1
|
Shill S, Changmai RR, Dolai G, Sarma M, Mandal B. Unprecedented binding of Thioflavin T with well-ordered spherical aggregates: A false positive? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126165. [PMID: 40209450 DOI: 10.1016/j.saa.2025.126165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Amyloidogenic protein aggregation is a hallmark of numerous neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Thioflavin T (ThT), which selectively interacts with fibrillar amyloid structures, holds significant promise for diagnostic and therapeutic applications. Herein, we investigate the binding behaviour of Thioflavin T (ThT), a widely employed amyloid-specific fluorophore, with well-ordered spherical aggregates formed by dipeptides Boc-Phe-Trp-OMe (FW), Boc-Val-Trp-OMe (VW), Boc-Leu-Trp-OMe (LW) and Boc-Ile-Trp-OMe (IW). Our findings indicate that despite their non-amyloid nature, the well-ordered spherical dipeptide aggregates effectively sequester ThT molecules, enhancing fluorescence. The binding of ThT molecules to the dipeptides was further confirmed by fluorescence microscopy, which produced beautiful bright green-fluorescent images from the spherical structures and also with DFT studies. The apparent binding constant calculation suggests a reasonably good binding affinity between ThT and the designed dipeptide molecules, and the thermodynamic parameters analysis indicates the spontaneity of the binding process during complexation. The spherical nature of the dipeptides was confirmed by FESEM and FETEM. Circular Dichroism (CD) and Solid-state FTIR studies suggest that the dipeptides in solution coexist in multiple conformations. This study underscores the universality of ThT as a probe for fibrillar aggregate, sheds light on the broader implications of molecular recognition, and highlights the importance of investigating unexpected interactions in supramolecular chemistry and peptide-based materials. This is the first report of a ThT-stained spherical supramolecular structure made up of standard amino acids.
Collapse
Affiliation(s)
- Sukesh Shill
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Rabu Ranjan Changmai
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gobinda Dolai
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Rychkov GN, Sulatskaya AI, Stepanenko OV. Comprehensive picture of β-barrel transformation in the fibrillogenesis of odorant-binding proteins. Int J Biol Macromol 2025; 309:142709. [PMID: 40174819 DOI: 10.1016/j.ijbiomac.2025.142709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/14/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Protein dysfunction can be caused by its fibrillogenesis, which is often initiated by rather subtle structural changes. In the case of odorant-binding proteins (OBPs), fibrillogenesis triggering is mediated by local melting of the peripheral C-terminal domain while maintaining the integrity of the bulk of the molecule, the β-barrel. This work is focused on establishing the sequence and duration of structural transformations of OBPs' β-barrel during fibrillogenesis. We found that β-barrel transformation requires oligomerization of OBPs monomers with unlocked C-terminus, whose formation precedes the fibrillogenesis initiation. The fibrillogenesis lag phase involves the gradual bond weakening within the β-barrel without its destruction. During this phase, oligomeric molecules first experience partial disruption of contacts near the β1-strand, followed by its disorganization and the opening of the internal protein cavity. In the exponential phase, complete β-barrel reorganization in aggregates lasts as long as the lag phase, accompanied by the sequential appearance of prefibrillar forms with cytotoxicity and mature amyloid fibrils. Our findings suggest similarities in the intermediate states accumulated during fibrillogenesis as well as common mechanisms and sequence of structural transitions for proteins of β-barrel topology. This contributes to the identification of relevant targets and possible ways to inhibit amyloidogenesis of these proteins.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russian Federation.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russian Federation.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russian Federation.
| | - Georgy N Rychkov
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Russian Federation.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russian Federation.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russian Federation.
| |
Collapse
|
3
|
Bhowal P, Jameson D, Banerjee R. Investigating the binding of fluorescent probes to a trypanosomal-tRNA synthetase: A fluorescence spectroscopic and molecular dynamics study. Arch Biochem Biophys 2025; 764:110263. [PMID: 39657888 DOI: 10.1016/j.abb.2024.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Given the high prevalence of Chagas disease in the Americas, we targeted the unique arginyl-tRNA synthetase of its causative agent Trypanosoma cruzi. Among their many possible uses, naphthalene-derived fluorescent ligands, such as ANS and bis-ANS, may be employed in pharmacokinetic research. Although ANS and bis-ANS have become prominent fluorescent probes for protein characterization, the structural and spectroscopic characteristics of protein-ANS/bis-ANS complexes remain largely unknown. Both fluorescent dyes bind to either the folded or partially folded hydrophobic regions of proteins. Additionally, they serve to identify molten globule-like intermediates. These probes have been used to study the folding problems of protein structures and the mechanisms of protein-protein interactions. ANS and bis-ANS exhibited significant enhancement and blue shift in their emission spectra upon binding to TcArgRS, the primary enzyme responsible for attaching l-arginine to its corresponding tRNA. Through fluorescence spectroscopy and computational studies, we concluded that bis-ANS binds more tightly to TcArgRS and that ATP affects bis-ANS fluorescence signal. Thus, these probes are useful resources for studying the intricate intermolecular relationships between proteins in terms of their structure, function, and mechanism. Our study provides a framework for identifying the hydrophobic regions present in TcArgRS. The utilization of hydrophobic patches on proteins for drug targeting is noteworthy because they can assist in identifying regions on the surface of proteins that are likely to interact with ligands. These patches help identify hotspot residues that play a vital role in determining binding affinity. Drugs are mainly small and hydrophobic in nature, and they target protein surfaces which have complementary properties. In this study, we elucidated the potential of TcArgRS as a target for combating trypanosomal diseases and extending life expectancy.
Collapse
Affiliation(s)
- Pratyasha Bhowal
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - David Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, USA
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India.
| |
Collapse
|
4
|
Almeida ZL, Vaz DC, Brito RMM. Transthyretin mutagenesis: impact on amyloidogenesis and disease. Crit Rev Clin Lab Sci 2024; 61:616-640. [PMID: 38850014 DOI: 10.1080/10408363.2024.2350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Transthyretin (TTR), a homotetrameric protein found in plasma, cerebrospinal fluid, and the eye, plays a pivotal role in the onset of several amyloid diseases with high morbidity and mortality. Protein aggregation and fibril formation by wild-type TTR and its natural more amyloidogenic variants are hallmarks of ATTRwt and ATTRv amyloidosis, respectively. The formation of soluble amyloid aggregates and the accumulation of insoluble amyloid fibrils and deposits in multiple tissues can lead to organ dysfunction and cell death. The most frequent manifestations of ATTR are polyneuropathies and cardiomyopathies. However, clinical manifestations such as carpal tunnel syndrome, leptomeningeal, and ocular amyloidosis, among several others may also occur. This review provides an up-to-date listing of all single amino-acid mutations in TTR known to date. Of approximately 220 single-point mutations, 93% are considered pathogenic. Aspartic acid is the residue mutated with the highest frequency, whereas tryptophan is highly conserved. "Hot spot" mutation regions are mainly assigned to β-strands B, C, and D. This manuscript also reviews the protein aggregation models that have been proposed for TTR amyloid fibril formation and the transient conformational states that convert native TTR into aggregation-prone molecular species. Finally, it compiles the various in vitro TTR aggregation protocols currently in use for research and drug development purposes. In short, this article reviews and discusses TTR mutagenesis and amyloidogenesis, and their implications in disease onset.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic Institute of Leiria, Leiria, Portugal
- LSRE-LCM - Leiria, Portugal & ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Li JY, Zhou CM, Jin RL, Song JH, Yang KC, Li SL, Tan BH, Li YC. The detection methods currently available for protein aggregation in neurological diseases. J Chem Neuroanat 2024; 138:102420. [PMID: 38626816 DOI: 10.1016/j.jchemneu.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Jia-Hui Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Ke-Chao Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
6
|
Halder B, Ghosh S, Khan T, Pal S, Das N, Sen P. Tracking heterogenous protein aggregation at nanoscale through fluorescence correlation spectroscopy. Photochem Photobiol 2024; 100:989-999. [PMID: 39032082 DOI: 10.1111/php.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Various biophysical techniques have been extensively employed to study protein aggregation due to its significance. Traditionally, these methods detect aggregation at micrometer length scales and micromolar concentrations. However, unlike in vitro, protein aggregation typically occurs at nanomolar concentrations in vivo. Here, using fluorescence correlation spectroscopy (FCS), we captured bromelain aggregation at concentrations as low as ~20 nM, surpassing the detection limit of traditional methods like thioflavin T fluorescence, scattering, and fluorescence microscopy by more than one order of magnitude. Moreover, using thioflavin T fluorescence-based FCS, we have detected larger aggregates at higher bromelain concentrations, which is undetectable in FCS otherwise. Importantly, our study reveals inherent heterogeneity in bromelain aggregation, inaccessible to ensemble-averaged techniques. The presented report may provide a platform for the characterization of premature aggregates at very low protein concentrations, which are thought to be functionally significant species in protein aggregation-induced diseases.
Collapse
Affiliation(s)
- Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Subhendu Pal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
7
|
Anbaraki A, Dindar Z, Mousavi-Jarrahi Z, Ghasemi A, Moeini Z, Evini M, Saboury AA, Seyedarabi A. The novel anti-fibrillary effects of volatile compounds α-asarone and β-caryophyllene on tau protein: Towards promising therapeutic agents for Alzheimer's disease. Int J Biol Macromol 2024; 271:132401. [PMID: 38761902 DOI: 10.1016/j.ijbiomac.2024.132401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The abnormal deposition of tau protein is one of the critical causes of tauopathies including Alzheimer's disease (AD). In recent years, there has been great interest in the use of essential oils and volatile compounds in aromatherapy for treating AD, since volatile compounds can directly reach the brain through intranasal administration. The volatile compounds α-asarone (ASA) and β-caryophyllene (BCP) have revealed various important neuroprotective properties, useful in treating AD. In this study, the volatile compounds ASA and BCP were assessed for their effectiveness in preventing tau fibrillation, disassembly of pre-formed tau fibrils, and disaggregation of tau aggregates. SDS-PAGE and AFM analyses revealed that ASA and BCP inhibited tau fibrillation/aggregation and decreased the mean size of tau oligomers. Tau samples treated with ASA and BCP, showed a reduction in ThT and ANS fluorescence intensities, and a decrease in the β-sheet content. Additionally, ASA and BCP disassembled the pre-formed tau fibrils to the granular and linear oligomeric intermediates. Treatment of neuroblastoma SH-SY5Y cells with tau samples treated with ASA and BCP, revealed protective effects as shown by reduced toxicity of the cells, due to the inhibition of tau fibrillation/aggregation. Overall, ASA and BCP appeared to be promising therapeutic candidates for AD.
Collapse
Affiliation(s)
- Afrooz Anbaraki
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Dindar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra Moeini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mina Evini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Koroleva ON, Kuzmina NV, Dubrovin EV, Drutsa VL. Atomic force microscopy of spherical intermediates on the pathway to fibril formation of influenza A virus nuclear export protein. Microsc Res Tech 2024; 87:1131-1145. [PMID: 38270267 DOI: 10.1002/jemt.24499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
The nuclear export protein of the influenza A virus (NEP) is involved in many important processes of the virus life cycle. This makes it an attractive target for the treatment of a disease caused by a virus. Previously it has been shown, that recombinant variants of NEP are highly prone to aggregation in solution under various conditions with the formation of amyloid-like aggregates. In the present work, the amyloid nature of NEP aggregates was evidenced by Congo red binding assays. Atomic force microscopy has shown that NEP can form two types of spherical nanoparticles, which provide an alternative pathway for the formation of amyloid-like fibrils. Type I of these "fibrillogenic" spheres, formed under physiological conditions, represents the micelle-like particles with height 10-60 nm, which can generate worm-like flexible fibrils with the diameter 2.5-4.0 nm, length 20-500 nm and the Young's modulus ~73 MPa. Type II spherical aggregates with size of about 400-1000 nm, formed at elevated temperatures, includes fractions of drop-like and vesicle-like particles, generating more rigid amyloid-like fibrils with height of ~8 nm, and length of up to 2 μm. The hypothetical mechanism of fibril formation via nanospherical structures was suggested. RESEARCH HIGHLIGHTS: AFM has revealed two types of the influenza A virus nuclear export protein spherical aggregates. They provide an alternative pathway for the formation of amyloid-like fibrils. The mechanism of fibril formation via spherical structures is suggested.
Collapse
Affiliation(s)
- Olga N Koroleva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Natalia V Kuzmina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniy V Dubrovin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
- National University of Science and Technology, MISIS, Moscow, Russian Federation
| | - Valeriy L Drutsa
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
9
|
Hasan I, Guo B, Zhang J, Chang C. Advances in Antioxidant Nanomedicines for Imaging and Therapy of Alzheimer's Disease. Antioxid Redox Signal 2024; 40:863-888. [PMID: 36070437 DOI: 10.1089/ars.2022.0107] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are crucial signaling molecules in the regulation of numerous physiological activities including the formation and function of the central nervous system (CNS). So far, many functional antioxidant nanomedicines with ROS scavenging capability to reduce oxidative stress in Alzheimer's disease (AD) have been developed for both imaging and therapy of AD. Recent Advances: This review focuses on the most recent advances in antioxidant nanomedicines such as ROS-scavenging nanoparticles (NPs), NPs with intrinsic antioxidant activity, and drug-loaded antioxidant NPs for AD theranostics. In addition to antioxidant nanomedicines, the emerging phototherapy treatment paradigms and the promising preclinic drug carriers, such as exosomes and liposomes, are also introduced. Critical Issues: In general, excessive generation of ROS can cause lipid peroxidation, oxidative DNA, as well as protein damage, aggravating pathogenic alterations, accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain. These negative factors further cause cell death, which is the beginning of AD. Future Directions: We anticipate that this review will help researchers in the area of preclinical research and clinical translation of antioxidant nanomedicines for AD imaging and therapy.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Singh SL, Bhat R. Cyclic-NDGA Effectively Inhibits Human γ-Synuclein Fibrillation, Forms Nontoxic Off-Pathway Species, and Disintegrates Preformed Mature Fibrils. ACS Chem Neurosci 2024; 15:1770-1786. [PMID: 38637513 DOI: 10.1021/acschemneuro.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Parkinson's disease arises from protein misfolding, aggregation, and fibrillation and is characterized by LB (Lewy body) deposits, which contain the protein α-synuclein (α-syn) as their major component. Another synuclein, γ-synuclein (γ-syn), coexists with α-syn in Lewy bodies and is also implicated in various types of cancers, especially breast cancer. It is known to seed α-syn fibrillation after its oxidation at methionine residue, thereby contributing in synucleinopathy. Despite its involvement in synucleinopathy, the search for small molecule inhibitors and modulators of γ-syn fibrillation remains largely unexplored. This work reveals the modulatory properties of cyclic-nordihydroguaiaretic acid (cNDGA), a natural polyphenol, on the structural and aggregational properties of human γ-syn employing various biophysical and structural tools, namely, thioflavin T (ThT) fluorescence, Rayleigh light scattering, 8-anilinonaphthalene-1-sulfonic acid binding, far-UV circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, atomic force microscopy, ITC, molecular docking, and MTT-toxicity assay. cNDGA was observed to modulate the fibrillation of γ-syn to form off-pathway amorphous species that are nontoxic in nature at as low as 75 μM concentration. The modulation is dependent on oxidizing conditions, with cNDGA weakly interacting (Kd ∼10-5 M) with the residues at the N-terminal of γ-syn protein as investigated by isothermal titration calorimetry and molecular docking, respectively. Increasing cNDGA concentration results in an increased recovery of monomeric γ-syn as shown by sodium dodecyl sulfate and native-polyacrylamide gel electrophoresis. The retention of native structural properties of γ-syn in the presence of cNDGA was further confirmed by far-UV CD and FTIR. In addition, cNDGA is most effective in suppression of fibrillation when added at the beginning of the fibrillation kinetics and is also capable of disintegrating the preformed mature fibrils. These findings could, therefore, pave the ways for further exploring cNDGA as a potential therapeutic against γ-synucleinopathies.
Collapse
Affiliation(s)
- Sneh Lata Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Ansari NK, Rais A, Naeem A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J 2024; 43:362-374. [PMID: 38431536 DOI: 10.1007/s10930-024-10187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Protein aggregation is related to numerous pathological conditions like Alzheimer's and Parkinson's disease. In our study, we have shown that an already existing FDA-approved drug; methotrexate (MTX) can be reprofiled on preformed α-chymotrypsinogen A (α-Cgn A) aggregates. The zymogen showed formation of aggregates upon interaction with mercuric ions, with increasing concentration of Hg2Cl2 (0-150 µM). The hike in ThT and ANS fluorescence concomitant with blue shift, bathochromic shift and the hyperchromic effect in the CR absorbance, RLS and turbidity measurements, substantiate the zymogen β-rich aggregate formation. The secondary structural alterations of α- Cgn A as analyzed by CD measurements, FTIR and Raman spectra showed the transformation of native β-barrel conformation to β-inter-molecular rich aggregates. The native α- Cgn A have about 30% α-helical content which was found to be about 3% in presence of mercuric ions suggesting the formation of aggregates. The amorphous aggregates were visualized by SEM. On incubation of Hg2Cl2 treated α- Cgn A with increasing concentration of the MTX resulted in reversing aggregates to the native-like structure. These results were supported by remarkable decrease in ThT and ANS fluorescence intensities and CR absorbance and also consistent with CD, FTIR, and Raman spectroscopy data. MTX was found to increase the α-helical content of the zymogen from 3 to 15% proposing that drug is efficient in disrupting the β-inter-molecular rich aggregates and reverting it to native like structure. The SEM images are in accordance with CD data showing the disintegration of aggregates. The most effective concentration of the drug was found to be 120 µM. Molecular docking analysis showed that MTX molecule was surrounded by the hydrophobic residues including Phe39, His40, Arg145, Tyr146, Thr151, Gly193, Ser195, and Gly216 and conventional hydrogen bonds, including Gln73 (bond length: 2.67Å), Gly142 (2.59Å), Thr144 (2.81Å), Asn150 (2.73Å), Asp153 (2.71Å), and Cys191 (2.53Å). This investigation will help to find the use of already existing drugs to cure protein misfolding-related abnormalities.
Collapse
Affiliation(s)
- Neha Kausar Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Amaan Rais
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| |
Collapse
|
12
|
Ding X, Wang Y, Zhang S, Zhang R, Chen D, Liu C, Xu J, Chen L. Reductive amination of ω-conotoxin MVIIA: synthesis, determination of modification sites, and self-assembly. Amino Acids 2024; 56:26. [PMID: 38554247 PMCID: PMC10981597 DOI: 10.1007/s00726-023-03366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 04/01/2024]
Abstract
Peptide drugs have disadvantages such as low stability, short half-life and side effects, which limit their widespread use in clinical practice. Therefore, peptide drugs can be modified to improve these disadvantages. Numerous studies have shown that alkyl-modified peptide drugs can self-assemble to prolong the duration of efficacy and/or reduce side effects. However, the commonly used solid-phase synthesis method for alkyl-modified peptides is time-consuming. To overcome this, a simple reductive amination reaction was employed, which can directly graft the alkyl chain to the peptide sequence and effectively avoid stepwise synthesis from C- to N-terminal with amino acids. In this study, ω-conotoxin MVIIA was used as the peptide drug, while myristic aldehyde was used as the alkylating agent. To obtain the maximum productivity of modified peptides, the molar ratio of peptide MVIIA to myristic aldehyde in the reductive amination reaction was optimized. Furthermore, the peptide modification sites in this reaction were confirmed by secondary mass spectrometry analysis. Besides, alkyl-modified peptide MVIIA was able to form micelles by self-assembly and improved stability in serum, which was related to our previous work where myristoylated peptide MVIIA micelles can improve the drug stability. Finally, this study was intended to provide a methodological basis for modifying the alkyl chain of peptide drugs.
Collapse
Affiliation(s)
- Xiufang Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yue Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sida Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Dong Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Anselmo S, Sancataldo G, Vetri V. Deciphering amyloid fibril molecular maturation through FLIM-phasor analysis of thioflavin T. BIOPHYSICAL REPORTS 2024; 4:100145. [PMID: 38404533 PMCID: PMC10884809 DOI: 10.1016/j.bpr.2024.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
The investigation of amyloid fibril formation is paramount for advancing our understanding of neurodegenerative diseases and for exploring potential correlated therapeutic strategies. Moreover, the self-assembling properties of amyloid fibrils show promise for the development of advanced protein-based biomaterials. Among the methods employed to monitor protein aggregation processes, fluorescence has emerged as a powerful tool. Its exceptional sensitivity enables the detection of early-stage aggregation events that are otherwise challenging to observe. This research underscores the pivotal role of fluorescence analysis, particularly in investigating the aggregation processes of hen egg white lysozyme, a model protein extensively studied for insights into amyloid fibril formation. By combining classical spectroscopies with fluorescence microscopy and by exploiting the fluorescence properties (intensity and lifetime) of the thioflavin T, we were able to noninvasively monitor key and complex molecular aspects of the process. Intriguingly, the fluorescence lifetime imaging-phasor analysis of thioflavin T fluorescence lifetime on structures at different stages of aggregation allowed to decipher the complex fluorescence decay behavior, highlighting that their changes rise from the combination of specific binding to amyloid typical cross-β structures and of the rigidity of the molecular environment.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica – Emilio Segré, Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica – Emilio Segré, Università degli Studi di Palermo, Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica – Emilio Segré, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
14
|
Kuila S, Dey S, Singh P, Shrivastava A, Nanda J. Phenylalanine-based fibrillar systems. Chem Commun (Camb) 2023; 59:14509-14523. [PMID: 37987167 DOI: 10.1039/d3cc04138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Phenylketonuria (PKU) is an inborn metabolic disorder characterized by excess accumulation of phenylalanine (Phe) and its fibril formation, resulting in progressive intellectual disability. Several research groups have approached from various directions to understand the formation of toxic amyloid fibrils from the essential amino acid Phe. Different parameters like the nature of the solvent, pH, Phe concentration, temperature, etc. influence the fibril formation kinetics. In this article, we have summarized all major findings regarding the formation of Phe-based fibrils in aqueous and organic media and discussed how non-covalent interactions are involved in the self-assembly process using spectroscopic and microscopic techniques. The toxicity of Phe-based fibrils is compared with other neurodegenerative peptides. It is noted that the Phe-based fibrils can also induce various globular proteins into toxic fibrils. Later, we discuss the different approaches to inhibit fibril formation and reduce its toxicity. The presence of polyphenolic compounds, drugs, amino acids, nanoparticles, metal ions, crown ethers, and others showed a remarkable inhibitory effect on fibril formation. To the best of our knowledge, this is the first-ever etymological analysis of the Phe-fibrillar system and its inhibition to create a strong database against PKU.
Collapse
Affiliation(s)
- Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.
| | - Pijush Singh
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Akash Shrivastava
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.
| |
Collapse
|
15
|
São Pedro MN, Isaksson M, Gomis-Fons J, Eppink MHM, Nilsson B, Ottens M. Real-time detection of mAb aggregates in an integrated downstream process. Biotechnol Bioeng 2023; 120:2989-3000. [PMID: 37309984 DOI: 10.1002/bit.28466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
The implementation of continuous processing in the biopharmaceutical industry is hindered by the scarcity of process analytical technologies (PAT). To monitor and control a continuous process, PAT tools will be crucial to measure real-time product quality attributes such as protein aggregation. Miniaturizing these analytical techniques can increase measurement speed and enable faster decision-making. A fluorescent dye (FD)-based miniaturized sensor has previously been developed: a zigzag microchannel which mixes two streams under 30 s. Bis-ANS and CCVJ, two established FDs, were employed in this micromixer to detect aggregation of the biopharmaceutical monoclonal antibody (mAb). Both FDs were able to robustly detect aggregation levels starting at 2.5%. However, the real-time measurement provided by the microfluidic sensor still needs to be implemented and assessed in an integrated continuous downstream process. In this work, the micromixer is implemented in a lab-scale integrated system for the purification of mAbs, established in an ÄKTA™ unit. A viral inactivation and two polishing steps were reproduced, sending a sample of the product pool after each phase directly to the microfluidic sensor for aggregate detection. An additional UV sensor was connected after the micromixer and an increase in its signal would indicate that aggregates were present in the sample. The at-line miniaturized PAT tool provides a fast aggregation measurement, under 10 min, enabling better process understanding and control.
Collapse
Affiliation(s)
- Mariana N São Pedro
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | - Michel H M Eppink
- Byondis B. V., Nijmegen, The Netherlands
- Bioprocessing Engineering, Wageningen University, Wageningen, The Netherlands
| | - Bernt Nilsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
16
|
Thi Minh N, Begum A, Zhang J, Leira P, Todarwal Y, Linares M, Norman P, Derbyshire D, von Castelmur E, Lindgren M, Hammarström P, König C. Binding of a Pyrene-Based Fluorescent Amyloid Ligand to Transthyretin: A Combined Crystallographic and Molecular Dynamics Study. J Phys Chem B 2023; 127:6628-6635. [PMID: 37477604 PMCID: PMC10405211 DOI: 10.1021/acs.jpcb.3c02147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Misfolding and aggregation of transthyretin (TTR) cause several amyloid diseases. Besides being an amyloidogenic protein, TTR has an affinity for bicyclic small-molecule ligands in its thyroxine (T4) binding site. One class of TTR ligands are trans-stilbenes. The trans-stilbene scaffold is also widely applied for amyloid fibril-specific ligands used as fluorescence probes and as positron emission tomography tracers for amyloid detection and diagnosis of amyloidosis. We have shown that native tetrameric TTR binds to amyloid ligands based on the trans-stilbene scaffold providing a platform for the determination of high-resolution structures of these important molecules bound to protein. In this study, we provide spectroscopic evidence of binding and X-ray crystallographic structure data on tetrameric TTR complex with the fluorescent salicylic acid-based pyrene amyloid ligand (Py1SA), an analogue of the Congo red analogue X-34. The ambiguous electron density from the X-ray diffraction, however, did not permit Py1SA placement with enough confidence likely due to partial ligand occupancy. Instead, the preferred orientation of the Py1SA ligand in the binding pocket was determined by molecular dynamics and umbrella sampling approaches. We find a distinct preference for the binding modes with the salicylic acid group pointing into the pocket and the pyrene moiety outward to the opening of the T4 binding site. Our work provides insight into TTR binding mode preference for trans-stilbene salicylic acid derivatives as well as a framework for determining structures of TTR-ligand complexes.
Collapse
Affiliation(s)
- Nghia
Nguyen Thi Minh
- Institute
of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167 Hannover, Germany
| | - Afshan Begum
- Division
of Chemistry Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Jun Zhang
- Division
of Chemistry Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Petter Leira
- Department
of Physics, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
| | - Yogesh Todarwal
- Department
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mathieu Linares
- Department
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Laboratory
of Organic Electronics, ITN, Linköping
University, PSE-581 83 Linköping, Sweden
- Scientific
Visualization Group, ITN, Linköping
University, SE-581 83 Linköping, Sweden
| | - Patrick Norman
- Department
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Dean Derbyshire
- Division
of Chemistry Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Eleonore von Castelmur
- Division
of Chemistry Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Mikael Lindgren
- Department
of Physics, Norwegian University of Science
and Technology, 7491 Trondheim, Norway
| | - Per Hammarström
- Division
of Chemistry Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Carolin König
- Institute
of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3A, 30167 Hannover, Germany
| |
Collapse
|
17
|
Nirmalraj PN, Schneider T, Lüder L, Felbecker A. Protein fibril length in cerebrospinal fluid is increased in Alzheimer's disease. Commun Biol 2023; 6:251. [PMID: 36890343 PMCID: PMC9995532 DOI: 10.1038/s42003-023-04606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Alzheimer's disease (AD) associated proteins exist in cerebrospinal fluid (CSF). This paper evidences that protein aggregate morphology distinctly differs in CSF of patients with AD dementia (ADD), mild cognitive impairment due to AD (MCI AD), with subjective cognitive decline without amyloid pathology (SCD) and with non-AD MCI using liquid-based atomic force microscopy (AFM). Spherical-shaped particles and nodular-shaped protofibrils were present in the CSF of SCD patients, whereas CSF of ADD patients abundantly contained elongated mature fibrils. Quantitative analysis of AFM topographs confirms fibril length is higher in CSF of ADD than in MCI AD and lowest in SCD and non-AD dementia patients. CSF fibril length is inversely correlated with CSF amyloid beta (Aβ) 42/40 ratio and CSF p-tau protein levels (obtained from biochemical assays) to predict amyloid and tau pathology with an accuracy of 94% and 82%, respectively, thus identifying ultralong protein fibrils in CSF as a possible signature of AD pathology.
Collapse
Affiliation(s)
- Peter Niraj Nirmalraj
- Transport at Nanoscale Interfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland.
| | - Thomas Schneider
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, CH-9007, Switzerland
| | - Lars Lüder
- Transport at Nanoscale Interfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Ansgar Felbecker
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, CH-9007, Switzerland.
| |
Collapse
|
18
|
Mohanty S, Tirkey B, Jena SR, Samanta L, Subuddhi U. Exploring Steroidal Surfactants as Potential Drug Carriers for an Anticancer Drug Curcumin: An Insight into the Effect of Surfactants' Structure on the Photophysical Properties, Stability, and Activity of Curcumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1852-1869. [PMID: 36691916 DOI: 10.1021/acs.langmuir.2c02797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite having tremendous medicinal benefits, the practical applications of curcumin are limited, owing to two major challenges: poor aqueous solubility and lack of bioavailability. In this regard, biosurfactant-based micellar systems have surged recently for the development of novel and more effective formulations because of their biological relevance. This study deals with a comprehensive and comparative investigation on the effect of seven structurally different steroidal surfactants on the photophysical properties of curcumin and also evaluates these steroidal surfactants as possible drug delivery media for curcumin. The photophysical properties of curcumin exhibited a strong dependence on the structure of the steroidal surfactant; the extent of excited-state proton transfer between curcumin and the surfactants depends strongly on the type of the side chain in the surfactants, which mostly dictates the photophysics of curcumin in the presence of these structural variants. The solubility of curcumin and its stability at different pHs and temperatures and in the presence of salt are significantly enhanced in the presence of these surfactants. Furthermore, the curcumin-loaded micelles exhibited improved intracellular uptake and cytotoxicity against MCF-7 cancer cells than pristine curcumin. Among these steroidal surfactants, CHAPS, the zwitterionic derivative of cholic acid, was the most efficient one to offer better solubility and stability to curcumin under all conditions, and the death rate of MCF-7 cells by curcumin was found to be the highest in the presence of CHAPS, indicating the enhanced bioavailability of curcumin. Therefore, CHAPS-based colloids are found to be promising candidates as potential drug carriers for curcumin.
Collapse
Affiliation(s)
- Subhrajit Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| | - Binita Tirkey
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| | - Soumya Ranjan Jena
- Department of Zoology, Ravenshaw University, Cuttack, Odisha753003, India
| | - Luna Samanta
- Department of Zoology, Ravenshaw University, Cuttack, Odisha753003, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| |
Collapse
|
19
|
Matsushita H, Fukunari A, Sameshima G, Okada M, Inoue F, Ueda M, Ando Y. Suppression of amyloid fibril formation by UV irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Ahmad A, Mishra R. Polyol and sugar osmolytes stabilize the molten globule state of α-lactalbumin and inhibit amyloid fibril formation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140853. [PMID: 36096464 DOI: 10.1016/j.bbapap.2022.140853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Protein misfolding and aggregation are associated with several human diseases such as Alzheimer's, Parkinson's, prion related disorders, type-II diabetes, etc. Different strategies using molecular chaperones, synthetic and naturally occurring small molecules, osmolytes, etc. have been used to prevent protein aggregation and amyloid fibril formation. In this study, we have used bovine α-lactalbumin at pH 1.6, 37 °C, and shaking conditions to promote amyloid fibril formation. Polyol and sugar osmolytes like glycerol, sorbitol, and trehalose have been used to inhibit the fibrillation of a number of proteins. In the present work, amyloid fibril formation of α-lactalbumin has been shown by ThT assay and AFM, while changes in the secondary structure during fibrillation has been followed by circular dichroism spectroscopy. Our results show that glycerol, sorbitol, and trehalose affect amyloid fibril formation of α-lactalbumin in a concentration-dependent manner. There is a delay in the lag phase of amyloid fibril formation in sorbitol and trehalose and complete inhibition in 6 M glycerol. Our results indicate that delay in the lag phase and inhibition of amyloid fibril formation are due to the stabilization of molten globule state by these osmolytes. At pH 1.6, the molten globule as well as the amyloid fibrils bind to ANS. However, when pH was shifted from 1.6 to 7, only the oligomeric and the fibrillar species bind to ANS due to refolding of molten globule state. The outcome of this study might be useful in designing small molecules which may stabilize the intermediate states, thus preventing amyloid fibril formation.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
21
|
Nandi S, Sarkar N. A review on recent application of proton transfer photophysics of bipyridine-3,3′-diol in organized assemblies. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Solov'eva TF, Bakholdina SI, Khomenko VA, Sidorin EV, Kim NY, Novikova OD, Shnyrov VL, Stenkova AM, Eremeev VI, Bystritskaya EP, Isaeva MP. Expression of membrane beta-barrel protein in E. coli at low temperatures: Structure of Yersinia pseudotuberculosis OmpF porin inclusion bodies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183971. [PMID: 35643329 DOI: 10.1016/j.bbamem.2022.183971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The recombinant OmpF porin of Yersinia pseudotuberculosis as a model of transmembrane protein of the β-barrel structural family was used to study low growth temperature effect on the structure of the produced inclusion bodies (IBs). This porin showed a very low expression level in E. coli at a growth temperature below optimal 37 °C. The introduction of a N-terminal hexahistidine tag into the mature porin molecule significantly increased the biosynthesis of the protein at low cultivation temperatures. The recombinant His-tagged porin (rOmpF-His) was expressed in E. coli at 30 and 18 °C as inclusion bodies (IB-30 and IB-18). The properties and structural organization of IBs, as well as the structure of rOmpF-His solubilized from the IBs with urea and SDS, were studied using turbidimetry, electron microscopy, dynamic light scattering, optical spectroscopy, and amyloid-specific dyes. IB-18, in comparison with IB-30, has a higher solubility in denaturants, suggesting a difference between IBs in the conformation of the associated polypeptide chains. The spectroscopic analysis revealed that rOmpF-His IBs have a high content of secondary structure with a tertiary-structure elements, including a native-like conformation, the proportion of which in IB-18 is higher than in IB-30. Solubilization of the porin from IBs is accompanied by a modification of its secondary structure. The studied IBs also contain amyloid-like structures. The results obtained in this study expand our knowledge of the structural organization of IBs formed by proteins of different structural classes and also have a contribution into the new approaches development of producing functionally active recombinant membrane proteins.
Collapse
Affiliation(s)
- Tamara F Solov'eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Svetlana I Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia.
| | - Valentina A Khomenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Evgeniy V Sidorin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Natalya Yu Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Olga D Novikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Valery L Shnyrov
- Departamento de Bioquimica y Biologia Molecular, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Anna M Stenkova
- Far Eastern Federal University School of Biomedicine, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia
| | - Vyacheslav I Eremeev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Evgenia P Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Marina P Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| |
Collapse
|
23
|
Liu M, Meng P, Chen G, Guan Y, Liu G. Correlation of structural extracellular polymeric substances in the mesh biofilms with solids retention time and biofilm hydraulic resistance in dynamic membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155000. [PMID: 35381253 DOI: 10.1016/j.scitotenv.2022.155000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Dynamic membrane bioreactor (DMBR), which mainly relied on the in-situ formed biofilms on support materials with large aperture (e.g., nylon mesh) to separate fine particles in wastewater, has attracted a lot of attentions due to low cost. The filtration performance of DMBR is mainly determined by the structure and hydraulic resistance of biofilms formed on the mesh. Therefore, understanding the correlation of operation conditions with mesh biofilm compositions and permeability are critically important for optimizing DMBR operation. In present study, how structural extracellular polymeric substances, including alginate-like extracellular polysaccharide (ALE) and amyloid-like protein (AP), in mesh biofilms correlate to solids retention time (SRT) and biofilm structures was explored in DMBRs. At 5d-SRT, compact and gel-like mesh biofilms were formed with a high specific filtration resistance (SFR) of 459 × 109 m/g, while at 40d-SRT porous mesh biofilms were developed with a low SFR of 24 × 109 m/g. Consequently, the 5d-SRT MBR experienced more rapid rise in transmembrane pressure. Further studies found that the 5d-SRT mesh biofilms had a higher AP content, which was positively correlated to biofilm hydraulic resistance. On the contrary, the 40d-SRT mesh biofilms contained a higher content of ALE, suggesting that ALE was negatively correlated to biofilm hydraulic resistance. Therefore, AP instead of ALE likely played a more important role in the formation of compact and gel-like mesh biofilms.
Collapse
Affiliation(s)
- Mai Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Peipei Meng
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guichang Chen
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ying Guan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Mosseri A, Sancho‐Albero M, Leone M, Nava D, Secundo F, Maggioni D, De Cola L, Romanelli A. Chiral Fibers Formation Upon Assembly of Tetraphenylalanine Peptide Conjugated to a PNA Dimer. Chemistry 2022; 28:e202200693. [PMID: 35474351 PMCID: PMC9325372 DOI: 10.1002/chem.202200693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Self‐assembly of biomolecules such as peptides, nucleic acids or their analogues affords supramolecular objects, exhibiting structures and physical properties dependent on the amino‐acid or nucleobase composition. Conjugation of the peptide diphenylalanine (FF) to peptide nucleic acids triggers formation of self‐assembled structures, mainly stabilized by interactions between FF. In this work we report formation of homogeneous chiral fibers upon self‐assembly of the hybrid composed of the tetraphenylalanine peptide (4F) conjugated to the PNA dimer adenine‐thymine (at). In this case nucleobases seem to play a key role in determining the morphology and chirality of the fibers. When the PNA “at” is replaced by guanine‐cytosine dimer “gc”, disordered structures are observed. Spectroscopic characterization of the self‐assembled hybrids, along with AFM and SEM studies is reported. Finally, a structural model consistent with the experimental evidence has also been obtained, showing how the building blocks of 4Fat arrange to give helical fibers.
Collapse
Affiliation(s)
- Andrea Mosseri
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| | - Maria Sancho‐Albero
- Department of Molecular Biochemistry and Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS 20156 Milano Italy
| | - Marilisa Leone
- Istituto di Biostrutture e Bioimmagini – CNR via Mezzocannone 16 80134 Naples Italy
| | - Donatella Nava
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, CNR via Mario Bianco 9 Milan 20131 Italy
| | - Daniela Maggioni
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Luisa De Cola
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
- Department of Molecular Biochemistry and Pharmacology Istituto di Ricerche Farmacologiche Mario Negri IRCCS 20156 Milano Italy
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche Università degli Studi di Milano via Venezian 21 20133 Milano Italy
| |
Collapse
|
25
|
Ali F, Manzoor U, Khan FI, Lai D, Khan MKA, Chandrashekharaiah KS, Singh LR, Dar TA. Effect of polyol osmolytes on the structure-function integrity and aggregation propensity of catalase: A comprehensive study based on spectroscopic and molecular dynamic simulation measurements. Int J Biol Macromol 2022; 209:198-210. [PMID: 35395280 DOI: 10.1016/j.ijbiomac.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
Abstract
Owing to the ability of catalase to function under oxidative stress vis-à-vis its industrial importance, the structure-function integrity of the enzyme is of prime concern. In the present study, polyols (glycerol, sorbitol, sucrose, xylitol), were evaluated for their ability to modulate structure, activity and aggregation of catalase using in vitro and in silico approaches. All polyols increased catalase activity by decreasing Km and increasing Vmax resulting in enhanced catalytic efficiency (kcat/Km) of the enzyme, with glycerol being the most efficient with a kcat/Km increase from 4.38 × 104 mM-1 S-1 (control) to 5.8 × 105 mM-1 S-1. Correlatively with this, enhanced secondary structure with reduced hydrophobic exposure was observed in all polyols. Furthermore, increased stability, with an increase in melting temperature by 15.2 °C, and almost no aggregation was observed in glycerol. Overall, ability to regulate structure-function integrity and aggregation propensity was highest for glycerol and lowest for xylitol. Simulation studies were performed involving structural dynamics measurements, principal component analysis and free energy landscape analysis. Altogether, all polyols were stabilizing in nature and glycerol, in particular, has potential to efficiently prevent not only the antioxidant defense system but also might serve as a stability aid during industrial processing of catalase.
Collapse
Affiliation(s)
- Fasil Ali
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | - Usma Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600 048, Tamil Nadu, India
| | - K S Chandrashekharaiah
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | | | - Tanveer Ali Dar
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Marques MC, Lousa D, Silva PM, Faustino AF, Soares CM, Santos NC. The Importance of Lipid Conjugation on Anti-Fusion Peptides against Nipah Virus. Biomedicines 2022; 10:biomedicines10030703. [PMID: 35327503 PMCID: PMC8945041 DOI: 10.3390/biomedicines10030703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/23/2023] Open
Abstract
Nipah virus (NiV) is a recently emerging zoonotic virus that belongs to the Paramyxoviridae family and the Henipavirus genus. It causes a range of conditions, from asymptomatic infection to acute respiratory illness and fatal encephalitis. The high mortality rate of 40 to 90% ranks these viruses among the deadliest viruses known to infect humans. Currently, there is no antiviral drug available for Nipah virus disease and treatment is only supportive. Thus, there is an urgent demand for efficient antiviral therapies. NiV F protein, which catalyzes fusion between the viral and host membranes, is a potential target for antiviral drugs, as it is a key protein in the initial stages of infection. Fusion inhibitor peptides derived from the HRC-domain of the F protein are known to bind to their complementary domain in the protein’s transient intermediate state, preventing the formation of a six-helix bundle (6HB) thought to be responsible for driving the fusion of the viral and cell membranes. Here, we evaluated the biophysical and structural properties of four different C-terminal lipid-tagged peptides. Different compositions of the lipid tags were tested to search for properties that might promote efficacy and broad-spectrum activity. Fluorescence spectroscopy was used to study the interaction of the peptides with biomembrane model systems and human blood cells. In order to understand the structural properties of the peptides, circular dichroism measurements and molecular dynamics simulations were performed. Our results indicate a peptide preference for cholesterol-enriched membranes and a lipid conjugation-driven stabilization of the peptide α-helical secondary structure. This work may contribute for the development of highly effective viral fusion against NiV inhibitors.
Collapse
Affiliation(s)
- Marta C. Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; (D.L.); (C.M.S.)
| | - Patrícia M. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - André F. Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; (D.L.); (C.M.S.)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
- Correspondence:
| |
Collapse
|
27
|
Arghavani P, Badiei A, Ghadami SA, Habibi-Rezaei M, Moosavi-Movahedi F, Delphi L, Moosavi-Movahedi AA. Inhibiting mTTR Aggregation/Fibrillation by a Chaperone-like Hydrophobic Amino Acid-Conjugated SPION. J Phys Chem B 2022; 126:1640-1654. [PMID: 35090112 DOI: 10.1021/acs.jpcb.1c08796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transthyretin (TTR) aggregation via misfolding of a mutant or wild-type protein leads to systemic or partial amyloidosis (ATTR). Here, we utilized variable biophysical assays to characterize two distinct aggregation pathways for mTTR (a synthesized monomer TTR incapable of association into a tetramer) at pH 4.3 and also pH 7.4 with agitation, referred to as mTTR aggregation and fibrillation, respectively. The findings suggest that early-stage conformational changes termed monomer activation here determine the aggregation pathway, resulting in developing either amorphous aggregates or well-organized fibrils. Less packed partially unfolded monomers consisting of more non-regular secondary structures that were rapidly produced via a mildly acidic condition form amorphous aggregates. Meanwhile, more hydrophobic and packed monomers consisting of rearranged β sheets and increased helical content developed well-organized fibrils. Conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with leucine and glutamine (L-SPIONs and G-SPIONs in order) via a trimethoxysilane linker provided the chance to study the effect of hydrophobic/hydrophilic surfaces on mTTR aggregation. The results indicated a powerful inhibitory effect of hydrophobic L-SPIONs on both mTTR aggregation and fibrillation. Monomer depletion was introduced as the governing mechanism for inhibiting mTTR aggregation, while a chaperone-like property of L-SPIONs by maintaining an mTTR native structure and adsorbing oligomers suppressed the progression of further fibril formation.
Collapse
Affiliation(s)
- Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Seyyed Abolghasem Ghadami
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran
| | | | - Ladan Delphi
- Department of Animal Biology, College of Science, University of Tehran, Tehran 1417614411, Iran
| | | |
Collapse
|
28
|
Searching for the Best Transthyretin Aggregation Protocol to Study Amyloid Fibril Disruption. Int J Mol Sci 2021; 23:ijms23010391. [PMID: 35008816 PMCID: PMC8745744 DOI: 10.3390/ijms23010391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies—amyloidoses—are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.
Collapse
|
29
|
Wieczorek E, Bezara P, Ożyhar A. Deep blue autofluorescence reveals the instability of human transthyretin. Int J Biol Macromol 2021; 191:492-499. [PMID: 34562536 DOI: 10.1016/j.ijbiomac.2021.09.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Wild-type human transthyretin (TTR) is a tetrameric protein that transports thyroxine and retinol in the blood and brain. However, a number of mutations or aging leads to destabilization of the quaternary structure of TTR, which results in dissociation of TTR tetramers to monomers, followed by oligomerization and subsequent amyloid formation. TTR amyloid is a pathogenic factor underlying several diseases. It has recently been documented that destabilization of the structure of TTR is driven by Ca2+. The present work shows that the in vitro redox conditions contribute to the destabilization and formation of the highly unstable substoichiometric population(s) of TTR molecules. Importantly, destabilized TTR forms acquire the ability to emit fluorescence in the blue range of the light spectrum. Dithiothreitol (DTT), in the presence of Ca2+, enhances the formation of complex autofluorophore which displays maxima at 417 nm and 438 nm in the emission spectrum of TTR.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Patrycja Bezara
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
30
|
Gorbenko G, Zhytniakivska O, Vus K, Tarabara U, Trusova V. Three-step Förster resonance energy transfer on an amyloid fibril scaffold. Phys Chem Chem Phys 2021; 23:14746-14754. [PMID: 34195724 DOI: 10.1039/d1cp01359a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study provides evidence that the energy transfer chain consisting of the benzothiazole dye Thioflavin T as an input donor, a phosphonium dye TDV and a squaraine dye SQ4 as mediators, and one of the three squaraines SQ1/2/3 as an output acceptor displays an excellent amyloid-sensing ability when applied to differentiating between the amyloid and non-fibrillized states of insulin. The ensemble of fluorophores offers the advantages of a large effective Stokes shift (∼240 nm), well-resolved 3D fluorescence patterns and strong enhancement of the terminal fluorescence (up to two orders of magnitude). The occurrence of multistep energy transfer on an amyloid fibril scaffold opens new possibilities for the more sensitive detection of fibrillar protein assemblies and their applications in nanophotonics.
Collapse
Affiliation(s)
- Galyna Gorbenko
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| | - Olga Zhytniakivska
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| | - Kateryna Vus
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| | - Uliana Tarabara
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| | - Valeriya Trusova
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine.
| |
Collapse
|
31
|
Eves BJ, Doutch JJ, Terry AE, Yin H, Moulin M, Haertlein M, Forsyth VT, Flagmeier P, Knowles TPJ, Dias DM, Lotze G, Seddon AM, Squires AM. Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering. RSC Chem Biol 2021; 2:1232-1238. [PMID: 34458836 PMCID: PMC8341957 DOI: 10.1039/d1cb00001b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
We demonstrate a solution method that allows both elongation rate and average fibril length of assembling amyloid fibrils to be estimated. The approach involves acquisition of real-time neutron scattering data during the initial stages of seeded growth, using contrast matched buffer to make the seeds effectively invisible to neutrons. As deuterated monomers add on to the seeds, the labelled growing ends give rise to scattering patterns that we model as cylinders whose increase in length with time gives an elongation rate. In addition, the absolute intensity of the signal can be used to determine the number of growing ends per unit volume, which in turn provides an estimate of seed length. The number of ends did not change significantly during elongation, demonstrating that any spontaneous or secondary nucleation was not significant compared with growth on the ends of pre-existing fibrils, and in addition providing a method of internal validation for the technique. Our experiments on initial growth of alpha synuclein fibrils using 1.2 mg ml-1 seeds in 2.5 mg ml-1 deuterated monomer at room temperature gave an elongation rate of 6.3 ± 0.5 Å min-1, and an average seed length estimate of 4.2 ± 1.3 μm.
Collapse
Affiliation(s)
- Ben J Eves
- Department of Chemistry, University of Bath Bath UK
| | - James J Doutch
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton Didcot OX11 0QX UK
| | - Ann E Terry
- MAX IV Laboratory, Lund University P.O. Box 118 Lund 221 00 Sweden
| | - Han Yin
- Department of Chemistry, University of Bath Bath UK
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin 38042 Grenoble Cedex 9 France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue Langevin 38042 Grenoble Cedex 9 France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin 38042 Grenoble Cedex 9 France
- School of Chemistry & Physics Keele University Staffordshire ST5 5BG UK
| | - Patrick Flagmeier
- Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Centre for Misfolding Diseases, University of Cambridge Cambridge CB2 1EW UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Centre for Misfolding Diseases, University of Cambridge Cambridge CB2 1EW UK
| | - David M Dias
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Gudrun Lotze
- MAX IV Laboratory, Lund University P.O. Box 118 Lund 221 00 Sweden
| | - Annela M Seddon
- School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol Bristol BS8 1TL UK
| | | |
Collapse
|
32
|
Landeta-Salgado C, Cicatiello P, Stanzione I, Medina D, Berlanga Mora I, Gomez C, Lienqueo ME. The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiol Res 2021; 251:126835. [PMID: 34399103 DOI: 10.1016/j.micres.2021.126835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
The marine fungi Paradendryphiela salina and Talaromyces pinophilus degrade and assimilate complex substrates from plants and seaweed. Additionally, these fungi secrete surface-active proteins, identified as cerato-platanins and hydrophobins. These hydrophobic proteins have the ability to self-assemble forming amyloid-like aggregates and play an essential role in the growth and development of the filamentous fungi. It is the first time that one cerato-platanin (CP) is identified and isolated from P. salina (PsCP) and two Class I hydrophobins (HFBs) from T. pinophilus (TpHYD1 and TpHYD2). Furthermore, it is possible to extract cerato-platanins and hydrophobins using marine fungi that can feed on seaweed biomass, and through a submerged liquid fermentation process. The propensity to aggregate of these proteins has been analyzed using different techniques such as Thioflavin T fluorescence assay, Fourier-transform Infrared Spectroscopy, and Atomic Force Microscopy. Here, we show that the formation of aggregates of PsCP and TpHYD, was influenced by the carbon source from seaweed. This study highlighted the potential of these self-assembling proteins generated from a fermentation process with marine fungi and with promising properties such as conformational plasticity with extensive applications in biotechnology, pharmacy, nanotechnology, and biomedicine.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - David Medina
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Isadora Berlanga Mora
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile
| | - Carlos Gomez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Colombia
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile.
| |
Collapse
|
33
|
Mittal C, Kumari A, De I, Singh M, Harsolia R, Yadav JK. Heat treatment of soluble proteins isolated from human cataract lens leads to the formation of non-fibrillar amyloid-like protein aggregates. Int J Biol Macromol 2021; 188:512-522. [PMID: 34333005 DOI: 10.1016/j.ijbiomac.2021.07.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
The loss of crystallins solubility with aging and the formation of amyloid-like aggregates is considered the hallmark characteristic of cataract pathology. The present study was carried out to assess the effect of temperature on the soluble lens protein and the formation of protein aggregates with typical amyloid characteristics. The soluble fraction of lens proteins was subjected for heat treatment in the range of 40-60 °C, and the nature of protein aggregates was assessed by using Congo red (CR), thioflavin T (ThT), and 8-anilinonaphthalene-1-sulfonic acid (ANS) binding assays, circular dichroism (CD), Fourier-transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The heat-treated protein samples displayed a substantial bathochromic shift (≈15 nm) in the CR's absorption maximum (λmax) and increased ThT and ANS binding. The heat treatment of lens soluble proteins results in the formation of nontoxic, β-sheet rich, non-fibrillar, protein aggregates similar to the structures evident in the insoluble fraction of proteins isolated from the cataractous lens. The data obtained from the present study suggest that the exposure of soluble lens proteins to elevated temperature leads to the formation of non-fibrillar aggregates, establishing the role of amyloid in the heat-induced augmentation of cataracts pathology.
Collapse
Affiliation(s)
- Chandrika Mittal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ashwani Kumari
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Indranil De
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Manish Singh
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Ramswaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
34
|
de Castro Fonseca M, de Oliveira JF, Araujo BHS, Canateli C, do Prado PFV, Amorim Neto DP, Bosque BP, Rodrigues PV, de Godoy JVP, Tostes K, Filho HVR, Nascimento AFZ, Saito A, Tonoli CCC, Batista FAH, de Oliveira PSL, Figueira AC, Souza da Costa S, Krepischi ACV, Rosenberg C, Westfahl H, da Silva AJR, Franchini KG. Molecular and cellular basis of hyperassembly and protein aggregation driven by a rare pathogenic mutation in DDX3X. iScience 2021; 24:102841. [PMID: 34381968 PMCID: PMC8335631 DOI: 10.1016/j.isci.2021.102841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Current studies estimate that 1–3% of females with unexplained intellectual disability (ID) present de novo splice site, nonsense, frameshift, or missense mutations in the DDX3X protein (DEAD-Box Helicase 3 X-Linked). However, the cellular and molecular mechanisms by which DDX3X mutations impair brain development are not fully comprehended. Here, we show that the ID-linked missense mutation L556S renders DDX3X prone to aggregation. By using a combination of biophysical assays and imaging approaches, we demonstrate that this mutant assembles solid-like condensates and amyloid-like fibrils. Although we observed greatly reduced expression of the mutant allele in a patient who exhibits skewed X inactivation, this appears to be enough to sequestrate healthy proteins into solid-like ectopic granules, compromising cell function. Therefore, our data suggest ID-linked DDX3X L556S mutation as a disorder arising from protein misfolding and aggregation. DDX3X mutations skew X-inactivation and are found in 1-3% of unexplained ID in females DDX3X mutant proteins assemble solid-like condensates and amyloid-like fibrils Aberrant granules formed by DDX3X mutants sequestrate healthy DDX3X protein ID-linked DDX3X L556S mutation decreases cell viability and induces apoptosis
Collapse
Affiliation(s)
- Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Juliana Ferreira de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Camila Canateli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Paula Favoretti Vital do Prado
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Dionísio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Andrey Fabricio Ziem Nascimento
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Angela Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Fernanda Aparecida Heleno Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Paulo Sergio Lopes de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Ana Carolina Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil
| | - Silvia Souza da Costa
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Harry Westfahl
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antônio José Roque da Silva
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Kleber Gomes Franchini
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo 13083-100, Brazil.,Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, Brazil
| |
Collapse
|
35
|
Rahamtullah, Mishra R. Nicking and fragmentation are responsible for α-lactalbumin amyloid fibril formation at acidic pH and elevated temperature. Protein Sci 2021; 30:1919-1934. [PMID: 34107116 DOI: 10.1002/pro.4144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/03/2023]
Abstract
Amyloid fibrils are ordered aggregates that may be formed from disordered, partially unfolded, and fragments of proteins and peptides. There are several diseases, which are due to the formation and deposition of insoluble β-sheet protein aggregates in various tissue, collectively known as amyloidosis. Here, we have used bovine α-lactalbumin as a model protein to understand the mechanism of amyloid fibril formation at pH 1.6 and 65°C under non-reducing conditions. Amyloid fibril formation is confirmed by Thioflavin T fluorescence and atomic force microscopy (AFM). Our finding demonstrates that hydrolysis of peptide bonds occurs under these conditions, which results in nicking and fragmentation. The nicking and fragmentation have been confirmed on non-reducing and reducing gel. We have identified the fragments by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The fragmentation may initiate nucleation as it coincides with AFM images. Conformational changes associated with monomer resulting in fibrillation are shown by circular dichroism and Raman spectroscopy. The current study highlights the importance of nicking and fragmentation in amyloid fibril formation, which may help understand the role of acidic pH and proteolysis under in vivo conditions in the initiation of amyloid fibril formation.
Collapse
Affiliation(s)
- Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
36
|
Garfagnini T, Levi-Kalisman Y, Harries D, Friedler A. Osmolytes and crowders regulate aggregation of the cancer-related L106R mutant of the Axin protein. Biophys J 2021; 120:3455-3469. [PMID: 34087214 DOI: 10.1016/j.bpj.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Protein aggregation is involved in a variety of diseases, including neurodegenerative diseases and cancer. The cellular environment is crowded by a plethora of cosolutes comprising small molecules and biomacromolecules at high concentrations, which may influence the aggregation of proteins in vivo. To account for the effect of cosolutes on cancer-related protein aggregation, we studied their effect on the aggregation of the cancer-related L106R mutant of the Axin protein. Axin is a key player in the Wnt signaling pathway, and the L106R mutation in its RGS domain results in a native molten globule that tends to form native-like aggregates. This results in uncontrolled activation of the Wnt signaling pathway, leading to cancer. We monitored the aggregation process of Axin RGS L106R in vitro in the presence of a wide ensemble of cosolutes including polyols, amino acids, betaine, and polyethylene glycol crowders. Except myo-inositol, all polyols decreased RGS L106R aggregation, with carbohydrates exerting the strongest inhibition. Conversely, betaine and polyethylene glycols enhanced aggregation. These results are consistent with the reported effects of osmolytes and crowders on the stability of molten globular proteins and with both amorphous and amyloid aggregation mechanisms. We suggest a model of Axin L106R aggregation in vivo, whereby molecularly small osmolytes keep the protein as a free soluble molecule but the increased crowding of the bound state by macromolecules induces its aggregation at the nanoscale. To our knowledge, this is the first systematic study on the effect of osmolytes and crowders on a process of native-like aggregation involved in pathology, as it sheds light on the contribution of cosolutes to the onset of cancer as a protein misfolding disease and on the relevance of aggregation in the molecular etiology of cancer.
Collapse
Affiliation(s)
- Tommaso Garfagnini
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology and The Alexander Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel; The Fritz Haber Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
37
|
Bai Y, Wan W, Huang Y, Jin W, Lyu H, Xia Q, Dong X, Gao Z, Liu Y. Quantitative interrogation of protein co-aggregation using multi-color fluorogenic protein aggregation sensors. Chem Sci 2021; 12:8468-8476. [PMID: 34221329 PMCID: PMC8221170 DOI: 10.1039/d1sc01122g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Co-aggregation of multiple pathogenic proteins is common in neurodegenerative diseases but deconvolution of such biochemical process is challenging. Herein, we developed a dual-color fluorogenic thermal shift assay to simultaneously report on the aggregation of two different proteins and quantitatively study their thermodynamic stability during co-aggregation. Expansion of spectral coverage was first achieved by developing multi-color fluorogenic protein aggregation sensors. Orthogonal detection was enabled by conjugating sensors of minimal fluorescence crosstalk to two different proteins via sortase-tag technology. Using this assay, we quantified shifts in melting temperatures in a heterozygous model protein system, revealing that the thermodynamic stability of wild-type proteins was significantly compromised by the mutant ones but not vice versa. We also examined how small molecule ligands selectively and differentially interfere with such interplay. Finally, we demonstrated these sensors are suited to visualize how different proteins exert influence on each other upon their co-aggregation in live cells.
Collapse
Affiliation(s)
- Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wang Wan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenhan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University 467 Zhongshan Road Dalian 116044 China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
38
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Trypsin Induced Degradation of Amyloid Fibrils. Int J Mol Sci 2021; 22:4828. [PMID: 34063223 PMCID: PMC8124345 DOI: 10.3390/ijms22094828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Proteolytic enzymes are known to be involved in the formation and degradation of various monomeric proteins, but the effect of proteases on the ordered protein aggregates, amyloid fibrils, which are considered to be extremely stable, remains poorly understood. In this work we study resistance to proteolytic degradation of lysozyme amyloid fibrils with two different types of morphology and beta-2-microglobulun amyloids. We showed that the proteolytic enzyme of the pancreas, trypsin, induced degradation of amyloid fibrils, and the mechanism of this process was qualitatively the same for all investigated amyloids. At the same time, we found a dependence of efficiency and rate of fibril degradation on the structure of the amyloid-forming protein as well as on the morphology and clustering of amyloid fibrils. It was assumed that the discovered relationship between fibrils structure and the efficiency of their degradation by trypsin can become the basis of a new express method for the analysis of amyloids polymorphism. Unexpectedly lower resistance of both types of lysozyme amyloids to trypsin exposure compared to the native monomeric protein (which is not susceptible to hydrolysis) was attributed to the higher availability of cleavage sites in studied fibrils. Another intriguing result of the work is that the cytotoxicity of amyloids treated with trypsin was not only failing to decline, but even increasing in the case of beta-2-microglobulin fibrils.
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia;
| | - Ekaterina V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| |
Collapse
|
39
|
Reichenstein M, Borovok N, Sheinin A, Brider T, Michaelevski I. Abelson Kinases Mediate the Depression of Spontaneous Synaptic Activity Induced by Amyloid Beta 1-42 Peptides. Cell Mol Neurobiol 2021; 41:431-448. [PMID: 32399753 PMCID: PMC11448580 DOI: 10.1007/s10571-020-00858-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Amyloid beta (Aβ) peptides represent one of the most studied etiological factors of Alzheimer's disease. Nevertheless, the effects elicited by different molecular forms of amyloid beta peptides widely vary between the studies, mostly depending on experimental conditions. Despite the enormous amount of accumulated evidences concerning the pathological effects of amyloid beta peptides, the exact identity of the amyloid beta species is still controversial, and even less is clear as regards to the downstream effectors that mediate the devastating impact of these peptides on synapses in the central nervous system. Recent publications indicate that some of the neurotoxic effects of amyloid beta peptides may be mediated via the activation of proteins belonging to the Abelson non-receptor tyrosine kinase (Abl) family, that are known to regulate actin cytoskeleton structure as well as phosphorylate microtubule-associated tau protein, a hallmark of Alzheimer's disease. By performing series of miniature excitatory postsynaptic currents (mEPSC) recordings in cultured hippocampal cells, we demonstrate that activation of Abl kinases by acute application of 42 amino acid-length monomeric amyloid beta (Aβ1-42) peptides reduces spontaneous synaptic release, while this effect can be rescued by pharmacologic inhibition of Abl kinase activity, or by reduction of Abl expression with small interfering RNAs. Our electrophysiological data are further reinforced by a subsequent biochemical analysis, showing enhanced phosphorylation of Abl kinase substrate CT10 Regulator of Kinase-homolog-Like (Crkl) upon treatment of hippocampal neurons with Aβ peptides. Thus, we conclude that Abl kinase activation may be involved in Aβ-induced weakening of synaptic transmission.
Collapse
Affiliation(s)
- M Reichenstein
- Dept. of Biochemistry and Molecular Biology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - N Borovok
- Dept. of Biochemistry and Molecular Biology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - A Sheinin
- Dept. of Biochemistry and Molecular Biology, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - T Brider
- Department of Molecular Biology, Ariel University, 40700, Ariel, Israel
| | - I Michaelevski
- Department of Molecular Biology, Ariel University, 40700, Ariel, Israel.
- Integrative Brain Science Center Ariel, IBSCA, Ariel University, 40700, Ariel, Israel.
- The Adelson Medical School, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
40
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
41
|
Feng Y, Liu W, Mercadé-Prieto R, Chen XD. Dye-protein interactions between Rhodamine B and whey proteins that affect the photoproperties of the dye. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Gustafsson C, Shirani H, Leira P, Rehn DR, Linares M, Nilsson KPR, Norman P, Lindgren M. Deciphering the Electronic Transitions of Thiophene-Based Donor-Acceptor-Donor Pentameric Ligands Utilized for Multimodal Fluorescence Microscopy of Protein Aggregates. Chemphyschem 2021; 22:323-335. [PMID: 33219724 PMCID: PMC7898931 DOI: 10.1002/cphc.202000669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Indexed: 12/23/2022]
Abstract
Anionic pentameric thiophene acetates can be used for fluorescence detection and diagnosis of protein amyloid aggregates. Replacing the central thiophene unit by benzothiadiazole (BTD) or quinoxaline (QX) leads to large emission shifts and basic spectral features have been reported [Chem. Eur. J. 2015, 21, 15133-13137]. Here we present new detailed experimental results of solvent effects, time-resolved fluorescence and examples employing multi-photon microscopy and lifetime imaging. Quantum chemical response calculations elucidate how the introduction of the BTD/QX groups changes the electronic states and emissions. The dramatic red-shift follows an increased conjugation and quinoid character of the π-electrons of the thiophene backbone. An efficient charge transfer in the excited states S1 and S2 compared to the all-thiophene analogue makes these more sensitive to the polarity and quenching by the solvent. Taken together, the results guide in the interpretation of images of stained Alzheimer disease brain sections employing advanced fluorescence microscopy and lifetime imaging, and can aid in optimizing future fluorescent ligand development.
Collapse
Affiliation(s)
- Camilla Gustafsson
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Hamid Shirani
- Division of Chemistry, Department of PhysicsChemistry and Biology Linköping University581 83LinköpingSweden
| | - Petter Leira
- Department of Physics-Faculty of Natural SciencesNorwegian University of Science and Technology (NTNU)7491TrondheimNorway
| | - Dirk R. Rehn
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Mathieu Linares
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
- Laboratory of Organic Electronics and Scientific Visualization GroupITN and Swedish e-Science Research Center (SeRC) Linköping University581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Division of Chemistry, Department of PhysicsChemistry and Biology Linköping University581 83LinköpingSweden
| | - Patrick Norman
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Mikael Lindgren
- Department of Physics-Faculty of Natural SciencesNorwegian University of Science and Technology (NTNU)7491TrondheimNorway
| |
Collapse
|
43
|
Zaman M, Andreasen M. Modulating Kinetics of the Amyloid-Like Aggregation of S. aureus Phenol-Soluble Modulins by Changes in pH. Microorganisms 2021; 9:microorganisms9010117. [PMID: 33430169 PMCID: PMC7825627 DOI: 10.3390/microorganisms9010117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
The pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently identified phenol-soluble modulin (PSM) peptides act as the key molecular effectors of staphylococcal biofilm maturation and promote the formation of an aggregated fibril structure. The aim of this study was to evaluate the effect of various pH values on the formation of functional amyloids of individual PSM peptides. Here, we combined a range of biophysical, chemical kinetics and microscopic techniques to address the structure and aggregation mechanism of individual PSMs under different conditions. We established that there is a pH-induced switch in PSM aggregation kinetics. Different lag times and growth of fibrils were observed, which indicates that there was no clear correlation between the rates of fibril elongation among different PSMs. This finding confirms that pH can modulate the aggregation properties of these peptides and suggest a deeper understanding of the formation of aggregates, which represents an important basis for strategies to interfere and might help in reducing the risk of biofilm-related infections.
Collapse
|
44
|
Marzano NR, Wray KM, Johnston CL, Paudel BP, Hong Y, van Oijen A, Ecroyd H. An α-Cyanostilbene Derivative for the Enhanced Detection and Imaging of Amyloid Fibril Aggregates. ACS Chem Neurosci 2020; 11:4191-4202. [PMID: 33226775 DOI: 10.1021/acschemneuro.0c00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aggregation of proteins into amyloid fibrils has been implicated in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Benzothiazole dyes such as Thioflavin T (ThT) are well-characterized and widely used fluorescent probes for monitoring amyloid fibril formation. However, existing dyes lack sensitivity and specificity to oligomeric intermediates formed during fibril formation. In this work, we describe the use of an α-cyanostilbene derivative (called ASCP) with aggregation-induced emission properties as a fluorescent probe for the detection of amyloid fibrils. Similar to ThT, ASCP is fluorogenic in the presence of amyloid fibrils and, upon binding and excitation at 460 nm, produces a red-shifted emission with a large Stokes shift of 145 nm. ASCP has a higher binding affinity to fibrillar α-synuclein than ThT and likely shares the same binding sites to amyloid fibrils. Importantly, ASCP was found to also be fluorogenic in the presence of amorphous aggregates and can detect oligomeric species formed early during aggregation. Moreover, ASCP can be used to visualize fibrils via total internal reflection fluorescence microscopy and, due to its large Stokes shift, simultaneously monitor the fluorescence emission of other labelled proteins following excitation with the same laser used to excite ASCP. Consequently, ASCP possesses enhanced and unique spectral characteristics compared to ThT that make it a promising alternative for the in vitro study of amyloid fibrils and the mechanisms by which they form.
Collapse
Affiliation(s)
- Nicholas R. Marzano
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Kelly M. Wray
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Caitlin L. Johnston
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Bishnu P. Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Antoine van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
45
|
Khan SH, Bijpuria S, Maurya A, Taneja B. Structural and thermodynamic characterization of a highly stable conformation of Rv2966c, a 16S rRNA methyltransferase, at low pH. Int J Biol Macromol 2020; 164:3909-3921. [PMID: 32888991 DOI: 10.1016/j.ijbiomac.2020.08.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 12/01/2022]
Abstract
Rv2966c is a highly specific methyltransferase that methylates G966 at the N2 position in 16S rRNA of mycobacterial ribosome and can be secreted inside the host cell to methylate host DNA. However, how the secreted protein retains its structure and function in the harsh environment of host cell, remains unclear. In this work, we investigate structural features of Rv2966c at pH 4.0 and pH 7.5 by far-UV- and near-UV-circular dichroism (CD) and fluorescence spectroscopy, to gain insights into its folding and stability at the acidic pH, that it is likely to encounter inside the macrophage. We show that Rv2966c exists in a compact, folded state at both pH 7.5 and pH 4.0, a result corroborated by molecular dynamics simulations as a function of pH. In fact, Rv2966c was found to be more stable at pH 4.0 than pH 7.5, as evidenced by thermal-induced CD and nanodifferential scanning fluorimetry, and urea-induced denaturation measurements. Interestingly, unlike pH 7.5 (two-state unfolding), denaturation of Rv2966c at pH 4.0 occurs in a biphasic (N ↔ X ↔ U) manner. Further spectroscopic characterization of 'X' state, identifies characteristics of a molten globule-like intermediate. We finally conclude that Rv2966c maintains a compact folded state at pH 4.0 akin to that at pH 7.5 but with higher stability.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Shipra Bijpuria
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anjali Maurya
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
46
|
Destabilisation of the structure of transthyretin is driven by Ca 2. Int J Biol Macromol 2020; 166:409-423. [PMID: 33129902 DOI: 10.1016/j.ijbiomac.2020.10.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Tetrameric transthyretin (TTR) transports thyroid hormones and retinol in plasma and cerebrospinal fluid and performs protective functions under stress conditions. Ageing and mutations result in TTR destabilisation and the formation of the amyloid deposits that dysregulate Ca2+ homeostasis. Our aim was to determine whether Ca2+ affects the structural stability of TTR. We show, using multiple techniques, that Ca2+ does not induce prevalent TTR dissociation and/or oligomerisation. However, in the presence of Ca2+, TTR exhibits altered conformational flexibility and different interactions with the solvent molecules. These structural changes lead to the formation of the sub-populations of non-native TTR conformers and to the destabilisation of the structure of TTR. Moreover, the sub-population of TTR molecules undergoes fragmentation that is augmented by Ca2+. We postulate that Ca2+ constitutes the structural and functional switch between the native and non-native forms of TTR, and therefore tip the balance towards age-dependent pathological calcification.
Collapse
|
47
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
48
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Alpha-B-Crystallin Effect on Mature Amyloid Fibrils: Different Degradation Mechanisms and Changes in Cytotoxicity. Int J Mol Sci 2020; 21:ijms21207659. [PMID: 33081200 PMCID: PMC7589196 DOI: 10.3390/ijms21207659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Given the ability of molecular chaperones and chaperone-like proteins to inhibit the formation of pathological amyloid fibrils, the chaperone-based therapy of amyloidosis has recently been proposed. However, since these diseases are often diagnosed at the stages when a large amount of amyloids is already accumulated in the patient’s body, in this work we pay attention to the undeservedly poorly studied problem of chaperone and chaperone-like proteins’ effect on mature amyloid fibrils. We showed that a heat shock protein alpha-B-crystallin, which is capable of inhibiting fibrillogenesis and is found in large quantities as a part of amyloid plaques, can induce degradation of mature amyloids by two different mechanisms. Under physiological conditions, alpha-B-crystallin induces fluffing and unweaving of amyloid fibrils, which leads to a partial decrease in their structural ordering without lowering their stability and can increase their cytotoxicity. We found a higher correlation between the rate and effectiveness of amyloids degradation with the size of fibrils clusters rather than with amino acid sequence of amyloidogenic protein. Some external effects (such as an increase in medium acidity) can lead to a change in the mechanism of fibrils degradation induced by alpha-B-crystallin: amyloid fibers are fragmented without changing their secondary structure and properties. According to recent data, fibrils cutting can lead to the generation of seeds for new bona fide amyloid fibrils and accelerate the accumulation of amyloids, as well as enhance the ability of fibrils to disrupt membranes and to reduce cell viability. Our results emphasize the need to test the chaperone effect not only on fibrillogenesis, but also on the mature amyloid fibrils, including stress conditions, in order to avoid undesirable disease progression during chaperone-based therapy.
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - M. I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia;
| | - E. V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - O. I. Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
- Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-812-297-19-57
| | - A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| |
Collapse
|
49
|
Hofmeister Ions Modulate the Autocatalytic Amyloidogenesis of an Intrinsically Disordered Functional Amyloid Domain via Unusual Biphasic Kinetics. J Mol Biol 2020; 432:6173-6186. [PMID: 33068637 DOI: 10.1016/j.jmb.2020.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Hofmeister ions are thought to play fundamentally important roles in protein solubility, folding, stability, and function. Salt ions profoundly influence the course of protein misfolding, aggregation, and amyloid formation associated with devastating human diseases. However, the molecular origin of the salt-effect in protein aggregation remains elusive. Here, we report an unusual biphasic amyloidogenesis of a pH-responsive, intrinsically disordered, oligopeptide repeat domain of a melanosomal protein, Pmel17, that regulates the amyloid-assisted melanin synthesis in mammals via functional amyloid formation. We demonstrate that a symphony of molecular events involving charge-peptide interactions and hydration, in conjunction with secondary phenomena, critically governs the course of this biphasic amyloid assembly. We show that at mildly acidic pH, typical of melanosomes, highly amyloidogenic oligomeric units assemble into metastable, dendritic, fractal networks following the forward Hofmeister series. However, the subsequent condensation of fractal networks via conformational maturation into amyloid fibrils follows an inverse Hofmeister series due to fragmentation events coupled with secondary nucleation processes. Our results indicate that ions exert a strong influence on the aggregation kinetics as well as on the nanoscale morphology and also modulate the autocatalytic amplification processes during amyloid assembly via an intriguing dual Hofmeister effect. This unique interplay of molecular drivers will be of prime importance in delineating the aggregation pathways of a multitude of intrinsically disordered proteins involved in physiology and disease.
Collapse
|
50
|
Hiramatsu T, Yamamoto N, Ha S, Masuda Y, Yasuda M, Ishigaki M, Yuzu K, Ozaki Y, Chatani E. Iodine staining as a useful probe for distinguishing insulin amyloid polymorphs. Sci Rep 2020; 10:16741. [PMID: 33028868 PMCID: PMC7542459 DOI: 10.1038/s41598-020-73460-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/27/2020] [Indexed: 01/26/2023] Open
Abstract
It is recently suggested that amyloid polymorphism, i.e., structural diversity of amyloid fibrils, has a deep relationship with pathology. However, its prompt recognition is almost halted due to insufficiency of analytical methods for detecting polymorphism of amyloid fibrils sensitively and quickly. Here, we propose that iodine staining, a historically known reaction that was firstly found by Virchow, can be used as a method for distinguishing amyloid polymorphs. When insulin fibrils were prepared and iodine-stained, they exhibited different colors depending on polymorphs. Each of the colors was inherited to daughter fibrils by seeding reactions. The colors were fundamentally represented as a sum of three absorption bands in visible region between 400 and 750 nm, and the bands showed different titration curves against iodine, suggesting that there are three specific iodine binding sites. The analysis of resonance Raman spectra and polarization microscope suggested that several polyiodide ions composed of I3− and/or I5− were formed on the grooves or the edges of β-sheets. It was concluded that the polyiodide species and conformations formed are sensitive to surface structure of amyloid fibrils, and the resultant differences in color will be useful for detecting polymorphism in a wide range of diagnostic samples.
Collapse
Affiliation(s)
- Takato Hiramatsu
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Naoki Yamamoto
- School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, 329-0498, Japan
| | - Seongmin Ha
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Yuki Masuda
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Mitsuru Yasuda
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Mika Ishigaki
- Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan.,Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Keisuke Yuzu
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan.,Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|