1
|
High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells. Sci Rep 2021; 11:13493. [PMID: 34188159 PMCID: PMC8242094 DOI: 10.1038/s41598-021-93081-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The rate of the remodeling of the arterialized saphenous vein conduit limits the outcomes of coronary artery bypass graft surgery (CABG), which may be influenced by endothelial dysfunction. We tested the hypothesis that high stretch (HS) induces human saphenous vein endothelial cell (hSVEC) dysfunction and examined candidate underlying mechanisms. Our results showed that in vitro HS reduces NO bioavailability, increases inflammatory adhesion molecule expression (E-selectin and VCAM1) and THP-1 cell adhesion. HS decreases F-actin in hSVECs, but not in human arterial endothelial cells, and is accompanied by G-actin and cofilin’s nuclear shuttling and increased reactive oxidative species (ROS). Pre-treatment with the broad-acting antioxidant N-acetylcysteine (NAC) supported this observation and diminished stretch-induced actin remodeling and inflammatory adhesive molecule expression. Altogether, we provide evidence that increased oxidative stress and actin cytoskeleton remodeling play a role in HS-induced saphenous vein endothelial cell dysfunction, which may contribute to predisposing saphenous vein graft to failure.
Collapse
|
2
|
Zhu H, Yang H, Zhao S, Zhang J, Liu D, Tian Y, Shen Z, Su Y. Role of the cofilin 2 gene in regulating the myosin heavy chain genes in mouse myoblast C2C12 cells. Int J Mol Med 2017; 41:1096-1102. [PMID: 29207028 DOI: 10.3892/ijmm.2017.3272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 11/15/2017] [Indexed: 11/06/2022] Open
Abstract
The cofilin 2 (CFL2) and myosin heavy chain (MyHC) genes play a key role in muscle development and myofibrillar formation. The aim of the present study was to investigate the effect of CFL2 on genes involved in fiber formation and the mechanisms underlying this process. Undifferentiated and differentiated C2C12 cells (UDT and DT, respectively) were transfected with CFL2 small interfering RNA (siRNA). CFL2 mRNA and protein levels were assessed using reverse transcription polymerase chain reaction (RT-PCR) and western blotting, respectively. MyHC gene expression in UDT and signaling pathway-related factors were observed with quantitative PCR (RT‑qPCR) and western blotting. Fluorescence microscopy was used to analyze the cytoskeletal effects of CFL2. The mRNA and protein expressions of CFL2, four MyHC isoforms (MyHC-I, MyHC-IIa, MyHC-IIb and MyHC-IIx), p38 mitogen-activated protein kinase, cAMP-response element-binding protein, AMP-activated protein kinase α1, and myocyte enhancer factor 2C, were significantly decreased in UDT. However, extracellular signal-regulated kinase 2 expression was significantly increased. Slightly decreased CFL2 protein and mRNA expression was observed in DT C2C12 cells transfected with CFL2 siRNA. Fluorescence microscopy revealed a significant decrease of CFL2 in the cytoplasm, but not the nucleus, of UDT, compared with normal cells. These results indicated that the mouse CFL2 gene may be involved in the regulation of MyHC via the key signaling molecules of CFL2-related signaling pathways.
Collapse
Affiliation(s)
- Hongyan Zhu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Huixin Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210000, P.R. China
| | - Song Zhao
- Central Laboratary, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Junfeng Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dan Liu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yumin Tian
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhiyi Shen
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuhong Su
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
3
|
Li L, Zhang W, Chai X, Zhang Q, Xie J, Chen S, Zhao S. Neuronal maturation and laminar formation in the chicken optic tectum are accompanied by the transition of phosphorylated cofilin from cytoplasm to nucleus. Gene Expr Patterns 2014; 16:75-85. [PMID: 25290739 DOI: 10.1016/j.gep.2014.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/17/2022]
Abstract
Laminar formation in the chicken optic tectum requires processes that coordinate proliferation, migration and differentiation of neurons, in which the dynamics of actin filaments are crucial. Cofilin plays pivotal roles in regulating actin arrangement via its phosphorylation on Ser3. Given poor studies on the profile of phosphorylated cofilin (p-cofilin) in the developing tectum, we investigated its expression pattern. As determined by immunofluorescence histochemistry and western blotting, p-cofilin could be detected in most tectal layers except for the neural epithelium. In addition, we found p-cofilin was expressed both in the cytoplasm and the nucleus. During development, the expression of the cytoplasmic p-cofilin was decreasing and the nuclear p-cofilin was gradually increasing, but the total level of p-cofilin was down regulated. Double-labeling experiments revealed that the nuclear p-cofilin could be labeled in mature neurons but undetected in immature neurons. Furthermore, the number of cells co-stained with nuclear p-cofilin and NeuN was up-regulated during lamination and 60% cells were detected to be mature neurons that can express nuclear p-cofilin just at the first appearance of completed laminae. Our results demonstrate that the maturation of neurons is accompanied by this cytoplasm-to-nucleus transition of p-cofilin, and the nuclear p-cofilin can work effectively as a marker in the laminar formation of the chicken optic tectum.
Collapse
Affiliation(s)
- Lingling Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jiongfang Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
4
|
Li X, Zhang X, Li X, Wang X, Wang S, Ding J. Cyclosporine A protects podocytes via stabilization of cofilin-1 expression in the unphosphorylated state. Exp Biol Med (Maywood) 2014; 239:922-936. [PMID: 24737737 DOI: 10.1177/1535370214530365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Podocyte foot process (FP) is dysregulated in nephrotic syndrome. The effacement of podocyte FPs typically arises following perturbations in the actin cytoskeleton. Recent data suggest that the effects of calcineurin (CaN) inhibitor cyclosporine A (CsA) are independent of its effects on T-cells, and CsA has been identified as stabilizing the actin cytoskeleton through stabilizing synaptopodin in podocytes, and thereby directly reducing proteinuria. Other studies showed that CsA could regulate cofilin-1 directly within tubular epithelial cells. However, whether synaptopodin is the only target of CsA or whether the antiproteinuric role of CsA is played by regulating cofilin-1 in podocytes has not been studied. In the present study, changes in the expression and distribution of nephrin, synaptopodin, cofilin-1 and phosphorylated cofilin-1 (pho-cofilin-1) were detected in both puromycin aminonucleoside (PAN) induced nephrotic rats treated with CsA and cultured podocytes exposed to PAN with/without CsA. Cofilin-1, synaptopodin mRNA was knocked down or combined by siRNA to investigate whether cofilin-1 was critical for the protective effect of CsA and whether the effect of CsA on cofilin-1 was independent of its effect on synaptopodin. We found that CsA reduced proteinuria and repaired FP effacement of PAN-induced nephropathy, restored expression of nephrin, synaptopodin, cofilin-1, pho-cofilin-1 both in vivo and in vitro. CsA also repaired actin cytoskeleton impaired by PAN in vitro. The protective effect of CsA was diminished when cofilin-1 was knocked down compared to negative control. Synaptopodin knocked down had no effect on cofilin-1. The protective effect of CsA decreased significantly when cofilin-1 and synaptopodin were simultaneously knocked down compared to only cofilin-1 knock down. In conclusion, the antiproteinuric effect of CsA is derived from the stabilization of the podocyte actin cytoskeleton by upregulating expression of cofilin-1, which was independent of its effect on synaptopodin.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xiaoyan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xuejuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xuejing Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Suxia Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
5
|
Abstract
α-Catenin (α-cat) is an actin-binding protein required for cell-cell cohesion. Although this adhesive function for α-cat is well appreciated, cells contain a substantial amount of nonjunctional α-cat that may be used for other functions. We show that α-cat is a nuclear protein that can interact with β-catenin (β-cat) and T-cell factor (TCF) and that the nuclear accumulation of α-cat depends on β-cat. Using overexpression, knockdown, and chromatin immunoprecipitation approaches, we show that α-cat attenuates Wnt/β-cat-responsive genes in a manner that is downstream of β-cat/TCF loading on promoters. Both β-cat- and actin-binding domains of α-cat are required to inhibit Wnt signaling. A nuclear-targeted form of α-cat induces the formation of nuclear filamentous actin, whereas cells lacking α-cat show altered nuclear actin properties. Formation of nuclear actin filaments correlates with reduced RNA synthesis and altered chromatin organization. Conversely, nuclear extracts made from cells lacking α-cat show enhanced general transcription in vitro, an activity that can be partially rescued by restoring the C-terminal actin-binding region of α-cat. These data demonstrate that α-cat may limit gene expression by affecting nuclear actin organization.
Collapse
|
6
|
The other side of the coin: functional and structural versatility of ADF/cofilins. Eur J Cell Biol 2014; 93:238-51. [PMID: 24836399 DOI: 10.1016/j.ejcb.2013.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 01/20/2023] Open
Abstract
Several cellular processes rely on the fine tuning of actin cytoskeleton. A central component in the regulation of this cellular machinery is the ADF-H domain proteins. Despite sharing the same domain, ADF-H domain proteins produce a diverse functional landscape in the regulation of the actin cytoskeleton. Recent findings emphasize that the functional and structural features of these proteins can differ not only between ADF-H families but even within the same family. The structural and evolutional background of this functional diversity is poorly understood. This review focuses on the specific functional characteristics of ADF-H domain proteins and how these features can be linked to structural differences in the ADF-H domain and also to different conformational transitions in actin. In the light of recent discoveries we pay special attention to the ADF/cofilin proteins to find tendencies along which the functional and structural diversification is governed through the evolution.
Collapse
|
7
|
Polachini GM, Sobral LM, Mercante AMC, Paes-Leme AF, Xavier FCA, Henrique T, Guimarães DM, Vidotto A, Fukuyama EE, Góis-Filho JF, Cury PM, Curioni OA, Michaluart Jr P, Silva AMA, Wünsch-Filho V, Nunes FD, Leopoldino AM, Tajara EH. Proteomic approaches identify members of cofilin pathway involved in oral tumorigenesis. PLoS One 2012; 7:e50517. [PMID: 23227181 PMCID: PMC3515627 DOI: 10.1371/journal.pone.0050517] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/23/2012] [Indexed: 12/12/2022] Open
Abstract
The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one- and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the “more-aggressive” group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the “less-aggressive” group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas.
Collapse
Affiliation(s)
- Giovana M. Polachini
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Lays M. Sobral
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Adriana F. Paes-Leme
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Flávia C. A. Xavier
- Departamento de Propedêutica e Clínica Integrada, Faculdade de Odontologia da Universidade Federal da Bahia, Salvador,BA, Brazil
| | - Tiago Henrique
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Douglas M. Guimarães
- Departamento de Estomatologia, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alessandra Vidotto
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Erica E. Fukuyama
- Serviço de Cirurgia de Cabeça e Pescoço, Instituto do Câncer Arnaldo Vieira de Carvalho, São Paulo, SP, Brazil
| | - José F. Góis-Filho
- Serviço de Cirurgia de Cabeça e Pescoço, Instituto do Câncer Arnaldo Vieira de Carvalho, São Paulo, SP, Brazil
| | - Patricia M. Cury
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
| | - Otávio A. Curioni
- Departamento de Cirurgia de Cabeça e Pescoço e Otorrinolaringologia, Hospital Heliópolis, São Paulo, SP, Brazil
| | - Pedro Michaluart Jr
- Divisão de Cirurgia de Cabeça e Pescoço, Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriana M. A. Silva
- Departamento de Produção Vegetal, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Victor Wünsch-Filho
- Departamento de Epidemiologia, Faculdade de Saúde Pública da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabio D. Nunes
- Departamento de Estomatologia, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andréia M. Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eloiza H. Tajara
- Departamento de Biologia Molecular; Faculdade de Medicina (FAMERP), São José do Rio Preto, SP, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências da Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
8
|
The ADF/Cofilin-Pathway and Actin Dynamics in Podocyte Injury. Int J Cell Biol 2011; 2012:320531. [PMID: 22190940 PMCID: PMC3235464 DOI: 10.1155/2012/320531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/22/2011] [Accepted: 10/12/2011] [Indexed: 01/15/2023] Open
Abstract
ADF/cofilins are the major regulators of actin dynamics in mammalian cells. The activation of ADF/cofilins is controlled by a variety of regulatory mechanisms. Dysregulation of ADF/cofilin may result in loss of a precisely organized actin cytoskeletal architecture and can reduce podocyte migration and motility. Recent studies suggest that cofilin-1 can be regulated through several extracellular signals and slit diaphragm proteins. Cofilin knockdown and knockout animal models show dysfunction of glomerular barrier and filtration with foot process effacement and loss of secondary foot processes. This indicates that cofilin-1 is necessary for modulating actin dynamics in podocytes. Podocyte alterations in actin architecture may initiate or aid the progression of a large variety of glomerular diseases, and cofilin activity is required for reorganization of an intact filtration barrier. Since almost all proteinuric diseases result from a similar phenotype with effacement of the foot processes, we propose that cofilin-1 is at the centre stage of the development of proteinuria and thus may be an attractive drug target for antiproteinuric treatment strategies.
Collapse
|
9
|
Ishaq M, Lin BR, Bosche M, Zheng X, Yang J, Huang D, Lempicki RA, Aguilera-Gutierrez A, Natarajan V. LIM kinase 1 - dependent cofilin 1 pathway and actin dynamics mediate nuclear retinoid receptor function in T lymphocytes. BMC Mol Biol 2011; 12:41. [PMID: 21923909 PMCID: PMC3187726 DOI: 10.1186/1471-2199-12-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022] Open
Abstract
Background It is known that retinoid receptor function is attenuated during T cell activation, a phenomenon that involves actin remodeling, suggesting that actin modification may play a role in such inhibition. Here we have investigated the role of actin dynamics and the effect of actin cytoskeleton modifying agents on retinoid receptor-mediated transactivation. Results Agents that disturb the F-actin assembly or disassembly attenuated receptor-mediated transcription indicating that actin cytoskeletal homeostasis is important for retinoid receptor function. Overexpression or siRNA-induced knockdown of cofilin-1 (CFL1), a key regulator of F-actin assembly, induced the loss of receptor function. In addition, expression of either constitutively active or inactive/dominant-negative mutants of CFL1or CFL1 kinase LIMK1 induced loss of receptor function suggesting a critical role of the LIMK1-mediated CFL1 pathway in receptor-dependent transcription. Further evidence of the role of LMK1/CFL1-mediated actin dynamics, was provided by studying the effect of Nef, an actin modifying HIV-1 protein, on receptor function. Expression of Nef induced phosphorylation of CFL1 at serine 3 and LIMK1 at threonine 508, inhibited retinoid-receptor mediated reporter activity, and the expression of a number of genes that contain retinoid receptor binding sites in their promoters. The results suggest that the Nef-mediated inhibition of receptor function encompasses deregulation of actin filament dynamics by LIMK1 activation and phosphorylation of CFL1. Conclusion We have identified a critical role of LIMK1-mediated CFL1 pathway and actin dynamics in modulating retinoid receptor mediated function and shown that LIMK1-mediated phosphocycling of CFL1 plays a crucial role in maintaining actin homeostasis and receptor activity. We suggest that T cell activation-induced repression of nuclear receptor-dependent transactivation is in part through the modification of actin dynamics.
Collapse
Affiliation(s)
- Mohammad Ishaq
- Laboratory of Molecular Cell Biology, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kandasamy MK, McKinney EC, Meagher RB. Differential sublocalization of actin variants within the nucleus. Cytoskeleton (Hoboken) 2011; 67:729-43. [PMID: 20862689 DOI: 10.1002/cm.20484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conventional actin has been implicated in various nuclear processes including chromatin remodeling, transcription, nuclear transport, and overall nuclear structure. Moreover, actin has been identified as a component of several chromatin remodeling complexes present in the nucleus. In animal cells, nuclear actin exists as a dynamic equilibrium of monomers and polymers. Actin-binding proteins (ABPs) such as ADF/cofilin and profilin play a role in actin import and export, respectively. However, very little is known about the localization and roles of nuclear actin in plants. In multicellular plants and animals, actin is comprised of an ancient and divergent family of protein variants. Here, we have investigated the presence and differential localization of two ancient subclasses of actin in isolated Arabidopsis nuclei. Although the subclass 1 variants ACT2 and ACT8 and subclass 2 variant ACT7 were found distributed throughout the nucleoplasm, ACT7 was often found more concentrated in nuclear speckles than subclass 1 variants. The nuclei from the act2-1/act8-2 double null mutant and the act7-5 null mutant lacked their corresponding actin variants. In addition, serial sectioning of several independent nuclei revealed that ACT7 was notably more abundant in the nucleolus than the subclass 1 actins. Profilin and ADF proteins were also found in significant levels in plant nuclei. The possible functions of differentially localized nuclear actin variants are discussed.
Collapse
Affiliation(s)
- Muthugapatti K Kandasamy
- Department of Genetics, Davison Life Sciences Complex, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
11
|
Gondin J, Brocca L, Bellinzona E, D'Antona G, Maffiuletti NA, Miotti D, Pellegrino MA, Bottinelli R. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol (1985) 2010; 110:433-50. [PMID: 21127206 DOI: 10.1152/japplphysiol.00914.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to define the chronic effects of neuromuscular electrical stimulation (NMES) on the neuromuscular properties of human skeletal muscle. Eight young healthy male subjects were subjected to 25 sessions of isometric NMES of the quadriceps muscle over an 8-wk period. Needle biopsies were taken from the vastus lateralis muscle before and after training. The training status, myosin heavy chain (MHC) isoform distribution, and global protein pattern, as assessed by proteomic analysis, widely varied among subjects at baseline and prompted the identification of two subgroups: an "active" (ACT) group, which performed regular exercise and had a slower MHC profile, and a sedentary (SED) group, which did not perform any exercise and had a faster MHC profile. Maximum voluntary force and neural activation significantly increased after NMES in both groups (+∼30% and +∼10%, respectively). Both type 1 and 2 fibers showed significant muscle hypertrophy. After NMES, both groups showed a significant shift from MHC-2X toward MHC-2A and MHC-1, i.e., a fast-to-slow transition. Proteomic maps showing ∼500 spots were obtained before and after training in both groups. Differentially expressed proteins were identified and grouped into functional categories. The most relevant changes regarded 1) myofibrillar proteins, whose changes were consistent with a fast-to-slow phenotype shift and with a strengthening of the cytoskeleton; 2) energy production systems, whose changes indicated a glycolytic-to-oxidative shift in the metabolic profile; and 3) antioxidant defense systems, whose changes indicated an enhancement of intracellular defenses against reactive oxygen species. The adaptations in the protein pattern of the ACT and SED groups were different but were, in both groups, typical of both resistance (i.e., strength gains and hypertrophy) and endurance (i.e., a fast-to-slow shift in MHC and metabolic profile) training. These training-induced adaptations can be ascribed to the peculiar motor unit recruitment pattern associated with NMES.
Collapse
Affiliation(s)
- Julien Gondin
- Dept. of Physiology and Interuniversity, Institute of Myology, Univ. of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Oleinik NV, Krupenko NI, Krupenko SA. ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene 2010; 29:6233-44. [PMID: 20729910 PMCID: PMC2992098 DOI: 10.1038/onc.2010.356] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here we report that ALDH1L1 (FDH, a folate enzyme with tumor suppressor-like properties) inhibits cell motility. The underlying mechanism involves F-actin stabilization, re-distribution of cytoplasmic actin towards strong preponderance of filamentous actin, and formation of actin stress fibers. A549 cells expressing FDH demonstrated a much slower recovery of GFP-actin fluorescence in a FRAP assay, as well as an increase in G-actin polymerization and a decrease in F-actin depolymerization rates in pyren-actin fluorescence assays indicating the inhibition of actin dynamics. These effects were associated with robust dephosphorylation of the actin depolymerizing factor cofilin by PP1 and PP2A serine/threonine protein phosphatases but not the cofilin-specific phosphatases slingshot and chronophin. In fact, the PP1/PP2A inhibitor calyculin prevented cofilin dephosphorylation and restored motility. Inhibition of FDH-induced apoptosis by the JNK inhibitor SP600125 or the pan-caspase inhibitor zVAD-fmk did not restore motility or levels of phospho-cofilin, indicating that the observed effects are independent from FDH function in apoptosis. Interestingly, cofilin siRNA or expression of phosphorylation-deficient S3A cofilin mutant resulted in a decrease of G-actin and the actin stress fiber formation, the effects seen upon FDH expression. In contrast, the expression of S3D mutant, mimicking constitutive phosphorylation, prevented these effects further supporting the cofilin-dependent mechanism. Dephosphorylation of cofilin and inhibition of motility in response to FDH can be also prevented by the increased folate in media. Furthermore, folate depletion itself, in the absence of FDH, resulted in cofilin dephosphorylation and inhibition of motility in several cell lines. Our experiments showed that these effects were folate-specific and not a general response to nutrient starvation. Overall, this study demonstrates the presence of distinct intracellular signaling pathways regulating motility in response to folate status and points toward mechanisms involving folates in promoting a malignant phenotype.
Collapse
Affiliation(s)
- N V Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
13
|
Gieni RS, Hendzel MJ. Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 2009; 87:283-306. [PMID: 19234542 DOI: 10.1139/o08-133] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin exists as a dynamic equilibrium of monomers and polymers within the nucleus of living cells. It is utilized by the cell for many aspects of gene regulation, including mRNA processing, chromatin remodelling, and global gene expression. Polymeric actin is now specifically linked to transcription by RNA polymerase I, II, and III. An active process, requiring both actin polymers and myosin, appears to drive RNA polymerase I transcription, and is also implicated in long-range chromatin movement. This type of mechanism brings activated genes from separate chromosomal territories together, and then participates in their compartmentalization near nuclear speckles. Nuclear speckle formation requires polymeric actin, and factors promoting polymerization, such as profilin and PIP2, are concentrated there. A review of the literature shows that a functional population of G-actin cycles between the cytoplasm and the nucleoplasm. Its nuclear concentration is dependent on the cytoplasmic G-actin pool, as well as on the activity of import and export mechanisms and the availability of interactions that sequester it within the nucleus. The N-WASP-Arp2/3 actin polymer-nucleating mechanism functions in the nucleus, and its mediators, including NCK, PIP2, and Rac1, can be found in the nucleoplasm, where they likely influence the kinetics of polymer formation. The actin polymer species produced are tightly regulated, and may take on conformations not easily recognized by phalloidin. Many of the factors that cleave F-actin in the cytoplasm are present at high levels in the nucleoplasm, and are also likely to affect actin dynamics there. The absolute and relative G-actin content in the nucleoplasm and the cytoplasm of a cell contains information about the homeostatic state of that cell. We propose that the cycling of G-actin between the nucleus and cytoplasm represents a signal transduction mechanism that can function through both extremes of global cellular G-actin content. MAL signalling within the serum response factor pathway, when G-actin levels are low, represents a well-studied example of actin functioning in signal transduction. The translocation of NCK into the nucleus, along with G-actin, during dissolution of the cytoskeleton in response to DNA damage represents another instance of a unique signalling mechanism operating when G-actin levels are high.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, ABT6G1Z2, Canada
| | | |
Collapse
|
14
|
Ares IR, Cagide E, Louzao MC, Espiña B, Vieytes MR, Yasumoto T, Botana LM. Ostreocin-D impact on globular actin of intact cells. Chem Res Toxicol 2009; 22:374-81. [PMID: 19154108 DOI: 10.1021/tx800273f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ostreocin-D, discovered in the past decade, is a marine toxin produced by dinoflagellates. It shares structure with palytoxin, a toxic compound responsible for the seafood intoxication named clupeotoxism. At the cellular level, the action sites and pharmacological effects for ostreocin-D are still almost unknown. Previously, we demonstrated that these toxins change the filamentous actin cytoskeleton, which is essential for multiple cellular functions. However, nothing has yet been reported about what happens with the unpolymerized actin pool. Here (i) the effects induced by ostreocin-D on unpolymerized actin, (ii) the Ca2+ role in such a process, and (iii) the cytotoxic activity of ostreocin-D on the human neuroblastoma BE(2)-M17 cell line are shown for the first time. Fluorescently labeled DNase I was used for staining of monomeric actin prior to detection with both laser-scanning cytometry and confocal microscopy techniques. Cellular viability was tested through a microplate metabolic activity assay. Ostreocin-D elicited a rearrangement of monomeric actin toward the nuclear region. This event was not accompanied by changes in its content. In addition, the presence or absence of external Ca2+ did not change these results. This toxin was also found to cause a decrease in the viability of neuroblastoma cells, which was inhibited by the specific blocker of Na+/K+-ATPase, ouabain. All these responses were comparable to those obtained with palytoxin under identical conditions. The data suggest that ostreocin-D modulates the unassembled actin pool, activating signal transduction pathways not related to Ca2+ influx in the same way as palytoxin.
Collapse
Affiliation(s)
- Isabel R Ares
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Ihnatovych I, Livak M, Reed J, de Lanerolle P, Strakova Z. Manipulating actin dynamics affects human in vitro decidualization. Biol Reprod 2009; 81:222-30. [PMID: 19339710 DOI: 10.1095/biolreprod.108.074666] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The differentiation of uterine stromal fibroblasts into decidual cells is critical for establishing pregnancy. This process, called decidualization, requires the reorganization of the actin cytoskeleton, which mainly depends on actin dynamics and the phosphorylation status of the myosin light chain. We manipulated actin dynamics with jasplakinolide (100 nM) and latrunculin B (1 microM), both of which significantly inhibited the synthesis of decidualization markers induced by 6 days of treatment with embryo-mimicking stimulus interleukin 1beta (IL1B) and steroid hormones (SHs; 17beta-estradiol and medroxyprogesterone acetate) in the human uterine fibroblast (HuF) in vitro model. However, only jasplakinolide had long-lasting effects on the G-actin:F-actin ratio and prevented decidualization induced by the artificial stimulus cAMP (and SHs). Actin-binding protein cofilin mainly colocalized with G-actin in the nucleus as well as the cytoplasm. Only some spots of colocalization between cofilin and F-actin were detected in the cytoplasm. Brief extraction of cytosolic proteins from living cells revealed that in cells treated with IL1B or cAMP (and SHs) for 6 days, cofilin was mainly detected in the nucleus. The translocation of cofilin from cytosol to nucleus was also detected in HuFs treated for 12 days with SHs, IL1B and SHs, and cAMP and SHs. The same significant translocation was confirmed in primary baboon stromal uterine fibroblasts. We conclude that changes in actin dynamics, particularly the stabilization of F-actin, have a significant negative impact on decidualization, and the translocation of cofilin to the nucleus is a key feature of this process in the primate.
Collapse
Affiliation(s)
- Ivanna Ihnatovych
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois 60612-7313, USA
| | | | | | | | | |
Collapse
|
16
|
Junhong W, Jing Y, Jizheng M, Shushu Z, Xiangjian C, Hengfang W, Di Y, Jinan Z. Proteomic analysis of left ventricular diastolic dysfunction hearts in renovascular hypertensive rats. Int J Cardiol 2008; 127:198-207. [PMID: 17659790 DOI: 10.1016/j.ijcard.2007.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/01/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Abnormalities of diastolic function are common to virtually all forms of cardiac failure. However, the molecular events leading to diastolic dysfunction have not been fully elucidated. We performed a differential proteomic profiling study on diastolic dysfunction hearts induced by renovascular hypertension. Left ventricular diastolic dysfunction induced by renovascular hypertension (2K1C, two-kidneys, one clip) was performed in twelve Sprague-Dawley rats. 2D echocardiographic and cardiac protein patterns (2D-electrophoresis and mass spectroscopy) were compared with the sham operated rats. We described sixteen altered protein spots in 2K1C rats with left ventricular diastolic dysfunction. Calsarcin-1 (CS-1) was significantly down-regulated in 2K1C rats and it showed a negative correlation with calcineurin enzymatic activity (r(2)=0.72 p=0.03). We also showed changes in cellular energy metabolism in 2K1C rats, and these changes go in parallel with alterations of the thin filament proteome responsible for actin-myosin cross-bridge. In conclusion, this study provides a new insight into the left ventricular proteome profile associated with systemic hypertension induced diastolic dysfunction in a renovascular hypertension rat model. The decreased CS-1 protein with a concomitant increased enzymatic activity of calcineurin, suggests an important role of CS-1 in the calcineurin-mediated left ventricular hypertrophy.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcineurin/metabolism
- Echocardiography
- Heart Failure, Diastolic/etiology
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/physiopathology
- Hypertension, Renovascular/complications
- Male
- Mass Spectrometry
- Proteome/analysis
- Proteomics/methods
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Statistics, Nonparametric
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Wang Junhong
- The Institute of Cardiovascular Disease, Division of Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vartiainen MK. Nuclear actin dynamics--from form to function. FEBS Lett 2008; 582:2033-40. [PMID: 18423404 DOI: 10.1016/j.febslet.2008.04.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/28/2008] [Accepted: 04/09/2008] [Indexed: 01/10/2023]
Abstract
Cell biological functions of actin have recently expanded from cytoplasm to nucleus, with actin implicated in such diverse processes as gene expression, transcription factor regulation and intranuclear motility. Actin in the nucleus seems to behave differently than in the cytoplasm, raising new questions regarding the molecular mechanisms by which actin functions in cells. In this review, I will discuss dynamic properties of nuclear actin that are related to its polymerization cycle and nucleocytoplasmic shuttling. By comparing the behaviour of nuclear and cytoplasmic actin and their regulators, I try to dissect the underlying differences of these equally important cellular actin pools.
Collapse
Affiliation(s)
- Maria K Vartiainen
- Research Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| |
Collapse
|
18
|
Homma K, Niino Y, Hotta K, Oka K. Ca(2+) influx through P2X receptors induces actin cytoskeleton reorganization by the formation of cofilin rods in neurites. Mol Cell Neurosci 2007; 37:261-70. [PMID: 17993279 DOI: 10.1016/j.mcn.2007.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 09/12/2007] [Accepted: 10/01/2007] [Indexed: 01/15/2023] Open
Abstract
In physiological and pathological events, extracellular ATP plays an important role by controlling several types of purinergic receptors and changing cytoskeleton dynamics. To know the process of ATP-dependent cytoskeleton remodeling, we focused on cofilin, a key regulator of actin cytoskeleton, and investigated the dynamics of cofilin in PC12 cells through fluorescent protein-labeled cofilin and actin, Ca(2+) imaging, and fluorescence resonance energy transfer (FRET) techniques. As a result, ATP induced intracellular Ca(2+) increase, following cofilin rods' formation. ATP-induced cofilin rods' formation was not observed in cells expressing unphosphorylatable variant of cofilin. A P2X receptor agonist, but not P2Y, induced the formation of cofilin rods, whereas calmodulin and calcineurin inhibitors suppressed it. These results indicate that Ca(2+) influx through P2X receptors induces the formation of cofilin rods via calcineurin-dependent dephosphorylation of cofilin. This pathway might be one candidate to explain the effects of ATP on neuronal development and injury.
Collapse
Affiliation(s)
- Kohei Homma
- Center for Biosciences and Informatics, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | | | | | | |
Collapse
|
19
|
Yoo Y, Wu X, Guan JL. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J Biol Chem 2007; 282:7616-23. [PMID: 17220302 DOI: 10.1074/jbc.m607596200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has been well documented that actin is present in the nucleus and involved in numerous nuclear functions including regulation of transcription. The actin-nucleating Arp2/3 complex is an essential, evolutionarily conserved seven-subunit protein complex that promotes actin cytoskeleton assembly in the cytoplasm upon stimulation by WASP family proteins. Our recent study indicates that the nuclear localized neural Wiskott-Aldrich syndrome protein (N-WASP) can induce de novo actin polymerization in the nucleus, and this function is important for the role of N-WASP in the regulation of RNA polymerase II-dependent transcription. Here, we have presented evidence to show that the Arp2/3 complex is also localized in the nucleus and plays an essential role in mediating nuclear actin polymerization induced by N-WASP. We have also demonstrated that the Arp2/3 complex physically associates with RNA polymerase II and is involved in the RNA polymerase II-dependent transcriptional regulation both in vivo and in vitro. Together, these data provide strong support for the hypothesis that N-WASP and the Arp2/3 complex regulate transcription, at least in part, through the regulation of nuclear actin polymerization in a manner similar to their function in the cytoplasm.
Collapse
Affiliation(s)
- Youngdong Yoo
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
20
|
McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. ACTA ACUST UNITED AC 2006; 172:541-52. [PMID: 16476775 PMCID: PMC2063674 DOI: 10.1083/jcb.200507101] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
β-Actin, once thought to be an exclusively cytoplasmic protein, is now known to have important functions within the nucleus. Nuclear β-actin associates with and functions in chromatin remodeling complexes, ribonucleic acid polymerase complexes, and at least some ribonucleoproteins. Proteins involved in regulating actin polymerization are also found in the interphase nucleus. We define the dynamic properties of nuclear actin molecules using fluorescence recovery after photobleaching. Our results indicate that actin and actin-containing complexes are reduced in their mobility through the nucleoplasm diffusing at ∼0.5 μm2 s−1. We also observed that ∼20% of the total nuclear actin pool has properties of polymeric actin that turns over rapidly. This pool could be detected in endogenous nuclear actin by using fluorescent polymeric actin binding proteins and was sensitive to drugs that alter actin polymerization. Our results validate previous reports of polymeric forms of nuclear actin observed in fixed specimens and reveal that these polymeric forms are very dynamic.
Collapse
Affiliation(s)
- Darin McDonald
- Department of Oncology and 2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | |
Collapse
|