1
|
Xie B, Yu J, Chen C, Shen T. Protein Arginine Methyltransferases from Regulatory Function to Clinical Implication in Central Nervous System. Cell Mol Neurobiol 2025; 45:41. [PMID: 40366461 PMCID: PMC12078925 DOI: 10.1007/s10571-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
Arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is a regulatory key mechanism involved in various cellular processes such as gene expression, RNA processing, DNA damage repair. Increasing evidence highlights the crucial role of PRMTs in human diseases, including cancer, cardiovascular and metabolic diseases. Here, this review focuses on the latest findings regarding PRMTs in the central nervous system (CNS), emphasizing their regulatory roles in neural stem cells, neurons, and glial cells. Additionally, we examine the connection between PRMTs dysregulation and neurological diseases affecting the CNS, including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders. Therefore, this review aims to deepen our understanding of PRMTs-mediated arginine methylation in CNS and open avenues for developing novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Bin Xie
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jing Yu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chao Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ting Shen
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Xi Y, Tao K, Wen X, Feng D, Mai Z, Ding H, Mao H, Wang M, Yang Q, Xiang J, Zhang J, Wu S. SIRT3-Mediated Deacetylation of DRP1 K711 Prevents Mitochondrial Dysfunction in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411235. [PMID: 39976201 PMCID: PMC12061286 DOI: 10.1002/advs.202411235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/08/2025] [Indexed: 02/21/2025]
Abstract
Dysregulation of mitochondrial dynamics is a key contributor to the pathogenesis of Parkinson's disease (PD). Aberrant mitochondrial fission induced by dynamin-related protein 1 (DRP1) causes mitochondrial dysfunction in dopaminergic (DA) neurons. However, the mechanism of DRP1 activation and its role in PD progression remain unclear. In this study, Mass spectrometry analysis is performed and identified a significant increased DRP1 acetylation at lysine residue 711 (K711) in the mitochondria under oxidative stress. Enhanced DRP1K711 acetylation facilitated DRP1 oligomerization, thereby exacerbating mitochondrial fragmentation and compromising the mitochondrial function. DRP1K711 acetylation also affects mitochondrial DRP1 recruitment and fission independent of canonical S616 phosphorylation. Further analysis reveals the critical role of sirtuin (SIRT)-3 in deacetylating DRP1K711, thereby regulating mitochondrial dynamics and function. SIRT3 agonists significantly inhibit DRP1K711 acetylation, rescue DA neuronal loss, and improve motor function in a PD mouse model. Conversely, selective knockout of SIRT3 in DA neurons exacerbates DRP1K711 acetylation, leading to increased DA neuronal damage, neuronal death, and worsened motor dysfunction. Notably, this study identifies a novel mechanism involving aberrant SIRT3-mediated DRP1 acetylation at K711 as a key driver of mitochondrial dysfunction and DA neuronal death in PD, revealing a potential target for PD treatment.
Collapse
Affiliation(s)
- Ye Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Tao
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Xiaomin Wen
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Zifan Mai
- Department of BiophysicsInstitute of NeuroscienceNHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhou310058China
| | - Hui Ding
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Honghui Mao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Mingming Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Qian Yang
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Jie Xiang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jie Zhang
- Institute of NeuroscienceCollege of MedicineXiamen University XiamenFujian361105China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
3
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
4
|
Zhang S, Wang S, Yang Z, Li Y, Li J, Chen X, Yao H, Zheng Z, Guo X. Leucine 7 is a key residue for mutant huntingtin-induced mitochondrial pathology and neurotoxicity in Huntington's disease. J Biol Chem 2025; 301:108297. [PMID: 39947473 PMCID: PMC11930128 DOI: 10.1016/j.jbc.2025.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in exon 1 of the HTT gene. Mutant huntingtin (mHTT) associates with mitochondria, resulting in mitochondrial dysfunction and neuronal cell death. However, the underlying molecular mechanisms remain unknown. In this study, we investigate the role of N-terminal first 17 amino acids (N17) of mHTT in regulating its mitochondrial localization. Specifically, we demonstrate that the mutation at leucine 7 of N17 domain suppresses the association of mHTT with mitochondria. Blocking mitochondrial localization of HTT exon 1 with 73 glutamine repeats (HTT-Q73) strongly ameliorates polyglutamine-induced reduction of mitochondrial membrane potential, increase of reactive oxygen species production, and decrease in NAD+/NADH ratio. We observe that HTT-Q73-mediated abnormal mitochondrial morphology, mitochondrial DNA deletion, and cell death are abolished by HTT-Q73-L7A mutation. Finally, overexpression of HTT-Q73-L7A do not cause neurodegeneration and motor dysfunction in vivo. These findings highlight the pivotal role of the L7 residue which contributes to mHTT-caused HD pathology. Targeting the L7 residue of N17 domain may be a novel therapeutic strategy to alleviate mitochondrial dysfunction and neurodegeneration in HD.
Collapse
Affiliation(s)
- Shengrong Zhang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengda Wang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zeyue Yang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanbo Li
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinping Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xushen Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhilong Zheng
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.
| |
Collapse
|
5
|
Xie N, Bai J, Hou Y, Liu J, Zhang Y, Meng X, Wang X. hPSCs-derived brain organoids for disease modeling, toxicity testing and drug evaluation. Exp Neurol 2025; 385:115110. [PMID: 39667657 DOI: 10.1016/j.expneurol.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Due to the differences and variances in genetic background, in vitro and animal models cannot meet the modern medical exploration of real human brain structure and function. Recently, brain organoids generated by human pluripotent stem cells (hPSCs) can mimic the structure and physiological function of human brain, being widely used in medical research. Brain organoids generated from normal hPSCs or patient-derived induced pluripotent stem cells offer a more promising approach for the study of diverse human brain diseases. More importantly, the use of the established brain organoid model for drug evaluation is conducive to shorten the clinical transformation period. Herein, we summarize methods for the identification of brain organoids from cellular diversity, morphology and neuronal activity, brain disease modeling, toxicity testing, and drug evaluation. Based on this, it is hoped that this review will provide new insights into the pathogenesis of brain diseases and drug research and development, promoting the rapid development of brain science.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ya Hou
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Jia Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
6
|
Wen P, Sun Z, Gou F, Wang J, Fan Q, Zhao D, Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res Rev 2025; 104:102667. [PMID: 39848408 DOI: 10.1016/j.arr.2025.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of neurodegenerative diseases. The complex interplay between these factors exacerbates neuronal damage and accelerates disease progression. In neurodegenerative diseases, mitochondrial dysfunction impairs ATP production and promotes the generation of reactive oxygen species (ROS). The accumulation of ROS further damages mitochondrial DNA, proteins, and lipids, creating a vicious cycle of oxidative stress and mitochondrial impairment. This review aims to elucidate the mechanisms by which mitochondrial dysfunction and oxidative stress lead to neurodegeneration, and to highlight potential therapeutic targets to mitigate their harmful effects.
Collapse
Affiliation(s)
- Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing Fan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2025; 36:53-90. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Zhao Y, Fei L, Duan Y. Movement disorders related to antidiabetic medications: a real-world pharmacovigilance study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111128. [PMID: 39181309 DOI: 10.1016/j.pnpbp.2024.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Diabetic Mellitus (DM) has progressively emerged as a worldwide health problem, leading to the widespread deployment of antidiabetic drugs as the primary therapy in the global population. The incidence of diabetes medications-related movement disorders (drMD) is noteworthy but underestimated by clinical practitioners. RESEARCH DESIGN AND METHODS In order to address the incidence of drMD in DM patients and realize the serious outcomes associated with drMD, we conducted a real-world pharmacovigilance study of 612,043 DM patients using the FDA Adverse Event Reporting System (FAERS) database from January 2004 to September 2023. Reporting Odd Ratio (ROR) was calculated to reflect the risk of drMD. A multivariable logistic regression analysis was employed to adjust crude ROR with the mixed factors including age, sex and various antidiabetic treatments. Afterward, a Mendelian Randomization (MR) study was performed to elucidate the underlying genetic correlation between the genetically proxied targets of antidiabetic drugs and motor disorders. RESULTS Among 11,729 cases of motor adverse events in DM patients, six categories of drMD were significantly associated with DM medications. Noticeably, metformin was revealed to drastically increase the incidence of parkinsonism (adjusted ROR:3.97; 95 %CI (3.03, 5.19), p = 5.68e-24), bradykinesia (adjusted ROR:1.69; 95 %CI (1.07,2.59), p = 0.02) and irregular hyperkinesia, including chorea, choreoathetosis and athetosis. Insulin/insulin analogues and GLP-1 analogues presented notably higher odds of tremor: the adjusted ROR (aROR) of insulin and GLP-1 analogue is respectively 1.24 (95 %CI (1.15,1.34), p = 2.51e-08) and 1.78 (95 %CI (1.65,1.91), p = 5.64e-54). The combined therapeutic effects of multiple genetic variants of metformin, especially AMP-activated protein kinase (AMPK) were markedly linked to a greater likelihood of developing secondary parkinsonism (OR:10.816, p = 0.049) according to MR analyses. CONCLUSION The use of antidiabetic medications was significantly related to an increased incidence of movement disorders in DM patients. Moreover, MR analyses provided further genetic evidence for the pharmacovigilance study. This comprehensive investigation might help physicians recognize neurological adverse events associated with antidiabetic treatments and administer effective interventions.
Collapse
Affiliation(s)
- Yingjie Zhao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China; Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan Province 450053, China
| | - Lu Fei
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Henan Province 450053, China
| |
Collapse
|
9
|
Lei T, Zhang X, Fu G, Luo S, Zhao Z, Deng S, Li C, Cui Z, Cao J, Chen P, Yang H. Advances in human cellular mechanistic understanding and drug discovery of brain organoids for neurodegenerative diseases. Ageing Res Rev 2024; 102:102517. [PMID: 39321879 DOI: 10.1016/j.arr.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing rapidly as the aging population accelerates, and there are still no treatments to halt or reverse the progression of these diseases. While traditional 2D cultures and animal models fail to translate into effective therapies benefit patients, 3D cultured human brain organoids (hBOs) facilitate the use of non-invasive methods to capture patient data. The purpose of this study was to review the research and application of hBO in disease models and drug screening in NDs. The pluripotent stem cells are induced in multiple stages to form cerebral organoids, brain region-specific organoids and their derived brain cells, which exhibit complex brain-like structures and perform electrophysiological activities. The brain region-specific organoids and their derived neurons or glial cells contribute to the understanding of the pathogenesis of NDs and the efficient development of drugs, including Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Glial-rich brain organoids facilitate the study of glial function and neuroinflammation, including astrocytes, microglia, and oligodendrocytes. Further research on the maturation enhancement, vascularization and multi-organoid assembly of hBO will help to enhance the research and application of NDs cellular models.
Collapse
Affiliation(s)
- Tong Lei
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaoshuang Zhang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Gaoshuang Fu
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shaohan Luo
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ziwei Zhao
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
10
|
Li CX, Talukder M, Xu YR, Zhu SY, Wang YX, Li JL. Cadmium causes cerebral mitochondrial dysfunction through regulating mitochondrial HSF1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124677. [PMID: 39127336 DOI: 10.1016/j.envpol.2024.124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/15/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Mitochondria, as the powerhouse of the cell, play a vital role in maintaining cellular energy homeostasis and are known to be a primary target of cadmium (Cd) toxicity. The improper targeting of proteins to mitochondria can compromise the normal functions of the mitochondria. However, the precise mechanism by which protein localization contributes to the development of mitochondrial dysfunction induced by Cd is still not fully understood. For this research, Hy-Line white variety chicks (1-day-old) were used and equally distributed into 4 groups: the Control group (fed with a basic diet), the Cd35 group (basic diet with 35 mg/kg CdCl2), the Cd70 group (basic diet with 70 mg/kg CdCl2) and the Cd140 group (basic diet with 140 mg/kg CdCl2), respectively for 90 days. It was found that Cd caused the accumulation of heat shock factor 1 (HSF1) in the mitochondria, and the overexpression of HSF1 in the mitochondria led to mitochondrial dysfunction and neuronal damage. This process is due to the mitochondrial HSF1 (mtHSF1), causing mitochondrial fission through the upregulation of dynamin-related protein 1 (Drp1) content, while inhibiting oligomer formation of single-stranded DNA-binding protein 1 (SSBP1), resulting in the mitochondrial DNA (mtDNA) deletion. The findings unveil an unforeseen role of HSF1 in triggering mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
11
|
Pavon N, Sun Y, Pak C. Cell type specification and diversity in subpallial organoids. Front Genet 2024; 15:1440583. [PMID: 39391063 PMCID: PMC11465425 DOI: 10.3389/fgene.2024.1440583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Neural organoids have emerged as valuable tools for studying the developing brain, sparking enthusiasm and driving their adoption in disease modeling, drug screening, and investigating fetal neural development. The increasing popularity of neural organoids as models has led to a wide range of methodologies aimed at continuous improvement and refinement. Consequently, research groups often improve and reconfigure protocols to create region-specific organoids, resulting in diverse phenotypes, including variations in morphology, gene expression, and cell populations. While these improvements are exciting, routine adoptions of such modifications and protocols in the research laboratories are often challenging due to the reiterative empirical testing necessary to validate the cell types generated. To address this challenge, we systematically compare the similarities and differences that exist across published protocols that generates subpallial-specific organoids to date. In this review, we focus specifically on exploring the production of major GABAergic neuronal subtypes, especially Medium Spiny Neurons (MSNs) and Interneurons (INs), from multiple subpallial organoid protocols. Importantly, we look to evaluate the cell type diversity and the molecular pathways manipulated to generate them, thus broadening our understanding of the existing subpallial organoids as well as assessing the in vitro applicability of specific patterning factors. Lastly, we discuss the current challenges and outlook on the improved patterning of region-specific neural organoids. Given the critical roles MSN and IN dysfunction play in neurological disorders, comprehending the GABAergic neurons generated by neural organoids will undoubtedly facilitate clinical translation.
Collapse
Affiliation(s)
- Narciso Pavon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Neuroscience and Behavior, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
12
|
Li Y, Zhang H, Yu C, Dong X, Yang F, Wang M, Wen Z, Su M, Li B, Yang L. New Insights into Mitochondria in Health and Diseases. Int J Mol Sci 2024; 25:9975. [PMID: 39337461 PMCID: PMC11432609 DOI: 10.3390/ijms25189975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria are a unique type of semi-autonomous organelle within the cell that carry out essential functions crucial for the cell's survival and well-being. They are the location where eukaryotic cells carry out energy metabolism. Aside from producing the majority of ATP through oxidative phosphorylation, which provides essential energy for cellular functions, mitochondria also participate in other metabolic processes within the cell, such as the electron transport chain, citric acid cycle, and β-oxidation of fatty acids. Furthermore, mitochondria regulate the production and elimination of ROS, the synthesis of nucleotides and amino acids, the balance of calcium ions, and the process of cell death. Therefore, it is widely accepted that mitochondrial dysfunction is a factor that causes or contributes to the development and advancement of various diseases. These include common systemic diseases, such as aging, diabetes, Parkinson's disease, and cancer, as well as rare metabolic disorders, like Kearns-Sayre syndrome, Leigh disease, and mitochondrial myopathy. This overview outlines the various mechanisms by which mitochondria are involved in numerous illnesses and cellular physiological activities. Additionally, it provides new discoveries regarding the involvement of mitochondria in both disorders and the maintenance of good health.
Collapse
Affiliation(s)
- Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Xu L, Ding H, Wu S, Xiong N, Hong Y, Zhu W, Chen X, Han X, Tao M, Wang Y, Wang D, Xu M, Huo D, Gu Z, Liu Y. Artificial Meshed Vessel-Induced Dimensional Breaking Growth of Human Brain Organoids and Multiregional Assembloids. ACS NANO 2024; 18. [PMID: 39270300 PMCID: PMC11440649 DOI: 10.1021/acsnano.4c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brain organoids are widely used to model brain development and diseases. However, a major challenge in their application is the insufficient supply of oxygen and nutrients to the core region, restricting the size and maturation of the organoids. In order to vascularize brain organoids and enhance the nutritional supply to their core areas, two-photon polymerization (TPP) 3D printing is employed to fabricate high-resolution meshed vessels in this study. These vessels made of photoresist with densely distributed micropores with a diameter of 20 μm on the sidewall, are cocultured with brain organoids to facilitate the diffusion of culture medium into the organoids. The vascularized organoids exhibit dimensional breaking growth and enhanced proliferation, reduced hypoxia and apoptosis, suggesting that the 3D-printed meshed vessels partially mimic vascular function to promote the culture of organoids. Furthermore, cortical, striatal and medial ganglionic eminence (MGE) organoids are respectively differentiated to generate Cortico-Striatal-MGE assembloids by 3D-printed vessels. The enhanced migration, projection and excitatory signaling transduction are observed between different brain regional organoids in the assembloids. This study presents an approach using TPP 3D printing to construct vascularized brain organoids and assembloids for enhancing the development and assembly, offering a research model and platform for neurological diseases.
Collapse
Affiliation(s)
- Lei Xu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haibo Ding
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Shanshan Wu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Nankun Xiong
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuan Hong
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Wanying Zhu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xingyi Chen
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mengdan Tao
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuanhao Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, Nanjing 211166, China
| | - Zhongze Gu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yan Liu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
14
|
Zhang X, Fan Y, Tan K. A bird's eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications. Cell Death Dis 2024; 15:667. [PMID: 39261452 PMCID: PMC11390889 DOI: 10.1038/s41419-024-07049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Mitochondria are essential organelles that play critical roles in energy metabolism, apoptosis and various cellular processes. Accumulating evidence suggests that mitochondria are also involved in cancer development and progression. The mitochondrial unfolded protein response (UPRmt) is a complex cellular process that is activated when the protein-folding capacity of the mitochondria is overwhelmed. The core machinery of UPRmt includes upstream regulatory factors, mitochondrial chaperones and proteases. These components work together to eliminate misfolded proteins, increase protein-folding capacity, and restore mitochondrial function. Recent studies have shown that UPRmt is dysregulated in various cancers and contributes to tumor initiation, growth, metastasis, and therapeutic resistance. Considering the pivotal role of the UPRmt in oncogenesis, numerous compounds and synthetic drugs targeting UPRmt-related components induce cancer cell death and suppress tumor growth. In this review, we comprehensively summarize recent studies on the molecular mechanisms of UPRmt activation in C. elegans and mammals and elucidate the conceptual framework, functional aspects, and implications of the UPRmt for cancer therapy. In summary, we paint a developmental landscape of the UPRmt in different types of cancer and offer valuable insights for the development of novel cancer treatment strategies by targeting the UPRmt.
Collapse
Affiliation(s)
- Xinyu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
15
|
Patton MH, Thomas KT, Bayazitov IT, Newman KD, Kurtz NB, Robinson CG, Ramirez CA, Trevisan AJ, Bikoff JB, Peters ST, Pruett-Miller SM, Jiang Y, Schild AB, Nityanandam A, Zakharenko SS. Synaptic plasticity in human thalamocortical assembloids. Cell Rep 2024; 43:114503. [PMID: 39018245 PMCID: PMC11407288 DOI: 10.1016/j.celrep.2024.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA sequencing revealed that >80% of cells in thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Collapse
Affiliation(s)
- Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kristen T Thomas
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ildar T Bayazitov
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kyle D Newman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nathaniel B Kurtz
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody A Ramirez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alexandra J Trevisan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Samuel T Peters
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yanbo Jiang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew B Schild
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
16
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ-on-Chip Research. Adv Healthc Mater 2024; 13:e2301067. [PMID: 37479227 DOI: 10.1002/adhm.202301067] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Organoids and cells in organ-on-chip platforms replicate higher-level anatomical, physiological, or pathological states of tissues and organs. These technologies are widely regarded by academia, the pharmacological industry and regulators as key biomedical developments. To map advances in this emerging field, a literature analysis of 16,000 article metadata based on a quality-controlled text-mining algorithm is performed. The analysis covers titles, keywords, and abstracts of categorized academic publications in the literature and preprint databases published after 2010. The algorithm identifies and tracks 149 and 107 organs or organ substructures modeled as organoids and organ-on-chip, respectively, stem cell sources, as well as 130 diseases, and 16 groups of organisms other than human and mouse in which organoid/organ-on-chip technology is applied. The analysis illustrates changing diversity and focus in organoid/organ-on-chip research and captures its geographical distribution. The downloadable dataset provided is a robust framework for researchers to interrogate with their own questions.
Collapse
Affiliation(s)
- Jun-Ya Shoji
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| | - Richard P Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
| | - Christine L Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, 2300RC, the Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, 7522NB, the Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0372, Norway
| |
Collapse
|
17
|
Nowak I, Paździor M, Sarna R, Madej M. Molecular Mechanisms in the Design of Novel Targeted Therapies for Neurodegenerative Diseases. Curr Issues Mol Biol 2024; 46:5436-5453. [PMID: 38920997 PMCID: PMC11202845 DOI: 10.3390/cimb46060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Neurodegenerative diseases are a diverse group of diseases characterized by a progressive loss of neurological function due to damage to nerve cells in the central nervous system. In recent years, there has been a worldwide increase in the expanding associated with increasing human life expectancy. Molecular mechanisms control many of the essential life processes of cells, such as replication, transcription, translation, protein synthesis and gene regulation. These are complex interactions that form the basis for understanding numerous processes in the organism and developing new diagnostic and therapeutic approaches. In the context of neurodegenerative diseases, molecular basis refers to changes at the molecular level that cause damage to or degeneration of nerve cells. These may include protein aggregates leading to pathological structures in brain cells, impaired protein transport in nerve cells, mitochondrial dysfunction, inflammatory processes or genetic mutations that impair nerve cell function. New medical therapies are based on these mechanisms and include gene therapies, reduction in inflammation and oxidative stress, and the use of miRNAs and regenerative medicine. The aim of this study was to bring together the current state of knowledge regarding selected neurodegenerative diseases, presenting the underlying molecular mechanisms involved, which could be potential targets for new forms of treatment.
Collapse
Affiliation(s)
- Ilona Nowak
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Marlena Paździor
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Robert Sarna
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
| | - Marcel Madej
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medykow Str., 40-752 Katowice, Poland; (M.P.); (R.S.); (M.M.)
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
18
|
Wu S, Hong Y, Chu C, Gan Y, Li X, Tao M, Wang D, Hu H, Zheng Z, Zhu Q, Han X, Zhu W, Xu M, Dong Y, Liu Y, Guo X. Construction of human 3D striato-nigral assembloids to recapitulate medium spiny neuronal projection defects in Huntington's disease. Proc Natl Acad Sci U S A 2024; 121:e2316176121. [PMID: 38771878 PMCID: PMC11145230 DOI: 10.1073/pnas.2316176121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.
Collapse
Affiliation(s)
- Shanshan Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Yuan Hong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Chu Chu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Yixia Gan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, China
| | - Xinrui Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Mengdan Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- School of Biological Science and Medical Engineering Southeast University, Sipailou, Nanjing210096, China
| | - Da Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Hao Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Zhilong Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing211166, China
| | - Qian Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Xiao Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Wanying Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Min Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai200241, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing211166, China
- School of Biological Science and Medical Engineering Southeast University, Sipailou, Nanjing210096, China
| | - Xing Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing211166, China
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing211166, China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu226001, China
| |
Collapse
|
19
|
You W, Li Y, Liu K, Mi X, Li Y, Guo X, Li Z. Latest assessment methods for mitochondrial homeostasis in cognitive diseases. Neural Regen Res 2024; 19:754-768. [PMID: 37843209 PMCID: PMC10664105 DOI: 10.4103/1673-5374.382222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mitochondria play an essential role in neural function, such as supporting normal energy metabolism, regulating reactive oxygen species, buffering physiological calcium loads, and maintaining the balance of morphology, subcellular distribution, and overall health through mitochondrial dynamics. Given the recent technological advances in the assessment of mitochondrial structure and functions, mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, mild cognitive impairment, and postoperative cognitive dysfunction. This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences, from the perspectives of energy metabolism, oxidative stress, calcium homeostasis, and mitochondrial dynamics (including fission-fusion, transport, and mitophagy).
Collapse
Affiliation(s)
- Wei You
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Peking University Third Clinical Medical College, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| |
Collapse
|
20
|
Patton MH, Thomas KT, Bayazitov IT, Newman KD, Kurtz NB, Robinson CG, Ramirez CA, Trevisan AJ, Bikoff JB, Peters ST, Pruett-Miller SM, Jiang Y, Schild AB, Nityanandam A, Zakharenko SS. Synaptic plasticity in human thalamocortical assembloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578421. [PMID: 38352415 PMCID: PMC10862901 DOI: 10.1101/2024.02.01.578421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Collapse
Affiliation(s)
- Mary H. Patton
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Ildar T. Bayazitov
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Kyle D. Newman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Nathaniel B. Kurtz
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Cody A. Ramirez
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Samuel T. Peters
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Yanbo Jiang
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Andrew B. Schild
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| |
Collapse
|
21
|
Teramayi F, Bons J, Scott M, Scott GK, Loureiro A, Lopez-Ramirez A, Schilling B, Ellerby LM, Benz CC. Brain transcriptomic, metabolic and mitohormesis properties associated with N-propargylglycine treatment: A prevention strategy against neurodegeneration. Brain Res 2024; 1826:148733. [PMID: 38128812 PMCID: PMC11283822 DOI: 10.1016/j.brainres.2023.148733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/10/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION There is an urgent need for new or repurposed therapeutics that protect against or significantly delay the clinical progression of neurodegenerative diseases, such as Huntington's disease (HD), Parkinson's disease and Alzheimer's disease. In particular, preclinical studies are needed for well tolerated and brain-penetrating small molecules capable of mitigating the proteotoxic mitochondrial processes that are hallmarks of these diseases. We identified a unique suicide inhibitor of mitochondrial proline dehydrogenase (Prodh), N-propargylglycine (N-PPG), which has anticancer and brain-enhancing mitohormesis properties, and we hypothesize that induction of mitohormesis by N-PPG protects against neurodegenerative diseases. We carried out a series of mouse studies designed to: i) compare brain and metabolic responses while on oral N-PPG treatment (50 mg/kg, 9-14 days) of B6CBA wildtype (WT) and short-lived transgenic R6/2 (HD) mice; and ii) evaluate potential brain and systemwide stress rebound responses in WT mice 2 months after cessation of extended mitohormesis induction by well-tolerated higher doses of N-PPG (100-200 mg/kg x 60 days). WT and HD mice showed comparable global evidence of N-PPG induced brain mitohormesis characterized by Prodh protein decay and increased mitochondrial expression of chaperone and Yme1l1 protease proteins. Interestingly, transcriptional analysis (RNAseq) showed partial normalization of HD whole brain transcriptomes toward those of WT mice. Comprehensive metabolomic profiles performed on control and N-PPG treated blood, brain, and kidney samples revealed expected N-PPG-induced tissue increases in proline levels in both WT and HD mice, accompanied by surprising parallel increases in hydroxyproline and sarcosine. Two months after cessation of the higher dose N-PPG stress treatments, WT mouse brains showed robust rebound increases in Prodh protein levels and mitochondrial transcriptome responses, as well as altered profiles of blood amino acid-related metabolites. Our HD and WT mouse preclinical findings point to the brain penetrating and mitohormesis-inducing potential of the drug candidate, N-PPG, and provide new rationale and application insights supporting its further preclinical testing in various models of neurodegenerative diseases characterized by loss of mitochondrial proteostasis.
Collapse
Affiliation(s)
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Madeleine Scott
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Scott
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024; 21:e00292. [PMID: 38241161 PMCID: PMC10903104 DOI: 10.1016/j.neurot.2023.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Recent advances in understanding the role of mitochondrial dysfunction in neurodegenerative diseases have expanded the opportunities for neurotherapeutics targeting mitochondria to alleviate symptoms and slow disease progression. In this review, we offer a historical account of advances in mitochondrial biology and neurodegenerative disease. Additionally, we summarize current knowledge of the normal physiology of mitochondria and the pathogenesis of mitochondrial dysfunction, the role of mitochondrial dysfunction in neurodegenerative disease, current therapeutics and recent therapeutic advances, as well as future directions for neurotherapeutics targeting mitochondrial function. A focus is placed on reactive oxygen species and their role in the disruption of telomeres and their effects on the epigenome. The effects of mitochondrial dysfunction in the etiology and progression of Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease are discussed in depth. Current clinical trials for mitochondria-targeting neurotherapeutics are discussed.
Collapse
Affiliation(s)
- Madelyn M Klemmensen
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA
| | - Seth H Borrowman
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Colin Pearce
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Benjamin Pyles
- Aper Funis Research, Union River Innovation Center, Ellsworth, ME 04605, USA
| | - Bharatendu Chandra
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA; Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Labbadia J. Potential roles for mitochondria-to-HSF1 signaling in health and disease. Front Mol Biosci 2023; 10:1332658. [PMID: 38164224 PMCID: PMC10757924 DOI: 10.3389/fmolb.2023.1332658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
The ability to respond rapidly and efficiently to protein misfolding is crucial for development, reproduction and long-term health. Cells respond to imbalances in cytosolic/nuclear protein homeostasis through the Heat Shock Response, a tightly regulated transcriptional program that enhances protein homeostasis capacity by increasing levels of protein quality control factors. The Heat Shock Response is driven by Heat Shock Factor 1, which is rapidly activated by the appearance of misfolded proteins and drives the expression of genes encoding molecular chaperones and protein degradation factors, thereby restoring proteome integrity. HSF1 is critical for organismal health, and this has largely been attributed to the preservation of cytosolic and nuclear protein homeostasis. However, evidence is now emerging that HSF1 is also a key mediator of mitochondrial function, raising the possibility that many of the health benefits conferred by HSF1 may be due to the maintenance of mitochondrial homeostasis. In this review, I will discuss our current understanding of the interplay between HSF1 and mitochondria and consider how mitochondria-to-HSF1 signaling may influence health and disease susceptibility.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Genetics, Evolution and Environment, Division of Biosciences, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
24
|
Kim H, Lee YJ, Kwon Y, Kim J. Efficient generation of brain organoids using magnetized gold nanoparticles. Sci Rep 2023; 13:21240. [PMID: 38040919 PMCID: PMC10692130 DOI: 10.1038/s41598-023-48655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
Brain organoids, which are three-dimensional cell culture models, have the ability to mimic certain structural and functional aspects of the human brain. However, creating these organoids can be a complicated and difficult process due to various technological hurdles. This study presents a method for effectively generating cerebral organoids from human induced pluripotent stem cells (hiPSCs) using electromagnetic gold nanoparticles (AuNPs). By exposing mature cerebral organoids to magnetized AuNPs, we were able to cultivate them in less than 3 weeks. The initial differentiation and neural induction of the neurosphere occurred within the first week, followed by maturation, including regional patterning and the formation of complex networks, during the subsequent 2 weeks under the influence of magnetized AuNPs. Furthermore, we observed a significant enhancement in neurogenic maturation in the brain organoids, as evidenced by increased histone acetylation in the presence of electromagnetic AuNPs. Consequently, electromagnetic AuNPs offer a promising in vitro system for efficiently generating more advanced human brain organoids that closely resemble the complexity of the human brain.
Collapse
Affiliation(s)
- Hongwon Kim
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yoo-Jung Lee
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Youngeun Kwon
- Laboratory of Protein Engineering, Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
25
|
Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, Ferreira T, Bharadwaj HR, Shet V, Kundu M, Yee ALW, Abdul-Rahman T, Atallah O. The molecular landscape of neurological disorders: insights from single-cell RNA sequencing in neurology and neurosurgery. Eur J Med Res 2023; 28:529. [PMID: 37974227 PMCID: PMC10652629 DOI: 10.1186/s40001-023-01504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
Collapse
Affiliation(s)
- Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine
| | | | - Shankaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, UK
| | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | | | - Toufik Abdul-Rahman
- Faculty of Medicine, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
26
|
Li Y, Zeng PM, Wu J, Luo ZG. Advances and Applications of Brain Organoids. Neurosci Bull 2023; 39:1703-1716. [PMID: 37222855 PMCID: PMC10603019 DOI: 10.1007/s12264-023-01065-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023] Open
Abstract
Understanding the fundamental processes of human brain development and diseases is of great importance for our health. However, existing research models such as non-human primate and mouse models remain limited due to their developmental discrepancies compared with humans. Over the past years, an emerging model, the "brain organoid" integrated from human pluripotent stem cells, has been developed to mimic developmental processes of the human brain and disease-associated phenotypes to some extent, making it possible to better understand the complex structures and functions of the human brain. In this review, we summarize recent advances in brain organoid technologies and their applications in brain development and diseases, including neurodevelopmental, neurodegenerative, psychiatric diseases, and brain tumors. Finally, we also discuss current limitations and the potential of brain organoids.
Collapse
Affiliation(s)
- Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
27
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
28
|
Zheng Z, Han L, Li Y, Chen Z, Yang W, Liu C, Tao M, Jiang Y, Ke X, Liu Y, Guo X. Phospholipase A2-activating protein induces mitophagy trough anti-apoptotic MCL1-mediated NLRX1 oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023:119487. [PMID: 37211156 DOI: 10.1016/j.bbamcr.2023.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Mitochondrial protein homeostasis is fine-tuned by diverse physiological processes such as mitochondria-associated degradation (MAD), which is regulated by valosin-containing protein (VCP) and its cofactors. As a cofactor of VCP, the mutation of phospholipase A-2-activating protein (PLAA) is the genetic cause of PLAA-associated neurodevelopmental disorder (PLAAND). However, the physiological and pathological roles of PLAA in mitochondria remain unclear. Here, we demonstrate that PLAA partially associates with mitochondria. Deficiency in PLAA increases mitochondrial reactive oxygen species (ROS) production, reduces mitochondrial membrane potential, inhibits mitochondrial respiratory activity and causes excessive mitophagy. Mechanically, PLAA interacts with myeloid cell leukemia-1 (MCL1) and facilitates its retro-translocation and proteasome-dependent degradation. The upregulation of MCL1 promotes the oligomerization of NLR family member X1 (NLRX1) and activation of mitophagy. Whereas downregulating NLRX1 abolishes MCL1 induced mitophagy. In summary, our data identify PLAA as a novel mediator of mitophagy by regulating MCL1-NLRX1 axis. We propose mitophagy as a target for therapeutic intervention in PLAAND.
Collapse
Affiliation(s)
- Zhilong Zheng
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lu Han
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanbo Li
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wangju Yang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyue Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
29
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
30
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
31
|
Zhu MX, Ma XF, Niu X, Fan GB, Li Y. Mitochondrial unfolded protein response in ischemia-reperfusion injury. Brain Res 2022; 1797:148116. [PMID: 36209898 DOI: 10.1016/j.brainres.2022.148116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ming-Xi Zhu
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Hainan, China
| | - Xiao-Fei Ma
- Department of ICU, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gui-Bo Fan
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yan Li
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
32
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
33
|
Bhargava A, Sandoval Castellanos AM, Shah S, Ning K. An insight into the iPSCs-derived two-dimensional culture and three-dimensional organoid models for neurodegenerative disorders. Interface Focus 2022; 12:20220040. [PMID: 35992771 PMCID: PMC9372641 DOI: 10.1098/rsfs.2022.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 12/20/2022] Open
Abstract
The use of induced pluripotent stem cells (iPSCs) is a promising approach when used as models to study neurodegenerative disorders (NDDs) in vitro. iPSCs have been used in in vitro two-dimensional cultures; however, these two-dimensional cultures do not mimic the physiological three-dimensional cellular environment. The use of iPSCs-derived three-dimensional organoids has risen as a powerful alternative to using animal models to study NDDs. These iPSCs-derived three-dimensional organoids can resemble the complexity of the tissue of interest, making it an approachable, cost-effective technique, to study NDDs in an ethical manner. Furthermore, the use of iPSCs-derived organoids will be an important tool to develop new therapeutics and pharmaceutics to treat NDDs. Herein, we will highlight how iPSCs-derived two-dimensional cultures and three-dimensional organoids have been used to study NDDs, as well as the advantages and disadvantages of both techniques.
Collapse
Affiliation(s)
- Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ana M. Sandoval Castellanos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Sonali Shah
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|