo-, ubiquitinated Itch together with Spartin and E2 both in vitro and in living cells. LLPS-mediated condensation of the reaction components further accelerates the generation of polyubiquitin chains, thus forming a positive feedback loop. Such Itch-Spartin condensates actively promote the autophagy-dependent turnover of LDs. Moreover, we show that the catalytic HECT domain of Itch is sufficient to interact and phase separate with poly-, but not oligo-ubiquitin chains. HECT domains from other HECT E3 ligases also exhibit LLPS-mediated the promotion of ligase activity. Therefore, LLPS and ubiquitination are mutually interdependent and LLPS promotes the ligase activity of the HECT family E3 ligases.
Collapse
Affiliation(s)
- Jingyu Li
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Kang Zhu
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yiqing Zhang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
15
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
16
|
Jiang H, Chiang CY, Chen Z, Nathan S, D'Agostino G, Paulo JA, Song G, Zhu H, Gabelli SB, Cole PA. Enzymatic analysis of WWP2 E3 ubiquitin ligase using protein microarrays identifies autophagy-related substrates. J Biol Chem 2022; 298:101854. [PMID: 35331737 PMCID: PMC9034101 DOI: 10.1016/j.jbc.2022.101854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
WWP2 is a HECT E3 ligase that targets protein Lys residues for ubiquitination and is comprised of an N-terminal C2 domain, four central WW domains, and a C-terminal catalytic HECT domain. The peptide segment between the middle WW domains, the 2,3-linker, is known to autoinhibit the catalytic domain, and this autoinhibition can be relieved by phosphorylation at Tyr369. Several protein substrates of WWP2 have been identified, including the tumor suppressor lipid phosphatase PTEN, but the full substrate landscape and biological functions of WWP2 remain to be elucidated. Here, we used protein microarray technology and the activated enzyme phosphomimetic mutant WWP2Y369E to identify potential WWP2 substrates. We identified 31 substrate hits for WWP2Y369E using protein microarrays, of which three were known autophagy receptors (NDP52, OPTN, and SQSTM1). These three hits were validated with in vitro and cell-based transfection assays and the Lys ubiquitination sites on these proteins were mapped by mass spectrometry. Among the mapped ubiquitin sites on these autophagy receptors, many had been previously identified in the endogenous proteins. Finally, we observed that WWP2 KO SH-SH5Y neuroblastoma cells using CRISPR-Cas9 showed a defect in mitophagy, which could be rescued by WWP2Y369E transfection. These studies suggest that WWP2-mediated ubiquitination of the autophagy receptors NDP52, OPTN, and SQSTM1 may positively contribute to the regulation of autophagy.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Claire Y Chiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA; Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sara Nathan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gabriel D'Agostino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
17
|
Tsunoda T, Riku M, Yamada N, Tsuchiya H, Tomita T, Suzuki M, Kizuki M, Inoko A, Ito H, Murotani K, Murakami H, Saeki Y, Kasai K. ENTREP/FAM189A2 encodes a new ITCH ubiquitin ligase activator that is downregulated in breast cancer. EMBO Rep 2022; 23:e51182. [PMID: 34927784 PMCID: PMC8811627 DOI: 10.15252/embr.202051182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
The HECT-type ubiquitin E3 ligases including ITCH regulate many aspects of cellular function through ubiquitinating various substrates. These ligases are known to be allosterically autoinhibited and to require an activator protein to fully achieve the ubiquitination of their substrates. Here we demonstrate that FAM189A2, a downregulated gene in breast cancer, encodes a new type of ITCH activator. FAM189A2 is a transmembrane protein harboring PPxY motifs, and the motifs mediate its association with and ubiquitination by ITCH. FAM189A2 also associates with Epsin and accumulates in early and late endosomes along with ITCH. Intriguingly, FAM189A2 facilitates the association of a chemokine receptor CXCR4 with ITCH and enhances ITCH-mediated ubiquitination of CXCR4. FAM189A2-knockout prohibits CXCL12-induced endocytosis of CXCR4, thereby enhancing the effects of CXCL12 on the chemotaxis and mammosphere formation of breast cancer cells. In comparison to other activators or adaptors known in the previous studies, FAM189A2 is a unique activator for ITCH to desensitize CXCR4 activity, and we here propose that FAM189A2 be renamed as ENdosomal TRansmembrane binding with EPsin (ENTREP).
Collapse
Affiliation(s)
- Takumi Tsunoda
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Miho Riku
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Norika Yamada
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Hikaru Tsuchiya
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Takuya Tomita
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Minako Suzuki
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Mari Kizuki
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Akihito Inoko
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Hideaki Ito
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | | | - Hideki Murakami
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Yasushi Saeki
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kenji Kasai
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| |
Collapse
|
18
|
Hepatitis C virus (HCV)-induced ROS/JNK signaling pathway activates the E3 ubiquitin ligase Itch to promote the release of HCV particles via polyubiquitylation of VPS4A. J Virol 2022; 96:e0181121. [PMID: 35044214 DOI: 10.1128/jvi.01811-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that hepatitis C virus (HCV) infection activates the reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK) signaling pathway. However, the roles of ROS/JNK activation in the HCV life cycle still remain unclear. We sought to identify a novel role of ROS/JNK signaling pathway in the HCV life cycle. Immunoblot analysis revealed that HCV-induced ROS/JNK activation promoted phosphorylation of Itch, a HECT-type E3 ubiquitin ligase, leading to activation of Itch. The siRNA-knockdown of Itch significantly reduced the extracellular HCV infectivity titers, HCV RNA, and HCV core protein without affecting intracellular HCV infectivity titers, HCV RNA, and HCV proteins, suggesting that Itch is involved in release of HCV particles. HCV-mediated JNK/Itch activation specifically promoted polyubiquitylation of an AAA-type ATPase VPS4A, but not VPS4B, required to form multivesicular bodies. Site-directed mutagenesis revealed that two lysine residues (K23 and K121) on VPS4A were important for VPS4A polyubiquitylation. The siRNA-knockdown of VPS4A, but not VPS4B, significantly reduced extracellular HCV infectivity titers. Co-immunoprecipitation analysis revealed that HCV infection specifically enhanced the interaction between CHMP1B, a subunit of endosomal sorting complexes required for transport (ESCRT)-III complex, and VPS4A, but not VPS4B, whereas VPS4A K23R/K121R greatly reduced the interaction with CHMP1B. HCV infection significantly increased ATPase activity of VPS4A, but not VPS4A K23R/K121R or VPS4B, suggesting that HCV-mediated polyubiquitylation of VPS4A contributes to activation of VPS4A. Taken together, we propose that HCV-induced ROS/JNK/Itch signaling pathway promotes VPS4A polyubiquitylation, leading to enhanced VPS4A-CHMP1B interaction and promotion of VPS4A ATPase activity, thereby promoting the release of HCV particles. IMPORTANCE ROS/JNK signaling pathway contributes to liver diseases, including steatosis, metabolic disorders, and hepatocellular carcinoma. We previously reported that HCV activates the ROS/JNK signaling pathway, leading to the enhancement of hepatic gluconeogenesis and apoptosis induction. This study further demonstrates that HCV-induced ROS/JNK signaling pathway activates the E3 ubiquitin ligase Itch to promote release of HCV particles via polyubiquitylation of VPS4A. We provide evidence suggesting that HCV infection promotes the ROS/JNK/Itch signaling pathway and ESCRT/VPS4A machinery to release infectious HCV particles. Our results may lead to a better understanding of the mechanistic details of HCV particle release.
Collapse
|
19
|
Xie S, Xia L, Song Y, Liu H, Wang ZW, Zhu X. Insights Into the Biological Role of NEDD4L E3 Ubiquitin Ligase in Human Cancers. Front Oncol 2021; 11:774648. [PMID: 34869021 PMCID: PMC8634104 DOI: 10.3389/fonc.2021.774648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is an E3 ubiquitin ligase that has been reported to participate in multiple cellular procedures by regulating of substrate ubiquitination and subsequent protein degradation. A great amount of evidence has demonstrated that NEDD4L mainly functions as a tumor suppressor in most cancer types, while it also acts as an oncogene in a few cancers. In this review, we summarize the potential role of NEDD4L in carcinogenesis and the related underlying molecular mechanism to improve our understanding of its functions in the tumorigenesis of human malignancies. Developing clinical drugs targeting NEDD4L could be a potential therapeutic strategy for cancer therapy in the future.
Collapse
Affiliation(s)
- Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hejing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
21
|
Kumar R, Theiss AL, Venuprasad K. RORγt protein modifications and IL-17-mediated inflammation. Trends Immunol 2021; 42:1037-1050. [PMID: 34635393 PMCID: PMC8556362 DOI: 10.1016/j.it.2021.09.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
RORγt, the master transcription factor for cytokine interleukin (IL)-17, is expressed explicitly in Th17 cells, γδT cells, and type 3 innate lymphoid cells in mice and humans. Since dysregulated IL-17 expression is strongly linked to several human inflammatory diseases, the RORγt-IL-17 axis has been the focus of intense research. Recently, several studies have shown that RORγt is modified by multiple post-translational mechanisms, including ubiquitination, acetylation, SUMOylation, and phosphorylation. This review discusses how post-translational modifications modulate RORγt function and its turnover to regulate IL-17-driven inflammation. Broad knowledge of these pathways is crucial for a clear understanding of the pathogenic role of RORγt+IL-17+ cells and for the development of putative therapeutic strategies to target IL-17-driven diseases such as multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arianne L Theiss
- University of Colorado, School of Medicine, Division of Gastroenterology and Hepatology, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Venuprasad
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Delvecchio VS, Fierro C, Giovannini S, Melino G, Bernassola F. Emerging roles of the HECT-type E3 ubiquitin ligases in hematological malignancies. Discov Oncol 2021; 12:39. [PMID: 35201500 PMCID: PMC8777521 DOI: 10.1007/s12672-021-00435-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination-mediated proteolysis or regulation of proteins, ultimately executed by E3 ubiquitin ligases, control a wide array of cellular processes, including transcription, cell cycle, autophagy and apoptotic cell death. HECT-type E3 ubiquitin ligases can be distinguished from other subfamilies of E3 ubiquitin ligases because they have a C-terminal HECT domain that directly catalyzes the covalent attachment of ubiquitin to their substrate proteins. Deregulation of HECT-type E3-mediated ubiquitination plays a prominent role in cancer development and chemoresistance. Several members of this subfamily are indeed frequently deregulated in human cancers as a result of genetic mutations and altered expression or activity. HECT-type E3s contribute to tumorigenesis by regulating the ubiquitination rate of substrates that function as either tumour suppressors or oncogenes. While the pathological roles of the HECT family members in solid tumors are quite well established, their contribution to the pathogenesis of hematological malignancies has only recently emerged. This review aims to provide a comprehensive overview of the involvement of the HECT-type E3s in leukemogenesis.
Collapse
Affiliation(s)
- Vincenza Simona Delvecchio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
23
|
Zhao GN, Tian ZW, Tian T, Zhu ZP, Zhao WJ, Tian H, Cheng X, Hu FJ, Hu ML, Tian S, Ding T, Chen S, Ji YX, Zhang P, Zhang XJ, She ZG, Yuan Y, Chen W, Bai L, Li H. TMBIM1 is an inhibitor of adipogenesis and its depletion promotes adipocyte hyperplasia and improves obesity-related metabolic disease. Cell Metab 2021; 33:1640-1654.e8. [PMID: 34107313 DOI: 10.1016/j.cmet.2021.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
Obesity is characterized by the excessive accumulation of the white adipose tissue (WAT), but healthy expansion of WAT via adipocyte hyperplasia can offset the negative metabolic effects of obesity. Thus, identification of novel adipogenesis regulators that promote hyperplasia may lead to effective therapies for obesity-induced metabolic disorders. Using transcriptomic approaches, we identified transmembrane BAX inhibitor motif-containing 1 (TMBIM1) as an inhibitor of adipogenesis. Gain or loss of function of TMBIM1 in preadipocytes inhibited or promoted adipogenesis, respectively. In vivo, in response to caloric excess, adipocyte precursor (AP)-specific Tmbim1 knockout (KO) mice displayed WAT hyperplasia and improved systemic metabolic health, while overexpression of Tmbim1 in transgenic mice showed the opposite effects. Moreover, mature adipocyte-specific Tmbim1 KO did not affect WAT cellularity or nutrient homeostasis. Mechanistically, TMBIM1 binds to and promotes the autoubiquitination and degradation of NEDD4, which is an E3 ligase that stabilizes PPARγ. Our data show that TMBIM1 is a potent repressor of adipogenesis and a potential therapeutic target for obesity-related metabolic disease.
Collapse
Affiliation(s)
- Guang-Nian Zhao
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zheng-Wei Tian
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tian Tian
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Peng Zhu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Wen-Jie Zhao
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xu Cheng
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng-Jiao Hu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Man-Li Hu
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ting Ding
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Siping Chen
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China
| | - Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China.
| | - Wenping Chen
- Department of Endocrinology, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Lan Bai
- Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| |
Collapse
|
24
|
Hunkeler M, Jin CY, Ma MW, Monda JK, Overwijn D, Bennett EJ, Fischer ES. Solenoid architecture of HUWE1 contributes to ligase activity and substrate recognition. Mol Cell 2021; 81:3468-3480.e7. [PMID: 34314700 PMCID: PMC8476073 DOI: 10.1016/j.molcel.2021.06.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
HECT ubiquitin ligases play essential roles in metazoan development and physiology. The HECT ligase HUWE1 is central to the cellular stress response by mediating degradation of key death or survival factors, including Mcl1, p53, DDIT4, and Myc. Although mutations in HUWE1 and related HECT ligases are widely implicated in human disease, our molecular understanding remains limited. Here we present a comprehensive investigation of full-length HUWE1, deepening our understanding of this class of enzymes. The N-terminal ~3,900 amino acids of HUWE1 are indispensable for proper ligase function, and our cryo-EM structures of HUWE1 offer a complete molecular picture of this large HECT ubiquitin ligase. HUWE1 forms an alpha solenoid-shaped assembly with a central pore decorated with protein interaction modules. Structures of HUWE1 variants linked to neurodevelopmental disorders as well as of HUWE1 bound to a model substrate link the functions of this essential enzyme to its three-dimensional organization. Hunkeler et al. present the cryo-EM structure of HUWE1, a large HECT E3 ligase that forms a modular ring-shaped assembly with flexibly attached accessory domains. The influence of mutations associated with intellectual disabilities on HUWE1 activity and substrate recognition by HUWE1 is dissected biochemically and structurally.
Collapse
Affiliation(s)
- Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Cyrus Y Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle W Ma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Julie K Monda
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daan Overwijn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eric J Bennett
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Henneberg LT, Schulman BA. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem Biol 2021; 28:889-902. [PMID: 33831368 PMCID: PMC7611516 DOI: 10.1016/j.chembiol.2021.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modification of proteins by ubiquitin is required for nearly all aspects of eukaryotic cell function. The numerous targets of ubiquitylation, and variety of ubiquitin modifications, are often likened to a code, where the ultimate messages are diverse responses to target ubiquitylation. E1, E2, and E3 multiprotein enzymatic assemblies modify specific targets and thus function as messengers. Recent advances in chemical and protein tools have revolutionized our ability to explore the ubiquitin system, through enabling new high-throughput screening methods, matching ubiquitylation enzymes with their cellular targets, revealing intricate allosteric mechanisms regulating ubiquitylating enzymes, facilitating structural revelation of transient assemblies determined by multivalent interactions, and providing new paradigms for inhibiting and redirecting ubiquitylation in vivo as new therapeutics. Here we discuss the development of methods that control, disrupt, and extract the flow of information across the ubiquitin system and have enabled elucidation of the underlying molecular and cellular biology.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
26
|
Meng Y, Qiu L, Zhang S, Han J. The emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:365-381. [PMID: 35582023 PMCID: PMC9019267 DOI: 10.20517/cdr.2020.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
Abstract
Epithelial cancer of the ovary exhibits the highest mortality rate of all gynecological malignancies in women today, since the disease is often diagnosed in advanced stages. While the treatment of cancer with specific chemical agents or drugs is the favored treatment regimen, chemotherapy resistance greatly impedes successful ovarian cancer chemotherapy. Thus, chemoresistance becomes one of the most critical clinical issues confronted when treating patients with ovarian cancer. Convincing evidence hints that dysregulation of E3 ubiquitin ligases is a key factor in the development and maintenance of ovarian cancer chemoresistance. This review outlines recent advancement in our understanding of the emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. We also highlight currently available inhibitors targeting E3 ligase activities and discuss their potential for clinical applications in treating chemoresistant ovarian cancer patients.
Collapse
Affiliation(s)
- Yang Meng
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Lei Qiu
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Su Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Jiang H, Dempsey DR, Cole PA. Ubiquitin Ligase Activities of WWP1 Germline Variants K740N and N745S. Biochemistry 2021; 60:357-364. [PMID: 33470109 DOI: 10.1021/acs.biochem.0c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
WWP1 is an E3 ubiquitin ligase that has been reported to target the tumor suppressor lipid phosphatase PTEN. K740N and N745S are recently identified germline variants of WWP1 that have been linked to PTEN-associated cancers [Lee, Y. R., et al. (2020) N. Engl. J. Med.]. These WWP1 variants have been suggested to release WWP1 from its native autoinhibited state, thereby promoting enhanced PTEN ubiquitination as a mechanism for driving cancer. Using purified proteins and in vitro enzymatic assays, we investigate the possibility that K740N and N745S WWP1 possess enhanced ubiquitin ligase activity and demonstrate that these variants are similar to the wild type (WT) in both autoubiquitination and PTEN ubiquitination. Furthermore, K740N and N745S WWP1 show dependencies similar to those of WT in terms of allosteric activation by an engineered ubiquitin variant, upstream E2 concentration, and substrate ubiquitin concentration. Transfected WWP1 WT and mutants demonstrate comparable effects on cellular PTEN levels. These findings challenge the idea that K740N and N745S WWP1 variants promote cancer by enhanced PTEN ubiquitination.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Daniel R Dempsey
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
28
|
Adaptors as the regulators of HECT ubiquitin ligases. Cell Death Differ 2021; 28:455-472. [PMID: 33402750 DOI: 10.1038/s41418-020-00707-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
The HECT (homologous to E6AP C-terminus) ubiquitin ligases (E3s) are a small family of highly conserved enzymes involved in diverse cellular functions and pathological conditions. Characterised by a C-terminal HECT domain that accepts ubiquitin from E2 ubiquitin conjugating enzymes, these E3s regulate key signalling pathways. The activity and functional regulation of HECT E3s are controlled by several factors including post-translational modifications, inter- and intramolecular interactions and binding of co-activators and adaptor proteins. In this review, we focus on the regulation of HECT E3s by accessory proteins or adaptors and discuss various ways by which adaptors mediate their regulatory roles to affect physiological outcomes. We discuss common features that are conserved from yeast to mammals, regardless of the type of E3s as well as shed light on recent discoveries explaining some existing enigmas in the field.
Collapse
|
29
|
Aberrant activation of neuronal cell cycle caused by dysregulation of ubiquitin ligase Itch results in neurodegeneration. Cell Death Dis 2020; 11:441. [PMID: 32513985 PMCID: PMC7280246 DOI: 10.1038/s41419-020-2647-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
It is critical for the neuronal cell cycle to remain suppressed in terminally differentiated neurons as its activation results in aberrant cell cycle re-entry that causes neuronal apoptosis (CRNA), which has been observed in several neurodegenerative disorders like Alzheimer's disease (AD). In the present study, we report that E3 ubiquitin ligase Itch is a major regulator of CRNA and elucidated the mechanism via which it is regulated in this process. Neurotoxic amyloid peptide Aβ42-treated neurons or neurons from an AD transgenic mouse model (TgAD) exhibited aberrant activation of the JNK pathway which resulted in the hyperphosphorylation of Itch. The phosphorylation of Itch primes it for autoubiquitination, which is necessary for its activation. These post-translational modifications of Itch facilitate its interaction with TAp73 resulting in its degradation. These series of events are critical for Itch-mediated CRNA and its phosphorylation and autoubiquitination site mutants reversed this process and were neuroprotective. These studies unravel a novel pathway via which neurodegeneration in AD and possibly other related disorders may be regulated by aberrant regulation of the neuronal cell cycle.
Collapse
|
30
|
Rennie ML, Chaugule VK, Walden H. Modes of allosteric regulation of the ubiquitination machinery. Curr Opin Struct Biol 2020; 62:189-196. [PMID: 32305021 DOI: 10.1016/j.sbi.2020.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Ubiquitination is a post-translational modification crucial for cellular signaling. A diverse range of enzymes constitute the machinery that mediates attachment of ubiquitin onto target proteins. This diversity allows the targeting of various proteins in a highly regulated fashion. Many of the enzymes have multiple domains or subunits that bind allosteric effectors and exhibit large conformational rearrangements to facilitate regulation. Here we consider recent examples of ubiquitin itself as an allosteric effector of RING and RBR E3 ligases, as well as advances in the understanding of allosteric regulatory elements within HECT E3 ligases.
Collapse
Affiliation(s)
- Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
31
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
32
|
Yin Q, Wyatt CJ, Han T, Smalley KSM, Wan L. ITCH as a potential therapeutic target in human cancers. Semin Cancer Biol 2020; 67:117-130. [PMID: 32165318 DOI: 10.1016/j.semcancer.2020.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The ITCH/AIP4 ubiquitin E3 ligase was discovered independently by two groups searching for atrophin-1 interacting proteins and studying the genetics of mouse coat color alteration, respectively. ITCH is classified as a NEDD4 family E3 ligase featured with the C-terminal HECT domain for E3 ligase function and WW domains for substrate recruiting. ITCH deficiency in the mouse causes severe multi-organ autoimmune disease. Its roles in maintaining a balanced immune response have been extensively characterized over the past two and a half decades. A wealth of reports demonstrate a multifaceted role of ITCH in human cancers. Given the versatility of ITCH in catalyzing both proteolytic and non-proteolytic ubiquitination of its over fifty substrates, ITCH's role in malignancies is believed to be context-dependent. In this review, we summarize the downstream substrates of ITCH, the functions of ITCH in both tumor cells and the immune system, as well as the implications of such functions in human cancers. Moreover, we describe the upstream regulatory mechanisms of ITCH and the efforts have been made to target ITCH using small molecule inhibitors.
Collapse
Affiliation(s)
- Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Clayton J Wyatt
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
33
|
Huang Q, Li M, Lai L, Liu Z. Allostery of multidomain proteins with disordered linkers. Curr Opin Struct Biol 2020; 62:175-182. [PMID: 32151887 DOI: 10.1016/j.sbi.2020.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/18/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered regions are often involved in allosteric regulation of multidomain proteins. They can act as disordered linkers to connect and interact with domains, resulting in rather complex allosteric mechanism and novel protein behavior. Therefore, it is necessary to analyze the diverse functions of disordered linkers in order to better understand allostery and relevant regulation process. Here we summarize recent advances in understanding the function of linkers and the advantages of adopting mutlidomain architecture with disorder linkers. It was shown that linkers between domains enhance the local domain concentration and make the allosteric regulation of weakly interacting partners possible, while linkers with only one tethered end cause an entropy effect to reduce binding affinity and prevent aggregation.
Collapse
Affiliation(s)
- Qiaojing Huang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maodong Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Zhirong Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
34
|
A Tyrosine Switch on NEDD4-2 E3 Ligase Transmits GPCR Inflammatory Signaling. Cell Rep 2019; 24:3312-3323.e5. [PMID: 30232011 PMCID: PMC6226018 DOI: 10.1016/j.celrep.2018.08.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/05/2018] [Accepted: 08/21/2018] [Indexed: 02/03/2023] Open
Abstract
Ubiquitination is essential for protein degradation and signaling and pivotal to many physiological processes. Ubiquitination of a subset of G-protein-coupled receptors (GPCRs) by the E3 ligase NEDD4–2 is required for p38 activation, but how GPCRs activate NEDD4–2 to promote ubiquitinmediated signaling is not known. Here, we report that the GPCR protease-activated receptor-1 (PAR1) stimulates c-Src-mediated tyrosine phosphorylation and activation of NEDD4–2 to promote p38 signaling and endothelial barrier disruption. Using mass spectrometry, we identified a unique phosphorylated tyrosine (Y)-485 within the 2,3-linker peptide between WW domain 2 and 3 of NEDD4–2 in agonist-stimulated cells. Mutation of NEDD4–2 Y485 impaired E3 ligase activity and failed to rescue PAR1-stimulated p38 activation and endothelial barrier permeability. The purinergic P2Y1 receptor also required c-Src and NEDD4–2 tyrosine phosphorylation for p38 activation. These studies reveal a novel role for c-Src in GPCR-induced NEDD4–2 activation, which is critical for driving ubiquitin-mediated p38 inflammatory signaling. Grimsey et al. report that GPCRs stimulate activation of NEDD4–2 E3 ubiquitin ligase via c-Src to induce endothelial p38 inflammatory signaling. c-Src phosphorylates NEDD4–2 at tyrosine-485, releasing the autoinhibitory linker peptide that is critical for enhancing E3 ligase activity, and provides mechanistic insight of how GPCRs activate E3 ubiquitin ligases.
Collapse
|
35
|
The many substrates and functions of NEDD4-1. Cell Death Dis 2019; 10:904. [PMID: 31787758 PMCID: PMC6885513 DOI: 10.1038/s41419-019-2142-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
Tumorigenesis, tumor growth, and prognosis are highly related to gene alterations and post-translational modifications (PTMs). Ubiquitination is a critical PTM that governs practically all aspects of cellular function. An increasing number of studies show that E3 ubiquitin ligases (E3s) are important enzymes in the process of ubiquitination that primarily determine substrate specificity and thus need to be tightly controlled. Among E3s, neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) has been shown to play a critical role in modulating the proliferation, migration, and invasion of cancer cells and the sensitivity of cancer cells to anticancer therapies via regulating multiple substrates. This review discusses some significant discoveries on NEDD4-1 substrates and the signaling pathways in which NEDD4-1 participates. In addition, we introduce the latest potential therapeutic strategies that inhibit or activate NEDD4-1 activity using small molecules. NEDD4-1 likely acts as a novel drug target or diagnostic marker in the battle against cancer.
Collapse
|
36
|
Bernassola F, Chillemi G, Melino G. HECT-Type E3 Ubiquitin Ligases in Cancer. Trends Biochem Sci 2019; 44:1057-1075. [DOI: 10.1016/j.tibs.2019.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022]
|
37
|
New Aspects of HECT-E3 Ligases in Cell Senescence and Cell Death of Plants. PLANTS 2019; 8:plants8110483. [PMID: 31717304 PMCID: PMC6918304 DOI: 10.3390/plants8110483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 01/17/2023]
Abstract
Plant cells undergo massive orderly changes in structure, biochemistry, and gene expression during cell senescence. These changes cannot be distinguished from the hydrolysis/degradation function controlled by the ubiquitination pathway, autophagy, and various hydrolases in cells. In this mini-review, we summarized current research progress that the human HECT (homologous to the E6AP carboxyl terminus)-type ubiquitin E3 ligases have non-redundant functions in regulating specific signaling pathways, involved in a number of human diseases, especially aging-related diseases, through the influence of DNA repair, protein stability, and removal efficiency of damaged proteins or organelles. We further compared HECT E3 ligases’ structure and functions between plant and mammalian cells, and speculated new aspects acting as degrading signals and regulating signals of HECT E3 ligase in cell senescence and the cell death of plants.
Collapse
|
38
|
Ruetalo N, Anders S, Stollmaier C, Jäckl M, Schütz-Stoffregen MC, Stefan N, Wolf C, Wiesner S. The WW1 Domain Enhances Autoinhibition in Smurf Ubiquitin Ligases. J Mol Biol 2019; 431:4834-4847. [PMID: 31628949 DOI: 10.1016/j.jmb.2019.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Downregulation of ubiquitin (Ub) ligase activity prevents premature ubiquitination and is critical for cellular homeostasis. Nedd4 Ub ligases share a common domain architecture and yet are regulated in distinct ways through interactions of the catalytic HECT domain with the N-terminal C2 domain or the central WW domain region. Smurf1 and Smurf2 are two highly related Nedd4 ligases with ~70% overall sequence identity. Here, we show that the Smurf1 C2 domain interacts with the HECT domain and inhibits ligase activity in trans. However, in contrast to Smurf2, we find that full-length Smurf1 is a highly active Ub ligase, and we can attribute this striking difference in regulation to the lack of one WW domain (WW1) in Smurf1. Using NMR spectroscopy and biochemical assays, we identified the WW1 region as an additional inhibitory element in Smurf2 that cooperates with the C2 domain to enhance HECT domain binding and Smurf2 inhibition. Our work provides important insights into Smurf regulation and highlights that the activities of highly related proteins can be controlled in distinct ways.
Collapse
Affiliation(s)
- Natalia Ruetalo
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Samira Anders
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Carsten Stollmaier
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Magnus Jäckl
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Mira C Schütz-Stoffregen
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Nadine Stefan
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Christine Wolf
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| |
Collapse
|
39
|
Jiang H, Thomas SN, Chen Z, Chiang CY, Cole PA. Comparative analysis of the catalytic regulation of NEDD4-1 and WWP2 ubiquitin ligases. J Biol Chem 2019; 294:17421-17436. [PMID: 31578285 DOI: 10.1074/jbc.ra119.009211] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
NEDD4-1 E3 ubiquitin protein ligase (NEDD4-1) and WW domain-containing E3 ubiquitin ligase (WWP2) are HECT family ubiquitin E3 ligases. They catalyze Lys ubiquitination of themselves and other proteins and are important in cell growth and differentiation. Regulation of NEDD4-1 and WWP2 catalytic activities is important for controlling cellular protein homeostasis, and their dysregulation may lead to cancer and other diseases. Previous work has implicated noncatalytic regions, including the C2 domain and/or WW domain linkers in NEDD4-1 and WWP2, in contributing to autoinhibition of the catalytic HECT domains by intramolecular interactions. Here, we explored the molecular mechanisms of these NEDD4-1 and WWP2 regulatory regions and their interplay with allosteric binding proteins such as Nedd4 family-interacting protein (NDFIP1), engineered ubiquitin variants, and linker phosphomimics. We found that in addition to influencing catalytic activities, the WW domain linker regions in NEDD4-1 and WWP2 can impact product distribution, including the degree of polyubiquitination and Lys-48 versus Lys-63 linkages. We show that allosteric activation by NDFIP1 or engineered ubiquitin variants is largely mediated by relief of WW domain linker autoinhibition. WWP2-mediated ubiquitination of WW domain-binding protein 2 (WBP2), phosphatase and tensin homolog (PTEN), and p62 proteins by WWP2 suggests that substrate ubiquitination can also be influenced by WW linker autoinhibition, although to differing extents. Overall, our results provide a deeper understanding of the intricate and multifaceted set of regulatory mechanisms in the control of NEDD4-1-related ubiquitin ligases.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Stefani N Thomas
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Claire Y Chiang
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 .,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
40
|
Smad7 Binds Differently to Individual and Tandem WW3 and WW4 Domains of WWP2 Ubiquitin Ligase Isoforms. Int J Mol Sci 2019; 20:ijms20194682. [PMID: 31546607 PMCID: PMC6801763 DOI: 10.3390/ijms20194682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
WWP2 is an E3 ubiquitin ligase that differentially regulates the contextual tumour suppressor/progressor TGFβ signalling pathway by alternate isoform expression. WWP2 isoforms select signal transducer Smad2/3 or inhibitor Smad7 substrates for degradation through different compositions of protein–protein interaction WW domains. The WW4 domain-containing WWP2-C induces Smad7 turnover in vivo and positively regulates the metastatic epithelial–mesenchymal transition programme. This activity and the overexpression of these isoforms in human cancers make them candidates for therapeutic intervention. Here, we use NMR spectroscopy to solve the solution structure of the WWP2 WW4 domain and observe the binding characteristics of Smad7 substrate peptide. We also reveal that WW4 has an enhanced affinity for a Smad7 peptide phosphorylated at serine 206 adjacent to the PPxY motif. Using the same approach, we show that the WW3 domain also binds Smad7 and has significantly enhanced Smad7 binding affinity when expressed in tandem with the WW4 domain. Furthermore, and relevant to these biophysical findings, we present evidence for a novel WWP2 isoform (WWP2C-ΔHECT) comprising WW3–WW4 tandem domains and a truncated HECT domain that can inhibit TGFβ signalling pathway activity, providing a further layer of complexity and feedback to the WWP2 regulatory apparatus. Collectively, our data reveal a structural platform for Smad substrate selection by WWP2 isoform WW domains that may be significant in the context of WWP2 isoform switching linked to tumorigenesis.
Collapse
|
41
|
Wang Z, Liu Z, Chen X, Li J, Yao W, Huang S, Gu A, Lei QY, Mao Y, Wen W. A multi-lock inhibitory mechanism for fine-tuning enzyme activities of the HECT family E3 ligases. Nat Commun 2019; 10:3162. [PMID: 31320636 PMCID: PMC6639328 DOI: 10.1038/s41467-019-11224-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
HECT E3 ligases control the degradation and functioning of numerous oncogenic/tumor-suppressive factors and signaling proteins, and their activities must be tightly regulated to prevent cancers and other diseases. Here we show that the Nedd4 family HECT E3 WWP1 adopts an autoinhibited state, in which its multiple WW domains sequester HECT using a multi-lock mechanism. Removing WW2 or WW34 led to a partial activation of WWP1. The structure of fully inhibited WWP1 reveals that many WWP1 mutations identified in cancer patients result in a partially active state with increased E3 ligase activity, and the WWP1 mutants likely promote cell migration by enhancement of ∆Np63α degradation. We further demonstrate that WWP2 and Itch utilize a highly similar multi-lock autoinhibition mechanism as that utilized by WWP1, whereas Nedd4/4 L and Smurf2 utilize a slightly variant version. Overall, these results reveal versatile autoinhibitory mechanisms that fine-tune the ligase activities of the HECT family enzymes. HECT type E3 ligases are key regulators of cell growth and proliferation. Here the authors present the crystal structures of the Nedd4 family E3 ligase WWP1 in a closed and semi-open state and in combination with mutagenesis experiments identify a multi-lock regulatory mechanism that allows the fine-tuning of activities of Nedd4 family E3 ligases.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ziheng Liu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xing Chen
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jingyu Li
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiyi Yao
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qun-Ying Lei
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Fudan University, Shanghai, 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Ries LK, Sander B, Deol KK, Letzelter MA, Strieter ER, Lorenz S. Analysis of ubiquitin recognition by the HECT ligase E6AP provides insight into its linkage specificity. J Biol Chem 2019; 294:6113-6129. [PMID: 30737286 PMCID: PMC6463701 DOI: 10.1074/jbc.ra118.007014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity and specificity in this crucial ligase are incompletely understood. Here, we unravel the determinants of ubiquitin recognition by the catalytic domain of E6AP and assign them to particular steps in the catalytic cycle. We identify a functionally critical interface that is specifically required during the initial formation of a thioester-linked intermediate between the C terminus of ubiquitin and the ligase-active site. This interface resembles the one utilized by NEDD4-type enzymes, indicating that it is widely conserved across HECT ligases, independent of their linkage specificities. Moreover, we uncover surface regions in ubiquitin and E6AP, both in the N- and C-terminal portions of the catalytic domain, that are important for the subsequent reaction step of isopeptide bond formation between two ubiquitin molecules. We decipher key elements of linkage specificity, including the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site Lys-48. Intriguingly, mutation of Glu-51, a single residue within this region, permits formation of alternative chain types, thus pointing to a key role of ubiquitin in conferring linkage specificity to E6AP. We speculate that substrate-assisted catalysis, as described previously for certain RING-associated ubiquitin-conjugating enzymes, constitutes a common principle during linkage-specific ubiquitin chain assembly by diverse classes of ubiquitination enzymes, including HECT ligases.
Collapse
Affiliation(s)
- Lena K Ries
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Bodo Sander
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Kirandeep K Deol
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Marie-Annick Letzelter
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Eric Robert Strieter
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003; Departments of Biochemistry and Molecular Biology, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Sonja Lorenz
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
43
|
Weber J, Polo S, Maspero E. HECT E3 Ligases: A Tale With Multiple Facets. Front Physiol 2019; 10:370. [PMID: 31001145 PMCID: PMC6457168 DOI: 10.3389/fphys.2019.00370] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination plays a pivotal role in several cellular processes and is critical for protein degradation and signaling. E3 ubiquitin ligases are the matchmakers in the ubiquitination cascade, responsible for substrate recognition. In order to achieve selectivity and specificity on their substrates, HECT E3 enzymes are tightly regulated and exert their function in a spatially and temporally controlled fashion in the cells. These characteristics made HECT E3s intriguing targets in drug discovery in the context of cancer biology.
Collapse
Affiliation(s)
- Janine Weber
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Elena Maspero
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| |
Collapse
|
44
|
Burton JC, Grimsey NJ. Ubiquitination as a Key Regulator of Endosomal Signaling by GPCRs. Front Cell Dev Biol 2019; 7:43. [PMID: 30984758 PMCID: PMC6449645 DOI: 10.3389/fcell.2019.00043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of therapeutic targets for FDA approved drugs. Therefore, understanding the molecular regulation of their signaling pathways is of paramount importance. Similarly, the mitogen activated protein kinase (MAPK) p38 is a critical mediator of proinflammatory disease. Yet despite decades of intense investigation, therapeutically viable inhibitors have struggled to make it into the clinic. New studies describing the regulation and activation of a GPCR dependent atypical p38 signaling pathway represents a novel therapeutic avenue to the treatment of many proinflammatory disorders. These recent studies have defined how thrombin and ADP can induce Src dependent activation of the E3 ubiquitin ligase NEDD4-2. Src dependent phosphorylation of a 2,3-linker peptide releases NEDD4-2 auto-inhibition and triggers the induction of proinflammatory atypical p38 signaling from the endosome. Activation of the atypical p38 pathway requires the direct interaction between an adaptor protein TAB1 and p38, that bypasses the requirement for the classical MKK3/6 dependent activation of p38. Therefore, providing a mechanism to specifically block proinflammatory GPCR atypical p38 activation while leaving basic p38 activity intact. Critically, new studies demonstrated that disruption of the TAB1-p38 interface is a druggable target, that would enable the selective inhibition of proinflammatory p38 signaling and ischemic injury. Atypical p38 signaling is linked to multiple clinically relevant pathologies including inflammation, cardiotoxicity, myocardial ischemia and ischemia reperfusion injury. Therefore, GPCR induced endosomal p38 signaling represents a novel understudied branch of proinflammatory p38 signaling and an ideal potential therapeutic target that warrants further investigation.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
Aki D, Li Q, Li H, Liu YC, Lee JH. Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch. Protein Cell 2018; 10:395-404. [PMID: 30413999 PMCID: PMC6538580 DOI: 10.1007/s13238-018-0586-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Protein ubiquitination is an important means of post-translational modification which plays an essential role in the regulation of various aspects of leukocyte development and function. The specificity of ubiquitin tagging to a protein substrate is determined by E3 ubiquitin ligases via defined E3-substrate interactions. In this review, we will focus on two E3 ligases, VHL and Itch, to discuss the latest progress in understanding their roles in the differentiation and function of CD4+ T helper cell subsets, the stability of regulatory T cells, effector function of CD8+ T cells, as well as the development and maturation of innate lymphoid cells. The biological implications of these E3 ubiquitin ligases will be highlighted in the context of normal and dysregulated immune responses including the control of homeostasis, inflammation, auto-immune responses and anti-tumor immunity. Further elucidation of the ubiquitin system in immune cells will help in the design of new therapeutic interventions for human immunological diseases and cancer.
Collapse
Affiliation(s)
- Daisuke Aki
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences , School of Medicine, Tsinghua University, Beijing, 100084, China.,La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Qian Li
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences , School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hui Li
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences , School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences , School of Medicine, Tsinghua University, Beijing, 100084, China. .,La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.
| | - Jee Ho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.
| |
Collapse
|
46
|
Chen D, Gehringer M, Lorenz S. Developing Small-Molecule Inhibitors of HECT-Type Ubiquitin Ligases for Therapeutic Applications: Challenges and Opportunities. Chembiochem 2018; 19:2123-2135. [PMID: 30088849 PMCID: PMC6471174 DOI: 10.1002/cbic.201800321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 12/11/2022]
Abstract
The ubiquitin system regulates countless physiological and disease-associated processes and has emerged as an attractive entryway for therapeutic efforts. With over 600 members in the human proteome, ubiquitin ligases are the most diverse class of ubiquitylation enzymes and pivotal in encoding specificity in ubiquitin signaling. Although considerable progress has been made in the identification of small molecules targeting RING ligases, relatively little is known about the "druggability" of HECT (homologous to E6AP C terminus) ligases, many of which are critically implicated in human pathologies. A major obstacle to optimizing the few available ligands is our incomplete understanding of their inhibitory mechanisms and the structural basis of catalysis in HECT ligases. Here, we survey recent approaches to manipulate the activities of HECT ligases with small molecules to showcase the particular challenges and opportunities these enzymes hold as therapeutic targets.
Collapse
Affiliation(s)
- Dan Chen
- Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgJosef-Schneider-Strasse 2, Haus D1597080WürzburgGermany
| | - Matthias Gehringer
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical/Medicinal ChemistryUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgJosef-Schneider-Strasse 2, Haus D1597080WürzburgGermany
| |
Collapse
|
47
|
Yao W, Shan Z, Gu A, Fu M, Shi Z, Wen W. WW domain-mediated regulation and activation of E3 ubiquitin ligase Suppressor of Deltex. J Biol Chem 2018; 293:16697-16708. [PMID: 30213861 DOI: 10.1074/jbc.ra118.003781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The Nedd4 family E3 ligases Itch and WWP1/2 play crucial roles in the regulation of cell cycle progression and apoptosis and are closely correlated with cancer development and metastasis. It has been recently shown that the ligase activities of Itch and WWP1/2 are tightly regulated, with the HECT domain sequestered intramolecularly by a linker region connecting WW2 and WW3. Here, we show that a similar autoinhibitory mechanism is utilized by the Drosophila ortholog of Itch and WWP1/2, Suppressor of Deltex (Su(dx)). We show that Su(dx) adopts an inactive steady state with the WW domain region interacting with the HECT domain. We demonstrate that both the linker and preceding WW2 are required for the efficient binding and regulation of Su(dx) HECT. Recruiting the multiple-PY motif-containing adaptor dNdfip via WW domains relieves the inhibitory state of Su(dx) and leads to substrate (e.g. Notch) ubiquitination. Our study demonstrates an evolutionarily conservative mechanism governing the regulation and activation of some Nedd4 family E3 ligases. Our results also suggest a dual regulatory mechanism for specific Notch down-regulation via dNdfip-Su(dx)-mediated Notch ubiquitination.
Collapse
Affiliation(s)
- Weiyi Yao
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Zelin Shan
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Aihong Gu
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Minjie Fu
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Zhifeng Shi
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Wenyu Wen
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and .,the Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
48
|
Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci 2018; 75:3121-3141. [PMID: 29858610 PMCID: PMC6063350 DOI: 10.1007/s00018-018-2848-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/09/2023]
Abstract
Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein-protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.
Collapse
Affiliation(s)
- Jasper Sluimer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus Medical Center, Wijtemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Mund T, Masuda-Suzukake M, Goedert M, Pelham HR. Ubiquitination of alpha-synuclein filaments by Nedd4 ligases. PLoS One 2018; 13:e0200763. [PMID: 30021006 PMCID: PMC6051637 DOI: 10.1371/journal.pone.0200763] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/02/2018] [Indexed: 11/19/2022] Open
Abstract
Alpha-synuclein can form beta-sheet filaments, the accumulation of which plays a key role in the development of Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. It has previously been shown that alpha-synuclein is a substrate for the HECT domain-containing ubiquitin ligase Nedd4, and is subject to ubiquitin-mediated endosomal degradation. We show here that alpha-synuclein filaments are much better substrates for ubiquitination in vitro than monomeric alpha-synuclein, and that this increased susceptibility cannot be mimicked by the mere clustering of monomers. Recognition by Nedd4 family enzymes is not through the conventional binding of PPxY-containing sequences to WW domains of the ligase, but it also involves C2 and HECT domains. The disease-causing alpha-synuclein mutant A53T is a much less efficient substrate for Nedd4 ligases than the wild-type protein. We suggest that preferential recognition, ubiquitination and degradation of beta-sheet-containing filaments may help to limit toxicity, and that A53T alpha-synuclein may be more toxic, at least in part because it avoids this fate.
Collapse
Affiliation(s)
- Thomas Mund
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Hugh R. Pelham
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Cho EB, Yoo W, Yoon SK, Yoon JB. β-dystroglycan is regulated by a balance between WWP1-mediated degradation and protection from WWP1 by dystrophin and utrophin. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2199-2213. [PMID: 29635000 DOI: 10.1016/j.bbadis.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
Abstract
Dystroglycan is a ubiquitous membrane protein that functions as a mechanical connection between the extracellular matrix and cytoskeleton. In skeletal muscle, dystroglycan plays an indispensable role in regulating muscle regeneration; a malfunction in dystroglycan is associated with muscular dystrophy. The regulation of dystroglycan stability is poorly understood. Here, we report that WWP1, a member of NEDD4 E3 ubiquitin ligase family, promotes ubiquitination and subsequent degradation of β-dystroglycan. Our results indicate that dystrophin and utrophin protect β-dystroglycan from WWP1-mediated degradation by competing with WWP1 for the shared binding site at the cytosolic tail of β-dystroglycan. In addition, we show that a missense mutation (arginine 440 to glutamine) in WWP1-which is known to cause muscular dystrophy in chickens-increases the ubiquitin ligase-mediated ubiquitination of both β-dystroglycan and WWP1. The R440Q missense mutation in WWP1 decreases HECT domain-mediated intramolecular interactions to relieve autoinhibition of the enzyme. Our results provide new insight into the regulation of β-dystroglycan degradation by WWP1 and other Nedd4 family members and improves our understanding of dystroglycan-related disorders.
Collapse
Affiliation(s)
- Eun-Bee Cho
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Wonjin Yoo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sungjoo Kim Yoon
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|