1
|
Choi HK, Zhu C. Catch Bonds in Immunology. Annu Rev Immunol 2025; 43:641-666. [PMID: 40085844 DOI: 10.1146/annurev-immunol-082423-035904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Catch bonds are molecular bonds that last longer under force than slip bonds, which become shorter-lived under force. Although catch bonds were initially discovered in studies of leukocyte and bacterial adhesions two decades ago, they have since been found in many other contexts, including platelet binding to blood vessel walls during clotting, structural support within the cell and between cells, force transmission in the cell's machineries for motility and mechanotransduction, viral infection of host cells, and immunoreceptor mechanosensing. Catch bonds are strengthened by increasing force, which induces structural changes in one or both interacting molecules either locally or allosterically to enable additional contacts at their binding interface, thus lengthening bond lifetimes. They can be modeled by the kinetics of a system escaping from the energy well(s) of the bound state(s) over the energy barrier(s) to the free state by traversing along the dissociation path(s) across a hilly energy landscape modulated by force. Catch bond studies are important for understanding the mechanics of biological systems and developing treatment strategies for infectious diseases, immune disorders, cancer, and other ailments.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea;
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Vachharajani VT, DeJong MP, Dutta S, Chapman J, Ghosh E, Singharoy A, Dunn AR. PDZ Domains from the Junctional Proteins Afadin and ZO-1 Act as Mechanosensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.24.559210. [PMID: 37961673 PMCID: PMC10634676 DOI: 10.1101/2023.09.24.559210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intercellular adhesion complexes must withstand mechanical forces to maintain tissue cohesion while also retaining the capacity for dynamic remodeling during tissue morphogenesis and repair. Many cell-cell adhesion complexes contain at least one PSD95/Dlg/ZO-1 (PDZ) domain situated between the adhesion molecule and the actin cytoskeleton. However, PDZ-mediated interactions are characteristically nonspecific, weak, and transient, with multiple binding partners per PDZ domain, micromolar dissociation constants, and bond lifetimes of seconds or less. Here, we demonstrate that the bonds between the PDZ domain of the cytoskeletal adaptor protein afadin and the intracellular domains of the adhesion molecules nectin-1 and JAM-A form molecular catch bonds that reinforce in response to mechanical load. In contrast, the bond between the PDZ3-SH3-GUK (PSG) domain of the cytoskeletal adaptor ZO-1 and the JAM-A intracellular domain becomes dramatically weaker in response to ∼2 pN of load, the amount generated by single molecules of the cytoskeletal motor protein myosin II. Thus, physiologically relevant forces can exert dramatic and opposite effects on the stability of two of the major linkages between cell-cell adhesion proteins and the F-actin cytoskeleton. Our data demonstrate that that PDZ domains can serve as force-responsive mechanical anchors at cell-cell adhesion complexes. More broadly, our findings suggest that mechanical force may serve as a previously unsuspected regulator of the hundreds of PDZ-ligand interactions present in animal cells.
Collapse
|
3
|
van Galen M, Bok A, Peshkovsky T, van der Gucht J, Albada B, Sprakel J. De novo DNA-based catch bonds. Nat Chem 2024; 16:1943-1950. [PMID: 38914727 PMCID: PMC11611730 DOI: 10.1038/s41557-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
All primary chemical interactions weaken under mechanical stress, which imposes fundamental mechanical limits on the materials constructed from them. Biological materials combine plasticity with strength, for which nature has evolved a unique solution-catch bonds, supramolecular interactions that strengthen under tension. Biological catch bonds use force-gated conformational switches to convert weak bonds into strong ones. So far, catch bonds remain exclusive to nature, leaving their potential as mechanoadaptive elements in synthetic systems untapped. Here we report the design and realization of artificial catch bonds. Starting from a minimal set of thermodynamic design requirements, we created a molecular motif capable of catch bonding. It consists of a DNA duplex featuring a cryptic domain that unfolds under tension to strengthen the interaction. We show that these catch bonds recreate force-enhanced rolling adhesion, a hallmark feature of biological catch bonds in bacteria and leukocytes. This Article introduces catch bonds into the synthetic domain, and could lead to the creation of artificial catch-bonded materials.
Collapse
Affiliation(s)
- Martijn van Galen
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Annemarie Bok
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Taieesa Peshkovsky
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, Netherlands.
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands.
| |
Collapse
|
4
|
Guan X, Bian Y, Guo Z, Zhang J, Cao Y, Li W, Wang W. Bidirectional Allostery Mechanism in Catch-Bond Formation of CD44 Mediated Cell Adhesion. J Phys Chem Lett 2024; 15:10786-10794. [PMID: 39432012 DOI: 10.1021/acs.jpclett.4c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Catch-bonds, whereby noncovalent ligand-receptor interactions are counterintuitively reinforced by tensile forces, play a major role in cell adhesion under mechanical stress. A basic prerequisite for catch-bond formation, as implicated in classic catch-bond models, is that force-induced remodeling of the ligand binding interface occurs prior to bond rupture. However, what strategy receptor proteins utilize to meet such specific kinetic control remains elusive. Here we report a bidirectional allostery mechanism of catch-bond formation based on theoretical and molecular dynamics simulation studies. Binding of ligand allosterically reduces the threshold force for unlocking of otherwise stably folded force-sensing element (i.e., forward allostery), so that a much smaller tensile force can trigger the conformational switching of receptor protein to high binding-strength state via backward allosteric coupling before bond rupture. Such bidirectional allostery fulfills the specific kinetic control required by catch-bond formation and is likely to be commonly utilized in cell adhesion. The essential thermodynamic and kinetic features of receptor proteins essential for catch-bond formation were identified.
Collapse
Affiliation(s)
- Xingyue Guan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yunqiang Bian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Zilong Guo
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jian Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Yang M, Bakker DTR, Li ITS. Engineering tunable catch bonds with DNA. Nat Commun 2024; 15:8828. [PMID: 39396048 PMCID: PMC11470926 DOI: 10.1038/s41467-024-52749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
Unlike most adhesive bonds, biological catch bonds strengthen with increased tension. This characteristic is essential to specific receptor-ligand interactions, underpinning biological adhesion dynamics, cell communication, and mechanosensing. While artificial catch bonds have been conceived, the tunability of their catch behaviour is limited. Here, we present the fish-hook, a rationally designed DNA catch bond that can be finely adjusted to a wide range of catch behaviours. We develop models to design these DNA structures and experimentally validate different catch behaviours by single-molecule force spectroscopy. The fish-hook architecture supports a vast sequence-dependent behaviour space, making it a valuable tool for reprogramming biological interactions and engineering force-strengthening materials.
Collapse
Affiliation(s)
- Micah Yang
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - David T R Bakker
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada
| | - Isaac T S Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
6
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
7
|
Carlucci LA, Johnson KC, Thomas WE. FimH-mannose noncovalent bonds survive minutes to hours under force. Biophys J 2024; 123:3038-3050. [PMID: 38961621 PMCID: PMC11427783 DOI: 10.1016/j.bpj.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
The adhesin FimH is expressed by commensal Escherichia coli and is implicated in urinary tract infections, where it mediates adhesion to mannosylated glycoproteins on urinary and intestinal epithelial cells in the presence of a high-shear fluid environment. The FimH-mannose bond exhibits catch behavior in which bond lifetime increases with force, because tensile force induces a transition in FimH from a compact native to an elongated activated conformation with a higher affinity to mannose. However, the lifetime of the activated state of FimH has not been measured under force. Here we apply multiplexed magnetic tweezers to apply a preload force to activate FimH bonds with yeast mannan, then we measure the lifetime of these activated bonds under a wide range of forces above and below the preload force. A higher fraction of FimH-mannan bonds were activated above than below a critical preload force, confirming the FimH catch bond behavior. Once activated, FimH detached from mannose with multi-state kinetics, suggesting the existence of two bound states with a 20-fold difference in dissociation rates. The average lifetime of activated FimH-mannose bonds was 1000 to 10,000 s at forces of 30-70 pN. Structural explanations of the two bound states and the high force resistance provide insights into structural mechanisms for long-lived, force-resistant biomolecular interactions.
Collapse
Affiliation(s)
- Laura A Carlucci
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Keith C Johnson
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
8
|
Arora N, Hazra JP, Roy S, Bhati GK, Gupta S, Yogendran KP, Chaudhuri A, Sagar A, Rakshit S. Emergence of slip-ideal-slip behavior in tip-links serve as force filters of sound in hearing. Nat Commun 2024; 15:1595. [PMID: 38383683 PMCID: PMC10881517 DOI: 10.1038/s41467-024-45423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Tip-links in the inner ear convey force from sound and trigger mechanotransduction. Here, we present evidence that tip-links (collectively as heterotetrameric complexes of cadherins) function as force filters during mechanotransduction. Our force-clamp experiments reveal that the tip-link complexes show slip-ideal-slip bond dynamics. At low forces, the lifetime of the tip-link complex drops monotonically, indicating slip-bond dynamics. The ideal bond, rare in nature, is seen in an intermediate force regime where the survival of the complex remains constant over a wide range. At large forces, tip-links follow a slip bond and dissociate entirely to cut-off force transmission. In contrast, the individual tip-links (heterodimers) display slip-catch-slip bonds to the applied forces. While with a phenotypic mutant, we showed the importance of the slip-catch-slip bonds in uninterrupted hearing, our coarse-grained Langevin dynamics simulations demonstrated that the slip-ideal-slip bonds emerge as a collective feature from the slip-catch-slip bonds of individual tip-links.
Collapse
Affiliation(s)
- Nisha Arora
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Jagadish P Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sandip Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gaurav K Bhati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sarika Gupta
- National Institute of Immunology, New Delhi, India
| | - K P Yogendran
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Amin Sagar
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| |
Collapse
|
9
|
Barkan CO, Bruinsma RF. Topology of molecular deformations induces triphasic catch bonding in selectin-ligand bonds. Proc Natl Acad Sci U S A 2024; 121:e2315866121. [PMID: 38294934 PMCID: PMC10861892 DOI: 10.1073/pnas.2315866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Among the long-standing efforts to elucidate the physical mechanisms of protein-ligand catch bonding, particular attention has been directed at the family of selectin proteins. Selectins exhibit slip, catch-slip, and slip-catch-slip bonding, with minor structural modifications causing major changes in selectins' response to force. How can a single structural mechanism allow interconversion between these various behaviors? We present a unifying theory of selectin-ligand catch bonding, using a structurally motivated free energy landscape to show how the topology of force-induced deformations of the molecular system produces the full range of observed behaviors. We find that the pathway of bond rupture deforms in non-trivial ways, such that unbinding dynamics depend sensitively on force. This implies a severe breakdown of Bell's theory-a paradigmatic theory used widely in catch bond modeling-raising questions about the suitability of Bell's theory in modeling other catch bonds. Our approach can be applied broadly to other protein-ligand systems.
Collapse
Affiliation(s)
- Casey O. Barkan
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| | - Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| |
Collapse
|
10
|
Blanchard AT. Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit. Biomech Model Mechanobiol 2024; 23:117-128. [PMID: 37704890 PMCID: PMC11998087 DOI: 10.1007/s10237-023-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
Many types of cancer cells overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years. A more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding-meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. A pseudo-steady-state approximation is applied, which relies on the assumption that integrin bond dynamics occur on a much faster timescale than the evolution of the full adhesion between the plasma membrane and the substrate. Force-dependent kinetic rate constants are used to calculate a steady-state distribution of integrin-ligand bonds for Gaussian-shaped adhesion geometries. The relationship between the energy of the system and adhesion geometry is then analyzed in the presence and absence of catch bonding in order to evaluate the extent to which catch bonding alters the energetics of adhesion formation. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~ 60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~ 1-4 kBT, which translates to a ~ 3-50 × increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanics and clustering likely both contribute to glycocalyx-mediated metastasis.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Duke Cancer Institute, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Göz M, Steinecker SM, Pohl GM, Walhorn V, Milting H, Anselmetti D. Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds. Sci Rep 2024; 14:2555. [PMID: 38297017 PMCID: PMC10830561 DOI: 10.1038/s41598-024-52725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
The cardiac muscle consists of individual cardiomyocytes that are mechanically linked by desmosomes. Desmosomal adhesion is mediated by densely packed and organized cadherins which, in presence of Ca2+, stretch out their extracellular domains (EC) and dimerize with opposing binding partners by exchanging an N-terminal tryptophan. The strand-swap binding motif of cardiac cadherins like desmocollin 2 (Dsc2) (and desmoglein2 alike) is highly specific but of low affinity with average bond lifetimes in the range of approximately 0.3 s. Notably, despite this comparatively weak interaction, desmosomes mediate a stable, tensile-resistant bond. In addition, force mediated dissociation of strand-swap dimers exhibit a reduced bond lifetime as external forces increase (slip bond). Using atomic force microscopy based single molecule force spectroscopy (AFM-SMFS), we demonstrate that Dsc2 has two further binding modes that, in addition to strand-swap dimers, most likely play a significant role in the integrity of the cardiac muscle. At short interaction times, the Dsc2 monomers associate only loosely, as can be seen from short-lived force-independent bonds. These ideal bonds are a precursor state and probably stabilize the formation of the self-inhibiting strand-swap dimer. The addition of tryptophan in the measurement buffer acts as a competitive inhibitor, preventing the N-terminal strand exchange. Here, Dsc2 dimerizes as X-dimer which clearly shows a tri-phasic slip-catch-slip type of dissociation. Within the force-mediated transition (catch) regime, Dsc2 dimers switch between a rather brittle low force and a strengthened high force adhesion state. As a result, we can assume that desmosomal adhesion is mediated not only by strand-swap dimers (slip) but also by their precursor states (ideal bond) and force-activated X-dimers (catch bond).
Collapse
Affiliation(s)
- Manuel Göz
- Department of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitätstraße 25, 33615, Bielefeld, Germany
| | - Sylvia M Steinecker
- Department of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitätstraße 25, 33615, Bielefeld, Germany
| | - Greta M Pohl
- Erich & Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstraße 11, Bad Oeynhausen, Germany
| | - Volker Walhorn
- Department of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitätstraße 25, 33615, Bielefeld, Germany.
| | - Hendrik Milting
- Erich & Hanna Klessmann Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstraße 11, Bad Oeynhausen, Germany
| | - Dario Anselmetti
- Department of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitätstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
12
|
Horst M, Meisner J, Yang J, Kouznetsova TB, Craig SL, Martínez TJ, Xia Y. Mechanochemistry of Pterodactylane. J Am Chem Soc 2024; 146:884-891. [PMID: 38131266 DOI: 10.1021/jacs.3c11293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Pterodactylane is a [4]-ladderane with substituents on the central rung. Comparing the mechanochemistry of the [4]-ladderane structure when pulled from the central rung versus the end rung revealed a striking difference in the threshold force of mechanoactivation: the threshold force is dramatically lowered from 1.9 nN when pulled on the end rung to 0.7 nN when pulled on the central rung. We investigated the bicyclic products formed from the mechanochemical activation of pterodactylane experimentally and computationally, which are distinct from the mechanochemical products of ladderanes being activated from the end rung. We compared the products of pterodactylane's mechanochemical and thermal activation to reveal differences and similarities in the mechanochemical and thermal pathways of pterodactylane transformation. Interestingly, we also discovered the presence of elementary steps that are accelerated or suppressed by force within the same mechanochemical reaction of pterodactylane, suggesting rich mechanochemical manifolds of multicyclic structures. We rationalized the greatly enhanced mechanochemical reactivity of the central rung of pterodactylane and discovered force-free ground state bond length to be a good low-cost predictor of the threshold force for cyclobutane-based mechanophores. These findings advance our understanding of mechanochemical reactivities and pathways, and they will guide future designs of mechanophores with low threshold forces to facilitate their applications in force-responsive materials.
Collapse
Affiliation(s)
- Matías Horst
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jan Meisner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Institute for Physical Chemistry, Department of Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf D-40225, Germany
| | - Jinghui Yang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
14
|
Belyaev AV, Fedotova IV. Molecular mechanisms of catch bonds and their implications for platelet hemostasis. Biophys Rev 2023; 15:1233-1256. [PMID: 37974999 PMCID: PMC10643804 DOI: 10.1007/s12551-023-01144-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023] Open
Abstract
Adhesive molecular bonds between blood cells are essential for thrombosis and hemostasis as they provide means for platelet adhesion, aggregation, and signaling in flowing blood. According to the nowadays conventional definition, a "catch" bond is a type of non-covalent bio-molecular bridge, whose dissociation lifetime counter-intuitively increases with applied tensile force. Following recent experimental findings, such receptor-ligand protein bonds are vital to the blood cells involved in the prevention of bleeding (hemostatic response) and infection (immunity). In this review, we examine the up-to-date experimental discoveries and theoretical insights about catch bonds between the blood cells, their biomechanical principles at the molecular level, and their role in platelet thrombosis and hemostasis.
Collapse
Affiliation(s)
- Aleksey V. Belyaev
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| | - Irina V. Fedotova
- Faculty of Physics, M.V.Lomonosov Moscow State University, 1, Leninskiye Gory, build.2, Moscow, 119991 Russia
| |
Collapse
|
15
|
Ayres CM, Corcelli SA, Baker BM. The Energetic Landscape of Catch Bonds in TCR Interfaces. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:325-332. [PMID: 37459192 PMCID: PMC10361606 DOI: 10.4049/jimmunol.2300121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 07/20/2023]
Abstract
Recognition of peptide/MHC complexes by αβ TCRs has traditionally been viewed through the lens of conventional receptor-ligand theory. Recent work, however, has shown that TCR recognition and T cell signaling can be profoundly influenced and tuned by mechanical forces. One outcome of applied force is the catch bond, where TCR dissociation rates decrease (half-lives increase) when limited force is applied. Although catch bond behavior is believed to be widespread in biology, its counterintuitive nature coupled with the difficulties of describing mechanisms at the structural level have resulted in considerable mystique. In this review, we demonstrate that viewing catch bonds through the lens of energy landscapes, barriers, and the ensuing reaction rates can help demystify catch bonding and provide a foundation on which atomic-level TCR catch bond mechanisms can be built.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Steve A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
16
|
Languin-Cattoën O, Sterpone F, Stirnemann G. Binding site plasticity regulation of the FimH catch-bond mechanism. Biophys J 2023; 122:2744-2756. [PMID: 37264571 PMCID: PMC10397818 DOI: 10.1016/j.bpj.2023.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The bacterial fimbrial adhesin FimH is a remarkable and well-studied catch-bond protein found at the tip of E. coli type 1 pili, which allows pathogenic strains involved in urinary tract infections to bind high-mannose glycans exposed on human epithelia. The catch-bond behavior of FimH, where the strength of the interaction increases when a force is applied to separate the two partners, enables the bacteria to resist clearance when they are subjected to shear forces induced by urine flow. Two decades of experimental studies performed at the single-molecule level, as well as x-ray crystallography and modeling studies, have led to a consensus picture whereby force separates the binding domain from an inhibitor domain, effectively triggering an allosteric conformational change in the former. This force-induced allostery is thought to be responsible for an increased binding affinity at the core of the catch-bond mechanism. However, some important questions remain, the most challenging one being that the crystal structures corresponding to these two allosteric states show almost superimposable binding site geometries, which questions the molecular origin for the large difference in affinity. Using molecular dynamics with a combination of enhanced-sampling techniques, we demonstrate that the static picture provided by the crystal structures conceals a variety of binding site conformations that have a key impact on the apparent affinity. Crucially, the respective populations in each of these conformations are very different between the two allosteric states of the binding domain, which can then be related to experimental affinity measurements. We also evidence a previously unappreciated but important effect: in addition to the well-established role of the force as an allosteric regulator via domain separation, application of force tends to directly favor the high-affinity binding site conformations. We hypothesize that this additional "local" catch-bond effect could delay unbinding between the bacteria and the host cell before the "global" allosteric transition occurs, as well as stabilizing the complex even more once in the high-affinity allosteric state.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France.
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France.
| |
Collapse
|
17
|
Paiva TO, Geoghegan JA, Dufrêne YF. High-force catch bonds between the Staphylococcus aureus surface protein SdrE and complement regulator factor H drive immune evasion. Commun Biol 2023; 6:302. [PMID: 36944849 PMCID: PMC10030832 DOI: 10.1038/s42003-023-04660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
The invasive bacterial pathogen Staphylococcus aureus recruits the complement regulatory protein factor H (fH) to its surface to evade the human immune system. Here, we report the identification of an extremely high-force catch bond used by the S. aureus surface protein SdrE to efficiently capture fH under mechanical stress. We find that increasing the external force applied to the SdrE-fH complex prolongs the lifetime of the bond at an extraordinary high force, 1,400 pN, above which the bond lifetime decreases as an ordinary slip bond. This catch-bond behavior originates from a variation of the dock, lock and latch interaction, where the SdrE ligand binding domains undergo conformational changes under stress, enabling the formation of long-lived hydrogen bonds with fH. The binding mechanism dissected here represents a potential target for new therapeutics against multidrug-resistant S. aureus strains.
Collapse
Affiliation(s)
- Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348, Louvain-la-Neuve, Belgium
| | - Joan A Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
18
|
Rangarajan ES, Smith EW, Izard T. Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments. Commun Biol 2023; 6:276. [PMID: 36928388 PMCID: PMC10020564 DOI: 10.1038/s42003-023-04610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Attachment between cells is crucial for almost all aspects of the life of cells. These inter-cell adhesions are mediated by the binding of transmembrane cadherin receptors of one cell to cadherins of a neighboring cell. Inside the cell, cadherin binds β-catenin, which interacts with α-catenin. The transitioning of cells between migration and adhesion is modulated by α-catenin, which links cell junctions and the plasma membrane to the actin cytoskeleton. At cell junctions, a single β-catenin/α-catenin heterodimer slips along filamentous actin in the direction of cytoskeletal tension which unfolds clustered heterodimers to form catch bonds with F-actin. Outside cell junctions, α-catenin dimerizes and links the plasma membrane to F-actin. Under cytoskeletal tension, α-catenin unfolds and forms an asymmetric catch bond with F-actin. To understand the mechanism of this important α-catenin function, we determined the 2.7 Å cryogenic electron microscopy (cryoEM) structures of filamentous actin alone and bound to human dimeric α-catenin. Our structures provide mechanistic insights into the role of the α-catenin interdomain interactions in directing α-catenin function and suggest a bivalent mechanism. Further, our cryoEM structure of human monomeric α-catenin provides mechanistic insights into α-catenin autoinhibition. Collectively, our structures capture the initial α-catenin interaction with F-actin before the sensing of force, which is a crucial event in cell adhesion and human disease.
Collapse
Affiliation(s)
| | - Emmanuel W Smith
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA
| | - Tina Izard
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
19
|
Blanchard A. Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532909. [PMID: 36993661 PMCID: PMC10055170 DOI: 10.1101/2023.03.16.532909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many types of cancer overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years; a more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding - meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~1-4 k B T, which translates to a ~3-50× increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanic and clustering likely both contribute to glycocalyx-mediated metastasis.
Collapse
Affiliation(s)
- Aaron Blanchard
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708 United States
- Duke Cancer Institute, Duke University, Durham, NC, 27708, United States
| |
Collapse
|
20
|
Bax NA, Wang A, Huang DL, Pokutta S, Weis WI, Dunn AR. Multi-level Force-dependent Allosteric Enhancement of αE-catenin Binding to F-actin by Vinculin. J Mol Biol 2023; 435:167969. [PMID: 36682678 PMCID: PMC9957948 DOI: 10.1016/j.jmb.2023.167969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Classical cadherins are transmembrane proteins whose extracellular domains link neighboring cells, and whose intracellular domains connect to the actin cytoskeleton via β-catenin and α-catenin. The cadherin-catenin complex transmits forces that drive tissue morphogenesis and wound healing. In addition, tension-dependent changes in αE-catenin conformation enables it to recruit the actin-binding protein vinculin to cell-cell junctions, which contributes to junctional strengthening. How and whether multiple cadherin-complexes cooperate to reinforce cell-cell junctions in response to load remains poorly understood. Here, we used single-molecule optical trap measurements to examine how multiple cadherin-catenin complexes interact with F-actin under load, and how this interaction is influenced by the presence of vinculin. We show that force oriented toward the (-) end of the actin filament results in mean lifetimes 3-fold longer than when force was applied towards the barbed (+) end. We also measured force-dependent actin binding by a quaternary complex comprising the cadherin-catenin complex and the vinculin head region, which cannot itself bind actin. Binding lifetimes of this quaternary complex increased as additional complexes bound F-actin, but only when load was oriented toward the (-) end. In contrast, the cadherin-catenin complex alone did not show this form of cooperativity. These findings reveal multi-level, force-dependent regulation that enhances the strength of the association of multiple cadherin/catenin complexes with F-actin, conferring positive feedback that may strengthen the junction and polarize F-actin to facilitate the emergence of higher-order cytoskeletal organization.
Collapse
Affiliation(s)
- Nicolas A Bax
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States. https://twitter.com/@bax1337
| | - Amy Wang
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States; Department of Chemical Engineering, Stanford University School of Engineering, United States. https://twitter.com/@amywang01
| | - Derek L Huang
- Graduate Program in Biophysics, Stanford University, United States
| | - Sabine Pokutta
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States.
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University School of Engineering, United States; Stanford Cardiovascular Institute, Stanford School of Medicine.
| |
Collapse
|
21
|
Zhong BL, Lee CE, Vachharajani VT, Südhof TC, Dunn AR. Piconewton forces mediate GAIN domain dissociation of the latrophilin-3 adhesion GPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523854. [PMID: 36711622 PMCID: PMC9882233 DOI: 10.1101/2023.01.12.523854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-Autoproteolysis Inducing (GAIN) domain, but the two resulting fragments remain associated on the cell surface. It is thought that force-mediated dissociation of the fragments exposes a peptide that activates G-protein signaling of aGPCRs, but whether GAIN domain dissociation can occur on biologically relevant timescales and at physiological forces is unknown. Here, we show using magnetic tweezers that physiological forces dramatically accelerate the dissociation of the latrophilin-3 GAIN domain. Forces in the 1-10 pN range were sufficient to dissociate the GAIN domain on a seconds-to-minutes timescale, and the GAIN domain fragments reversibly reassociated after dissociation. Thus, mechanical force may be a key driver of latrophilin signaling during synapse formation, suggesting a physiological mechanism by which aGPCRs may mediate mechanically-induced signal transduction.
Collapse
|
22
|
Melo MCR, Gomes DEB, Bernardi RC. Molecular Origins of Force-Dependent Protein Complex Stabilization during Bacterial Infections. J Am Chem Soc 2023; 145:70-77. [PMID: 36455202 DOI: 10.1021/jacs.2c07674] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The unbinding pathway of a protein complex can vary significantly depending on biochemical and mechanical factors. Under mechanical stress, a complex may dissociate through a mechanism different from that used in simple thermal dissociation, leading to different dissociation rates under shear force and thermal dissociation. This is a well-known phenomenon studied in biomechanics whose molecular and atomic details are still elusive. A particularly interesting case is the complex formed by bacterial adhesins with their human peptide target. These protein interactions have a force resilience equivalent to those of covalent bonds, an order of magnitude stronger than the widely used streptavidin:biotin complex, while having an ordinary affinity, much lower than that of streptavidin:biotin. Here, in an in silico single-molecule force spectroscopy approach, we use molecular dynamics simulations to investigate the dissociation mechanism of adhesin/peptide complexes. We show how the Staphylococcus epidermidis adhesin SdrG uses a catch-bond mechanism to increase complex stability with increasing mechanical stress. While allowing for thermal dissociation in a low-force regime, an entirely different mechanical dissociation path emerges in a high-force regime, revealing an intricate mechanism that does not depend on the peptide's amino acid sequence. Using a dynamic network analysis approach, we identified key amino acid contacts that describe the mechanics of this complex, revealing differences in dynamics that hinder thermal dissociation and establish the mechanical dissociation path. We then validate the information content of the selected amino acid contacts using their dynamics to successfully predict the rupture forces for this complex through a machine learning model.
Collapse
Affiliation(s)
- Marcelo C R Melo
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Diego E B Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Rafael C Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
23
|
Integrin Conformational Dynamics and Mechanotransduction. Cells 2022; 11:cells11223584. [PMID: 36429013 PMCID: PMC9688440 DOI: 10.3390/cells11223584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The function of the integrin family of receptors as central mediators of cell-extracellular matrix (ECM) and cell-cell adhesion requires a remarkable convergence of interactions and influences. Integrins must be anchored to the cytoskeleton and bound to extracellular ligands in order to provide firm adhesion, with force transmission across this linkage conferring tissue integrity. Integrin affinity to ligands is highly regulated by cell signaling pathways, altering affinity constants by 1000-fold or more, via a series of long-range conformational transitions. In this review, we first summarize basic, well-known features of integrin conformational states and then focus on new information concerning the impact of mechanical forces on these states and interstate transitions. We also discuss how these effects may impact mechansensitive cell functions and identify unanswered questions for future studies.
Collapse
|
24
|
Wang A, Dunn AR, Weis WI. Mechanism of the cadherin-catenin F-actin catch bond interaction. eLife 2022; 11:e80130. [PMID: 35913118 PMCID: PMC9402232 DOI: 10.7554/elife.80130] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanotransduction at cell-cell adhesions is crucial for the structural integrity, organization, and morphogenesis of epithelia. At cell-cell junctions, ternary E-cadherin/β-catenin/αE-catenin complexes sense and transmit mechanical load by binding to F-actin. The interaction with F-actin, described as a two-state catch bond, is weak in solution but is strengthened by applied force due to force-dependent transitions between weak and strong actin-binding states. Here, we provide direct evidence from optical trapping experiments that the catch bond property principally resides in the αE-catenin actin-binding domain (ABD). Consistent with our previously proposed model, the deletion of the first helix of the five-helix ABD bundle enables stable interactions with F-actin under minimal load that are well described by a single-state slip bond, even when αE-catenin is complexed with β-catenin and E-cadherin. Our data argue for a conserved catch bond mechanism for adhesion proteins with structurally similar ABDs. We also demonstrate that a stably bound ABD strengthens load-dependent binding interactions between a neighboring complex and F-actin, but the presence of the other αE-catenin domains weakens this effect. These results provide mechanistic insight to the cooperative binding of the cadherin-catenin complex to F-actin, which regulate dynamic cytoskeletal linkages in epithelial tissues.
Collapse
Affiliation(s)
- Amy Wang
- Department of Chemical Engineering, Stanford University, School of EngineeringStanfordUnited States
- Departments of Structural Biology and Molecular & Cellular Physiology, School of Medicine, Stanford UniversityStanfordUnited States
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, School of EngineeringStanfordUnited States
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, School of Medicine, Stanford UniversityStanfordUnited States
| |
Collapse
|
25
|
Sokurenko EV, Tchesnokova V, Interlandi G, Klevit R, Thomas WE. Neutralizing antibodies against allosteric proteins: insights from a bacterial adhesin. J Mol Biol 2022; 434:167717. [DOI: 10.1016/j.jmb.2022.167717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
|
26
|
Perez-Carrasco R, Franco-Oñate MJ, Walter JC, Dorignac J, Geniet F, Palmeri J, Parmeggiani A, Walliser NO, Nord AL. Relaxation time asymmetry in stator dynamics of the bacterial flagellar motor. SCIENCE ADVANCES 2022; 8:eabl8112. [PMID: 35319986 PMCID: PMC8942351 DOI: 10.1126/sciadv.abl8112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The bacterial flagellar motor is the membrane-embedded rotary motor, which turns the flagellum that provides thrust to many bacteria. This large multimeric complex, composed of a few dozen constituent proteins, is a hallmark of dynamic subunit exchange. The stator units are inner-membrane ion channels that dynamically bind to the peptidoglycan at the rotor periphery and apply torque. Their dynamic exchange is a function of the viscous load on the flagellum, allowing the bacterium to adapt to its local environment, although the molecular mechanisms of mechanosensitivity remain unknown. Here, by actively perturbing the steady-state stator stoichiometry of individual motors, we reveal a stoichiometry-dependent asymmetry in stator remodeling kinetics. We interrogate the potential effect of next-neighbor interactions and local stator unit depletion and find that neither can explain the observed asymmetry. We then simulate and fit two mechanistically diverse models that recapitulate the asymmetry, finding assembly dynamics to be particularly well described by a two-state catch-bond mechanism.
Collapse
Affiliation(s)
| | | | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Fred Geniet
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Nils-Ole Walliser
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Ashley L Nord
- Centre de Biologie Structurale, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
27
|
The C-terminal actin-binding domain of talin forms an asymmetric catch bond with F-actin. Proc Natl Acad Sci U S A 2022; 119:e2109329119. [PMID: 35245171 PMCID: PMC8915792 DOI: 10.1073/pnas.2109329119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Talin is a mechanosensitive adaptor protein that links integrins to the actin cytoskeleton at cell–extracellular matrix adhesions. Although the C-terminal actin-binding domain ABS3 of talin is required for function, it binds weakly to actin in solution. We show that ABS3 binds actin strongly only when subjected to mechanical forces comparable to those generated by the cytoskeleton. Moreover, the interaction between ABS3 and actin depends strongly on the direction of force in a manner predicted to organize actin to facilitate adhesion growth and efficient cytoskeletal force generation. These characteristics can explain how force sensing by talin helps to nucleate adhesions precisely when and where they are required to transmit force between the cytoskeleton and the extracellular matrix. Focal adhesions (FAs) are large, integrin-based protein complexes that link cells to the extracellular matrix (ECM). FAs form only when and where they are necessary to transmit force between the cellular cytoskeleton and the ECM, but how this occurs remains poorly understood. Talin is a 270-kDa adaptor protein that links integrins to filamentous (F)-actin and recruits additional components during FA assembly in a force-dependent manner. Cell biological and developmental data demonstrate that the third and C-terminal F-actin–binding site (ABS3) of talin is required for normal FA formation. However, purified ABS3 binds F-actin only weakly in solution. We used a single molecule optical trap assay to examine how and whether ABS3 binds F-actin under physiologically relevant mechanical loads. We find that ABS3 forms a catch bond with F-actin when force is applied toward the pointed end of the actin filament, with binding lifetimes >100-fold longer than when force is applied toward the barbed end. Long-lived bonds to F-actin under load require the ABS3 C-terminal dimerization domain, whose cleavage has been reported to regulate FA turnover. Our results support a mechanism in which talin ABS3 preferentially binds to and orients actin filaments with barbed ends facing the cell periphery, thus nucleating long-range order in the actin cytoskeleton. We suggest that talin ABS3 may function as a molecular AND gate that allows FA growth only when sufficient integrin density, F-actin polarization, and mechanical tension are simultaneously present.
Collapse
|
28
|
Qin J, Wilson KA, Sarkar S, Heras B, O'Mara ML, Totsika M. Conserved FimH mutations in the global Escherichia coli ST131 multi-drug resistant lineage weaken interdomain interactions and alter adhesin function. Comput Struct Biotechnol J 2022; 20:4532-4541. [PMID: 36090810 PMCID: PMC9428848 DOI: 10.1016/j.csbj.2022.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
The binding of the type 1 fimbrial adhesin FimH to mannosylated receptors is allosterically regulated to enhance the fitness of uropathogenic Escherichia coli (UPEC) during urinary tract infection (UTI). Mutations in the two FimH domains (pilin and lectin) located outside the mannose binding pocket have been shown to influence mannose binding affinity, yet the details of the allostery mechanism are not fully elucidated. Here we characterised different FimH conformational states (termed low-affinity tense and high-affinity relaxed conformations) of natural FimH variants using molecular dynamics (MD) simulation techniques and report key structural dynamics differences between them. The clinically dominant FimH30 variant from the pandemic multidrug resistant E. coli ST131 lineage contains an R166H mutation that weakens FimH interdomain interactions and allows enhanced mannose interactions with pre-existing high-affinity relaxed conformations. When expressed in an isogenic ST131 strain background, FimH30 mediated high human cell adhesion and invasion, and enhanced biofilm formation over other variants. Collectively, our computational and experimental findings support a model of FimH protein allostery that is mediated by shifts in the pre-existing conformational equilibrium of FimH, additional to the sequential step-wise process of structural perturbations transmitted from one site to another within the protein. Importantly, it is the first study to shed light into how natural mutations in a clinically dominant FimH variant influence the protein’s conformational landscape optimising its function for ST131 fitness at intestinal and extraintestinal niches.
Collapse
|
29
|
Chantraine C, Mathelié-Guinlet M, Pietrocola G, Speziale P, Dufrêne YF. AFM Identifies a Protein Complex Involved in Pathogen Adhesion Which Ruptures at Three Nanonewtons. NANO LETTERS 2021; 21:7595-7601. [PMID: 34469164 DOI: 10.1021/acs.nanolett.1c02105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococci bind to the blood protein von Willebrand Factor (vWF), thereby causing endovascular infections. Whether and how this interaction occurs with the medically important pathogen Staphylococcus epidermidis is unknown. Using single-molecule experiments, we demonstrate that the S. epidermidis protein Aap binds vWF via an ultrastrong force, ∼3 nN, the strongest noncovalent biological bond ever reported, and we show that this interaction is activated by tensile loading, suggesting a catch-bond behavior. Aap-vWF binding involves exclusively the A1 domain of vWF but requires both the A and B domains of Aap, as revealed by inhibition assays using specific monoclonal antibodies. Collectively, our results point to a mechanism where force-induced unfolding of the B repeats activates the A domain of Aap, shifting it from a weak- to a strong-binding state, which then engages into an ultrastrong interaction with vWF A1. This shear-dependent function of Aap offers promise for innovative antistaphylococcal therapies.
Collapse
Affiliation(s)
- Constance Chantraine
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
30
|
Kedziora GS, Moller J, Berry R, Nepal D. Ab initio molecular dynamics modeling of single polyethylene chains: Scission kinetics and influence of radical under mechanical strain. J Chem Phys 2021; 155:024102. [PMID: 34266247 DOI: 10.1063/5.0047371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ab initio molecular dynamics was used to estimate the response to constant imposed strain on a short polyethylene (PE) chain and a radical chain with a removed hydrogen atom. Two independent types of simulations were run. In the first case, the chains were strained by expanding a periodic cell, restraining the length but allowing the internal degrees of freedom to reach equilibrium. From these simulations, the average force on the chain was computed, and the resulting force was integrated to determine the Helmholtz free energy for chain stretching. In the second set of simulations, chains were constrained to various lengths, while a bond was restrained at various bond lengths using umbrella sampling. This provided free energy of bond scission for various chain strains. The sum of the two free energy functions results in an approximation of the free energy of chain scission under various strains and gives a realistic and new picture of the effect of chain strain on bond breaking. Unimolecular scission rates for each chain type were examined as a function of chain strain. The scission rate for the radical chain is several orders of magnitude larger than that of the pristine chain at smaller strains and at equilibrium. This highlights the importance of radical formation in PE rupture and is consistent with experiments. Constant strain results were used to derive a constant-force model for the radical chain that demonstrates a roll over in rate similar to the "catch-bond" behavior observed in protein membrane detachment experiments.
Collapse
Affiliation(s)
- Gary S Kedziora
- Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433, USA
| | - James Moller
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio 45056, USA
| | - Rajiv Berry
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson Air Force Base, Dayton, Ohio 45433, USA
| |
Collapse
|
31
|
Mignolet J, Viljoen A, Mathelié-Guinlet M, Viela F, Valotteau C, Dufrêne YF. AFM Unravels the Unique Adhesion Properties of the Caulobacter Type IVc Pilus Nanomachine. NANO LETTERS 2021; 21:3075-3082. [PMID: 33754731 DOI: 10.1021/acs.nanolett.1c00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial pili are proteinaceous motorized nanomachines that play various functional roles including surface adherence, bacterial motion, and virulence. The surface-contact sensor type IVc (or Tad) pilus is widely distributed in both Gram-positive and Gram-negative bacteria. In Caulobacter crescentus, this nanofilament, though crucial for surface colonization, has never been thoroughly investigated at the molecular level. As Caulobacter assembles several surface appendages at specific stages of the cell cycle, we designed a fluorescence-based screen to selectively study single piliated cells and combined it with atomic force microscopy and genetic manipulation to quantify the nanoscale adhesion of the type IVc pilus to hydrophobic substrates. We demonstrate that this nanofilament exhibits high stickiness compared to the canonical type IVa/b pili, resulting mostly from multiple hydrophobic interactions along the fiber length, and that it features nanospring mechanical properties. Our findings may be helpful to better understand the structure-function relationship of bacterial pilus nanomachines.
Collapse
Affiliation(s)
- Johann Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
32
|
Kisiela DI, Magala P, Interlandi G, Carlucci LA, Ramos A, Tchesnokova V, Basanta B, Yarov-Yarovoy V, Avagyan H, Hovhannisyan A, Thomas WE, Stenkamp RE, Klevit RE, Sokurenko EV. Toggle switch residues control allosteric transitions in bacterial adhesins by participating in a concerted repacking of the protein core. PLoS Pathog 2021; 17:e1009440. [PMID: 33826682 PMCID: PMC8064603 DOI: 10.1371/journal.ppat.1009440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/23/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Critical molecular events that control conformational transitions in most allosteric proteins are ill-defined. The mannose-specific FimH protein of Escherichia coli is a prototypic bacterial adhesin that switches from an 'inactive' low-affinity state (LAS) to an 'active' high-affinity state (HAS) conformation allosterically upon mannose binding and mediates shear-dependent catch bond adhesion. Here we identify a novel type of antibody that acts as a kinetic trap and prevents the transition between conformations in both directions. Disruption of the allosteric transitions significantly slows FimH's ability to associate with mannose and blocks bacterial adhesion under dynamic conditions. FimH residues critical for antibody binding form a compact epitope that is located away from the mannose-binding pocket and is structurally conserved in both states. A larger antibody-FimH contact area is identified by NMR and contains residues Leu-34 and Val-35 that move between core-buried and surface-exposed orientations in opposing directions during the transition. Replacement of Leu-34 with a charged glutamic acid stabilizes FimH in the LAS conformation and replacement of Val-35 with glutamic acid traps FimH in the HAS conformation. The antibody is unable to trap the conformations if Leu-34 and Val-35 are replaced with a less bulky alanine. We propose that these residues act as molecular toggle switches and that the bound antibody imposes a steric block to their reorientation in either direction, thereby restricting concerted repacking of side chains that must occur to enable the conformational transition. Residues homologous to the FimH toggle switches are highly conserved across a diverse family of fimbrial adhesins. Replacement of predicted switch residues reveals that another E. coli adhesin, galactose-specific FmlH, is allosteric and can shift from an inactive to an active state. Our study shows that allosteric transitions in bacterial adhesins depend on toggle switch residues and that an antibody that blocks the switch effectively disables adhesive protein function.
Collapse
Affiliation(s)
- Dagmara I. Kisiela
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Laura A. Carlucci
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Angelo Ramos
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Veronika Tchesnokova
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Benjamin Basanta
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, California, United States of America
| | - Hovhannes Avagyan
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Anahit Hovhannisyan
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Wendy E. Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Ronald E. Stenkamp
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Evgeni V. Sokurenko
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Dufrêne YF, Viljoen A, Mignolet J, Mathelié-Guinlet M. AFM in cellular and molecular microbiology. Cell Microbiol 2021; 23:e13324. [PMID: 33710716 DOI: 10.1111/cmi.13324] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The unique capabilities of the atomic force microscope (AFM), including super-resolution imaging, piconewton force-sensitivity, nanomanipulation and ability to work under physiological conditions, have offered exciting avenues for cellular and molecular biology research. AFM imaging has helped unravel the fine architectures of microbial cell envelopes at the nanoscale, and how these are altered by antimicrobial treatment. Nanomechanical measurements have shed new light on the elasticity, tensile strength and turgor pressure of single cells. Single-molecule and single-cell force spectroscopy experiments have revealed the forces and dynamics of receptor-ligand interactions, the nanoscale distribution of receptors on the cell surface and the elasticity and adhesiveness of bacterial pili. Importantly, recent force spectroscopy studies have demonstrated that extremely stable bonds are formed between bacterial adhesins and their cognate ligands, originating from a catch bond behaviour allowing the pathogen to reinforce adhesion under shear or tensile stress. Here, we survey how the versatility of AFM has enabled addressing crucial questions in microbiology, with emphasis on bacterial pathogens. TAKE AWAYS: AFM topographic imaging unravels the ultrastructure of bacterial envelopes. Nanomechanical mapping shows what makes cell envelopes stiff and resistant to drugs. Force spectroscopy characterises the molecular forces in pathogen adhesion. Stretching pili reveals a wealth of mechanical and adhesive responses.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Johann Mignolet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
34
|
Dansuk KC, Keten S. Self-strengthening biphasic nanoparticle assemblies with intrinsic catch bonds. Nat Commun 2021; 12:85. [PMID: 33397979 PMCID: PMC7782701 DOI: 10.1038/s41467-020-20344-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/23/2020] [Indexed: 01/06/2023] Open
Abstract
Protein-ligand complexes with catch bonds exhibit prolonged lifetimes when subject to tensile force, which is a desirable yet elusive attribute for man-made nanoparticle interfaces and assemblies. Most designs proposed so far rely on macromolecular linkers with complicated folds rather than particles exhibiting simple dynamic shapes. Here, we establish a scissor-type X-shaped particle design for achieving intrinsic catch bonding ability with tunable force-enhanced lifetimes under thermal excitations. Molecular dynamics simulations are carried out to illustrate equilibrium self-assembly and force-enhanced bond lifetime of dimers and fibers facilitated by secondary interactions that form under tensile force. The non-monotonic force dependence of the fiber breaking kinetics is well-estimated by an analytical model. Our design concepts for shape-changing particles illuminates a path towards novel nanoparticle or colloidal assemblies that have the passive ability to tune the strength of their interfaces with applied force, setting the stage for self-assembling materials with novel mechanical functions and rheological properties.
Collapse
Affiliation(s)
- Kerim C Dansuk
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| |
Collapse
|
35
|
Liu Z, Liu H, Vera AM, Bernardi RC, Tinnefeld P, Nash MA. High force catch bond mechanism of bacterial adhesion in the human gut. Nat Commun 2020; 11:4321. [PMID: 32859904 PMCID: PMC7456326 DOI: 10.1038/s41467-020-18063-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Bacterial colonization of the human intestine requires firm adhesion of bacteria to insoluble substrates under hydrodynamic flow. Here we report the molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. Using single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations, we resolve two binding modes and three unbinding reaction pathways of a mechanically ultrastable R. champanellensis (Rc) Dockerin:Cohesin (Doc:Coh) complex. The complex assembles in two discrete binding modes with significantly different mechanical properties, with one breaking at ~500 pN and the other at ~200 pN at loading rates from 1-100 nN s-1. A neighboring X-module domain allosterically regulates the binding interaction and inhibits one of the low-force pathways at high loading rates, giving rise to a catch bonding mechanism that manifests under force ramp protocols. Multi-state Monte Carlo simulations show strong agreement with experimental results, validating the proposed kinetic scheme. These results explain mechanistically how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery and catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rafael C Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
- Department of Physics, Auburn University, 36849, Auburn, AL, USA
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
36
|
Tapia-Rojo R, Alonso-Caballero A, Fernandez JM. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. SCIENCE ADVANCES 2020; 6:eaaz4707. [PMID: 32494739 PMCID: PMC7244311 DOI: 10.1126/sciadv.aaz4707] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/13/2020] [Indexed: 05/21/2023]
Abstract
Vinculin binds unfolded talin domains in focal adhesions, which recruits actin filaments to reinforce the mechanical coupling of this organelle. However, it remains unknown how this interaction is regulated and its impact on the force transmission properties of this mechanotransduction pathway. Here, we use magnetic tweezers to measure the interaction between vinculin head and the talin R3 domain under physiological forces. For the first time, we resolve individual binding events as a short contraction of the unfolded talin polypeptide caused by the reformation of the vinculin-binding site helices, which dictates a biphasic mechanism that regulates this interaction. Force favors vinculin binding by unfolding talin and exposing the vinculin-binding sites; however, the coil-to-helix contraction introduces an energy penalty that increases with force, defining an optimal binding regime. This mechanism implies that the talin-vinculin-actin association could operate as a negative feedback mechanism to stabilize force on focal adhesions.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
37
|
Tan CAZ, Antypas H, Kline KA. Overcoming the challenge of establishing biofilms in vivo: a roadmap for Enterococci. Curr Opin Microbiol 2020; 53:9-18. [PMID: 32062025 DOI: 10.1016/j.mib.2020.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/28/2022]
Abstract
Enterococcus faecalis forms single and mixed-species biofilms on both tissue and medical devices in the host, often under exposure to fluid flow, giving rise to infections that are recalcitrant to treatment. The factors that drive enterococcal biofilm formation in the host, however, remain unclear. Recent reports in other pathogens show how surface sensing by bacteria can trigger the transition from planktonic to sessile lifestyle. Fluid flow can enhance initial adhesion, but also influence quorum sensing. Biofilm-specific factors, as well as biofilm size and extracellular polymeric substances, can compromise opsonization and phagocytosis. Bacterial interspecies synergy can create favorable conditions in the host for biofilm formation. Through these concepts, we define the knowledge gaps in understanding host-associated E. faecalis biofilm formation and propose a roadmap for future investigations.
Collapse
Affiliation(s)
- Casandra Ai Zhu Tan
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Haris Antypas
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
38
|
Lancellotti S, Sacco M, Basso M, De Cristofaro R. Mechanochemistry of von Willebrand factor. Biomol Concepts 2019; 10:194-208. [PMID: 31778361 DOI: 10.1515/bmc-2019-0022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Von Willebrand factor (VWF), a blood multimeric protein with a very high molecular weight, plays a crucial role in the primary haemostasis, the physiological process characterized by the adhesion of blood platelets to the injured vessel wall. Hydrodynamic forces are responsible for extensive conformational transitions in the VWF multimers that change their structure from a globular form to a stretched linear conformation. This feature makes this protein particularly prone to be investigated by mechanochemistry, the branch of the biophysical chemistry devoted to investigating the effects of shear forces on protein conformation. This review describes the structural elements of the VWF molecule involved in the biochemical response to shear forces. The stretched VWF conformation favors the interaction with the platelet GpIb and at the same time with ADAMTS-13, the zinc-protease that cleaves VWF in the A2 domain, limiting its prothrombotic capacity. The shear-induced conformational transitions favor also a process of self-aggregation, responsible for the formation of a spider-web like network, particularly efficient in the trapping process of flowing platelets. The investigation of the biophysical effects of shear forces on VWF conformation contributes to unraveling the molecular mechanisms of many types of thrombotic and haemorrhagic syndromes.
Collapse
Affiliation(s)
- Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Monica Sacco
- Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| | - Maria Basso
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy.,Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| |
Collapse
|
39
|
An ensemble of flexible conformations underlies mechanotransduction by the cadherin-catenin adhesion complex. Proc Natl Acad Sci U S A 2019; 116:21545-21555. [PMID: 31591245 PMCID: PMC6815173 DOI: 10.1073/pnas.1911489116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adherens junctions are specialized cell–cell adhesion complexes found in epithelial, endothelial, and neuronal tissues of multicellular organism. The cadherin–catenin complex is the core component of the adherens junction and transmits mechanical stress from cell to cell. This study reveals that the cadherin–catenin complex displays a wide spectrum of flexible structures, which suggests a dynamic mechanism for this complex in mechanotransduction for cell–cell adhesion. The cadherin–catenin adhesion complex is the central component of the cell–cell adhesion adherens junctions that transmit mechanical stress from cell to cell. We have determined the nanoscale structure of the adherens junction complex formed by the α-catenin•β-catenin•epithelial cadherin cytoplasmic domain (ABE) using negative stain electron microscopy, small-angle X-ray scattering, and selective deuteration/small-angle neutron scattering. The ABE complex is highly pliable and displays a wide spectrum of flexible structures that are facilitated by protein-domain motions in α- and β-catenin. Moreover, the 107-residue intrinsically disordered N-terminal segment of β-catenin forms a flexible “tongue” that is inserted into α-catenin and participates in the assembly of the ABE complex. The unanticipated ensemble of flexible conformations of the ABE complex suggests a dynamic mechanism for sensitivity and reversibility when transducing mechanical signals, in addition to the catch/slip bond behavior displayed by the ABE complex under mechanical tension. Our results provide mechanistic insight into the structural dynamics for the cadherin–catenin adhesion complex in mechanotransduction.
Collapse
|
40
|
Asaro RJ, Lin K, Zhu Q. Mechanosensitivity Occurs along the Adhesome's Force Train and Affects Traction Stress. Biophys J 2019; 117:1599-1614. [PMID: 31604520 DOI: 10.1016/j.bpj.2019.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, we consider the process of force development along the adhesome within cell focal adhesions. Our model adhesome consists of the actin cytoskeleton-vinculin-talin-integrin-ligand-extracellular matrix-substrate force train. We specifically consider the effects of substrate stiffness on the force levels expected along the train and on the traction stresses they create at the substrate. We find that significant effects of substrate stiffness are manifest within each constitutive component of the force train and on the density and distribution of integrin/ligand anchorage points with the substrate. By following each component of the force train, we are able to delineate specific gaps in the quantitative descriptions of bond survival that must be addressed so that improved quantitative forecasts become possible. Our analysis provides, however, a rational description for the various levels of traction stresses that have been reported and of the effect of substrate stiffness. Our approach has the advantage of being quite clear as to how each constituent contributes to the net development of force and traction stress. We demonstrate that to provide truly quantitative forecasts for traction stress, a far more detailed description of integrin/ligand density and distribution is required. Although integrin density is already a well-recognized important feature of adhesion, our analysis places a finer point on it in the manner of how we evaluate the magnitude of traction stress. We provide mechanistic insight into how understanding of this vital element of the adhesion process may proceed by addressing mechanistic causes of integrin clustering that may lead to patterning.
Collapse
Affiliation(s)
- Robert J Asaro
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California.
| | - Kuanpo Lin
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| | - Qiang Zhu
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| |
Collapse
|
41
|
Sosa-Costa A, Piechocka IK, Gardini L, Pavone FS, Capitanio M, Garcia-Parajo MF, Manzo C. PLANT: A Method for Detecting Changes of Slope in Noisy Trajectories. Biophys J 2019; 114:2044-2051. [PMID: 29742398 DOI: 10.1016/j.bpj.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/17/2018] [Accepted: 04/02/2018] [Indexed: 01/13/2023] Open
Abstract
Time traces obtained from a variety of biophysical experiments contain valuable information on underlying processes occurring at the molecular level. Accurate quantification of these data can help explain the details of the complex dynamics of biological systems. Here, we describe PLANT (Piecewise Linear Approximation of Noisy Trajectories), a segmentation algorithm that allows the reconstruction of time-trace data with constant noise as consecutive straight lines, from which changes of slopes and their respective durations can be extracted. We present a general description of the algorithm and perform extensive simulations to characterize its strengths and limitations, providing a rationale for the performance of the algorithm in the different conditions tested. We further apply the algorithm to experimental data obtained from tracking the centroid position of lymphocytes migrating under the effect of a laminar flow and from single myosin molecules interacting with actin in a dual-trap force-clamp configuration.
Collapse
Affiliation(s)
- Alberto Sosa-Costa
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Izabela K Piechocka
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Lucia Gardini
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy; National Institute of Optics-National Research Council, Florence, Italy
| | - Francesco S Pavone
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy; National Institute of Optics-National Research Council, Florence, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Carlo Manzo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain; Universitat de Vic - Universitat Central de Catalunya, Vic, Spain.
| |
Collapse
|
42
|
Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality. Sci Rep 2018; 8:16849. [PMID: 30442949 PMCID: PMC6237999 DOI: 10.1038/s41598-018-35120-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/25/2018] [Indexed: 01/29/2023] Open
Abstract
In non-covalent biological adhesion, molecular bonds commonly exhibit a monotonously decreasing life time when subjected to tensile forces (slip bonds). In contrast, catch bonds behave counter intuitively, as they show an increased life time within a certain force interval. To date only a hand full of catch bond displaying systems have been identified. In order to unveil their nature, a number of structural and phenomenological models have been introduced. Regardless of the individual causes for catch bond behavior, it appears evident that the free energy landscapes of these interactions bear more than one binding state. Here, we investigated the catch bond interaction between the hydrophilic domain of the human cell surface sulfatase 1 (Sulf1HD) and its physiological substrate heparan sulfate (HS) by atomic force microscopy based single molecule force spectroscopy (AFM-SMFS). Using Jarzynski’s equality, we estimated the associated Gibbs free energy and provide a comprehensive thermodynamic and kinetic characterization of Sulf1HD/HS interaction. Interestingly, the binding potential landscape exhibits two distinct potential wells which confirms the recently suggested two state binding. Even though structural data of Sulf1HD is lacking, our results allow to draft a detailed picture of the directed and processive desulfation of HS.
Collapse
|
43
|
Johnson KC, Thomas WE. How Do We Know when Single-Molecule Force Spectroscopy Really Tests Single Bonds? Biophys J 2018; 114:2032-2039. [PMID: 29742396 PMCID: PMC5961468 DOI: 10.1016/j.bpj.2018.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 01/04/2023] Open
Abstract
Single-molecule force spectroscopy makes it possible to measure the mechanical strength of single noncovalent receptor-ligand-type bonds. A major challenge in this technique is to ensure that measurements reflect bonds between single biomolecules because the molecules cannot be directly observed. This perspective evaluates different methodologies for identifying and reducing the contribution of multiple molecule interactions to single-molecule measurements to help the reader design experiments or assess publications in the single-molecule force spectroscopy field. We apply our analysis to the large body of literature that purports to measure the strength of single bonds between biotin and streptavidin as a demonstration that measurements are only reproducible when the most reliable methods for ensuring single molecules are used.
Collapse
Affiliation(s)
- Keith C Johnson
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
44
|
Wiklund K, Zhang H, Stangner T, Singh B, Bullitt E, Andersson M. A drag force interpolation model for capsule-shaped cells in fluid flows near a surface. Microbiology (Reading) 2018; 164:483-494. [DOI: 10.1099/mic.0.000624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Hanqing Zhang
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - Tim Stangner
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - Bhupender Singh
- Department of Pharmacy, UiT – The Arctic University of Norway, N-9019 Tromsø, Norway
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
45
|
Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones. Phys Life Rev 2018; 26-27:57-95. [PMID: 29550179 DOI: 10.1016/j.plrev.2018.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 12/24/2022]
Abstract
Hemostasis is a complex physiological mechanism that functions to maintain vascular integrity under any conditions. Its primary components are blood platelets and a coagulation network that interact to form the hemostatic plug, a combination of cell aggregate and gelatinous fibrin clot that stops bleeding upon vascular injury. Disorders of hemostasis result in bleeding or thrombosis, and are the major immediate cause of mortality and morbidity in the world. Regulation of hemostasis and thrombosis is immensely complex, as it depends on blood cell adhesion and mechanics, hydrodynamics and mass transport of various species, huge signal transduction networks in platelets, as well as spatiotemporal regulation of the blood coagulation network. Mathematical and computational modeling has been increasingly used to gain insight into this complexity over the last 30 years, but the limitations of the existing models remain profound. Here we review state-of-the-art-methods for computational modeling of thrombosis with the specific focus on the analysis of unresolved challenges. They include: a) fundamental issues related to physics of platelet aggregates and fibrin gels; b) computational challenges and limitations for solution of the models that combine cell adhesion, hydrodynamics and chemistry; c) biological mysteries and unknown parameters of processes; d) biophysical complexities of the spatiotemporal networks' regulation. Both relatively classical approaches and innovative computational techniques for their solution are considered; the subjects discussed with relation to thrombosis modeling include coarse-graining, continuum versus particle-based modeling, multiscale models, hybrid models, parameter estimation and others. Fundamental understanding gained from theoretical models are highlighted and a description of future prospects in the field and the nearest possible aims are given.
Collapse
|
46
|
Dansuk KC, Keten S. Tunable seat belt behavior in nanocomposite interfaces inspired from bacterial adhesion pili. SOFT MATTER 2018; 14:1530-1539. [PMID: 29376182 DOI: 10.1039/c7sm02300f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A challenging problem in designing nanocomposites is to engineer nanoparticle interfaces that have tunable cohesive strength and rate-responsive behavior, for which inspiration can be taken from biological systems. An exemplary bio-interface is the Chaperone-Usher (CU) pili, such as type 1 expressed by bacteria Escherichia coli. The pili have unique biomechanical properties that enhance the ability of bacteria to sustain attachment to surfaces under large stresses, such as constant force extensibility, logarithmic velocity-uncoiling force dependence, and adhesive tips with catch bond behavior that exhibit longer bond life-times at greater force levels. Although biophysics of the pili under strain or stress is well-studied for anti-infective applications that aim to compromise pili adhesion, utilizing the biomechanical properties of the pili in material design applications is yet to be explored. In this work, we modeled the elongation of a single CU pilus with catch bond tip adhesin and examined its toughness response using Monte Carlo simulations. We showed that the pilus can act as a "molecular seat belt" that exhibits low toughness when pulled slowly and high toughness when pulled rapidly. Furthermore, we found that systematically varying the catch bond and shaft parameters leads to tunable seat belt behavior at the interface, where the sharpness of the transition from the low toughness to the high toughness regime and the velocity at the start of the transition can be dictated by molecular design parameters. Lastly, we tested the performance of CU pilus in slowing down a fast particle, and reveal that pili can effectively stop micron size projectiles with high initial velocities. The molecular seat belt mechanism presented here provides insight into how nanocomposite interfaces can be engineered to create molecular networks with linkers that switch on or off depending on strain rate.
Collapse
Affiliation(s)
- Kerim C Dansuk
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
47
|
Vitry P, Valotteau C, Feuillie C, Bernard S, Alsteens D, Geoghegan JA, Dufrêne YF. Force-Induced Strengthening of the Interaction between Staphylococcus aureus Clumping Factor B and Loricrin. mBio 2017; 8:e01748-17. [PMID: 29208742 PMCID: PMC5717387 DOI: 10.1128/mbio.01748-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 02/02/2023] Open
Abstract
Bacterial pathogens that colonize host surfaces are subjected to physical stresses such as fluid flow and cell surface contacts. How bacteria respond to such mechanical cues is an important yet poorly understood issue. Staphylococcus aureus uses a repertoire of surface proteins to resist shear stress during the colonization of host tissues, but whether their adhesive functions can be modulated by physical forces is not known. Here, we show that the interaction of S. aureus clumping factor B (ClfB) with the squamous epithelial cell envelope protein loricrin is enhanced by mechanical force. We find that ClfB mediates S. aureus adhesion to loricrin through weak and strong molecular interactions both in a laboratory strain and in a clinical isolate. Strong forces (~1,500 pN), among the strongest measured for a receptor-ligand bond, are consistent with a high-affinity "dock, lock, and latch" binding mechanism involving dynamic conformational changes in the adhesin. Notably, we demonstrate that the strength of the ClfB-loricrin bond increases as mechanical force is applied. These findings favor a two-state model whereby bacterial adhesion to loricrin is enhanced through force-induced conformational changes in the ClfB molecule, from a weakly binding folded state to a strongly binding extended state. This force-sensitive mechanism may provide S. aureus with a means to finely tune its adhesive properties during the colonization of host surfaces, helping cells to attach firmly under high shear stress and to detach and spread under low shear stress.IMPORTANCEStaphylococcus aureus colonizes the human skin and the nose and can cause various disorders, including superficial skin lesions and invasive infections. During nasal colonization, the S. aureus surface protein clumping factor B (ClfB) binds to the squamous epithelial cell envelope protein loricrin, but the molecular interactions involved are poorly understood. Here, we unravel the molecular mechanism guiding the ClfB-loricrin interaction. We show that the ClfB-loricrin bond is remarkably strong, consistent with a high-affinity "dock, lock, and latch" binding mechanism. We discover that the ClfB-loricrin interaction is enhanced under tensile loading, thus providing evidence that the function of an S. aureus surface protein can be activated by physical stress.
Collapse
Affiliation(s)
- Pauline Vitry
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Simon Bernard
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Yves F Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
48
|
Huang DL, Bax NA, Buckley CD, Weis WI, Dunn AR. Vinculin forms a directionally asymmetric catch bond with F-actin. Science 2017; 357:703-706. [PMID: 28818948 PMCID: PMC5821505 DOI: 10.1126/science.aan2556] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/11/2017] [Indexed: 11/02/2022]
Abstract
Vinculin is an actin-binding protein thought to reinforce cell-cell and cell-matrix adhesions. However, how mechanical load affects the vinculin-F-actin bond is unclear. Using a single-molecule optical trap assay, we found that vinculin forms a force-dependent catch bond with F-actin through its tail domain, but with lifetimes that depend strongly on the direction of the applied force. Force toward the pointed (-) end of the actin filament resulted in a bond that was maximally stable at 8 piconewtons, with a mean lifetime (12 seconds) 10 times as long as the mean lifetime when force was applied toward the barbed (+) end. A computational model of lamellipodial actin dynamics suggests that the directionality of the vinculin-F-actin bond could establish long-range order in the actin cytoskeleton. The directional and force-stabilized binding of vinculin to F-actin may be a mechanism by which adhesion complexes maintain front-rear asymmetry in migrating cells.
Collapse
Affiliation(s)
- Derek L Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Nicolas A Bax
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Craig D Buckley
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - William I Weis
- Biophysics Program, Stanford University, Stanford, CA 94305, USA.
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Biophysics Program, Stanford University, Stanford, CA 94305, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
“Living” dynamics of filamentous bacteria on an adherent surface under hydrodynamic exposure. Biointerphases 2017; 12:02C410. [DOI: 10.1116/1.4983150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Tischer A, Machha VR, Frontroth JP, Brehm MA, Obser T, Schneppenheim R, Mayne L, Walter Englander S, Auton M. Enhanced Local Disorder in a Clinically Elusive von Willebrand Factor Provokes High-Affinity Platelet Clumping. J Mol Biol 2017; 429:2161-2177. [PMID: 28533135 DOI: 10.1016/j.jmb.2017.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022]
Abstract
Mutation of the cysteines forming the disulfide loop of the platelet GPIbα adhesive A1 domain of von Willebrand factor (VWF) causes quantitative VWF deficiencies in the blood and von Willebrand disease. We report two cases of transient severe thrombocytopenia induced by DDAVP treatment. Cys1272Trp and Cys1458Tyr mutations identified by genetic sequencing implicate an abnormal gain-of-function phenotype, evidenced by thrombocytopenia, which quickly relapses back to normal platelet counts and deficient plasma VWF. Using surface plasmon resonance, analytical rheology, and hydrogen-deuterium exchange mass spectrometry (HXMS), we decipher mechanisms of A1-GPIbα-mediated platelet adhesion and resolve dynamic secondary structure elements that regulate the binding pathway. Constrained by the disulfide, conformational selection between weak and tight binding states of A1 takes precedence and drives normal platelet adhesion to VWF. Less restrained through mutation, loss of the disulfide preferentially diverts binding through an induced-fit disease pathway enabling high-affinity GPIbα binding and firm platelet adhesion to a partially disordered A1 domain. HXMS reveals a dynamic asymmetry of flexible and ordered regions common to both variants, indicating that the partially disordered A1 lacking the disulfide retains native-like structural dynamics. Both binding mechanisms share common structural and thermodynamic properties, but the enhanced local disorder in the disease state perpetuates high-affinity platelet agglutination, characteristic of type 2B VWD, upon DDAVP-stimulated secretion of VWF leading to transient thrombocytopenia and a subsequent deficiency of plasma VWF, characteristic of type 2A VWD.
Collapse
Affiliation(s)
- Alexander Tischer
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Venkata R Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Juan P Frontroth
- Laboratorio de Hemostasia y Trombosis, Servicio de Hematologia y Oncologia, Hospital de Pediatria, "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina.
| | - Maria A Brehm
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Obser
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard Schneppenheim
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Leland Mayne
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Walter Englander
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Matthew Auton
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|