1
|
Roweth HG, Becker IC, Malloy MW, Clarke EM, Munn SA, Kumar PL, Aivasovsky I, Tray K, Schmaier AA, Battinelli EM. Platelet Angiopoietin-1 Protects Against Murine Models of Tumor Metastasis. Arterioscler Thromb Vasc Biol 2024; 44:2024-2037. [PMID: 39051116 PMCID: PMC11335083 DOI: 10.1161/atvbaha.124.321189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND In addition to their fundamental roles in preserving vascular integrity, platelets also contribute to tumor angiogenesis and metastasis. However, despite being a reservoir for angiogenic and metastatic cytokines, platelets also harbor negative regulators of tumor progression. Angpt1 (angiopoietin-1) is a cytokine essential for developmental angiogenesis that also protects against tumor cell metastasis through an undefined mechanism. Although activated platelets release Angpt1 from α-granules into circulation, the contributions of platelet Angpt1 to tumor growth, angiogenesis, and metastasis have not been investigated. METHODS Using cytokine arrays and ELISAs, we first compared platelet Angpt1 levels in breast and melanoma mouse tumor models to tumor-free controls. We then assessed tumor growth and metastasis in mice lacking megakaryocyte and platelet Angpt1 (Angpt1Plt KO). The spontaneous metastasis of mammary-injected tumor cells to the lungs was quantified using RT-PCR (reverse transcription-polymerase chain reaction). The lung colonization of intravenously injected tumor cells and tumor cell extravasation were determined using fluorescent microscopy and flow cytometry. RESULTS Platelet Angpt1 is selectively upregulated in the PyMT (polyoma middle tumor antigen) breast cancer mouse model, and platelets are the principal source of Angpt1 in blood circulation. While primary tumor growth and angiogenesis were unaffected, Angpt1Plt KO mice had both increased spontaneous lung metastasis and tumor cell lung colonization following mammary or intravenous injection, respectively. Although platelet Angpt1 did not affect initial tumor cell entrapment in the lungs, Angpt1Plt KO mice had increased tumor cell retention and extravasation. Serum from Angpt1Plt KO mice increased endothelial permeability and reduced VE (vascular endothelial)-cadherin expression at endothelial junctions compared with serum from control mice (Angpt1WT). CONCLUSIONS Platelets provide an intravascular source of Angpt1 that restrains tumor metastasis by preserving the lung microvasculature to limit tumor cell extravasation.
Collapse
MESH Headings
- Animals
- Angiopoietin-1/genetics
- Angiopoietin-1/metabolism
- Angiopoietin-1/blood
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Female
- Lung Neoplasms/secondary
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/metabolism
- Lung Neoplasms/prevention & control
- Mice, Knockout
- Neovascularization, Pathologic
- Mice, Inbred C57BL
- Melanoma, Experimental/pathology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/blood
- Melanoma, Experimental/secondary
- Melanoma, Experimental/genetics
- Cell Line, Tumor
- Mice
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/blood
- Tumor Burden
- Disease Models, Animal
Collapse
Affiliation(s)
- Harvey G. Roweth
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| | - Isabelle C. Becker
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, MA (I.C.B.)
| | - Michael W. Malloy
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Emily M. Clarke
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Sophie A. Munn
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Priya L. Kumar
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| | - Ivan Aivasovsky
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Kobe Tray
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Alec A. Schmaier
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Elisabeth M. Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| |
Collapse
|
2
|
Xu W, Huang B, Zhang R, Zhong X, Zhou W, Zhuang S, Xie X, Fang J, Xu M. Diagnostic and Prognostic Ability of Contrast-Enhanced Unltrasound and Biomarkers in Hepatocellular Carcinoma Subtypes. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:617-626. [PMID: 38281888 DOI: 10.1016/j.ultrasmedbio.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/07/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024]
Abstract
OBJECTIVE To investigate the diagnostic and prognostic value of contrast-enhanced ultrasound (CEUS) and clinical indicators of the vessels encapsulating tumor clusters (VETC) pattern and macrotrabecular-massive subtype in hepatocellular carcinoma (MTM-HCC). METHODS This retrospective study included patients who underwent preoperative CEUS and hepatectomy for HCC between August 2018 and August 2021. Multivariable logistic regression was performed to select independent correlated factors of VETC-HCC and MTM-HCC to develop nomogram models. The association between model outcomes and early postoperative HCC recurrence was assessed using Kaplan-Meier curve and Cox regression analysis. RESULTS The training cohort included 182 patients (54.3 ± 11.3 years, 168 males) and the validation cohort included 91 patients (54.8 ± 10.6 years, 81 males). Multivariate logistic regression analysis revealed that α-fetoprotein (AFP) levels (odds ratio [OR]: 2.26, 95% confidence interval [CI]: 1.49-3.42, p < 0.001), intratumoral nonenhancement (OR: 2.40, 95% CI: 1.02-5.64, p = 0.044), and the perfusion pattern in the CEUS arterial phase (OR: 2.27, 95% CI: 1.05-4.91, p = 0.038) were independent predictors of VETC-HCC. Besides, the former two were also independently associated with MTM-HCC (AFP level: OR: 2.36, 95% CI: 1.36-4.09, p = 0.002; intratumoral nonenhancement: OR: 3.72, 95% CI: 1.02-13.56, p = 0.046). Nomogram models were constructed based on the aforementioned indicators. Kaplan-Meier curve analysis indicated that predicted VETC-HCC or MTM-HCC exhibited higher rates of early recurrence (log-rank p < 0.001 and p = 0.002, respectively). Cox regression analysis showed that a high risk of VETC-HCC was independently correlated with early recurrence (p = 0.011). CONCLUSION CEUS combined with AFP levels can predict VETC-HCC/MTM-HCC and prognosis preoperatively.
Collapse
Affiliation(s)
- Wenxin Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Biyu Huang
- Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Xian Zhong
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Wenwen Zhou
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Shimei Zhuang
- Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Jianhong Fang
- Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
4
|
Gao H, Findeis EL, Culmone L, Powell B, Landschoot-Ward J, Zacharek A, Wu T, Lu M, Chopp M, Venkat P. Early therapeutic effects of an Angiopoietin-1 mimetic peptide in middle-aged rats with vascular dementia. Front Aging Neurosci 2023; 15:1180913. [PMID: 37304071 PMCID: PMC10248134 DOI: 10.3389/fnagi.2023.1180913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Background Vascular Dementia (VaD) refers to dementia caused by cerebrovascular disease and/or reduced blood flow to the brain and is the second most common form of dementia after Alzheimer's disease. We previously found that in middle-aged rats subjected to a multiple microinfarction (MMI) model of VaD, treatment with AV-001, a Tie2 receptor agonist, significantly improves short-term memory, long-term memory, as well as improves preference for social novelty compared to control MMI rats. In this study, we tested the early therapeutic effects of AV-001 on inflammation and glymphatic function in rats subjected to VaD. Methods Male, middle-aged Wistar rats (10-12 m), subjected to MMI, were randomly assigned to MMI and MMI + AV-001 treatment groups. A sham group was included as reference group. MMI was induced by injecting 800 ± 200, 70-100 μm sized, cholesterol crystals into the internal carotid artery. Animals were treated with AV-001 (1 μg/Kg, i.p.) once daily starting at 24 h after MMI. At 14 days after MMI, inflammatory factor expression was evaluated in cerebrospinal fluid (CSF) and brain. Immunostaining was used to evaluate white matter integrity, perivascular space (PVS) and perivascular Aquaporin-4 (AQP4) expression in the brain. An additional set of rats were prepared to test glymphatic function. At 14 days after MMI, 50 μL of 1% Tetramethylrhodamine (3 kD) and FITC conjugated dextran (500 kD) at 1:1 ratio were injected into the CSF. Rats (4-6/group/time point) were sacrificed at 30 min, 3 h, and 6 h from the start of tracer infusion, and brain coronal sections were imaged using a Laser scanning confocal microscope to evaluate tracer intensities in the brain. Result Treatment of MMI with AV-001 significantly improves white matter integrity in the corpus callosum at 14 days after MMI. MMI induces significant dilation of the PVS, reduces AQP4 expression and impairs glymphatic function compared to Sham rats. AV-001 treatment significantly reduces PVS, increases perivascular AQP4 expression and improves glymphatic function compared to MMI rats. MMI significantly increases, while AV-001 significantly decreases the expression of inflammatory factors (tumor necrosis factor-α (TNF-α), chemokine ligand 9) and anti-angiogenic factors (endostatin, plasminogen activator inhibitor-1, P-selectin) in CSF. MMI significantly increases, while AV-001 significantly reduces brain tissue expression of endostatin, thrombin, TNF-α, PAI-1, CXCL9, and interleukin-6 (IL-6). Conclusion AV-001 treatment of MMI significantly reduces PVS dilation and increases perivascular AQP4 expression which may contribute to improved glymphatic function compared to MMI rats. AV-001 treatment significantly reduces inflammatory factor expression in the CSF and brain which may contribute to AV-001 treatment induced improvement in white matter integrity and cognitive function.
Collapse
Affiliation(s)
- Huanjia Gao
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
| | | | - Lauren Culmone
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
| | - Brianna Powell
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
| | | | - Alex Zacharek
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
| | - Trueman Wu
- Public Health Sciences, Henry Ford Health, Detroit, MI, United States
| | - Mei Lu
- Public Health Sciences, Henry Ford Health, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Health, Detroit, MI, United States
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Nair L, Mukherjee S, Kaur K, Murphy CM, Ravichandiran V, Roy S, Singh M. Multi compartmental 3D breast cancer disease model–recapitulating tumor complexity in in-vitro. Biochim Biophys Acta Gen Subj 2023; 1867:130361. [PMID: 37019341 DOI: 10.1016/j.bbagen.2023.130361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Breast cancer is the most common ailment among women. In 2020, it had the highest incidence of any type of cancer. Many Phase II and III anti-cancer drugs fail due to efficacy, durability, and side effects. Thus, accelerated drug screening models must be accurate. In-vivo models have been used for a long time, but delays, inconsistent results, and a greater sense of responsibility among scientists toward wildlife have led to the search for in-vitro alternatives. Stromal components support breast cancer growth and survival. Multi-compartment Transwell models may be handy instruments. Co-culturing breast cancer cells with endothelium and fibroblasts improves modelling. The extracellular matrix (ECM) supports native 3D hydrogels in natural and polymeric forms. 3D Transwell cultured tumor spheroids mimicked in-vivo pathological conditions. Tumor invasion, migration, Trans-endothelial migration, angiogenesis, and spread are studied using comprehensive models. Transwell models can create a cancer niche and conduct high-throughput drug screening, promising future applications. Our comprehensive shows how 3D in-vitro multi compartmental models may be useful in producing breast cancer stroma in Transwell culture.
Collapse
Affiliation(s)
- Lakshmi Nair
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, Assam 788011, India
| | - Souvik Mukherjee
- Department of Pharmaceutical Sciences, Guru Ghasidas University, Koni, Bilaspur,(C.G 495009, India
| | - Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin D02YN77, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, Assam 788011, India.
| |
Collapse
|
6
|
Metastasis prevention: How to catch metastatic seeds. Biochim Biophys Acta Rev Cancer 2023; 1878:188867. [PMID: 36842768 DOI: 10.1016/j.bbcan.2023.188867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Despite considerable advances in the evolution of anticancer therapies, metastasis still remains the main cause of cancer mortality. Therefore, current strategies for cancer cure should be redirected towards prevention of metastasis. Targeting metastatic pathways represents a promising therapeutic opportunity aimed at obstructing tumor cell dissemination and metastatic colonization. In this review, we focus on preclinical studies and clinical trials over the last five years that showed high efficacy in suppressing metastasis through targeting lymph node dissemination, tumor cell extravasation, reactive oxygen species, pre-metastatic niche, exosome machinery, and dormancy.
Collapse
|
7
|
Adjunctive therapy with the Tie2 agonist Vasculotide reduces pulmonary permeability in Streptococcus pneumoniae infected and mechanically ventilated mice. Sci Rep 2022; 12:15531. [PMID: 36109537 PMCID: PMC9478100 DOI: 10.1038/s41598-022-19560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractCommunity acquired pneumonia, mainly caused by Streptococcus pneumoniae (S.pn.), is a common cause of death worldwide. Despite adequate antibiotic therapy, pneumococcal pneumonia can induce pulmonary endothelial hyperpermeability leading to acute lung injury, which often requires mechanical ventilation (MV) causing ventilator-induced lung injury (VILI). Endothelial stabilization is mediated by angiopoietin-1 induced Tie2 activation. PEGylated (polyethylene glycol) Tie2-agonist Vasculotide (VT) mimics Angiopietin-1 effects. Recently, VT has been shown to reduce pulmonary hyperpermeability in murine pneumococcal pneumonia. The aim of this study was to determine whether VT reduces lung damage in S.pn. infected and mechanically ventilated mice. Pulmonary hyperpermeability, immune response and bacterial load were quantified in S.pn. infected mice treated with Ampicillin + /−VT and undergoing six hours of MV 24 h post infection. Histopathological lung changes, Tie2-expression and -phosphorylation were evaluated. VT did not alter immune response or bacterial burden, but interestingly combination treatment with ampicillin significantly reduced pulmonary hyperpermeability, histological lung damage and edema formation. Tie2-mRNA expression was reduced by S.pn. infection and/or MV but not restored by VT. Moreover, Tie2 phosphorylation was not affected by VT. These findings indicate that VT may be a promising adjunctive treatment option for prevention of VILI in severe pneumococcal pneumonia.
Collapse
|
8
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
9
|
Akwii RG, Mikelis CM. Targeting the Angiopoietin/Tie Pathway: Prospects for Treatment of Retinal and Respiratory Disorders. Drugs 2021; 81:1731-1749. [PMID: 34586603 PMCID: PMC8479497 DOI: 10.1007/s40265-021-01605-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Anti-angiogenic approaches have significantly advanced the treatment of vascular-related pathologies. The ephemeral outcome and known side effects of the current vascular endothelial growth factor (VEGF)-based anti-angiogenic treatments have intensified research on other growth factors. The angiopoietin/Tie (Ang/Tie) family has an established role in vascular physiology and regulates angiogenesis, vascular permeability, and inflammatory responses. The Ang/Tie family consists of angiopoietins 1-4, their receptors, tie1 and 2 and the vascular endothelial-protein tyrosine phosphatase (VE-PTP). Modulation of Tie2 activation has provided a promising outcome in preclinical models and has led to clinical trials of Ang/Tie-targeting drug candidates for retinal disorders. Although less is known about the role of Ang/Tie in pulmonary disorders, several studies have revealed great potential of the Ang/Tie family members as drug targets for pulmonary vascular disorders as well. In this review, we summarize the functions of the Ang/Tie pathway in retinal and pulmonary vascular physiology and relevant disorders and highlight promising drug candidates targeting this pathway currently being or expected to be under clinical evaluation for retinal and pulmonary vascular disorders.
Collapse
Affiliation(s)
- Racheal Grace Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter St., Amarillo, TX, 79106, USA.
| |
Collapse
|
10
|
Khan KA, Wu FTH, Cruz‐Munoz W, Kerbel RS. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol Med 2021; 13:e08253. [PMID: 34125494 PMCID: PMC8261516 DOI: 10.15252/emmm.201708253] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-angiogenic drugs targeting the VEGF pathway are most effective in advanced metastatic disease settings of certain types of cancers, whereas they have been unsuccessful as adjuvant therapies of micrometastatic disease in numerous phase III trials involving early-stage (resectable) cancers. Newer investigational anti-angiogenic drugs have been designed to inhibit the Angiopoietin (Ang)-Tie pathway. Acting through Tie2 receptors, the Ang1 ligand is a gatekeeper of endothelial quiescence. Ang2 is a dynamically expressed pro-angiogenic destabilizer of endothelium, and its upregulation is associated with poor prognosis in cancer. Besides using Ang2 blockers as inhibitors of tumor angiogenesis, little attention has been paid to their use as stabilizers of blood vessels to suppress tumor cell extravasation and metastasis. In clinical trials, Ang2 blockers have shown limited efficacy in advanced metastatic disease settings. This review summarizes preclinical evidence suggesting the potential utility of Ang2 inhibitors or Tie2 activators as neoadjuvant or adjuvant therapies in the prevention or treatment of early-stage micrometastatic disease. We further discuss the rationale and potential of combining these strategies with immunotherapy, including immune checkpoint targeting antibodies.
Collapse
Affiliation(s)
- Kabir A Khan
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Florence TH Wu
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - William Cruz‐Munoz
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Robert S Kerbel
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| |
Collapse
|
11
|
Zhao Y, Fu B, Chen P, Li Q, Ouyang Q, Zhang C, Cai G, Wu L, Chen X. Activated mesangial cells induce glomerular endothelial cells proliferation in rat anti-Thy-1 nephritis through VEGFA/VEGFR2 and Angpt2/Tie2 pathway. Cell Prolif 2021; 54:e13055. [PMID: 33987885 PMCID: PMC8168418 DOI: 10.1111/cpr.13055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES We aimed to investigate the underlying mechanism of endothelial cells (ECs) proliferation in anti-Thy-1 nephritis. MATERIALS AND METHODS We established anti-Thy-1 nephritis and co-culture system to explore the underlying mechanism of ECs proliferation in vivo and in vitro. EdU assay kit was used for measuring cell proliferation. Immunohistochemical staining and immunofluorescence staining were used to detect protein expression. ELISA was used to measure the concentration of protein in serum and medium. RT-qPCR and Western blot were used to qualify the mRNA and protein expression. siRNA was used to knock down specific protein expression. RESULTS In anti-Thy-1 nephritis, ECs proliferation was associated with mesangial cells (MCs)-derived vascular endothelial growth factor A (VEGFA) and ECs-derived angiopoietin2 (Angpt2). In vitro co-culture system activated MCs-expressed VEGFA to promote vascular endothelial growth factor receptor2 (VEGFR2) activation, Angpt2 expression and ECs proliferation, but inhibit TEK tyrosine kinase (Tie2) phosphorylation. MCs-derived VEGFA stimulated Angpt2 expression in ECs, which inhibited Tie2 phosphorylation and promoted ECs proliferation. And decline of Tie2 phosphorylation induced ECs proliferation. In anti-Thy-1 nephritis, promoting Tie2 phosphorylation could alleviate ECs proliferation. CONCLUSIONS Our study showed that activated MCs promoted ECs proliferation through VEGFA/VEGFR2 and Angpt2/Tie2 pathway in experimental mesangial proliferative glomerulonephritis (MPGN) and in vitro co-culture system. And enhancing Tie2 phosphorylation could alleviate ECs proliferation, which will provide a new idea for MPGN treatment.
Collapse
Affiliation(s)
- Yinghua Zhao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Pu Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Qing Ouyang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chuyue Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Chen M, Zhao Y, Yang X, Zhao Y, Liu Q, Liu Y, Hou Y, Sun H, Jin W. NSDHL promotes triple-negative breast cancer metastasis through the TGFβ signaling pathway and cholesterol biosynthesis. Breast Cancer Res Treat 2021; 187:349-362. [PMID: 33864166 DOI: 10.1007/s10549-021-06213-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Metastasis is the main cause of breast cancer mortality. Recent studies have proved that lipid metabolic reprogramming plays critical roles in breast cancer carcinogenesis and metastasis. We aim to identify critical lipid metabolism genes in breast cancer metastasis. METHODS We designed and cloned a CRISPR pooled library containing lipid metabolic gene guide RNAs and performed a genetic screen in vivo. Transwell assay and animal experiments were used to evaluate cell metastatic ability in vitro or in vivo, respectively. We performed immunohistochemistry with breast cancer tissue microarray to study the clinical significance of NSDHL. FINDINGS We identified a cholesterol metabolic enzyme, NSDHL, as a potential metastatic driver in triple-negative breast cancer. NSDHL was highly expressed in breast cancer tissues and predicted a poor prognosis. NSDHL knockdown significantly suppressed cell proliferation and migration. Mechanistically, NSDHL activated the TGFβ signaling pathway by inhibiting the endosomal degradation of TGFβR2. In addition, blocking the upstream metabolism of NSDHL with ketoconazole rescued cancer metastasis and TGFβR2 degradation. However, the inactivation of NSDHL (Y151X) did not rescue the migration ability and the TGFβR2 protein expression. CONCLUSION Taken together, our findings established that NSDHL serves as a metastatic driver, and its function depends on its enzyme activity in cholesterol biosynthesis and is mediated by the NSDHL-TGFβR2 signal pathway. Our study indicated that NSDHL and steroid biosynthesis may serve as new drug targets for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xueli Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China
| | - Yuanyuan Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiqi Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yifeng Hou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hefen Sun
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China.
| | - Wei Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Build 7, Room 303, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Cheng X, Cheng K. Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Rev 2021; 40:71-88. [PMID: 33156478 PMCID: PMC7897269 DOI: 10.1007/s10555-020-09942-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Metastasis is a multistep process that accounts for the majority of cancer-related death. By the end of metastasize dissemination, circulating tumor cells (CTC) need to extravasate the blood vessels at metastatic sites to form new colonization. Although cancer cell extravasation is a crucial step in cancer metastasis, it has not been successfully targeted by current anti-metastasis strategies due to the lack of a thorough understanding of the molecular mechanisms that regulate this process. This review focuses on recent progress in cancer extravasation visualization techniques, including the development of both in vitro and in vivo cancer extravasation models, that shed light on the underlying mechanisms. Specifically, multiple cancer extravasation stages, such as the adhesion to the endothelium and transendothelial migration, are successfully probed using these technologies. Moreover, the roles of different cell adhesive molecules, chemokines, and growth factors, as well as the mechanical factors in these stages are well illustrated. Deeper understandings of cancer extravasation mechanisms offer us new opportunities to escalate the discovery of anti-extravasation drugs and therapies and improve the prognosis of cancer patients.
Collapse
Affiliation(s)
- Xiao Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
14
|
Lynch M, Heinen S, Markham-Coultes K, O'Reilly M, Van Slyke P, Dumont DJ, Hynynen K, Aubert I. Vasculotide restores the blood-brain barrier after focused ultrasound-induced permeability in a mouse model of Alzheimer's disease. Int J Med Sci 2021; 18:482-493. [PMID: 33390817 PMCID: PMC7757142 DOI: 10.7150/ijms.36775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Focused ultrasound (FUS) is used to locally and transiently induce blood-brain barrier (BBB) permeability, allowing targeted drug delivery to the brain. The purpose of the current study is to evaluate the potential of Vasculotide to accelerate the recovery of the BBB following FUS disruption in the TgCRND8 mouse model of amyloidosis, characteristic of Alzheimer's disease (AD). Accelerating the restoration of the BBB post-FUS would represent an additional safety procedure, which could be beneficial for clinical applications. Methods: TgCRND8 mice and their non-transgenic littermates were treated with Vasculotide (250 ng, intraperitoneal) every 48 hours for 3 months. BBB permeability was induced using FUS, in presence of intravenously injected microbubbles, in TgCRND8 and non-transgenic mice, and confirmed at time 0 by MRI enhancement using the contrast agent gadolinium. BBB closure was assessed at 6, 12 and 20 hours by MRI. In a separate cohort of animals, BBB closure was assessed at 24-hours post-FUS using Evans blue injected intravenously and followed by histological evaluation. Results: Chronic Vasculotide administration significantly reduces the ultra-harmonic threshold required for FUS-induced BBB permeability in the TgCRND8 mice. In addition, Vasculotide treatment led to a faster restoration of the BBB following FUS in TgCRND8 mice. BBB closure after FUS is not significantly different between TgCRND8 and non-transgenic mice. BBB permeability was assessed by gadolinium up to 20-hours post-FUS, demonstrating 87% closure in Vasculotide treated TgCRND8 mice, as opposed to 52% in PBS treated TgCRND8 mice, 58% in PBS treated non-transgenic mice, and 74% in Vasculotide treated non-transgenic mice. In both TgCRND8 mice and non-transgenic littermates the BBB was impermeable to Evans blue dye at 24-hours post-FUS. Conclusion: Vasculotide reduces the pressure required for microbubble ultra-harmonic onset for FUS-induced BBB permeability and it accelerates BBB restoration in a mouse model of amyloidosis, suggesting its potential clinical utility to promote vascular health, plasticity and repair in AD.
Collapse
Affiliation(s)
- Madelaine Lynch
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Laboratory Medicine & Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON, Canada, M5S 1A1
| | - Stefan Heinen
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
| | - Kelly Markham-Coultes
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
| | - Meaghan O'Reilly
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Paul Van Slyke
- Vasomune Therapeutics, 661 University Ave #465, Toronto, ON M5G 1M1
| | - Daniel J. Dumont
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Isabelle Aubert
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Laboratory Medicine & Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON, Canada, M5S 1A1
| |
Collapse
|
15
|
Hilfenhaus G, Mompeón A, Freshman J, Prajapati DP, Hernandez G, Freitas VM, Ma F, Langenbacher AD, Mirkov S, Song D, Cho BK, Goo YA, Pellegrini M, Chen JN, Damoiseaux R, Iruela-Arispe ML. A High-Content Screen Identifies Drugs That Restrict Tumor Cell Extravasation across the Endothelial Barrier. Cancer Res 2020; 81:619-633. [PMID: 33218969 DOI: 10.1158/0008-5472.can-19-3911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Metastases largely rely on hematogenous dissemination of tumor cells via the vascular system and significantly limit prognosis of patients with solid tumors. To colonize distant sites, circulating tumor cells must destabilize the endothelial barrier and transmigrate across the vessel wall. Here we performed a high-content screen to identify drugs that block tumor cell extravasation by testing 3,520 compounds on a transendothelial invasion coculture assay. Hits were further characterized and validated using a series of in vitro assays, a zebrafish model enabling three-dimensional (3D) visualization of tumor cell extravasation, and mouse models of lung metastasis. The initial screen advanced 38 compounds as potential hits, of which, four compounds enhanced endothelial barrier stability while concurrently suppressing tumor cell motility. Two compounds niclosamide and forskolin significantly reduced tumor cell extravasation in zebrafish, and niclosamide drastically impaired metastasis in mice. Because niclosamide had not previously been linked with effects on barrier function, single-cell RNA sequencing uncovered mechanistic effects of the drug on both tumor and endothelial cells. Importantly, niclosamide affected homotypic and heterotypic signaling critical to intercellular junctions, cell-matrix interactions, and cytoskeletal regulation. Proteomic analysis indicated that niclosamide-treated mice also showed reduced levels of kininogen, the precursor to the permeability mediator bradykinin. Our findings designate niclosamide as an effective drug that restricts tumor cell extravasation through modulation of signaling pathways, chemokines, and tumor-endothelial cell interactions. SIGNIFICANCE: A high-content screen identified niclosamide as an effective drug that restricts tumor cell extravasation by enhancing endothelial barrier stability through modulation of molecular signaling, chemokines, and tumor-endothelial cell interactions. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/3/619/F1.large.jpg.
Collapse
Affiliation(s)
- Georg Hilfenhaus
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Ana Mompeón
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jonathan Freshman
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Divya P Prajapati
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Gloria Hernandez
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Feiyang Ma
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Adam D Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Snezana Mirkov
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dana Song
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Byoung-Kyu Cho
- Proteomics Center of Excellence, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Young Ah Goo
- Proteomics Center of Excellence, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California.
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
16
|
The endothelial barrier and cancer metastasis: Does the protective facet of platelet function matter? Biochem Pharmacol 2020; 176:113886. [PMID: 32113813 DOI: 10.1016/j.bcp.2020.113886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Overwhelming evidence suggests that platelets have a detrimental role in promoting cancer spread via platelet-cancer cell interactions linked to thrombotic mechanisms. On the other hand, a beneficial role of platelets in the preservation of the endothelial barrier in inflammatory conditions has been recently described, a phenomenon that could also operate in cancer-related inflammation. It is tempting to speculate that some antiplatelet strategies to combat cancer metastasis may impair the endogenous platelet-dependent mechanisms preserving endothelial barrier function. If the protective function of platelets is impaired, it may lead to increased endothelial permeability and more efficient cancer cell intravasation in the primary tumor and cancer cell extravasation at metastatic sites. In this commentary, we discuss current evidence that could support this hypothesis.
Collapse
|
17
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
18
|
Tee JK, Setyawati MI, Peng F, Leong DT, Ho HK. Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness. Nanotoxicology 2019; 13:682-700. [PMID: 30776942 DOI: 10.1080/17435390.2019.1571646] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have been widely used in biomedical field for therapeutic treatments, drug carriers, and bio-imaging agent. Recent studies have highlighted the possibility of utilizing inorganic NPs in inducing endothelial leakiness through endothelial remodeling to promote drug transport across the barrier. However, an uncontrolled and persistent leakiness could lead to promiscuous transport of molecules and cells across the barrier, highlighting the pressing need to control the timely recovery from endothelial cell leakiness. Herein, we show that angiopoietin-1 (Ang1) could promote recovery of human microvascular endothelial cells (HMVECs) from titanium dioxide nanoparticle (TiO2 NPs)-induced endothelial leakiness. Ang1 is known as an anti-permeability growth factor which forms complexes with its receptor Tie2 at the cell-to-cell junctions. We find that the introduction of Ang1 not only accelerates the recovery of NP-induced endothelial leakiness (NanoEL) but also promotes cell rigidity by increasing tubulin acetylation, thereby remodels the endothelial cells to further mitigate the effects of NP exposure through the activation of the Akt pathway. Using in vitro metastasis model, we further show that HMVECs treated with TiO2 NPs followed by Ang1 could reduce migration of human skin cancer A431 cells across the endothelial barrier. In summary, Ang1 plays important roles in promoting the recovery of endothelial cell leakiness and endothelial stability through a mechano-transduction pathway and shows great potential as key modulator that allows material scientist to regulate endothelial leakiness induced by NPs.
Collapse
Affiliation(s)
- Jie Kai Tee
- a NUS Graduate School for Integrative Sciences & Engineering , National University of Singapore , Singapore , Singapore.,b Department of Pharmacy , National University of Singapore , Singapore , Singapore
| | - Magdiel Inggrid Setyawati
- c Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore , Singapore
| | - Fei Peng
- b Department of Pharmacy , National University of Singapore , Singapore , Singapore.,c Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore , Singapore
| | - David Tai Leong
- a NUS Graduate School for Integrative Sciences & Engineering , National University of Singapore , Singapore , Singapore.,c Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore , Singapore
| | - Han Kiat Ho
- a NUS Graduate School for Integrative Sciences & Engineering , National University of Singapore , Singapore , Singapore.,b Department of Pharmacy , National University of Singapore , Singapore , Singapore
| |
Collapse
|
19
|
Jeon HY, Lee YJ, Kim YS, Kim SY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Proinsulin C‐peptide prevents hyperglycemia‐induced vascular leakage and metastasis of melanoma cells in the lungs of diabetic mice. FASEB J 2019; 33:750-762. [DOI: 10.1096/fj.201800723r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - You-Sun Kim
- Department of BiochemistryAjou University School of Medicine Suwon Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology BranchNational Cancer Center Goyang Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical MedicineKangwon National University School of Medicine Chuncheon Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University School of Medicine Chuncheon Korea
| | - Seok-Ho Hong
- Department of Internal MedicineKangwon National University School of Medicine Chuncheon Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| |
Collapse
|
20
|
Wu FTH, Xu P, Chow A, Man S, Krüger J, Khan KA, Paez-Ribes M, Pham E, Kerbel RS. Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br J Cancer 2018; 120:196-206. [PMID: 30498230 PMCID: PMC6342972 DOI: 10.1038/s41416-018-0297-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There are phase 3 clinical trials underway evaluating anti-PD-L1 antibodies as adjuvant (postoperative) monotherapies for resectable renal cell carcinoma (RCC) and triple-negative breast cancer (TNBC); in combination with antiangiogenic VEGF/VEGFR2 inhibitors (e.g., bevacizumab and sunitinib) for metastatic RCC; and in combination with chemotherapeutics as neoadjuvant (preoperative) therapies for resectable TNBC. METHODS This study investigated these and similar clinically relevant drug combinations in highly translational preclinical models of micro- and macro-metastatic disease that spontaneously develop after surgical resection of primary kidney or breast tumours derived from orthotopic implantation of murine cancer cell lines (RENCAluc or EMT-6/CDDP, respectively). RESULTS In the RENCAluc model, adjuvant sunitinib plus anti-PD-L1 improved overall survival compared to either drug alone, while the same combination was ineffective as early therapy for unresected primary tumours or late-stage therapy for advanced metastatic disease. In the EMT-6/CDDP model, anti-PD-L1 was highly effective as an adjuvant monotherapy, while its combination with paclitaxel chemotherapy (with or without anti-VEGF) was most effective as a neoadjuvant therapy. CONCLUSIONS Our preclinical data suggest that anti-PD-L1 plus sunitinib may warrant further investigation as an adjuvant therapy for RCC, while anti-PD-L1 may be improved by combining with chemotherapy in the neoadjuvant but not the adjuvant setting of treating breast cancer.
Collapse
Affiliation(s)
- Florence T H Wu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Janna Krüger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marta Paez-Ribes
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Elizabeth Pham
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Amgen Discovery Research, South San Francisco, CA, USA
| | - Robert S Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
21
|
Chrabaszcz K, Jasztal A, Smęda M, Zieliński B, Blat A, Diem M, Chlopicki S, Malek K, Marzec KM. Label-free FTIR spectroscopy detects and visualizes the early stage of pulmonary micrometastasis seeded from breast carcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3574-3584. [DOI: 10.1016/j.bbadis.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
|
22
|
Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules 2018; 19:3597-3611. [PMID: 30132656 DOI: 10.1021/acs.biomac.8b01137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implantation of acellular biomimetic scaffolds with proangiogenic motifs may have exciting clinical utility for the treatment of ischemic pathologies such as myocardial infarction. Although direct delivery of angiogenic proteins is a possible treatment option, smaller synthetic peptide-based nanostructured alternatives are being investigated due to favorable factors, such as sustained efficacy and high-density epitope presentation of functional moieties. These peptides may be implanted in vivo at the site of ischemia, bypassing the first-pass metabolism and enabling long-term retention and sustained efficacy. Mimics of angiogenic proteins show tremendous potential for clinical use. We discuss possible approaches to integrate the functionality of such angiogenic peptide mimics into self-assembled peptide scaffolds for application in functional tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek A Kumar
- Rutgers School of Dental Medicine , Newark , New Jersey 07101 , United States
| |
Collapse
|
23
|
Ziol M, Poté N, Amaddeo G, Laurent A, Nault JC, Oberti F, Costentin C, Michalak S, Bouattour M, Francoz C, Pageaux GP, Ramos J, Decaens T, Luciani A, Guiu B, Vilgrain V, Aubé C, Derman J, Charpy C, Zucman-Rossi J, Barget N, Seror O, Ganne-Carrié N, Paradis V, Calderaro J. Macrotrabecular-massive hepatocellular carcinoma: A distinctive histological subtype with clinical relevance. Hepatology 2018; 68:103-112. [PMID: 29281854 DOI: 10.1002/hep.29762] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022]
Abstract
UNLABELLED We recently identified a histological subtype of hepatocellular carcinoma (HCC), designated as "macrotrabecular-massive" (MTM-HCC) and associated with specific molecular features. In order to assess the clinical relevance of this variant, we investigated its prognostic value in two large series of patients with HCC treated by either surgical resection or radiofrequency ablation (RFA). We retrospectively included 237 HCC surgical samples and 284 HCC liver biopsies from patients treated by surgical resection and RFA, respectively. Histological slides were reviewed by pathologists specialized in liver disease, and the MTM-HCC subtype was defined by the presence of a predominant (>50%) macrotrabecular architecture (more than six cells thick). The main clinical and biological features were recorded at baseline. Clinical endpoints were early and overall recurrence. The MTM-HCC subtype was identified in 12% of the whole cohort (16% of surgically resected samples, 8.5% of liver biopsy samples). It was associated at baseline with known poor prognostic factors (tumor size, alpha-fetoprotein level, satellite nodules, and vascular invasion). Multivariate analysis showed that MTM-HCC subtype was an independent predictor of early and overall recurrence (surgical series: hazard ratio, 3.03; 95% confidence interval, 1.38-6.65; P = 0.006; and 2.76; 1.63-4.67; P < 0.001; RFA series: 2.37; 1.36-4.13; P = 0.002; and 2.19; 1.35-3.54; P = 0.001, respectively). Its prognostic value was retained even after patient stratification according to common clinical, biological, and pathological features of aggressiveness. No other baseline parameter was independently associated with recurrence in the RFA series. CONCLUSION The MTM-HCC subtype, reliably observed in 12% of patients eligible for curative treatment, represents an aggressive form of HCC that may require more specific therapeutic strategies. (Hepatology 2018;68:103-112).
Collapse
Affiliation(s)
- Marianne Ziol
- Service d'anatomie pathologique, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique Hôpitaux de Paris, Bondy, France
- Unité Mixte de Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Université Paris Diderot, Paris, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Nicolas Poté
- Assistance Publique-Hôpitaux de Paris, Service d'Anatomie et de Cytologie Pathologiques, Hôpital Universitaire Beaujon; INSERM, Université Paris Diderot, CNRS, Centre de Recherche sur l'Inflammation (CRI), Paris, Département Hospitalo-Universitaire (DHU) UNITY, Clichy, France
| | - Giuliana Amaddeo
- Inserm, U955, Team 18, Université Paris-Est Créteil, Faculté de Médecine
- Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, CHU Henri Mondor
| | - Alexis Laurent
- Inserm, U955, Team 18, Université Paris-Est Créteil, Faculté de Médecine
- Assistance Publique-Hôpitaux de Paris, Département de Chirurgie Digestive et Hépato-Biliaire, CHU Henri Mondor, Créteil, France
| | - Jean-Charles Nault
- Unité Mixte de Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Université Paris Diderot, Paris, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
- Service d'Hépatologie, Groupe hospitalier Paris-Seine-Saint Denis, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - Frédéric Oberti
- Hépato-gastroentérologie et oncologie digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Charlotte Costentin
- Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, CHU Henri Mondor
| | - Sophie Michalak
- Service d'Anatomie et de Cytologie Pathologiques, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Mohamed Bouattour
- Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Hôpital Universitaire Beaujon, France
| | - Claire Francoz
- Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Hôpital Universitaire Beaujon, France
| | - Georges Philippe Pageaux
- Hépato-gastroentérologie et oncologie digestive, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Jeanne Ramos
- Service d'Anatomie et de Cytologie Pathologiques, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Thomas Decaens
- Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes; Université Grenoble Alpes; Institute for Advanced Biosciences-Inserm U1209/CNRS UMR 5309/Université de Grenoble-Alpes, Grenoble, France
| | - Alain Luciani
- Inserm, U955, Team 18, Université Paris-Est Créteil, Faculté de Médecine
- Assistance Publique-Hôpitaux de Paris, Service de Radiologie, CHU Henri Mondor, Créteil, France
| | - Boris Guiu
- Service de Radiologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Christophe Aubé
- Service de Radiologie, Centre Hospitalier-Universitaire d'Angers, Angers, France
| | - Jonathan Derman
- Assistance Publique-Hôpitaux de Paris, Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| | - Cécile Charpy
- Assistance Publique-Hôpitaux de Paris, Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| | - Jessica Zucman-Rossi
- Unité Mixte de Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Nathalie Barget
- Centre de ressources biologiques BB-0033-00027, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance Publique Hôpitaux de Paris
| | - Olivier Seror
- Assistance Publique-Hôpitaux de Paris, Service de Radiologie, Hôpital Jean Verdier, Bondy, France
| | - Nathalie Ganne-Carrié
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
- Service d'Hépatologie, Groupe hospitalier Paris-Seine-Saint Denis, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - Valérie Paradis
- Assistance Publique-Hôpitaux de Paris, Service d'Anatomie et de Cytologie Pathologiques, Hôpital Universitaire Beaujon; INSERM, Université Paris Diderot, CNRS, Centre de Recherche sur l'Inflammation (CRI), Paris, Département Hospitalo-Universitaire (DHU) UNITY, Clichy, France
| | - Julien Calderaro
- Inserm, U955, Team 18, Université Paris-Est Créteil, Faculté de Médecine
- Assistance Publique-Hôpitaux de Paris, Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
24
|
Han S, Lee SJ, Kim KE, Lee HS, Oh N, Park I, Ko E, Oh SJ, Lee YS, Kim D, Lee S, Lee DH, Lee KH, Chae SY, Lee JH, Kim SJ, Kim HC, Kim S, Kim SH, Kim C, Nakaoka Y, He Y, Augustin HG, Hu J, Song PH, Kim YI, Kim P, Kim I, Koh GY. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 2017; 8:335ra55. [PMID: 27099174 DOI: 10.1126/scitranslmed.aad9260] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Protection of endothelial integrity has been recognized as a frontline approach to alleviating sepsis progression, yet no effective agent for preserving endothelial integrity is available. Using an unusual anti-angiopoietin 2 (ANG2) antibody, ABTAA (ANG2-binding and TIE2-activating antibody), we show that activation of the endothelial receptor TIE2 protects the vasculature from septic damage and provides survival benefit in three sepsis mouse models. Upon binding to ANG2, ABTAA triggers clustering of ANG2, assembling an ABTAA/ANG2 complex that can subsequently bind and activate TIE2. Compared with a conventional ANG2-blocking antibody, ABTAA was highly effective in augmenting survival from sepsis by strengthening the endothelial glycocalyx, reducing cytokine storms, vascular leakage, and rarefaction, and mitigating organ damage. Together, our data advance the role of TIE2 activation in ameliorating sepsis progression and open a potential therapeutic avenue for sepsis to address the lack of sepsis-specific treatment.
Collapse
Affiliation(s)
- Sangyeul Han
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea. Center for Vascular Research, Institute for Basic Science, Daejeon 305-701, Republic of Korea.
| | - Seung-Jun Lee
- Center for Vascular Research, Institute for Basic Science, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kyung Eun Kim
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Hyo Seon Lee
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Nuri Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Inwon Park
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Eun Ko
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Seung Ja Oh
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Yoon-Sook Lee
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - David Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Seungjoo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Dae Hyun Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kwang-Hoon Lee
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Su Young Chae
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Jung-Hoon Lee
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Su-Jin Kim
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Hyung-Chan Kim
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Seokkyun Kim
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Sung Hyun Kim
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Chungho Kim
- School of Life Sciences and Technologies, Korea University, Seoul 136-701, Republic of Korea
| | - Yoshikazu Nakaoka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yulong He
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69121 Heidelberg, Germany. Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Junhao Hu
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69121 Heidelberg, Germany
| | - Paul H Song
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Yong-In Kim
- Samsung Advanced Institute of Technology, Suwon, 446-712, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 305-701, Republic of Korea
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
25
|
Michael IP, Orebrand M, Lima M, Pereira B, Volpert O, Quaggin SE, Jeansson M. Angiopoietin-1 deficiency increases tumor metastasis in mice. BMC Cancer 2017; 17:539. [PMID: 28800750 PMCID: PMC5553747 DOI: 10.1186/s12885-017-3531-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023] Open
Abstract
Background Angipoietin-1 activation of the tyrosine kinase receptor Tek expressed mainly on endothelial cells leads to survival and stabilization of endothelial cells. Studies have shown that Angiopoietin-1 counteracts permeability induced by a number of stimuli. Here, we test the hypothesis that loss of Angiopoietin-1/Tek signaling in the vasculature would increase metastasis. Methods Angiopoietin-1 was deleted in mice just before birth using floxed Angiopoietin-1 and Tek mice crossed to doxycycline-inducible bitransgenic ROSA-rtTA/tetO-Cre mice. By crossing Angiopoietin-1 knockout mice to the MMTV-PyMT autochthonous mouse breast cancer model, we investigated primary tumor growth and metastasis to the lung. Furthermore, we utilized B16F10 melanoma cells subcutaneous and experimental lung metastasis models in Angiopoietin-1 and Tek knockout mice. Results We found that primary tumor growth in MMTV-PyMT mice was unaffected, while metastasis to the lung was significantly increased in Angiopoietin-1 knockout MMTV-PyMT mice. In addition, angiopoietin-1 deficient mice exhibited a significant increase in lung metastasis of B16F10 melanoma cells, compared to wild type mice 3 weeks after injection. Additional experiments showed that this was likely an early event due to increased attachment or extravasation of tumor cells, since seeding of tumor cells was significantly increased 4 and 24 h post tail vein injection. Finally, using inducible Tek knockout mice, we showed a significant increase in tumor cell seeding to the lung, suggesting that Angiopoietin-1/Tek signaling is important for vascular integrity to limit metastasis. Conclusions This study show that loss of the Angiopoietin-1/Tek vascular growth factor system leads to increased metastasis without affecting primary tumor growth.
Collapse
Affiliation(s)
- Iacovos P Michael
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Martina Orebrand
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjoldsvagen 20, 751 85, Uppsala, Sweden
| | - Marta Lima
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Beatriz Pereira
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjoldsvagen 20, 751 85, Uppsala, Sweden
| | - Olga Volpert
- Department of Urology, RH Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, IL, USA
| | - Marie Jeansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjoldsvagen 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
26
|
Wu FTH, Man S, Xu P, Chow A, Paez-Ribes M, Lee CR, Pirie-Shepherd SR, Emmenegger U, Kerbel RS. Efficacy of Cotargeting Angiopoietin-2 and the VEGF Pathway in the Adjuvant Postsurgical Setting for Early Breast, Colorectal, and Renal Cancers. Cancer Res 2016; 76:6988-7000. [PMID: 27651308 PMCID: PMC5633081 DOI: 10.1158/0008-5472.can-16-0888] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Antiangiogenic tyrosine kinase inhibitors (TKI) that target VEGF receptor-2 (VEGFR2) have not been effective as adjuvant treatments for micrometastatic disease in phase III clinical trials. Angiopoietin-2 (Ang2) is a proangiogenic and proinflammatory vascular destabilizer that cooperates with VEGF. The purpose of this study was to test whether CVX-060 (an Ang2-specific CovX-body) can be combined with VEGFR2-targeting TKIs (sunitinib or regorafenib) to successfully treat postsurgical metastatic disease in multiple orthotopically implanted human tumor xenograft and syngeneic murine tumor models. In the MDA-MB-231.LM2-4 human breast cancer model, adjuvant sunitinib was ineffective, whereas adjuvant CVX-060 delayed the progression of pulmonary or distant lymphatic metastases; however, overall survival was only improved with the adjuvant use of a VEGF-A/Ang2-bispecific CovX-body (CVX-241) but not when CVX-060 is combined with sunitinib. Adjuvant CVX-241 also showed promise in the EMT-6/CDDP murine breast cancer model, with or without an immune checkpoint inhibitor (anti-PD-L1). In the RENCA model of mouse renal cancer, however, combining CVX-060 with sunitinib in the adjuvant setting was superior to CVX-241 as treatment for postsurgical lung metastases. In the HCT116 and HT29 xenograft models of colorectal cancer, both CVX-060 and regorafenib inhibited liver metastases. Overall, our preclinical findings suggest differential strategies by which Ang2 blockers can be successfully combined with VEGF pathway targeting in the adjuvant setting to treat micrometastatic disease-particularly, in combination with VEGF-A blockers (but not VEGFR2 TKIs) in resected breast cancer; in combination with VEGFR2 TKIs in resected kidney cancer; and as single agents or with VEGFR2 TKIs in resected colorectal cancer. Cancer Res; 76(23); 6988-7000. ©2016 AACR.
Collapse
Affiliation(s)
- Florence T H Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Marta Paez-Ribes
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Christina R Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Steven R Pirie-Shepherd
- Oncology and Rinat Research Unit, Pfizer Worldwide Research and Development, La Jolla, California
| | - Urban Emmenegger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Robert S Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
27
|
Regula JT, Lundh von Leithner P, Foxton R, Barathi VA, Cheung CMG, Bo Tun SB, Wey YS, Iwata D, Dostalek M, Moelleken J, Stubenrauch KG, Nogoceke E, Widmer G, Strassburger P, Koss MJ, Klein C, Shima DT, Hartmann G. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol Med 2016; 8:1265-1288. [PMID: 27742718 PMCID: PMC5090659 DOI: 10.15252/emmm.201505889] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Anti‐angiogenic therapies using biological molecules that neutralize vascular endothelial growth factor‐A (VEGF‐A) have revolutionized treatment of retinal vascular diseases including age‐related macular degeneration (AMD). This study reports preclinical assessment of a strategy to enhance anti‐VEGF‐A monotherapy efficacy by targeting both VEGF‐A and angiopoietin‐2 (ANG‐2), a factor strongly upregulated in vitreous fluids of patients with retinal vascular disease and exerting some of its activities in concert with VEGF‐A. Simultaneous VEGF‐A and ANG‐2 inhibition was found to reduce vessel lesion number, permeability, retinal edema, and neuron loss more effectively than either agent alone in a spontaneous choroidal neovascularization (CNV) model. We describe the generation of a bispecific domain‐exchanged (crossed) monoclonal antibody (CrossMAb; RG7716) capable of binding, neutralizing, and depleting VEGF‐A and ANG‐2. RG7716 showed greater efficacy than anti‐VEGF‐A alone in a non‐human primate laser‐induced CNV model after intravitreal delivery. Modification of RG7716's FcRn and FcγR binding sites disabled the antibodies' Fc‐mediated effector functions. This resulted in increased systemic, but not ocular, clearance. These properties make RG7716 a potential next‐generation therapy for neovascular indications of the eye.
Collapse
Affiliation(s)
- Jörg T Regula
- Roche Pharma Research and Early Development, Roche Innovation Center München, Penzberg, Germany
| | - Peter Lundh von Leithner
- Department of Ocular Biology and Therapeutics, UCL London Institute of Ophthalmology, London, UK
| | - Richard Foxton
- Department of Ocular Biology and Therapeutics, UCL London Institute of Ophthalmology, London, UK.,Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Veluchamy A Barathi
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute The Academia, Singapore, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute The Academia, Singapore, Singapore
| | - Sai Bo Bo Tun
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute The Academia, Singapore, Singapore
| | - Yeo Sia Wey
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute The Academia, Singapore, Singapore
| | - Daiju Iwata
- Department of Ocular Biology and Therapeutics, UCL London Institute of Ophthalmology, London, UK
| | - Miroslav Dostalek
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jörg Moelleken
- Roche Pharma Research and Early Development, Roche Innovation Center München, Penzberg, Germany
| | - Kay G Stubenrauch
- Roche Pharma Research and Early Development, Roche Innovation Center München, Penzberg, Germany
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Gabriella Widmer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pamela Strassburger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael J Koss
- Department of Ophthalmology, Goethe University, Frankfurt am Main, Germany.,Department of Ophthalmology, Ruprecht Karls University, Heidelberg, Germany
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zürich, F. Hoffmann-La Roche Ltd, Zürich, Switzerland
| | - David T Shima
- Department of Ocular Biology and Therapeutics, UCL London Institute of Ophthalmology, London, UK
| | - Guido Hartmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
28
|
Thamm K, Njau F, Van Slyke P, Dumont DJ, Park JK, Haller H, David S. Pharmacological Tie2 activation in kidney transplantation. World J Transplant 2016; 6:573-582. [PMID: 27683636 PMCID: PMC5036127 DOI: 10.5500/wjt.v6.i3.573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/24/2016] [Accepted: 07/18/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the therapeutic potential of vasculotide (VT) - a Tie2 activating therapeutic - in kidney transplantation.
METHODS We performed a murine MHC-mismatched renal transplant model (C57Bl/6 male into Balb/c female) with 60 min cold and 30 min warm ischemia time. 500 ng VT was administered i.p. to donor mice 1 h before organ removal. In addition, recipients received 500 ng VT i.p. directly and 3 d after surgery. Survival was monitored and remaining animals were sacrificed 28 d after transplantation. In this model, we analyzed: (1) organ function; (2) Kaplan-Meier survival; (3) organ damage (periodic acid Schiff staining) via semi-quantitative scoring [0-4 (0 = no injury/inflammation to 4 = very severe injury/inflammation)]; (4) expression of renal endothelial adhesion molecules (ICAM-1) via immunofluorescence (IF) staining, immunoblotting and qPCR; (5) infiltration of inflammatory cells (IF Gr-1, F4/80); and (6) fibrosis via staining of α-smooth muscle actin (αSMA), Sirius red staining and immunoblotting of SMAD3 activation.
RESULTS Exogenous activation of Tie2 with VT resulted in diminished expression of peritubular and glomerular endothelial adhesion molecules. Consequently, infiltration of inflammatory cells (analyzed as ICAM-1, Gr-1 and F4/80 positive cells) was reduced in VT-treated mice compared to controls. Additionally, VT was protective against fibrogenesis after kidney transplantation. Trends towards lower serum creatinine (vehicle: 142 ± 17 μmol/L vs VT: 94 ± 23 μmol/L), urea (vehicle: 76 ± 5 mmol/L vs VT: 60 ± 8 mmol/L) and lactate dehydrogenase (vehicle: 1288 ± 383 iU vs VT: 870 ± 275 iU) were observed on day 6 after transplantation. Kaplan-Meier survival analysis showed improved survival rates in the VT-treated mice that did not reach statistical significance (27% vs 54%, P = 0.24, n = 11 per group). Exogenous activation of Tie2 via VT might reduce infiltration of inflammatory cells into renal tissue thereby protecting the transplant from early graft dysfunction potentially affecting long-term function.
CONCLUSION Protection of the endothelial microvasculature via the Tie2 axis in the early transplant setting might hold promise as a therapeutic target.
Collapse
|
29
|
Yang C, Ohk J, Lee JY, Kim EJ, Kim J, Han S, Park D, Jung H, Kim C. Calmodulin Mediates Ca2+-Dependent Inhibition of Tie2 Signaling and Acts as a Developmental Brake During Embryonic Angiogenesis. Arterioscler Thromb Vasc Biol 2016; 36:1406-16. [PMID: 27199448 DOI: 10.1161/atvbaha.116.307619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/05/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiogenesis, the process of building complex vascular structures, begins with sprout formation on preexisting blood vessels, followed by extension of the vessels through proliferation and migration of endothelial cells. Based on the potential therapeutic benefits of preventing angiogenesis in pathological conditions, many studies have focused on the mechanisms of its initiation as well as control. However, how the extension of vessels is terminated remains obscure. Thus, we investigated the negative regulation mechanism. APPROACH AND RESULTS We report that increased intracellular calcium can induce dephosphorylation of the endothelial receptor tyrosine kinase Tie2. The calcium-mediated dephosphorylation was found to be dependent on Tie2-calmodulin interaction. The Tyr1113 residue in the C-terminal end loop of the Tie2 kinase domain was mapped and found to be required for this interaction. Moreover, mutation of this residue into Phe impaired both the Tie2-calmodulin interaction and calcium-mediated Tie2 dephosphorylation. Furthermore, expressing a mutant Tie2 incapable of binding to calmodulin or inhibiting calmodulin function in vivo causes unchecked growth of the vasculature in Xenopus. Specifically, knockdown of Tie2 in Xenopus embryo retarded the sprouting and extension of intersomitic veins. Although human Tie2 expression in the Tie2-deficient animals almost completely rescued the retardation, the Tie2(Y1113F) mutant caused overgrowth of intersomitic veins with strikingly complex and excessive branching patterns. CONCLUSIONS We propose that the calcium/calmodulin-dependent negative regulation of Tie2 can be used as an inhibitory signal for vessel growth and branching to build proper vessel architecture during embryonic development.
Collapse
Affiliation(s)
- Chansik Yang
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Jiyeon Ohk
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Ji Yeun Lee
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Eun Jin Kim
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Jiyoon Kim
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Sangyeul Han
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Dongeun Park
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.)
| | - Hosung Jung
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.).
| | - Chungho Kim
- From the Department of Life Sciences, Korea University, Seoul, Republic of Korea (C.Y., J.Y.L., E.J.K., J.K., C.K.); School of Biological Sciences, Seoul National University, Seoul, Republic of Korea (C.Y., D.P.); Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea (J.O., H.J.); and Center for Vascular Research, Institute for Basic Science, Daejeon, Korea (S.H.).
| |
Collapse
|