1
|
Rinchai D, Chaussabel D. Assessing the potential relevance of CEACAM6 as a blood transcriptional biomarker. F1000Res 2024; 11:1294. [PMID: 39239252 PMCID: PMC11375406 DOI: 10.12688/f1000research.126721.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 09/07/2024] Open
Abstract
Background Changes in blood transcript abundance levels have been associated with pathogenesis in a wide range of diseases. While next generation sequencing technology can measure transcript abundance on a genome-wide scale, downstream clinical applications often require small sets of genes to be selected for inclusion in targeted panels. Here we set out to gather information from the literature and transcriptome datasets that would help researchers determine whether to include the gene CEACAM6 in such panels. Methods We employed a workflow to systematically retrieve, structure, and aggregate information derived from both the literature and public transcriptome datasets. It consisted of profiling the CEACAM6 literature to identify major diseases associated with this candidate gene and establish its relevance as a biomarker. Accessing blood transcriptome datasets identified additional instances where CEACAM6 transcript levels differ in cases vs controls. Finally, the information retrieved throughout this process was captured in a structured format and aggregated in interactive circle packing plots. Results Although it is not routinely used clinically, the relevance of CEACAM6 as a biomarker has already been well established in the cancer field, where it has invariably been found to be associated with poor prognosis. Focusing on the blood transcriptome literature, we found studies reporting elevated levels of CEACAM6 abundance across a wide range of pathologies, especially diseases where inflammation plays a dominant role, such as asthma, psoriasis, or Parkinson's disease. The screening of public blood transcriptome datasets completed this picture, showing higher abundance levels in patients with infectious diseases caused by viral and bacterial pathogens. Conclusions Targeted assays measuring CEACAM6 transcript abundance in blood may be of potential utility for the management of patients with diseases presenting with systemic inflammation and for the management of patients with cancer, where the assay could potentially be run both on blood and tumor tissues.
Collapse
Affiliation(s)
- Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, 10065, USA
| | - Damien Chaussabel
- Computer Sciences Department, The Jackson Laboratory, Farmington, CT, 06032, USA
| |
Collapse
|
2
|
Xie Z, Liu C, Sun C, Lu Y, Wu S, Liu Y, Wang Q, Wan Y, Wang Y, Yu M, Meng L, Deng J, Zhang W, Wang Z, Yang C, Yuan Y, Xie Z. A novel biomarker of fibrofatty replacement in dystrophinopathies identified by integrating transcriptome, magnetic resonance imaging, and pathology data. J Cachexia Sarcopenia Muscle 2024; 15:98-111. [PMID: 38146684 PMCID: PMC10834313 DOI: 10.1002/jcsm.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND We aimed to analyse genome-wide transcriptome differences between Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients and identify biomarkers that correlate well with muscle magnetic resonance imaging (MRI) and histological fibrofatty replacement in both patients, which have not been reported. METHODS One hundred and one male patients with dystrophinopathies (55 DMD and 46 BMD) were enrolled. Muscle-derived genome-wide RNA-sequencing was performed in 31 DMD patients, 29 BMD patients, and 11 normal controls. Fibrofatty replacement was scored on muscle MRI and histological levels in all patients. A unique pipeline, single-sample gene set enrichment analysis combined with Spearman's rank correlations (ssGSEA-Cor) was developed to identify the most correlated gene signature for fibrofatty replacement. Quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, and single-nucleus RNA-sequencing (snRNA-seq) were performed in the remaining patients to validate the most correlated gene signature. RESULTS Comparative transcriptomic analysis revealed that 31 DMD muscles were characterized by a significant increase of inflammation/immune response and extracellular matrix remodelling compared with 29 BMD muscles (P < 0.05). The ssGSEA-Cor pipeline revealed that the gene set of CDKN2A and CDKN2B was the most correlated gene signature for fibrofatty replacement (histological rs = 0.744, P < 0.001; MRI rs = 0.718, P < 0.001). Muscle qRT-PCR confirmed that CDKN2A mRNA expression in both 15 DMD (median = 25.007, P < 0.001) and 12 BMD (median = 5.654, P < 0.001) patients were significantly higher than that in controls (median = 1.101), while no significant difference in CDKN2B mRNA expression was found among DMD, BMD, and control groups. In the 27 patients, muscle CDKN2A mRNA expression respectively correlated with muscle MRI (rs = 0.883, P < 0.001) and histological fibrofatty replacement (rs = 0.804, P < 0.001) and disease duration (rs = 0.645, P < 0.001) and North Star Ambulatory Assessment total scores (rs = -0.698, P < 0.001). Muscle western blot analysis confirmed that both four DMD (median = 2.958, P < 0.05) and four BMD (median = 1.959, P < 0.01) patients had a significantly higher level of CDKN2A protein expression than controls (median = 1.068). The snRNA-seq analysis of two DMD muscles revealed that CDKN2A was mainly expressed in fibro-adipogenic progenitors, satellite cells, and myoblasts. CONCLUSIONS We identify CDKN2A expression as a novel biomarker of fibrofatty replacement, which might be a new target for antifibrotic therapy in dystrophinopathies.
Collapse
Affiliation(s)
- Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Chang Liu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Chengyue Sun
- Department of NeurologyPeking University People's HospitalBeijingChina
| | - Yanyu Lu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Shiyi Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Yilin Liu
- Department of PathologyPeking Union Medical College HospitalBeijingChina
| | - Qi Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Yalan Wan
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Yikang Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Meng Yu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Lingchao Meng
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Jianwen Deng
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Wei Zhang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Zhaoxia Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Yun Yuan
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Zhiying Xie
- Department of NeurologyPeking University First HospitalBeijingChina
| |
Collapse
|
3
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
4
|
Findlay AR, Paing MM, Daw JA, Haller M, Bengoechea R, Pittman SK, Li S, Wang F, Miller TM, True HL, Chou TF, Weihl CC. DNAJB6 isoform specific knockdown: Therapeutic potential for limb girdle muscular dystrophy D1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:937-948. [PMID: 37346979 PMCID: PMC10280091 DOI: 10.1016/j.omtn.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Dominant missense mutations in DNAJB6, a co-chaperone of HSP70, cause limb girdle muscular dystrophy (LGMD) D1. No treatments are currently available. Two isoforms exist, DNAJB6a and DNAJB6b, each with distinct localizations in muscle. Mutations reside in both isoforms, yet evidence suggests that DNAJB6b is primarily responsible for disease pathogenesis. Knockdown treatment strategies involving both isoforms carry risk, as DNAJB6 knockout is embryonic lethal. We therefore developed an isoform-specific knockdown approach using morpholinos. Selective reduction of each isoform was achieved in vitro in primary mouse myotubes and human LGMDD1 myoblasts, as well as in vivo in mouse skeletal muscle. To assess isoform specific knockdown in LGMDD1, we created primary myotube cultures from a knockin LGMDD1 mouse model. Using mass spectrometry, we identified an LGMDD1 protein signature related to protein homeostasis and myofibril structure. Selective reduction of DNAJB6b levels in LGMDD1 myotubes corrected much of the proteomic disease signature toward wild type levels. Additional in vivo functional data is required to determine if selective reduction of DNAJB6b is a viable therapeutic target for LGMDD1.
Collapse
Affiliation(s)
- Andrew R. Findlay
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - May M. Paing
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jil A. Daw
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Meade Haller
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rocio Bengoechea
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sara K. Pittman
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Feng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy M. Miller
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8228, St. Louis, MO 63110, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Conrad C. Weihl
- Department of Neurology, Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
5
|
Signorelli M, Tsonaka R, Aartsma-Rus A, Spitali P. Multiomic characterization of disease progression in mice lacking dystrophin. PLoS One 2023; 18:e0283869. [PMID: 37000843 PMCID: PMC10065259 DOI: 10.1371/journal.pone.0283869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations leading to lack of dystrophin in skeletal muscle. A better understanding of how objective biomarkers for DMD vary across subjects and over time is needed to model disease progression and response to therapy more effectively, both in pre-clinical and clinical research. We present an in-depth characterization of disease progression in 3 murine models of DMD by multiomic analysis of longitudinal trajectories between 6 and 30 weeks of age. Integration of RNA-seq, mass spectrometry-based metabolomic and lipidomic data obtained in muscle and blood samples by Multi-Omics Factor Analysis (MOFA) led to the identification of 8 latent factors that explained 78.8% of the variance in the multiomic dataset. Latent factors could discriminate dystrophic and healthy mice, as well as different time-points. MOFA enabled to connect the gene expression signature in dystrophic muscles, characterized by pro-fibrotic and energy metabolism alterations, to inflammation and lipid signatures in blood. Our results show that omic observations in blood can be directly related to skeletal muscle pathology in dystrophic muscle.
Collapse
Affiliation(s)
- Mirko Signorelli
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Moore U, Fernández-Simón E, Schiava M, Cox D, Gordish-Dressman H, James MK, Mayhew A, Wilson I, Guglieri M, Rufibach L, Blamire A, Carlier PG, Mori-Yoshimura M, Day JW, Jones KJ, Bharucha-Goebel DX, Salort-Campana E, Pestronk A, Walter MC, Paradas C, Stojkovic T, Bravver E, Pegoraro E, Mendell JR, Bushby K, Diaz-Manera J, Straub V. Myostatin and follistatin as monitoring and prognostic biomarkers in dysferlinopathy. Neuromuscul Disord 2023; 33:199-207. [PMID: 36689846 DOI: 10.1016/j.nmd.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Myostatin is a myokine which acts upon skeletal muscle to inhibit growth and regeneration. Myostatin is endogenously antagonised by follistatin. This study assessed serum myostatin and follistatin concentrations as monitoring or prognostic biomarkers in dysferlinopathy, an autosomal recessively inherited muscular dystrophy. Myostatin was quantified twice with a three-year interval in 76 patients with dysferlinopathy and 38 controls. Follistatin was quantified in 62 of these patients at the same timepoints, and in 31 controls. Correlations with motor function, muscle fat fraction and contractile cross-sectional area were performed. A regression model was used to account for confounding variables. Baseline myostatin, but not follistatin, correlated with baseline function and MRI measures. However, in individual patients, three-year change in myostatin did not correlate with functional or MRI changes. Linear modelling demonstrated that function, serum creatine kinase and C-reactive protein, but not age, were independently related to myostatin concentration. Baseline myostatin concentration predicted loss of ambulation but not rate of change of functional or MRI measures, even when relative inhibition with follistatin was considered. With adjustment for extra-muscular causes of variation, myostatin could form a surrogate measure of functional ability or muscle mass, however myostatin inhibition does not form a promising treatment target in dysferlinopathy.
Collapse
Affiliation(s)
- Ursula Moore
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Esther Fernández-Simón
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marianela Schiava
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Dan Cox
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Heather Gordish-Dressman
- Center for Translational Science, Division of Biostatistics and Study Methodology, Children's National Health System, Washington, DC, USA; Pediatrics, Epidemiology and Biostatistics, George Washington University, Washington, DC, USA
| | - Meredith K James
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anna Mayhew
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ian Wilson
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Andrew Blamire
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristi J Jones
- The Children's Hospital at Westmead and The University of Sydney, Sydney, NSW, Australia
| | - Diana X Bharucha-Goebel
- Department of Neurology, Children's National Health System, Washington, DC, USA; National Institutes of Health (NINDS), Bethesda, MD, USA
| | | | - Alan Pestronk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, LudwigMaximilians-University of Munich, Munich, Germany
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Tanya Stojkovic
- Centre de reference des maladies neuromusculaires, Institut de Myologie, AP-HP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elena Bravver
- Neuroscience Institute, Carolinas Neuromuscular/ALS-MDA Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Jerry R Mendell
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Diaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | | |
Collapse
|
7
|
Breen MS, Fan X, Levy T, Pollak RM, Collins B, Osman A, Tocheva AS, Sahin M, Berry-Kravis E, Soorya L, Thurm A, Powell CM, Bernstein JA, Kolevzon A, Buxbaum JD. Large 22q13.3 deletions perturb peripheral transcriptomic and metabolomic profiles in Phelan-McDermid syndrome. HGG ADVANCES 2023; 4:100145. [PMID: 36276299 PMCID: PMC9579712 DOI: 10.1016/j.xhgg.2022.100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused at least in part by haploinsufficiency of the SHANK3 gene, due to sequence variants in SHANK3 or subtelomeric 22q13.3 deletions. Phenotypic differences have been reported between PMS participants carrying small "class I" mutations and large "class II" mutations; however, the molecular perturbations underlying these divergent phenotypes remain obscure. Using peripheral blood transcriptome and serum metabolome profiling, we examined the molecular perturbations in the peripheral circulation associated with a full spectrum of PMS genotypes spanning class I (n = 37) and class II mutations (n = 39). Transcriptomic data revealed 52 genes with blood expression profiles that tightly scale with 22q.13.3 deletion size. Furthermore, we uncover 208 underexpressed genes in PMS participants with class II mutations, which were unchanged in class I mutations. These genes were not linked to 22q13.3 and were strongly enriched for glycosphingolipid metabolism, NCAM1 interactions, and cytotoxic natural killer (NK) immune cell signatures. In silico predictions estimated a reduction in CD56+ CD16- NK cell proportions in class II mutations, which was validated by mass cytometry time of flight. Global metabolomics profiling identified 24 metabolites that were significantly altered in PMS participants with class II mutations and confirmed a general reduction in sphingolipid metabolism. Collectively, these results provide new evidence linking PMS participants carrying class II mutations with decreased expression of cytotoxic cell signatures, reduced relative proportions of NK cells, and lower sphingolipid metabolism. These findings highlight alternative avenues for therapeutic development and offer new mechanistic insights supporting genotype-to-phenotype associations in PMS.
Collapse
Affiliation(s)
- Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuanjia Fan
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca M Pollak
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Collins
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aya Osman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna S Tocheva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Rosamund Stone Zander Translational Neuroscience Center and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig M Powell
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.,Civitan International Research Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
8
|
van Cruchten RTP, van As D, Glennon JC, van Engelen BGM, 't Hoen PAC, Wenninger S, Daidj F, Cumming S, Littleford R, Monckton DG, Lochmüller H, Catt M, Faber CG, Hapca A, Donnan PT, Gorman G, Bassez G, Schoser B, Knoop H, Treweek S, Wansink DG, Impens F, Gabriels R, Claeys T, Ravel-Chapuis A, Jasmin BJ, Mahon N, Nieuwenhuis S, Martens L, Novak P, Furling D, Baak A, Gourdon G, MacKenzie A, Martinat C, Neault N, Roos A, Duchesne E, Salz R, Thompson R, Baghdoyan S, Varghese AM, Blom P, Spendiff S, Manta A. Clinical improvement of DM1 patients reflected by reversal of disease-induced gene expression in blood. BMC Med 2022; 20:395. [PMID: 36352383 PMCID: PMC9646470 DOI: 10.1186/s12916-022-02591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is an incurable multisystem disease caused by a CTG-repeat expansion in the DM1 protein kinase (DMPK) gene. The OPTIMISTIC clinical trial demonstrated positive and heterogenous effects of cognitive behavioral therapy (CBT) on the capacity for activity and social participations in DM1 patients. Through a process of reverse engineering, this study aims to identify druggable molecular biomarkers associated with the clinical improvement in the OPTIMISTIC cohort. METHODS Based on full blood samples collected during OPTIMISTIC, we performed paired mRNA sequencing for 27 patients before and after the CBT intervention. Linear mixed effect models were used to identify biomarkers associated with the disease-causing CTG expansion and the mean clinical improvement across all clinical outcome measures. RESULTS We identified 608 genes for which their expression was significantly associated with the CTG-repeat expansion, as well as 1176 genes significantly associated with the average clinical response towards the intervention. Remarkably, all 97 genes associated with both returned to more normal levels in patients who benefited the most from CBT. This main finding has been replicated based on an external dataset of mRNA data of DM1 patients and controls, singling these genes out as candidate biomarkers for therapy response. Among these candidate genes were DNAJB12, HDAC5, and TRIM8, each belonging to a protein family that is being studied in the context of neurological disorders or muscular dystrophies. Across the different gene sets, gene pathway enrichment analysis revealed disease-relevant impaired signaling in, among others, insulin-, metabolism-, and immune-related pathways. Furthermore, evidence for shared dysregulations with another neuromuscular disease, Duchenne muscular dystrophy, was found, suggesting a partial overlap in blood-based gene dysregulation. CONCLUSIONS DM1-relevant disease signatures can be identified on a molecular level in peripheral blood, opening new avenues for drug discovery and therapy efficacy assessments.
Collapse
Affiliation(s)
- Remco T P van Cruchten
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniël van As
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Samani A, Hightower RM, Reid AL, English KG, Lopez MA, Doyle JS, Conklin MJ, Schneider DA, Bamman MM, Widrick JJ, Crossman DK, Xie M, Jee D, Lai EC, Alexander MS. miR-486 is essential for muscle function and suppresses a dystrophic transcriptome. Life Sci Alliance 2022; 5:e202101215. [PMID: 35512829 PMCID: PMC9087951 DOI: 10.26508/lsa.202101215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023] Open
Abstract
miR-486 is a muscle-enriched microRNA, or "myomiR," that has reduced expression correlated with Duchenne muscular dystrophy (DMD). To determine the function of miR-486 in normal and dystrophin-deficient muscles and elucidate miR-486 target transcripts in skeletal muscle, we characterized mir-486 knockout mice (mir-486 KO). mir-486 KO mice developed disrupted myofiber architecture, decreased myofiber size, decreased locomotor activity, increased cardiac fibrosis, and metabolic defects were exacerbated in mir-486 KO:mdx 5cv (DKO) mice. To identify direct in vivo miR-486 muscle target transcripts, we integrated RNA sequencing and chimeric miRNA eCLIP sequencing to identify key transcripts and pathways that contribute towards mir-486 KO and dystrophic disease pathologies. These targets included known and novel muscle metabolic and dystrophic structural remodeling factors of muscle and skeletal muscle contractile transcript targets. Together, our studies identify miR-486 as essential for normal muscle function, a driver of pathological remodeling in dystrophin-deficient muscle, a useful biomarker for dystrophic disease progression, and highlight the use of multiple omic platforms to identify in vivo microRNA target transcripts.
Collapse
Affiliation(s)
- Adrienne Samani
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rylie M Hightower
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
- University of Alabama at Birmingham Center for Exercise Medicine (UCEM), Birmingham, AL, USA
| | - Andrea L Reid
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Katherine G English
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael A Lopez
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
- University of Alabama at Birmingham Center for Exercise Medicine (UCEM), Birmingham, AL, USA
| | - J Scott Doyle
- Department of Orthopedic Surgery, at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Conklin
- Department of Orthopedic Surgery, at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- University of Alabama at Birmingham Center for Exercise Medicine (UCEM), Birmingham, AL, USA
| | - Jeffrey J Widrick
- Division of Genetics and Genomics at Boston Children's Hospital, Boston, MA, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - David Jee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at Children's of Alabama and the University of Alabama at Birmingham, Birmingham, AL, USA
- University of Alabama at Birmingham Center for Exercise Medicine (UCEM), Birmingham, AL, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Civitan International Research Center (CIRC), at the University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Luo H, Hu L, Brito LF, Dou J, Sammad A, Chang Y, Ma L, Guo G, Liu L, Zhai L, Xu Q, Wang Y. Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. J Anim Sci Biotechnol 2022; 13:108. [PMID: 35986427 PMCID: PMC9392250 DOI: 10.1186/s40104-022-00748-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background The study of molecular processes regulating heat stress response in dairy cattle is paramount for developing mitigation strategies to improve heat tolerance and animal welfare. Therefore, we aimed to identify quantitative trait loci (QTL) regions associated with three physiological indicators of heat stress response in Holstein cattle, including rectal temperature (RT), respiration rate score (RS), and drooling score (DS). We estimated genetic parameters for all three traits. Subsequently, a weighted single-step genome-wide association study (WssGWAS) was performed based on 3200 genotypes, 151,486 phenotypic records, and 38,101 animals in the pedigree file. The candidate genes located within the identified QTL regions were further investigated through RNA sequencing (RNA-seq) analyses of blood samples for four cows collected in April (non-heat stress group) and four cows collected in July (heat stress group). Results The heritability estimates for RT, RS, and DS were 0.06, 0.04, and 0.03, respectively. Fourteen, 19, and 20 genomic regions explained 2.94%, 3.74%, and 4.01% of the total additive genetic variance of RT, RS, and DS, respectively. Most of these genomic regions are located in the Bos taurus autosome (BTA) BTA3, BTA6, BTA8, BTA12, BTA14, BTA21, and BTA24. No genomic regions overlapped between the three indicators of heat stress, indicating the polygenic nature of heat tolerance and the complementary mechanisms involved in heat stress response. For the RNA-seq analyses, 2627 genes were significantly upregulated and 369 downregulated in the heat stress group in comparison to the control group. When integrating the WssGWAS, RNA-seq results, and existing literature, the key candidate genes associated with physiological indicators of heat stress in Holstein cattle are: PMAIP1, SBK1, TMEM33, GATB, CHORDC1, RTN4IP1, and BTBD7. Conclusions Physiological indicators of heat stress are heritable and can be improved through direct selection. Fifty-three QTL regions associated with heat stress indicators confirm the polygenic nature and complex genetic determinism of heat tolerance in dairy cattle. The identified candidate genes will contribute for optimizing genomic evaluation models by assigning higher weights to genetic markers located in these regions as well as to the design of SNP panels containing polymorphisms located within these candidate genes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00748-6.
Collapse
|
11
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
12
|
Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22168954. [PMID: 34445659 PMCID: PMC8396646 DOI: 10.3390/ijms22168954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also be efficiently targeted within the heart in the widest patient population. New perspectives are clearly required to effectively address the unanswered questions concerning the identification of authentic and effectual readouts of DAC occurrence and severity. A potential way forward to achieve further therapy breakthroughs lies in combining multiomic analysis with advanced preclinical precision models. This review presents the fundamental discoveries made using relevant models of DAC and how omics approaches have been incorporated to date.
Collapse
|