1
|
Pennacchietti V, Pagano L, Di Felice M, Toso J, Bufano M, Coluccia A, Silvestri R, Capelli R, Camilloni C, Malagrinò F, Toto A, Gianni S. Unveiling an unexpected redox regulation of the folding, function and inhibition in the phosphotyrosine binding domain of FRS2. Int J Biol Macromol 2025; 309:142478. [PMID: 40203902 DOI: 10.1016/j.ijbiomac.2025.142478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Protein-protein interaction domains are essential for cellular homeostasis and the regulation of various molecular pathways, mediating highly specific and reversible binding events. The PhosphoTyrosine-Binding domains (PTB) play a pivotal role in regulating several cellular events, by recognizing phosphorylated and, in some cases, non-phosphorylated ligands. In this study we investigated the folding and functional properties of the PTB domain of FRS2 (Fibroblast growth factor receptor substrate 2) under oxidative and reductive experimental conditions. Results demonstrate a surprising and previously undetected role of a disulfide bond between Cys61 and Cys80 residues in such events. Through an extensive site-directed mutagenesis we demonstrated that the presence/absence of such disulfide bridge, although not changing dramatically the overall structure of the domain, significantly influence its dynamic properties by rewiring a subtle energetic network stabilizing the domain. These effects result in remodulating its binding properties with phosphorylated and unphosphorylated peptides. Molecular dynamics simulations further elucidated how the oxidative/reductive conditions modulate the dynamics of the domain. Finally, we identified lead inhibitory compounds with different efficacy observed across the oxidized and reduced states of the PTB domain. Altogether, these findings provide novel insights for understanding the mechanism of regulation of the function of the PTB domain of FRS2.
Collapse
Affiliation(s)
- Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Julian Toso
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Marianna Bufano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Antonio Coluccia
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy
| | - Riccardo Capelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Francesca Malagrinò
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della vita e dell'ambiente, Università dell'Aquila, Piazzale Salvatore Tommasi 1, 67010 L'Aquila-Coppito, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Rome, Italy.
| |
Collapse
|
2
|
Larasati YA, Solis GP, Koval A, Korff C, Katanaev VL. A Personalized 14-3-3 Disease-Targeting Workflow Yields Repositioning Drug Candidates. Cells 2025; 14:559. [PMID: 40277885 PMCID: PMC12025923 DOI: 10.3390/cells14080559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025] Open
Abstract
Rare diseases typically evade the application of the standard drug discovery and development pipelines due to their understudied molecular etiology and the small market size. Herein, we report a rare disease-directed workflow that rapidly studies the molecular features of the disorder, establishes a high-throughput screening (HTS) platform, and conducts an HTS of thousands of approved drugs to identify and validate repositioning drug candidates. This study examines the pediatric neurological disorder caused by de novo mutations in YWHAG, the gene encoding the scaffolding protein 14-3-3γ, and the workflow discovers nuclear relocalization and a severe drop in 14-3-3γ binding to its phosphorylated protein partners as the key molecular features of the pathogenic hotspot YWHAG mutations. We further established a robust in vitro HTS platform and screened ca. 3000 approved drugs to identify the repositioning drug candidates that restore the deficient 14-3-3γ-phosphotarget interactions. Our workflow can be applied to other 14-3-3-related disorders and upscaled for many other rare diseases.
Collapse
Affiliation(s)
- Yonika A. Larasati
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (Y.A.L.); (G.P.S.); (A.K.)
| | - Gonzalo P. Solis
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (Y.A.L.); (G.P.S.); (A.K.)
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (Y.A.L.); (G.P.S.); (A.K.)
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals of Geneva, CH-1211 Geneva, Switzerland;
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (Y.A.L.); (G.P.S.); (A.K.)
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
3
|
Lee SJ, Gao J, Thompson E, Mount J, Nichols CG. Dynein light chains 1 and 2 are auxiliary proteins of pH-sensitive Kir4.1 channels. J Biol Chem 2025; 301:108393. [PMID: 40074079 PMCID: PMC11999606 DOI: 10.1016/j.jbc.2025.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Inward rectifier Kir4.1 potassium channels are abundantly expressed in cells that are important for electrolyte homeostasis. Dysregulation of Kir4.1 underlies various neurological disorders. Here, through biochemical and structural studies of full-length Kir4.1, we show that dynein light chain 1 and 2 proteins, also as known as LC8, copurify with Kir4.1 at stoichiometric levels. Direct interaction between Kir4.1 and LC8 is supported by in vitro binding assays and reiterated with native Kir4.1 proteins from mouse brain. Notably, we identify a LC8 binding motif in the unstructured N terminus of Kir4.1. Among Kir subtypes, the motif is unique to Kir4.1 and is highly conserved between Kir4.1 orthologs. Deletion of the predicted anchoring sequence (ΔTQT) resulted in loss of LC8 interaction with Kir4.1 N-terminal peptides as well as with full-length Kir4.1, suggesting that the binding site is necessary and sufficient for the interaction. Purified Kir4.1-ΔTQT mutant proteins exhibited normal channel activity in vitro, whereas WT proteins lost phosphoinositide-(4,5)-phosphate activation. Single-particle cryo-EM analysis of the full-length proteins revealed extremely heterogeneous particles, indicating deformation from the typical fourfold symmetric conformation. Additional electron density attached to the Kir4.1 tetramer, ascribed to an LC8 dimer, further supports the direct interaction between the two proteins. While the biological implications of this interaction await further elucidation, the strong conservation of the LC8 binding motif suggests its potential importance in the regulation of Kir4.1 channels.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Jian Gao
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ellen Thompson
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jonathan Mount
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
4
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Agoni C, Stavropoulos I, Kirwan A, Mysior MM, Holton T, Kranjc T, Simpson JC, Roche HM, Shields DC. Cell-Penetrating Milk-Derived Peptides with a Non-Inflammatory Profile. Molecules 2023; 28:6999. [PMID: 37836842 PMCID: PMC10574647 DOI: 10.3390/molecules28196999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Milk-derived peptides are known to confer anti-inflammatory effects. We hypothesised that milk-derived cell-penetrating peptides might modulate inflammation in useful ways. Using computational techniques, we identified and synthesised peptides from the milk protein Alpha-S1-casein that were predicted to be cell-penetrating using a machine learning predictor. We modified the interpretation of the prediction results to consider the effects of histidine. Peptides were then selected for testing to determine their cell penetrability and anti-inflammatory effects using HeLa cells and J774.2 mouse macrophage cell lines. The selected peptides all showed cell penetrating behaviour, as judged using confocal microscopy of fluorescently labelled peptides. None of the peptides had an effect on either the NF-κB transcription factor or TNFα and IL-1β secretion. Thus, the identified milk-derived sequences have the ability to be internalised into the cell without affecting cell homeostatic mechanisms such as NF-κB activation. These peptides are worthy of further investigation for other potential bioactivities or as a naturally derived carrier to promote the cellular internalisation of other active peptides.
Collapse
Affiliation(s)
- Clement Agoni
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
- Discipline of Pharmaceutical Sciences, University of KwaZulu Natal, Durban 4041, South Africa
| | - Ilias Stavropoulos
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
| | - Anna Kirwan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Biology and Environmental Science, University College Dublin, Belfield, D04 N2E5 Dublin 4, Ireland
| | - Margharitha M. Mysior
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Therese Holton
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Tilen Kranjc
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Jeremy C. Simpson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Biology and Environmental Science, University College Dublin, Belfield, D04 N2E5 Dublin 4, Ireland
| | - Helen M. Roche
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK
| | - Denis C. Shields
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
| |
Collapse
|
6
|
Kliche J, Garvanska DH, Simonetti L, Badgujar D, Dobritzsch D, Nilsson J, Davey NE, Ivarsson Y. Large-scale phosphomimetic screening identifies phospho-modulated motif-based protein interactions. Mol Syst Biol 2023; 19:e11164. [PMID: 37219487 PMCID: PMC10333884 DOI: 10.15252/msb.202211164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Phosphorylation is a ubiquitous post-translation modification that regulates protein function by promoting, inhibiting or modulating protein-protein interactions. Hundreds of thousands of phosphosites have been identified but the vast majority have not been functionally characterised and it remains a challenge to decipher phosphorylation events modulating interactions. We generated a phosphomimetic proteomic peptide-phage display library to screen for phosphosites that modulate short linear motif-based interactions. The peptidome covers ~13,500 phospho-serine/threonine sites found in the intrinsically disordered regions of the human proteome. Each phosphosite is represented as wild-type and phosphomimetic variant. We screened 71 protein domains to identify 248 phosphosites that modulate motif-mediated interactions. Affinity measurements confirmed the phospho-modulation of 14 out of 18 tested interactions. We performed a detailed follow-up on a phospho-dependent interaction between clathrin and the mitotic spindle protein hepatoma-upregulated protein (HURP), demonstrating the essentiality of the phospho-dependency to the mitotic function of HURP. Structural characterisation of the clathrin-HURP complex elucidated the molecular basis for the phospho-dependency. Our work showcases the power of phosphomimetic ProP-PD to discover novel phospho-modulated interactions required for cellular function.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| | - Dimitriya Hristoforova Garvanska
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | | | - Dilip Badgujar
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| | | | - Jakob Nilsson
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry, BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
7
|
Mihalič F, Simonetti L, Giudice G, Sander MR, Lindqvist R, Peters MBA, Benz C, Kassa E, Badgujar D, Inturi R, Ali M, Krystkowiak I, Sayadi A, Andersson E, Aronsson H, Söderberg O, Dobritzsch D, Petsalaki E, Överby AK, Jemth P, Davey NE, Ivarsson Y. Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs. Nat Commun 2023; 14:2409. [PMID: 37100772 PMCID: PMC10132805 DOI: 10.1038/s41467-023-38015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.
Collapse
Affiliation(s)
- Filip Mihalič
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Marie Berit Akpiroro Peters
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eszter Kassa
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Dilip Badgujar
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Izabella Krystkowiak
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Ahmed Sayadi
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Hanna Aronsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Doreen Dobritzsch
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
8
|
Lin J, Wang S, Wen L, Ye H, Shang S, Li J, Shu J, Zhou P. Targeting peptide-mediated interactions in omics. Proteomics 2023; 23:e2200175. [PMID: 36461811 DOI: 10.1002/pmic.202200175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Peptide-mediated interactions (PMIs) play a crucial role in cell signaling network, which are responsible for about half of cellular protein-protein associations in the human interactome and have recently been recognized as a new kind of promising druggable target for drug development and disease therapy. In this article, we give a systematic review regarding the proteome-wide discovery of PMIs and targeting druggable PMIs (dPMIs) with chemical drugs, self-inhibitory peptides (SIPs) and protein agents, particularly focusing on their implications and applications for therapeutic purpose in omics. We also introduce computational peptidology strategies used to model, analyze, and design PMI-targeted molecular entities and further extend the concepts of protein context, direct/indirect readout, and enthalpy/entropy effect involved in PMIs. Current issues and future perspective on this topic are discussed. There is still a long way to go before establishment of efficient therapeutic strategies to target PMIs on the omics scale.
Collapse
Affiliation(s)
- Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shaozhou Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Haiyang Ye
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shuyong Shang
- Institute of Ecological Environment Protection, Chengdu Normal University, Chengdu, China
| | - Juelin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Jianping Shu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
9
|
Motmaen A, Dauparas J, Baek M, Abedi MH, Baker D, Bradley P. Peptide-binding specificity prediction using fine-tuned protein structure prediction networks. Proc Natl Acad Sci U S A 2023; 120:e2216697120. [PMID: 36802421 PMCID: PMC9992841 DOI: 10.1073/pnas.2216697120] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
Peptide-binding proteins play key roles in biology, and predicting their binding specificity is a long-standing challenge. While considerable protein structural information is available, the most successful current methods use sequence information alone, in part because it has been a challenge to model the subtle structural changes accompanying sequence substitutions. Protein structure prediction networks such as AlphaFold model sequence-structure relationships very accurately, and we reasoned that if it were possible to specifically train such networks on binding data, more generalizable models could be created. We show that placing a classifier on top of the AlphaFold network and fine-tuning the combined network parameters for both classification and structure prediction accuracy leads to a model with strong generalizable performance on a wide range of Class I and Class II peptide-MHC interactions that approaches the overall performance of the state-of-the-art NetMHCpan sequence-based method. The peptide-MHC optimized model shows excellent performance in distinguishing binding and non-binding peptides to SH3 and PDZ domains. This ability to generalize well beyond the training set far exceeds that of sequence-only models and should be particularly powerful for systems where less experimental data are available.
Collapse
Affiliation(s)
- Amir Motmaen
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Bioengineering Graduate Program, University of Washington, Seattle, WA98195
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Mohamad H. Abedi
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA98195
| | - Philip Bradley
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
10
|
Mofrad RB, Del Campo M, Peeters CFW, Meeter LHH, Seelaar H, Koel-Simmelink M, Ramakers IHGB, Middelkoop HAM, De Deyn PP, Claassen JAHR, van Swieten JC, Bridel C, Hoozemans JJM, Scheltens P, van der Flier WM, Pijnenburg YAL, Teunissen CE. Plasma proteome profiling identifies changes associated to AD but not to FTD. Acta Neuropathol Commun 2022; 10:148. [PMID: 36273219 PMCID: PMC9587555 DOI: 10.1186/s40478-022-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) is caused by frontotemporal lobar degeneration (FTLD), characterized mainly by inclusions of Tau (FTLD-Tau) or TAR DNA binding43 (FTLD-TDP) proteins. Plasma biomarkers are strongly needed for specific diagnosis and potential treatment monitoring of FTD. We aimed to identify specific FTD plasma biomarker profiles discriminating FTD from AD and controls, and between FTD pathological subtypes. In addition, we compared plasma results with results in post-mortem frontal cortex of FTD cases to understand the underlying process. METHODS Plasma proteins (n = 1303) from pathologically and/or genetically confirmed FTD patients (n = 56; FTLD-Tau n = 16; age = 58.2 ± 6.2; 44% female, FTLD-TDP n = 40; age = 59.8 ± 7.9; 45% female), AD patients (n = 57; age = 65.5 ± 8.0; 39% female), and non-demented controls (n = 148; 61.3 ± 7.9; 41% female) were measured using an aptamer-based proteomic technology (SomaScan). In addition, exploratory analysis in post-mortem frontal brain cortex of FTD (n = 10; FTLD-Tau n = 5; age = 56.2 ± 6.9, 60% female, and FTLD-TDP n = 5; age = 64.0 ± 7.7, 60% female) and non-demented controls (n = 4; age = 61.3 ± 8.1; 75% female) were also performed. Differentially regulated plasma and tissue proteins were identified by global testing adjusting for demographic variables and multiple testing. Logistic lasso regression was used to identify plasma protein panels discriminating FTD from non-demented controls and AD, or FTLD-Tau from FTLD-TDP. Performance of the discriminatory plasma protein panels was based on predictions obtained from bootstrapping with 1000 resampled analysis. RESULTS Overall plasma protein expression profiles differed between FTD, AD and controls (6 proteins; p = 0.005), but none of the plasma proteins was specifically associated to FTD. The overall tissue protein expression profile differed between FTD and controls (7-proteins; p = 0.003). There was no difference in overall plasma or tissue expression profile between FTD subtypes. Regression analysis revealed a panel of 12-plasma proteins discriminating FTD from AD with high accuracy (AUC: 0.99). No plasma protein panels discriminating FTD from controls or FTD pathological subtypes were identified. CONCLUSIONS We identified a promising plasma protein panel as a minimally-invasive tool to aid in the differential diagnosis of FTD from AD, which was primarily associated to AD pathophysiology. The lack of plasma profiles specifically associated to FTD or its pathological subtypes might be explained by FTD heterogeneity, calling for FTD studies using large and well-characterize cohorts.
Collapse
Affiliation(s)
- R Babapour Mofrad
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Del Campo
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - C F W Peeters
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Mathematical and Statistical Methods Group (Biometris), Wageningen University and Research Wageningen, Wageningen, The Netherlands
| | - L H H Meeter
- Alzheimer Center Erasmus MC and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Seelaar
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - I H G B Ramakers
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - H A M Middelkoop
- Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - P P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J C van Swieten
- Alzheimer Center Erasmus MC and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C Bridel
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - J J M Hoozemans
- Department of Pathology, Amsterdam University Medical Centers Location VUmc, Amsterdam, The Netherlands
| | - P Scheltens
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Y A L Pijnenburg
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Davey NE, Simonetti L, Ivarsson Y. ProP-PD for proteome-wide motif-mediated interaction discovery. Trends Biochem Sci 2022; 47:547-548. [PMID: 35168834 DOI: 10.1016/j.tibs.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
12
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
13
|
Wadie B, Kleshchevnikov V, Sandaltzopoulou E, Benz C, Petsalaki E. Use of viral motif mimicry improves the proteome-wide discovery of human linear motifs. Cell Rep 2022; 39:110764. [PMID: 35508127 DOI: 10.1016/j.celrep.2022.110764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Linear motifs have an integral role in dynamic cell functions, including cell signaling. However, due to their small size, low complexity, and frequent mutations, identifying novel functional motifs poses a challenge. Viruses rely extensively on the molecular mimicry of cellular linear motifs. In this study, we apply systematic motif prediction combined with functional filters to identify human linear motifs convergently evolved also in viral proteins. We observe an increase in the sensitivity of motif prediction and improved enrichment in known instances. We identify >7,300 non-redundant motif instances at various confidence levels, 99 of which are supported by all functional and structural filters. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalog of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the associated mechanisms of viral interference.
Collapse
Affiliation(s)
- Bishoy Wadie
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Vitalii Kleshchevnikov
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Elissavet Sandaltzopoulou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.
| |
Collapse
|
14
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
15
|
Martinez JC, Castillo F, Ruiz-Sanz J, Murciano-Calles J, Camara-Artigas A, Luque I. Understanding binding affinity and specificity of modular protein domains: A focus in ligand design for the polyproline-binding families. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:161-188. [PMID: 35534107 DOI: 10.1016/bs.apcsb.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Within the modular protein domains there are five families that recognize proline-rich sequences: SH3, WW, EVH1, GYF and UEV domains. This chapter reviews the main strategies developed for the design of ligands for these families, including peptides, peptidomimetics and drugs. We also describe some studies aimed to understand the molecular reasons responsible for the intrinsic affinity and specificity of these domains.
Collapse
Affiliation(s)
- Jose C Martinez
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | - Francisco Castillo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Javier Ruiz-Sanz
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Javier Murciano-Calles
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ana Camara-Artigas
- Departamento de Química Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario ceiA3 y CIAMBITAL, Almeria, Spain
| | - Irene Luque
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
16
|
Benz C, Ali M, Krystkowiak I, Simonetti L, Sayadi A, Mihalic F, Kliche J, Andersson E, Jemth P, Davey NE, Ivarsson Y. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol Syst Biol 2022; 18:e10584. [PMID: 35044719 PMCID: PMC8769072 DOI: 10.15252/msb.202110584] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide-phage display library that tiles all disordered regions of the human proteome and allows the screening of ~ 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)-binding domains and confirmed the quality of the produced data by complementary biophysical or cell-based assays. Finally, we show how the amino acid resolution-binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.
Collapse
Affiliation(s)
- Caroline Benz
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Muhammad Ali
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | | | | | - Ahmed Sayadi
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Filip Mihalic
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Johanna Kliche
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Eva Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Per Jemth
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
17
|
Linossi EM, Li K, Veggiani G, Tan C, Dehkhoda F, Hockings C, Calleja DJ, Keating N, Feltham R, Brooks AJ, Li SS, Sidhu SS, Babon JJ, Kershaw NJ, Nicholson SE. Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Nat Commun 2021; 12:7032. [PMID: 34857742 PMCID: PMC8640019 DOI: 10.1038/s41467-021-26983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS)2 protein is a key negative regulator of the growth hormone (GH) and Janus kinase (JAK)-Signal Transducers and Activators of Transcription (STAT) signaling cascade. The central SOCS2-Src homology 2 (SH2) domain is characteristic of the SOCS family proteins and is an important module that facilitates recognition of targets bearing phosphorylated tyrosine (pTyr) residues. Here we identify an exosite on the SOCS2-SH2 domain which, when bound to a non-phosphorylated peptide (F3), enhances SH2 affinity for canonical phosphorylated ligands. Solution of the SOCS2/F3 crystal structure reveals F3 as an α-helix which binds on the opposite side of the SH2 domain to the phosphopeptide binding site. F3:exosite binding appears to stabilise the SOCS2-SH2 domain, resulting in slower dissociation of phosphorylated ligands and consequently, enhances binding affinity. This biophysical enhancement of SH2:pTyr binding affinity translates to increase SOCS2 inhibition of GH signaling.
Collapse
Affiliation(s)
- Edmond M Linossi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kunlun Li
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Cyrus Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Colin Hockings
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Dale J Calleja
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, Woolloongabba, QLD, 4102, Australia
| | - Shawn S Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Kruse T, Benz C, Garvanska DH, Lindqvist R, Mihalic F, Coscia F, Inturi R, Sayadi A, Simonetti L, Nilsson E, Ali M, Kliche J, Moliner Morro A, Mund A, Andersson E, McInerney G, Mann M, Jemth P, Davey NE, Överby AK, Nilsson J, Ivarsson Y. Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities. Nat Commun 2021; 12:6761. [PMID: 34799561 PMCID: PMC8605023 DOI: 10.1038/s41467-021-26498-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.
Collapse
Affiliation(s)
- Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Dimitriya H Garvanska
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Filip Mihalic
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Fabian Coscia
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Spatial Proteomics Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Johanna Kliche
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ainhoa Moliner Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mund
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Mann
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden.
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
19
|
Helmy M, Selvarajoo K. Systems Biology to Understand and Regulate Human Retroviral Proinflammatory Response. Front Immunol 2021; 12:736349. [PMID: 34867957 PMCID: PMC8635014 DOI: 10.3389/fimmu.2021.736349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
The majority of human genome are non-coding genes. Recent research have revealed that about half of these genome sequences make up of transposable elements (TEs). A branch of these belong to the endogenous retroviruses (ERVs), which are germline viral infection that occurred over millions of years ago. They are generally harmless as evolutionary mutations have made them unable to produce viral agents and are mostly epigenetically silenced. Nevertheless, ERVs are able to express by still unknown mechanisms and recent evidences have shown links between ERVs and major proinflammatory diseases and cancers. The major challenge is to elucidate a detailed mechanistic understanding between them, so that novel therapeutic approaches can be explored. Here, we provide a brief overview of TEs, human ERVs and their links to microbiome, innate immune response, proinflammatory diseases and cancer. Finally, we recommend the employment of systems biology approaches for future HERV research.
Collapse
Affiliation(s)
- Mohamed Helmy
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Synthetic Biology Translational Research Program & SynCTI, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Kent Ridge, Singapore
| |
Collapse
|
20
|
Comprehensive Assessment of the Relationship Between Site -2 Specificity and Helix α2 in the Erbin PDZ Domain. J Mol Biol 2021; 433:167115. [PMID: 34171344 DOI: 10.1016/j.jmb.2021.167115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
PDZ domains are key players in signalling pathways. These modular domains generally recognize short linear C-terminal stretches of sequences in proteins that organize the formation of complex multi-component assemblies. The development of new methodologies for the characterization of the molecular principles governing these interactions is critical to fully understand the functional diversity of the family and to elucidate biological functions for family members. Here, we applied an in vitro evolution strategy to explore comprehensively the capacity of PDZ domains for specific recognition of different amino acids at a key position in C-terminal peptide ligands. We constructed a phage-displayed library of the Erbin PDZ domain by randomizing the binding site-2 and adjacent residues, which are all contained in helix α2, and we selected for variants binding to a panel of peptides representing all possible position-2 residues. This approach generated insights into the basis for the common natural class I and II specificities, demonstrated an alternative basis for a rare natural class III specificity for Asp-2, and revealed a novel specificity for Arg-2 that has not been reported in natural PDZ domains. A structure of a PDZ-peptide complex explained the minimum requirement for switching specificity from class I ligands containing Thr/Ser-2 to class II ligands containing hydrophobic residues at position-2. A second structure explained the molecular basis for the specificity for ligands containing Arg-2. Overall, the evolved PDZ variants greatly expand our understanding of site-2 specificities and the variants themselves may prove useful as building blocks for synthetic biology.
Collapse
|