1
|
Pancrazi F, De Bei O, Lavecchia di Tocco F, Marchetti M, Campanini B, Cannistraro S, Bettati S, Bizzarri AR. Proline isomerization modulates the bacterial IsdB/hemoglobin interaction: an atomic force spectroscopy study. DISCOVER NANO 2025; 20:20. [PMID: 39918647 PMCID: PMC11805746 DOI: 10.1186/s11671-025-04182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Iron surface determinant B (IsdB), a Staphylococcus aureus (SA) surface protein involved in both heme iron acquisition from host hemoglobin (Hb) and bacterial adhesion, is a proven virulence factor that can be targeted for the design of antibacterial molecules or vaccines. Recent single-molecule experiments on IsdB interaction with cell adhesion factors revealed an increase of the complex lifetime upon applying a stronger force (catch bond); this was suggested to favor host invasion under shear stress. An increased bond strength under mechanical stress was also detected by Atomic Force Spectroscopy (AFS) for the interaction between IsdB and Hb. Structural information on the underlying molecular mechanisms at the basis of this behaviour in IsdB-based complexes is missing. Here, we show that the single point mutation of Pro173 in the IsdB domain responsible for Hb binding, which weakens the IsdB:Hb interaction without hampering heme extraction, totally abolishes the previously observed behavior. Remarkably, Pro173 does not directly interact with Hb, but undergoes cis-trans isomerization upon IsdB:Hb complex formation, coupled to folding-upon binding of the corresponding protein loop. Our results suggest that these events might represent the molecular basis for the stress-dependence of bond strength observed for wild type IsdB, shedding light on the mechanisms that govern the capability of SA to infect host cells.
Collapse
Affiliation(s)
- Francesca Pancrazi
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Omar De Bei
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | | | - Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
- Institute of Biophysics, National Research Council, via G. Moruzzi, 56124, Pisa, Italy.
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Huang S, Su G, Yang L, Yue L, Chen L, Huang J, Yang F. Single-Molecule-Level Quantification Based on Atomic Force Microscopy Data Reveals the Interaction between Melittin and Lipopolysaccharide in Gram-Negative Bacteria. Int J Mol Sci 2024; 25:10508. [PMID: 39408837 PMCID: PMC11477153 DOI: 10.3390/ijms251910508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The interaction forces and mechanical properties of the interaction between melittin (Mel) and lipopolysaccharide (LPS) are considered to be crucial driving forces for Mel when killing Gram-negative bacteria (GNB). However, how their interaction forces perform at the single-molecule level and the dissociation kinetic characteristics of the Mel/LPS complex remain poorly understood. In this study, the single-molecule-level interaction forces between Mel and LPSs from E. coli K-12, O55:B5, O111:B4, and O128:B12 were explored using atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS). AFM-based dynamic force spectroscopy (DFS) and an advanced analytical model were employed to investigate the kinetic characteristics of the Mel/LPS complex dissociation. The results indicated that Mel could interact with both rough (R)-form LPS (E. coli K-12) and smooth (S)-form LPSs (E. coli O55:B5, O111:B4, and O128:B12). The S-form LPS showed a more robust interaction with Mel than the R-form LPS, and a slight difference existed in the interaction forces between Mel and the diverse S-form LPS. Mel interactions with the S-form LPSs showed greater specific and non-specific interaction forces than the R-form LPS (p < 0.05), as determined by AFM-based SMFS. However, there was no significant difference in the specific and non-specific interaction forces among the three samples of S-form LPSs (p > 0.05), indicating that the variability in the O-antigen did not affect the interaction between Mel and LPSs. The DFS result showed that the Mel/S-form LPS complexes had a lower dissociation rate constant, a shorter energy barrier width, a longer bond lifetime, and a higher energy barrier height, demonstrating that Mel interacted with S-form LPS to form more stable complexes. This research enhances the existing knowledge of the interaction micromechanics and kinetic characteristics of Mel and LPS at the single-molecule level. Our research may help with the design and evaluation of new anti-GNB drugs.
Collapse
Affiliation(s)
- Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Guoqi Su
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Li Yang
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Liangguang Yue
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| |
Collapse
|
3
|
Sun H, Liao F, Tian Y, Lei Y, Fu Y, Wang J. Molecular-Scale Investigations Reveal the Effect of Natural Polyphenols on BAX/Bcl-2 Interactions. Int J Mol Sci 2024; 25:2474. [PMID: 38473728 DOI: 10.3390/ijms25052474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis signaling controls the cell cycle through the protein-protein interactions (PPIs) of its major B-cell lymphoma 2-associated x protein (BAX) and B-cell lymphoma 2 protein (Bcl-2). Due to the antagonistic function of both proteins, apoptosis depends on a properly tuned balance of the kinetics of BAX and Bcl-2 activities. The utilization of natural polyphenols to regulate the binding process of PPIs is feasible. However, the mechanism of this modulation has not been studied in detail. Here, we utilized atomic force microscopy (AFM) to evaluate the effects of polyphenols (kaempferol, quercetin, dihydromyricetin, baicalin, curcumin, rutin, epigallocatechin gallate, and gossypol) on the BAX/Bcl-2 binding mechanism. We demonstrated at the molecular scale that polyphenols quantitatively affect the interaction forces, kinetics, thermodynamics, and structural properties of BAX/Bcl-2 complex formation. We observed that rutin, epigallocatechin gallate, and baicalin reduced the binding affinity of BAX/Bcl-2 by an order of magnitude. Combined with surface free energy and molecular docking, the results revealed that polyphenols are driven by multiple forces that affect the orientation freedom of PPIs, with hydrogen bonding, hydrophobic interactions, and van der Waals forces being the major contributors. Overall, our work provides valuable insights into how molecules tune PPIs to modulate their function.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fenghui Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
5
|
Zamora RA, López-Ortiz M, Sales-Mateo M, Hu C, Croce R, Maniyara RA, Pruneri V, Giannotti MI, Gorostiza P. Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer. ACS NANO 2022; 16:15155-15164. [PMID: 36067071 DOI: 10.1021/acsnano.2c06454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is a fundamental process that converts photons into chemical energy, driven by large protein complexes at the thylakoid membranes of plants, cyanobacteria, and algae. In plants, water-soluble plastocyanin (Pc) is responsible for shuttling electrons between cytochrome b6f complex and the photosystem I (PSI) complex in the photosynthetic electron transport chain (PETC). For an efficient turnover, a transient complex must form between PSI and Pc in the PETC, which implies a balance between specificity and binding strength. Here, we studied the binding frequency and the unbinding force between suitably oriented plant PSI and Pc under redox control using single molecule force spectroscopy (SMFS). The binding frequency (observation of binding-unbinding events) between PSI and Pc depends on their respective redox states. The interaction between PSI and Pc is independent of the redox state of PSI when Pc is reduced, and it is disfavored in the dark (reduced P700) when Pc is oxidized. The frequency of interaction between PSI and Pc is higher when at least one of the partners is in a redox state ready for electron transfer (ET), and the post-ET situation (PSIRed-PcOx) leads to lower binding. In addition, we show that the binding of ET-ready PcRed to PSI can be regulated externally by Mg2+ ions in solution.
Collapse
Affiliation(s)
- Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Montserrat Sales-Mateo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Chen Hu
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis. Dep. Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rinu Abraham Maniyara
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, Barcelona 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
6
|
Botti V, Cannistraro S, Bizzarri AR. Interaction of miR-155 with Human Serum Albumin: An Atomic Force Spectroscopy, Fluorescence, FRET, and Computational Modelling Evidence. Int J Mol Sci 2022; 23:ijms231810728. [PMID: 36142640 PMCID: PMC9504641 DOI: 10.3390/ijms231810728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the interaction between Human Serum Albumin (HSA) and microRNA 155 (miR-155) through spectroscopic, nanoscopic and computational methods. Atomic force spectroscopy together with static and time-resolved fluorescence demonstrated the formation of an HSA/miR-155 complex characterized by a moderate affinity constant (KA in the order of 104 M−1). Förster Resonance Energy Transfer (FRET) experiments allowed us to measure a distance of (3.9 ± 0.2) nm between the lone HSA Trp214 and an acceptor dye bound to miR-155 within such a complex. This structural parameter, combined with computational docking and binding free energy calculations, led us to identify two possible models for the structure of the complex, both characterized by a topography in which miR-155 is located within two positively charged pockets of HSA. These results align with the interaction found for HSA and miR-4749, reinforcing the thesis that native HSA is a suitable miRNA carrier under physiological conditions for delivering to appropriate targets.
Collapse
|
7
|
Biosensing Cytokine IL-6: A Comparative Analysis of Natural and Synthetic Receptors. BIOSENSORS-BASEL 2020; 10:bios10090106. [PMID: 32847008 PMCID: PMC7557795 DOI: 10.3390/bios10090106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Cytokines are a family of proteins which play a major role in the regulation of the immune system and the development of several diseases, from rheumatoid arthritis to cancer and, more recently, COVID-19. Therefore, many efforts are currently being developed to improve therapy and diagnosis, as well as to produce inhibitory drugs and biosensors for a rapid, minimally invasive, and effective detection. In this regard, even more efficient cytokine receptors are under investigation. In this paper we analyze a set of IL-6 cytokine receptors, investigating their topological features by means of a theoretical approach. Our results suggest a topological indicator that may help in the identification of those receptors having the highest complementarity with the protein, a feature expected to ensure a stable binding. Furthermore, we propose and discuss the use of these receptors in an idealized experimental setup.
Collapse
|
8
|
Dissecting the cytochrome c 2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochem J 2019; 476:2173-2190. [PMID: 31320503 PMCID: PMC6688529 DOI: 10.1042/bcj20170519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
The reversible docking of small, diffusible redox proteins onto a membrane protein complex is a common feature of bacterial, mitochondrial and photosynthetic electron transfer (ET) chains. Spectroscopic studies of ensembles of such redox partners have been used to determine ET rates and dissociation constants. Here, we report a single-molecule analysis of the forces that stabilise transient ET complexes. We examined the interaction of two components of bacterial photosynthesis, cytochrome c 2 and the reaction centre (RC) complex, using dynamic force spectroscopy and PeakForce quantitative nanomechanical imaging. RC-LH1-PufX complexes, attached to silicon nitride AFM probes and maintained in a photo-oxidised state, were lowered onto a silicon oxide substrate bearing dispersed, immobilised and reduced cytochrome c 2 molecules. Microscale patterns of cytochrome c 2 and the cyan fluorescent protein were used to validate the specificity of recognition between tip-attached RCs and surface-tethered cytochrome c 2 Following the transient association of photo-oxidised RC and reduced cytochrome c 2 molecules, retraction of the RC-functionalised probe met with resistance, and forces between 112 and 887 pN were required to disrupt the post-ET RC-c 2 complex, depending on the retraction velocities used. If tip-attached RCs were reduced instead, the probability of interaction with reduced cytochrome c 2 molecules decreased 5-fold. Thus, the redox states of the cytochrome c 2 haem cofactor and RC 'special pair' bacteriochlorophyll dimer are important for establishing a productive ET complex. The millisecond persistence of the post-ET cytochrome c 2[oxidised]-RC[reduced] 'product' state is compatible with rates of cyclic photosynthetic ET, at physiologically relevant light intensities.
Collapse
|
9
|
Bizzarri AR, Baldacchini C, Cannistraro S. Structure, Dynamics, and Electron Transfer of Azurin Bound to a Gold Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9190-9200. [PMID: 28789529 DOI: 10.1021/acs.langmuir.7b01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blue copper redox protein azurin (AZ) constitutes an ideal active element for building bionano-optoelectronic devices based on the intriguing interplay among its electron transfer (ET), vibrational, and optical properties. A full comprehension of its dynamical and functional behavior is required for efficient applications. Here, AZ bound to gold electrode via its disulfide bridge was investigated by a molecular dynamics simulation approach taking into account for gold electron polarization which provides a more realistic description of the protein-gold interaction. Upon binding to gold, AZ undergoes slight changes in its secondary structure with the preservation of the copper-containing active site structure. Binding of AZ to gold promotes new collective motions, with respect to free AZ, as evidenced by essential dynamics. Analysis of the ET from the AZ copper ion to the gold substrate, performed by the Pathways model, put into evidence the main residues and structural motifs of AZ involved in the ET paths. During the dynamical evolution of the bionanosystem, transient contacts between some lateral protein atoms and the gold substrate occurred; concomitantly, the opening of additional ET channels with much higher rates was registered. These results provide new and detailed insights on the dynamics and ET properties of the AZ-gold system, by also helping to rationalize some imaging and conductive experimental evidences and also to design new bionanodevices with tailored features.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
| | - Chiara Baldacchini
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
- IBAF-CNR , Porano 05010, Italy
| | - Salvatore Cannistraro
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia , Viterbo 01100, Italy
| |
Collapse
|
10
|
López-Martínez M, Artés JM, Sarasso V, Carminati M, Díez-Pérez I, Sanz F, Gorostiza P. Differential Electrochemical Conductance Imaging at the Nanoscale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700958. [PMID: 28722303 DOI: 10.1002/smll.201700958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Electron transfer in proteins is essential in crucial biological processes. Although the fundamental aspects of biological electron transfer are well characterized, currently there are no experimental tools to determine the atomic-scale electronic pathways in redox proteins, and thus to fully understand their outstanding efficiency and environmental adaptability. This knowledge is also required to design and optimize biomolecular electronic devices. In order to measure the local conductance of an electrode surface immersed in an electrolyte, this study builds upon the current-potential spectroscopic capacity of electrochemical scanning tunneling microscopy, by adding an alternating current modulation technique. With this setup, spatially resolved, differential electrochemical conductance images under bipotentiostatic control are recorded. Differential electrochemical conductance imaging allows visualizing the reversible oxidation of an iron electrode in borate buffer and individual azurin proteins immobilized on atomically flat gold surfaces. In particular, this method reveals submolecular regions with high conductance within the protein. The direct observation of nanoscale conduction pathways in redox proteins and complexes enables important advances in biochemistry and bionanotechnology.
Collapse
Affiliation(s)
- Montserrat López-Martínez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Material Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Catalonia, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Juan Manuel Artés
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Material Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Veronica Sarasso
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Marco Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio, 34/5, 20133, Milan, Italy
| | - Ismael Díez-Pérez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Material Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Catalonia, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Fausto Sanz
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Department of Material Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Catalonia, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Poeta Mariano Esquillor s/n, 50018, Zaragoza, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
11
|
Baldacchini C, Bizzarri AR, Cannistraro S. Electron transfer, conduction and biorecognition properties of the redox metalloprotein Azurin assembled onto inorganic substrates. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Arnal L, Longo G, Stupar P, Castez MF, Cattelan N, Salvarezza RC, Yantorno OM, Kasas S, Vela ME. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy. NANOSCALE 2015; 7:17563-17572. [PMID: 26446736 DOI: 10.1039/c5nr04644k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.
Collapse
Affiliation(s)
- L Arnal
- Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP. 50 No 227, 1900 La Plata, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Marcuello C, de Miguel R, Martínez-Júlvez M, Gómez-Moreno C, Lostao A. Mechanostability of the Single-Electron-Transfer Complexes of Anabaena Ferredoxin-NADP(+) Reductase. Chemphyschem 2015; 16:3161-9. [PMID: 26248023 DOI: 10.1002/cphc.201500534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 01/24/2023]
Abstract
The complexes formed between the flavoenzyme ferredoxin-NADP(+) reductase (FNR; NADP(+) =nicotinamide adenine dinucleotide phosphate) and its redox protein partners, ferredoxin (Fd) and flavodoxin (Fld), have been analysed by using dynamic force spectroscopy through AFM. A strategy is developed to immobilise proteins on a substrate and AFM tip to optimise the recognition ability. The differences in the recognition efficiency regarding a random attachment procedure, together with nanomechanical results, show two binding models for these systems. The interaction of the reductase with the natural electron donor, Fd, is threefold stronger and its lifetime is longer and more specific than that with the substitute under iron-deficient conditions, Fld. The higher bond probability and two possible dissociation pathways in Fld binding to FNR are probably due to the nature of this complex, which is closer to a dynamic ensemble model. This is in contrast with the one-step dissociation kinetics that has been observed and a specific interaction described for the FNR:Fd complex.
Collapse
Affiliation(s)
- Carlos Marcuello
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, C/Mariano Esquillor, s/n. Ed. I+D+i, 50018, Zaragoza, Spain
| | - Rocío de Miguel
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, C/Mariano Esquillor, s/n. Ed. I+D+i, 50018, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Facultad de Ciencias, C/Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - Carlos Gómez-Moreno
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, C/Mariano Esquillor, s/n. Ed. I+D+i, 50018, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Facultad de Ciencias, C/Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, C/Mariano Esquillor, s/n. Ed. I+D+i, 50018, Zaragoza, Spain. .,Fundación ARAID, C/María de Luna, 11. Ed. CEEI Aragón, 50018, Zaragoza, Spain.
| |
Collapse
|
14
|
Banerjee S, Rakshit T, Sett S, Mukhopadhyay R. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy. J Phys Chem B 2015; 119:13278-87. [PMID: 26419288 DOI: 10.1021/acs.jpcb.5b07795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.
Collapse
Affiliation(s)
- S Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - T Rakshit
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - S Sett
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - R Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
15
|
Abstract
Motile cells navigate through tissue by relying on tactile cues from gradients provided by extracellular matrix (ECM) such as ligand density or stiffness. Mesenchymal stem cells (MSCs) and fibroblasts encounter adhesive or 'haptotactic' gradients at the interface between healthy and fibrotic tissue as they migrate towards an injury site. Mimicking this phenomenon, we developed tunable RGD and collagen gradients in polyacrylamide hydrogels of physiologically relevant stiffness using density gradient multilayer polymerization (DGMP) to better understand how such ligand gradients regulate migratory behaviors. Independent of ligand composition and fiber deformation, haptotaxis was observed in mouse 3T3 fibroblasts. Human MSCs however, haptotaxed only when cell-substrate adhesion was indirectly reduced via addition of free soluble matrix ligand mimetic peptides. Under basal conditions, MSCs were more contractile than fibroblasts. However, the presence of soluble adhesive peptides reduced MSC-induced substrate deformations; increased contractility may contribute to limited migration, but modulating cytoskeletal assembly was ineffective at promoting MSC haptotaxis. When introduced to gradients of increased absolute ligand concentrations, 3T3s displayed increased contractility and no longer haptotaxed. These data suggest that haptotactic behaviors are limited by adhesion and that although both cell types may home to tissue to aid in repair, fibroblasts may be more responsive to ligand gradients than MSCs.
Collapse
|
16
|
Casalini S, Dumitru AC, Leonardi F, Bortolotti CA, Herruzo ET, Campana A, de Oliveira RF, Cramer T, Garcia R, Biscarini F. Multiscale sensing of antibody-antigen interactions by organic transistors and single-molecule force spectroscopy. ACS NANO 2015; 9:5051-62. [PMID: 25868724 DOI: 10.1021/acsnano.5b00136] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antibody-antigen (Ab-Ag) recognition is the primary event at the basis of many biosensing platforms. In label-free biosensors, these events occurring at solid-liquid interfaces are complex and often difficult to control technologically across the smallest length scales down to the molecular scale. Here a molecular-scale technique, such as single-molecule force spectroscopy, is performed across areas of a real electrode functionalized for the immunodetection of an inflammatory cytokine, viz. interleukin-4 (IL4). The statistical analysis of force-distance curves allows us to quantify the probability, the characteristic length scales, the adhesion energy, and the time scales of specific recognition. These results enable us to rationalize the response of an electrolyte-gated organic field-effect transistor (EGOFET) operated as an IL4 immunosensor. Two different strategies for the immobilization of IL4 antibodies on the Au gate electrode have been compared: antibodies are bound to (i) a smooth film of His-tagged protein G (PG)/Au; (ii) a 6-aminohexanethiol (HSC6NH2) self-assembled monolayer on Au through glutaraldehyde. The most sensitive EGOFET (concentration minimum detection level down to 5 nM of IL4) is obtained with the first functionalization strategy. This result is correlated to the highest probability (30%) of specific binding events detected by force spectroscopy on Ab/PG/Au electrodes, compared to 10% probability on electrodes with the second functionalization. Specifically, this demonstrates that Ab/PG/Au yields the largest areal density of oriented antibodies available for recognition. More in general, this work shows that specific recognition events in multiscale biosensors can be assessed, quantified, and optimized by means of a nanoscale technique.
Collapse
Affiliation(s)
- Stefano Casalini
- †Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| | - Andra C Dumitru
- ‡Instituto de Ciencia de Materiales de Madrid (CSIC), 28049 Madrid, Spain
| | | | - Carlo A Bortolotti
- †Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| | - Elena T Herruzo
- ‡Instituto de Ciencia de Materiales de Madrid (CSIC), 28049 Madrid, Spain
| | - Alessandra Campana
- ⊥"Alma Mater Studiorum", Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Rafael F de Oliveira
- †Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41125 Modena, Italy
- #Unesp, Postgraduate Program in Materials Science and Technology, São Paulo State University, 17033-360, Bauru, SP Brazil
| | - Tobias Cramer
- ∞"Alma Mater Studiorum", Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Ricardo Garcia
- ‡Instituto de Ciencia de Materiales de Madrid (CSIC), 28049 Madrid, Spain
| | - Fabio Biscarini
- †Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41125 Modena, Italy
| |
Collapse
|
17
|
Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar K, Taylor-Weiner H, Chen S, Engler AJ. Interplay of matrix stiffness and protein tethering in stem cell differentiation. NATURE MATERIALS 2014; 13:979-87. [PMID: 25108614 PMCID: PMC4172528 DOI: 10.1038/nmat4051] [Citation(s) in RCA: 693] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/04/2014] [Indexed: 04/14/2023]
Abstract
Stem cells regulate their fate by binding to, and contracting against, the extracellular matrix. Recently, it has been proposed that in addition to matrix stiffness and ligand type, the degree of coupling of fibrous protein to the surface of the underlying substrate, that is, tethering and matrix porosity, also regulates stem cell differentiation. By modulating substrate porosity without altering stiffness in polyacrylamide gels, we show that varying substrate porosity did not significantly change protein tethering, substrate deformations, or the osteogenic and adipogenic differentiation of human adipose-derived stromal cells and marrow-derived mesenchymal stromal cells. Varying protein-substrate linker density up to 50-fold changed tethering, but did not affect osteogenesis, adipogenesis, surface-protein unfolding or underlying substrate deformations. Differentiation was also unaffected by the absence of protein tethering. Our findings imply that the stiffness of planar matrices regulates stem cell differentiation independently of protein tethering and porosity.
Collapse
Affiliation(s)
- Jessica H. Wen
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| | - Ludovic G. Vincent
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| | - Alexander Fuhrmann
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| | - Yu Suk Choi
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| | - Kolin Hribar
- Department of Nanoengineering, University of California, San Diego; La Jolla, CA 92093
| | - Hermes Taylor-Weiner
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
| | - Shaochen Chen
- Department of Nanoengineering, University of California, San Diego; La Jolla, CA 92093
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego; La Jolla, CA 92093
- Sanford Consortium for Regenerative Medicine; La Jolla, CA 92037
| |
Collapse
|
18
|
Vasilev C, Brindley AA, Olsen JD, Saer RG, Beatty JT, Hunter CN. Nano-mechanical mapping of the interactions between surface-bound RC-LH1-PufX core complexes and cytochrome c 2 attached to an AFM probe. PHOTOSYNTHESIS RESEARCH 2014; 120:169-180. [PMID: 23539360 PMCID: PMC4104003 DOI: 10.1007/s11120-013-9812-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/11/2013] [Indexed: 05/29/2023]
Abstract
Electron transfer pathways in photosynthesis involve interactions between membrane-bound complexes such as reaction centres with an extrinsic partner. In this study, the biological specificity of electron transfer between the reaction centre-light-harvesting 1-PufX complex and its extrinsic electron donor, cytochrome c 2, formed the basis for mapping the location of surface-attached RC-LH1-PufX complexes using atomic force microscopy (AFM). This nano-mechanical mapping method used an AFM probe functionalised with cyt c 2 molecules to quantify the interaction forces involved, at the single-molecule level under native conditions. With surface-bound RC-His12-LH1-PufX complexes in the photo-oxidised state, the mean interaction force with cyt c 2 is approximately 480 pN with an interaction frequency of around 66 %. The latter value lowered 5.5-fold when chemically reduced RC-His12-LH1-PufX complexes are imaged in the dark to abolish electron transfer from cyt c 2 to the RC. The correspondence between topographic and adhesion images recorded over the same area of the sample shows that affinity-based AFM methods are a useful tool when topology alone is insufficient for spatially locating proteins at the surface of photosynthetic membranes.
Collapse
Affiliation(s)
- Cvetelin Vasilev
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Amanda A. Brindley
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - John D. Olsen
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Rafael G. Saer
- />Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - J. T. Beatty
- />Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - C. N. Hunter
- />Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
19
|
Santini S, Bizzarri AR, Yamada T, Beattie CW, Cannistraro S. Binding of azurin to cytochromec551 as investigated by surface plasmon resonance and fluorescence. J Mol Recognit 2014; 27:124-30. [DOI: 10.1002/jmr.2346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/02/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Simona Santini
- Biophysics and Nanoscience Centre, CNISM, Dipartimento DEB; Università della Tuscia; Viterbo Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Dipartimento DEB; Università della Tuscia; Viterbo Italy
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology; University of Illinois; Chicago IL USA
| | - Craig W. Beattie
- Department of Surgery, Division of Surgical Oncology; University of Illinois; Chicago IL USA
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, CNISM, Dipartimento DEB; Università della Tuscia; Viterbo Italy
| |
Collapse
|
20
|
Chen P, Keller AM, Joshi CP, Martell DJ, Andoy NM, Benítez JJ, Chen TY, Santiago AG, Yang F. Single-molecule dynamics and mechanisms of metalloregulators and metallochaperones. Biochemistry 2013; 52:7170-83. [PMID: 24053279 DOI: 10.1021/bi400597v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding how cells regulate and transport metal ions is an important goal in the field of bioinorganic chemistry, a frontier research area that resides at the interface of chemistry and biology. This Current Topic reviews recent advances from the authors' group in using single-molecule fluorescence imaging techniques to identify the mechanisms of metal homeostatic proteins, including metalloregulators and metallochaperones. It emphasizes the novel mechanistic insights into how dynamic protein-DNA and protein-protein interactions offer efficient pathways via which MerR-family metalloregulators and copper chaperones can fulfill their functions. This work also summarizes other related single-molecule studies of bioinorganic systems and provides an outlook toward single-molecule imaging of metalloprotein functions in living cells.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Safenkova IV, Zherdev AV, Dzantievf BB. Application of atomic force microscopy for characteristics of single intermolecular interactions. BIOCHEMISTRY (MOSCOW) 2013; 77:1536-52. [PMID: 23379527 DOI: 10.1134/s000629791213010x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Atomic force microscopy (AFM) can be used to make measurements in vacuum, air, and water. The method is able to gather information about intermolecular interaction forces at the level of single molecules. This review encompasses experimental and theoretical data on the characterization of ligand-receptor interactions by AFM. The advantage of AFM in comparison with other methods developed for the characterization of single molecular interactions is its ability to estimate not only rupture forces, but also thermodynamic and kinetic parameters of the rupture of a complex. The specific features of force spectroscopy applied to ligand-receptor interactions are examined in this review from the stage of the modification of the substrate and the cantilever up to the processing and interpretation of the data. We show the specificities of the statistical analysis of the array of data based on the results of AFM measurements, and we discuss transformation of data into thermodynamic and kinetic parameters (kinetic dissociation constant, Gibbs free energy, enthalpy, and entropy). Particular attention is paid to the study of polyvalent interactions, where the definition of the constants is hampered due to the complex stoichiometry of the reactions.
Collapse
Affiliation(s)
- I V Safenkova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
22
|
Saito H, Iwayama M, Mizukami T, Kang J, Tateno M, Nagao H. Molecular dynamics study on binding free energy of Azurin–Cytochrome c551 complex. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2012.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Attwood SJ, Simpson AMC, Stone R, Hamaia S, Roy D, Farndale R, Ouberai M, Welland ME. A simple bioconjugate attachment protocol for use in single molecule force spectroscopy experiments based on mixed self-assembled monolayers. Int J Mol Sci 2012. [PMID: 23202965 PMCID: PMC3497339 DOI: 10.3390/ijms131013521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin.
Collapse
Affiliation(s)
- Simon J. Attwood
- Nanoscience Centre, Department of Engineering, Cambridge University, Cambridge, CB3 0FF, UK; E-Mails: (S.J.A.); (M.O.)
| | - Anna M. C. Simpson
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, UK; E-Mails: (A.M.C.S.); (R.S.); (S.W.H.); (R.W.F.)
| | - Rachael Stone
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, UK; E-Mails: (A.M.C.S.); (R.S.); (S.W.H.); (R.W.F.)
| | - SamirW. Hamaia
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, UK; E-Mails: (A.M.C.S.); (R.S.); (S.W.H.); (R.W.F.)
| | - Debdulal Roy
- National Physical Laboratory, Teddington, TW11 0LW, UK; E-Mail:
| | - RichardW. Farndale
- Department of Biochemistry, Cambridge University, Cambridge, CB2 1QW, UK; E-Mails: (A.M.C.S.); (R.S.); (S.W.H.); (R.W.F.)
| | - Myriam Ouberai
- Nanoscience Centre, Department of Engineering, Cambridge University, Cambridge, CB3 0FF, UK; E-Mails: (S.J.A.); (M.O.)
| | - Mark E. Welland
- Nanoscience Centre, Department of Engineering, Cambridge University, Cambridge, CB3 0FF, UK; E-Mails: (S.J.A.); (M.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1223-760305; Fax: +44 -1223-760309
| |
Collapse
|
24
|
Exploring the Energy Profile of Human IgG/Rat Anti-human IgG Interactions by Dynamic Force Spectroscopy. Protein J 2012; 31:425-31. [DOI: 10.1007/s10930-012-9419-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Fuhrmann A, Getfert S, Fu Q, Reimann P, Lindsay S, Ros R. Long lifetime of hydrogen-bonded DNA basepairs by force spectroscopy. Biophys J 2012; 102:2381-90. [PMID: 22677392 DOI: 10.1016/j.bpj.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022] Open
Abstract
Electron-tunneling data suggest that a noncovalently-bonded complex of three molecules, two recognition molecules that present hydrogen-bond donor and acceptor sites via a carboxamide group, and a DNA base, remains bound for seconds. This is surprising, given that imino-proton exchange rates show that basepairs in a DNA double helix open on millisecond timescales. The long lifetime of the three-molecule complex was confirmed using force spectroscopy, but measurements on DNA basepairs are required to establish a comparison with the proton-exchange data. Here, we report on a dynamic force spectroscopy study of complexes between the bases adenine and thymine (A-T, two-hydrogen bonds) and 2-aminoadenine and thymine (2AA-T, three-hydrogen bonds). Bases were tethered to an AFM probe and mica substrate via long, covalently linked polymer tethers. Data for bond-survival probability versus force and the rupture-force distributions were well fitted by the Bell model. The resulting lifetime of the complexes at zero pulling force was ~2 s for two-hydrogen bonds (A-T) and ~4 s for three-hydrogen bonds (2AA-T). Thus, DNA basepairs in an AFM pulling experiment remain bonded for long times, even without the stabilizing influence of base-stacking in a double helix. This result suggests that the pathways for opening, and perhaps the open states themselves, are very different in the AFM and proton-exchange measurements.
Collapse
|
26
|
Bizzarri AR, Santini S, Coppari E, Bucciantini M, Di Agostino S, Yamada T, Beattie CW, Cannistraro S. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy. Int J Nanomedicine 2011; 6:3011-9. [PMID: 22162658 PMCID: PMC3230568 DOI: 10.2147/ijn.s26155] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Viterbo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Battaglia G, LoPresti C, Massignani M, Warren NJ, Madsen J, Forster S, Vasilev C, Hobbs JK, Armes SP, Chirasatitsin S, Engler AJ. Wet nanoscale imaging and testing of polymersomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2010-2015. [PMID: 21695783 PMCID: PMC3325755 DOI: 10.1002/smll.201100511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/23/2011] [Indexed: 05/29/2023]
Affiliation(s)
- Giuseppe Battaglia
- The Krebs Institute, Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chtcheglova LA, Hinterdorfer P. Simultaneous topography and recognition imaging on endothelial cells. J Mol Recognit 2011; 24:788-94. [DOI: 10.1002/jmr.1126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Wildling L, Unterauer B, Zhu R, Rupprecht A, Haselgrübler T, Rankl C, Ebner A, Vater D, Pollheimer P, Pohl EE, Hinterdorfer P, Gruber HJ. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 2011; 22:1239-48. [PMID: 21542606 PMCID: PMC3115690 DOI: 10.1021/bc200099t] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH2 groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH2 groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker (“acetal-PEG-NHS”) which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1–10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker (“aldehyde-PEG-NHS”) to adjacent NH2 groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be functionalized with an ethylene diamine derivative of ATP which showed specific interaction with mitochondrial uncoupling protein 1 (UCP1) that had been purified and reconstituted in a mica-supported planar lipid bilayer.
Collapse
Affiliation(s)
- Linda Wildling
- Institute of Biophysics, J. Kepler University, Altenberger Str. 69, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
LoPresti C, Massignani M, Fernyhough C, Blanazs A, Ryan AJ, Madsen J, Warren NJ, Armes SP, Lewis AL, Chirasatitsin S, Engler AJ, Battaglia G. Controlling polymersome surface topology at the nanoscale by membrane confined polymer/polymer phase separation. ACS NANO 2011; 5:1775-1784. [PMID: 21344879 DOI: 10.1021/nn102455z] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nature has the exquisite ability to design specific surface patterns and topologies on both the macro- and nanolength scales that relate to precise functions. Following a biomimetic approach, we have engineered fully synthetic nanoparticles that are able to self-organize their surface into controlled domains. We focused on polymeric vesicles or "polymersomes"; enclosed membranes formed via self-assembly of amphiphilic block copolymers in water. Exploiting the intrinsic thermodynamic tendency of dissimilar polymers to undergo phase separation, we mixed different vesicle-forming block copolymers in various proportions in order to obtain a wide range of polymersomes with differing surface domains. Using a combination of confocal laser scanning microscopy studies of micrometer-sized polymersomes, and electron microscopy, atomic force microscopy, and fluorescence spectroscopy on nanometer-sized polymersomes, we find that the domains exhibit similar shapes on both the micro- and nanolength scales, with dimensions that are linearly proportional to the vesicle diameter. Finally, we demonstrate that such control over the surface "patchiness" of these polymersomes determines their cell internalization kinetics for live cells.
Collapse
Affiliation(s)
- Caterina LoPresti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bizzarri AR. Steered Molecular Dynamics Simulations of the Electron Transfer Complex between Azurin and Cytochrome c551. J Phys Chem B 2011; 115:1211-9. [DOI: 10.1021/jp107933k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Facolta’ di Scienze, Università della Tuscia, Largo dell’Università, I-01100 Viterbo, Italy
| |
Collapse
|
32
|
Bizzarri AR, Cannistraro S. Free energy evaluation of the p53-Mdm2 complex from unbinding work measured by dynamic force spectroscopy. Phys Chem Chem Phys 2011; 13:2738-43. [DOI: 10.1039/c0cp01474e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Chtcheglova LA, Wildling L, Waschke J, Drenckhahn D, Hinterdorfer P. AFM functional imaging on vascular endothelial cells. J Mol Recognit 2010; 23:589-96. [DOI: 10.1002/jmr.1052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Funari G, Domenici F, Nardinocchi L, Puca R, D'Orazi G, Bizzarri AR, Cannistraro S. Interaction of p53 with Mdm2 and azurin as studied by atomic force spectroscopy. J Mol Recognit 2010; 23:343-51. [PMID: 19941302 DOI: 10.1002/jmr.999] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Azurin, a bacterial protein, can be internalized in cancer cells and induce apoptosis. Such anticancer effect is coupled to the formation of a complex with the tumour-suppressor p53. The mechanism by which azurin stabilizes p53 and the binding sites of their complex are still under investigation. It is also known that the predominant mechanism for p53 down-regulation implies its association to Mdm2, the main ubiquitin ligase affecting its stability. However, the p53/Mdm2 interaction, occurring at the level of both their N-terminal domains, has been characterized so far by experiments involving only partial domains of these proteins. The relevance of the p53/Mdm2 complex as a possible target of the anticancer therapies requires a deeper study of this complex as made up of the two entire proteins. Moreover, the apparent antagonist action of azurin against Mdm2, with respect of p53 regulation, might suggest the possibility that azurin binds p53 at the same site of Mdm2, preventing in such a way p53 and Mdm2 from association and thus p53 from degradation. By following the interaction of the two entire proteins by atomic force spectroscopy, we have assessed the formation of a specific complex between p53 and Mdm2. We found for it a binding strength and a dissociation rate constant typical of dynamical protein-protein interactions and we observed that azurin, even if capable to bind p53, does not compete with Mdm2 for the same binding site on p53. The formation of the p53/Mdm2/azurin ternary complex might suggest an alternative anti-cancer mechanism adopted by azurin.
Collapse
Affiliation(s)
- Gloria Funari
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Viterbo, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Nanosensing of Fcγ receptors on macrophages. Anal Bioanal Chem 2010; 399:2359-67. [DOI: 10.1007/s00216-010-4039-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/05/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
|
36
|
Chirasatitsin S, Engler AJ. Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:194102. [PMID: 21152375 PMCID: PMC2997741 DOI: 10.1088/0953-8984/22/19/194102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ~20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites.
Collapse
Affiliation(s)
- Somyot Chirasatitsin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
37
|
Hofer M, Adamsmaier S, van Zanten TS, Chtcheglova LA, Manzo C, Duman M, Mayer B, Ebner A, Moertelmaier M, Kada G, Garcia-Parajo MF, Hinterdorfer P, Kienberger F. Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy. Ultramicroscopy 2010; 110:605-11. [PMID: 20226591 DOI: 10.1016/j.ultramic.2010.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We demonstrate simultaneous transverse dynamic force microscopy and molecular recognition imaging using tuning forks as piezoelectric sensors. Tapered aluminum-coated glass fibers were chemically functionalized with biotin and anti-lysozyme molecules and attached to one of the prongs of a 32kHz tuning fork. The lateral oscillation amplitude of the tuning fork was used as feedback signal for topographical imaging of avidin aggregates and lysozyme molecules on mica substrate. The phase difference between the excitation and detection signals of the tuning fork provided molecular recognition between avidin/biotin or lysozyme/anti-lysozyme. Aggregates of avidin and lysozyme molecules appeared as features with heights of 1-4nm in the topographic images, consistent with single molecule atomic force microscopy imaging. Recognition events between avidin/biotin or lysozyme/anti-lysozyme were detected in the phase image at high signal-to-noise ratio with phase shifts of 1-2 degrees. Because tapered glass fibers and shear-force microscopy based on tuning forks are commonly used for near-field scanning optical microscopy (NSOM), these results open the door to the exciting possibility of combining optical, topographic and biochemical recognition at the nanometer scale in a single measurement and in liquid conditions.
Collapse
Affiliation(s)
- Manuel Hofer
- University of Linz, Institute for Biophysics, Altenbergerstr. 69, Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bizzarri AR, Di Agostino S, Andolfi L, Cannistraro S. A combined atomic force microscopy imaging and docking study to investigate the complex between p53 DNA binding domain and Azurin. J Mol Recognit 2010; 22:506-15. [PMID: 19642109 DOI: 10.1002/jmr.975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor p53 interacts with the redox copper protein Azurin (AZ) forming a complex which is of some relevance in biomedicine and cancer therapy. To obtain information on the spatial organization of this complex when it is immobilized on a substrate, we have used tapping mode-atomic force microscopy (TM-AFM) imaging combined with computational docking. The vertical dimension and the bearing volume of the DNA binding domain (DBD) of p53, anchored to functionalized gold substrate through exposed lysine residues, alone and after deposing AZ, have been measured by TM-AFM. By a computational docking approach, a three-dimensional model for the DBD of p53, before and after addition of AZ, have been predicted. Then we have calculated the possible arrangements of these biomolecular systems on gold substrate by finding a good agreement with the related experimental distribution of the height. The potentiality of the approach combining TM-AFM imaging and computational docking for the study of biomolecular complexes immobilized on substrates is briefly discussed.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics & Nanoscience Centre, CNISM, Facolta' di Scienze, Università della Tuscia, I-01100 Viterbo, Italy.
| | | | | | | |
Collapse
|
39
|
Bizzarri AR, Cannistraro S. The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem Soc Rev 2010; 39:734-49. [DOI: 10.1039/b811426a] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Bizzarri AR, Cannistraro S. Atomic Force Spectroscopy in Biological Complex Formation: Strategies and Perspectives. J Phys Chem B 2009; 113:16449-64. [DOI: 10.1021/jp902421r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| |
Collapse
|
41
|
Tsapikouni TS, Missirlis YF. Measuring the force of single protein molecule detachment from surfaces with AFM. Colloids Surf B Biointerfaces 2009; 75:252-9. [PMID: 19783413 DOI: 10.1016/j.colsurfb.2009.08.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 08/04/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.
Collapse
Affiliation(s)
- Theodora S Tsapikouni
- Laboratory of Biomechanics and Biomedical Engineering, Mechanical Engineering and Aeronautics Department, University of Patras, Patras 26504, Greece.
| | | |
Collapse
|
42
|
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R. Quantitative analysis of single-molecule RNA-protein interaction. Biophys J 2009; 96:5030-9. [PMID: 19527663 DOI: 10.1016/j.bpj.2009.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/27/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022] Open
Abstract
RNA-binding proteins impact gene expression at the posttranscriptional level by interacting with cognate cis elements within the transcripts. Here, we apply dynamic single-molecule force spectroscopy to study the interaction of the Arabidopsis glycine-rich RNA-binding protein AtGRP8 with its RNA target. A dwell-time-dependent analysis of the single-molecule data in combination with competition assays and site-directed mutagenesis of both the RNA target and the RNA-binding domain of the protein allowed us to distinguish and quantify two different binding modes. For dwell times <0.21 s an unspecific complex with a lifetime of 0.56 s is observed, whereas dwell times >0.33 s result in a specific interaction with a lifetime of 208 s. The corresponding reaction lengths are 0.28 nm for the unspecific and 0.55 nm for the specific AtGRP8-RNA interactions, indicating formation of a tighter complex with increasing dwell time. These two binding modes cannot be dissected in ensemble experiments. Quantitative titration in RNA bandshift experiments yields an ensemble-averaged equilibrium constant of dissociation of KD = 2 x 10(-7) M. Assuming comparable on-rates for the specific and nonspecific binding modes allows us to estimate their free energies as DeltaG0 = -42 kJ/mol and DeltaG0 = -28 kJ/mol for the specific and nonspecific binding modes, respectively. Thus, we show that single-molecule force spectroscopy with a refined statistical analysis is a potent tool for the analysis of protein-RNA interactions without the drawback of ensemble averaging. This makes it possible to discriminate between different binding modes or sites and to analyze them quantitatively. We propose that this method could be applied to complex interactions of biomolecules in general, and be of particular interest for the investigation of multivalent binding reactions.
Collapse
Affiliation(s)
- Alexander Fuhrmann
- Experimental Biophysics and Applied Nanoscience, Department of Physics, Bielefeld University, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
43
|
Taranta M, Bizzarri AR, Cannistraro S. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin. J Mol Recognit 2009; 22:215-22. [PMID: 19140135 DOI: 10.1002/jmr.934] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is known that the half life of the tumor suppressor p53 can be increased by the interaction with the bacterial protein azurin, resulting in an enhanced anti-tumoral activity. The understanding of the molecular mechanisms on the basis of this phenomenon can open the way to new anti-cancer strategies. Some experimental works have given evidence of an interaction between p53 and azurin (AZ); however the binding regions of the proteins are still unknown. Recently, fluorescence studies have shown that p53 partakes in the binding with the bacterial protein by its N-terminal (NT) domain. Here we have used a computational method to get insight into this interacting mode. The model that we propose for the best complex between AZ and p53 has been obtained from a rigid-body docking, coupled with a molecular dynamics (MD) simulation, a free energy calculation, and validated by mutagenesis analysis. We have found a high degree of geometric fit between the two proteins that are kept together by several hydrophobic interactions and numerous hydrogen bonds. Interestingly, it has emerged that AZ binds essentially to the helices H(I) and H(III) of the p53 NT domain, which are also interacting regions for the foremost inhibitor of p53, MDM2.
Collapse
Affiliation(s)
- Monia Taranta
- Biophysics and Nanoscience Centre, CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell'Università 01100, Viterbo, Italy
| | | | | |
Collapse
|
44
|
Multiple receptors involved in human rhinovirus attachment to live cells. Proc Natl Acad Sci U S A 2008; 105:17778-83. [PMID: 18997008 DOI: 10.1073/pnas.0806451105] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Minor group human rhinoviruses (HRVs) attach to members of the low-density lipoprotein receptor family and are internalized via receptor-mediated endocytosis. The attachment of HRV2 to the cell surface, the first step in infection, was characterized at the single-molecule level by atomic force spectroscopy. Sequential binding of multiple receptors was evident from recordings of characteristic quantized force spectra, which suggests that multiple receptors bound to the virus in a timely manner. Unbinding forces required to detach the virus from the cell membrane increased within a time frame of several hundred milliseconds. The number of receptors involved in virus binding was determined, and estimates for on-rate, off-rate, and equilibrium binding constant of the interaction between HRV2 and plasma membrane-anchored receptors were obtained.
Collapse
|
45
|
Bizzarri A, Andolfi L, Taranta M, Cannistraro S. Optical and electronic coupling of the redox copper Azurin on ITO-coated quartz substrate. Biosens Bioelectron 2008; 24:204-9. [DOI: 10.1016/j.bios.2008.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
46
|
Sotres J, Lostao A, Wildling L, Ebner A, Gómez-Moreno C, Gruber HJ, Hinterdorfer P, Baró AM. Unbinding molecular recognition force maps of localized single receptor molecules by atomic force microscopy. Chemphyschem 2008; 9:590-9. [PMID: 18297676 DOI: 10.1002/cphc.200700597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Atomic force microscopy is a technique capable to study biological recognition processes at the single-molecule level. In this work we operate the AFM in a force-scan based mode, the jumping mode, where simultaneous topographic and tip-sample adhesion maps are acquired. This approach obtains the unbinding force between a well-defined receptor molecule and a ligand attached to the AFM tip. The method is applied to the avidin-biotin system. In contrast with previous data, we obtain laterally resolved adhesion maps of avidin-biotin unbinding forces highly correlated with single avidin molecules in the corresponding topographic map. The scanning rate 250 pixel s(-1) (2 min for a 128 x 128 image) is limited by the hydrodynamic drag force. We are able to build a rupture-force distribution histogram that corresponds to a single defined molecule. Furthermore, we find that due to the motility of the polymer used as spacer to anchor the ligand to the tip, its direction at rupture does not generally coincide with the normal to the tip-sample, this introduces an appreciable error in the measured force.
Collapse
Affiliation(s)
- Javier Sotres
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fuhrmann A, Anselmetti D, Ros R, Getfert S, Reimann P. Refined procedure of evaluating experimental single-molecule force spectroscopy data. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:031912. [PMID: 18517427 DOI: 10.1103/physreve.77.031912] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 11/09/2007] [Indexed: 05/26/2023]
Abstract
Dynamic force spectroscopy is a well-established tool to study molecular recognition in a wide range of binding affinities on the single-molecule level. The theoretical interpretation of these data is still very challenging and the models describe the experimental data only partly. In this paper we reconsider the basic assumptions of the models on the basis of an experimental data set and propose an approach of analyzing and quantitatively evaluating dynamic force spectroscopy data on single ligand-receptor complexes. We present our procedure to process and analyze the force-distance curves, to detect the rupture events in an automated manner, and to calculate quantitative parameters for a biophysical characterization of the investigated interaction.
Collapse
Affiliation(s)
- Alexander Fuhrmann
- Experimental Biophysics, Physics Department, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
48
|
Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy. Top Curr Chem (Cham) 2008; 285:29-76. [DOI: 10.1007/128_2007_24] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Taranta M, Bizzarri AR, Cannistraro S. Probing the interaction between p53 and the bacterial protein azurin by single molecule force spectroscopy. J Mol Recognit 2008; 21:63-70. [DOI: 10.1002/jmr.869] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Recent progress in AFM molecular recognition studies. Pflugers Arch 2007; 456:237-45. [PMID: 18157727 DOI: 10.1007/s00424-007-0413-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|