1
|
Morato LFDC, Ruiz GCM, Lessa CJA, Olivier DDS, Amaral MSD, Gomes OP, Pazin WM, Batagin-Neto A, Oliveira ON, Constantino CJL. Combined impact of pesticides on mono- and bilayer lipid membranes. Chem Phys Lipids 2025; 268:105474. [PMID: 39909297 DOI: 10.1016/j.chemphyslip.2025.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
The increased use of agrochemicals in crop production raises concerns about the risk of combined pesticide exposure through water and food, potentially leading to a 'cocktail effect' with synergistic impacts on human health. To investigate such effects, we used the pesticides acephate and diuron interacting with a mimetic system of the cell membrane, composed of lipid monolayers. These mimetic systems were composed by a mixture of POPC, cholesterol and sphingomyelin (70/20/10 mol%), respectively, close to the composition found in mammalian membranes. Results from Langmuir monolayers, including surface pressure-area isotherms, polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM), showed that the pesticides interact predominantly with the polar head region of the lipids, a finding supported by density functional theory (DFT) calculations and molecular dynamics simulations. The cocktail had a similar effect in π-A isotherms; however, PM-IRRAS data suggests a stronger effect of the cocktail on the ternary monolayer at the molecular level, once the pesticide mixture changed the conformation and orientation of the headgroup and disturbed the hydrocarbon chain. These results evidence the impact of the 'cocktail effect' on lipid membranes, highlighting potential health risks associated with pesticide mixtures.
Collapse
Affiliation(s)
| | - Gilia Cristine Marques Ruiz
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, Brazil
| | - Carlos Junior Amorim Lessa
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, Brazil
| | - Danilo da Silva Olivier
- Integrated Sciences Center, Campus Cimba, Federal University of North of Tocantins, Araguaína, TO, Brazil
| | | | - Orisson Ponce Gomes
- São Paulo State University (UNESP), School of Sciences, Campus Bauru, SP, Brazil
| | | | - Augusto Batagin-Neto
- São Paulo State University (UNESP), Institute of Sciences and Engineering, Campus Itapeva, SP, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
| | | |
Collapse
|
2
|
de Melo Cordeiro Eulálio M, de Lima AM, Brant RSC, Francisco AF, Santana HM, Paloschi MV, da Silva Setúbal S, da Silva CP, Silva MDS, Boeno CN, Kayano AM, Rita PHS, de Azevedo Calderon L, Soares AM, Salvador DPM, Zuliani JP. Characterization of a novel acidic phospholipase A 2 isolated from the venom of Bothrops mattogrossensis: From purification to structural modeling. Int J Biol Macromol 2025; 292:139217. [PMID: 39732268 DOI: 10.1016/j.ijbiomac.2024.139217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Phospholipases A2 (PLA2s) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLA2s from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA2 from BmV, designated BmPLA2-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment. BmPLA2-A was isolated through a multi-step chromatographic procedure, involving cation exchange (CM-Sepharose), hydrophobic interaction (n-butyl-Sepharose-HP), and reversed-phase (C-18) chromatography. SDS-PAGE analysis revealed a single protein band of approximately 15 kDa. The primary structure of BmPLA2-A was determined by LC-MS/MS, while its tertiary structure was modeled using AlphaFold. Enzymatic activity was verified with the synthetic substrate 4N3OBA. Molecular dynamics simulations were conducted to further investigate the catalytic mechanism of BmPLA2-A at the molecular level. In vitro assays on HUVECs revealed that BmPLA2-A neither induce cytokine release (IL-6, IL-8, IL-1β, TNF) nor affected cell viability, adhesion, or detachment. The characteristics of BmPLA2-A are consistent with those of acidic Asp-49 PLA2 enzymes, highlighting its potential involvement in the cytotoxic and inflammatory effects of the venom.
Collapse
Affiliation(s)
- Micaela de Melo Cordeiro Eulálio
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Maciel de Lima
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Aleff Ferreira Francisco
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Carolina Pereira da Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Center for Research in Tropical Medicine (CEPEM/SESAU-RO), Porto Velho, RO, Brazil
| | | | - Leonardo de Azevedo Calderon
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; National Institute of Science and Technology of Epidemiology of Western Amazon, INCT-EpiAmO, Brazil
| | | | - Juliana Pavan Zuliani
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil.
| |
Collapse
|
3
|
Khan SA, Ilies MA. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int J Mol Sci 2023; 24:ijms24021353. [PMID: 36674864 PMCID: PMC9862071 DOI: 10.3390/ijms24021353] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.
Collapse
|
4
|
Filipe HAL, Almeida MCF, Teixeira RR, Esteves MIM, Henriques CA, Antunes FE. Dancing with oils - the interaction of lipases with different oil/water interfaces. SOFT MATTER 2021; 17:7086-7098. [PMID: 34155497 DOI: 10.1039/d1sm00590a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of enzymes as biocatalysts in industrial applications has received much attention during the last few years. Lipases are widely employed in the food and cosmetic industry, for the synthesis of novel biomaterials and as a greener solution for the treatment of waste cooking oils (WCO). The latter topic has been widely explored with the use of enzymes from several origins and types, for the treatment of different used and non-used cooking oils. The experimental conditions of such works are also quite broad, hampering the detailed understanding of the process. In this work we present a detailed characterization of the interaction of several commonly used lipases with different types of vegetal oils and food fats through coarse-grained molecular dynamics simulations. First, the molecular details of the oil/water (O/W) mixtures, namely at the O/W interface, are described. The O/W interface was found to be enriched in triglyceride molecules with higher polarity. Then, the interaction of lipases with oil mixtures is characterized from different perspectives, including the identification of the most important protein residues for this process. The lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Candida antarctica (CALB) were found to bind to the O/W interface in a manner that makes the protein binding site more available for the oil molecules. These enzymes were also found to efficiently bind to the O/W interface of all oil mixtures, which in addition to reactivity factors, may explain the efficient applicability of these enzymes to a large variety of edible oils and WCO.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Maëva C F Almeida
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Rafaela R Teixeira
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Margarida I M Esteves
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - César A Henriques
- EcoXperience, HIESE, Quinta Vale do Espinhal, 3230-343, Penela, Portugal
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
5
|
Alekseeva AS, Volynsky PE, Krylov NA, Chernikov VP, Vodovozova EL, Boldyrev IA. Phospholipase A2 way to hydrolysis: Dint formation, hydrophobic mismatch, and lipid exclusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183481. [PMID: 33002451 DOI: 10.1016/j.bbamem.2020.183481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
Phospholipase A2 (PLA2) exerts a wide range of biological effects and attracts a lot of attention of researchers. Two sites are involved in manifestation of PLA2 enzymatic activity: catalytic site responsible for substrate binding and fatty acid cleavage from the sn-2 position of a glycerophospholipid, and interface binding site (IBS) responsible for the protein binding to lipid membrane. IBS is formed by positively charged and hydrophobic amino acids on the outer surface of the protein molecule. Understanding the mechanism of PLA2 interaction with the lipid membrane is the most challenging step in biochemistry of this enzyme. We used a combination of experimental and computer simulation techniques to clarify molecular details of bee venom PLA2 interaction with lipid bilayers formed by palmitoyloleoylphosphatidylcholine or dipalmitoylphosphatidylcholine. We found that after initial enzyme contact with the membrane, a network of hydrogen bonds was formed. This led to deformation of the interacting leaflet and dint formation. The bilayer response to the deformation depended on its phase state. In a gel-phase bilayer, diffusion of lipids is restricted therefore chain melting occurred in both leaflets of the bilayer. In the case of a fluid-phase bilayer, lateral diffusion is possible, and lipid polar head groups were excluded from the contact area. As a result, the bilayer became thinner and a large hydrophobic area was formed. We assume that relative ability of a bilayer to come through lipid redistribution process defines the rate of initial stages of the catalysis.
Collapse
Affiliation(s)
- Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Valery P Chernikov
- Scientific Research Institute of Human Morphology, Tsyurupy st., 3, 117418 Moscow, Russia
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st., 16/10, 117997 Moscow, Russia.
| |
Collapse
|
6
|
Manukyan AK. Structural aspects and activation mechanism of human secretory group IIA phospholipase. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:511-531. [DOI: 10.1007/s00249-020-01458-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022]
|
7
|
Malek MR, Ahmadian S, Dehpour AR, Ebrahim-Habibi A, Shafizadeh M, Kashani-Amin E. Investigating the role of endogenous opioid system in chloroquine-induced phospholipidosis in rat liver by morphological, biochemical and molecular modelling studies. Clin Exp Pharmacol Physiol 2020; 47:1575-1583. [PMID: 32367550 DOI: 10.1111/1440-1681.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022]
Abstract
Drug-induced phospholipidosis (DIPL) is characterized by phospholipid storage in the lysosomes of affected tissues. Many severe effects and toxicities have been linked to DIPL. The aim of this study was to determine whether the endogenous opioid system is involved in chloroquine-induced phospholipidosis. The effect of naltrexone as an antagonist of opioid receptors in chloroquine-induced phospholipidosis in rat liver was investigated by morphological, biochemical, and molecular modelling studies. Transmission electron microscopy (TEM) showed that morphological characteristic changes of rat liver, including the number of lamellar bodies, grade of vacuolization and cell steatosis, were markedly attenuated in rats treated with naltrexone alone or in combination with chloroquine, in comparison with chloroquine-treated rats. The results of liquid chromatography mass spectrometry (LC/MS) showed that the concentrations of phenylacetylglycine (PAG) and hippuric acid (HA) were significantly decreased and increased, respectively, in target groups. Besides, the concentration ratio of PAG/HA was significantly decreased. Spectrophotometry resulted in a notable decrease in alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities in target groups. The results from the molecular docking and molecular dynamic simulation studies demonstrated clear chloroquine interaction with the active site cavity of the µ opioid receptor. These data suggest that administration of naltrexone alone, or in combination with chloroquine, notably attenuates the side effects of chloroquine-induced phospholipidosis, as well as demonstrating an increased probability of the endogenous opioid system involvement in chloroquine-induced phospholipidosis in rat liver.
Collapse
Affiliation(s)
- Mohammad Reza Malek
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Shafizadeh
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Elaheh Kashani-Amin
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Galassi VV, Villarreal MA, Montich GG. Relevance of the protein macrodipole in the membrane-binding process. Interactions of fatty-acid binding proteins with cationic lipid membranes. PLoS One 2018. [PMID: 29518146 PMCID: PMC5843346 DOI: 10.1371/journal.pone.0194154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fatty acid-binding proteins L-BABP and Rep1-NCXSQ bind to anionic lipid membranes by electrostatic interactions. According to Molecular Dynamics (MD) simulations, the interaction of the protein macrodipole with the membrane electric field is a driving force for protein binding and orientation in the interface. To further explore this hypothesis, we studied the interactions of these proteins with cationic lipid membranes. As in the case of anionic lipid membranes, we found that both proteins, carrying a negative as well as a positive net charge, were bound to the positively charged membrane. Their major axis, those connecting the bottom of the β-barrel with the α-helix portal domain, were rotated about 180 degrees as compared with their orientations in the anionic lipid membranes. Fourier transform infrared (FTIR) spectroscopy of the proteins showed that the positively charged membranes were also able to induce conformational changes with a reduction of the β-strand proportion and an increase in α-helix secondary structure. Fatty acid-binding proteins (FABPs) are involved in several cell processes, such as maintaining lipid homeostasis in cells. They transport hydrophobic molecules in aqueous medium and deliver them into lipid membranes. Therefore, the interfacial orientation and conformation, both shown herein to be electrostatically determined, have a strong correlation with the specific mechanism by which each particular FABP exerts its biological function.
Collapse
Affiliation(s)
- Vanesa V. Galassi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica “Ranwel Caputto”, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Marcos A. Villarreal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba. Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Córdoba, Argentina
| | - Guillermo G. Montich
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica “Ranwel Caputto”, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- * E-mail:
| |
Collapse
|
10
|
Efficient heterologous expression, functional characterization and molecular modeling of annular seabream digestive phospholipase A2. Chem Phys Lipids 2018. [DOI: 10.1016/j.chemphyslip.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Magarkar A, Parkkila P, Viitala T, Lajunen T, Mobarak E, Licari G, Cramariuc O, Vauthey E, Róg T, Bunker A. Membrane bound COMT isoform is an interfacial enzyme: general mechanism and new drug design paradigm. Chem Commun (Camb) 2018; 54:3440-3443. [DOI: 10.1039/c8cc00221e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have determined the substrate differentiation mechanism between the membrane bound and water soluble isoforms of important drug target catechol-O-methyltransferase.
Collapse
|
12
|
Willems N, Lelimousin M, Koldsø H, Sansom MSP. Interfacial activation of M37 lipase: A multi-scale simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:340-349. [PMID: 27993564 PMCID: PMC5287222 DOI: 10.1016/j.bbamem.2016.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022]
Abstract
Lipases are enzymes of biotechnological importance that function at the interface formed between hydrophobic and aqueous environments. Hydrophobic interfaces can induce structural transitions in lipases that result in an increase in enzyme activity, although the detailed mechanism of this process is currently not well understood for many lipases. Here, we present a multi-scale molecular dynamics simulation study of how different interfaces affect the conformational dynamics of the psychrophilic lipase M37. Our simulations show that M37 lipase is able to interact both with anionic lipid bilayers and with triglyceride surfaces. Interfacial interactions with triglyceride surfaces promote large-scale motions of the lid region of M37, spanning residues 235-283, revealing an entry pathway to the catalytic site for substrates. Importantly, these results suggest a potential activation mechanism for M37 that deviates from other related enzymes, such as Thermomyces lanuginosus lipase. We also investigated substrate binding in M37 by using steered MD simulations, confirming the open state of this lipase. The exposure of hydrophobic residues within lid and active site flap regions (residues 94-110) during the activation process provides insights into the functional effect of hydrophobic surfaces on lipase activation.
Collapse
Affiliation(s)
- Nathalie Willems
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mickaël Lelimousin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
13
|
Abstract
Most interfacial enzymes undergo activation upon membrane binding. Interfacial activation is determined not only by the binding strength but also by the specific mode of protein-membrane interactions, including the angular orientation and membrane insertion of the enzymes. This chapter describes biophysical techniques to quantitatively evaluate membrane binding, orientation, membrane insertion, and activity of secreted phospholipase A2 (PLA2) and lipoxygenase (LO) enzymes. Procedures for recombinant production and purification of human pancreatic PLA2 and human 5-lipoxygenase (5-LO) are also presented. Several methods for measurements of membrane binding of peripheral proteins are described, i.e., fluorescence resonance energy transfer (FRET) from tryptophan or tyrosine residues of the protein to a fluorescent lipid in vesicles, changes in fluorescence of an environment-sensitive fluorescent lipid upon binding of proteins to membranes, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. These methods produce the apparent binding constant, the protein-to-lipid binding stoichiometry, and the Hill cooperativity coefficient. Experimental procedures for segmental isotope labeling of proteins and determination of the orientation of membrane-bound proteins by polarized ATR-FTIR spectroscopy are described. Furthermore, evaluation of membrane insertion of peripheral proteins by a fluorescence quenching technique is outlined. Combination of the orientation and membrane insertion provides a unique configuration of the protein-membrane complex and hence elucidates certain details of the enzyme function, such as the modes of acquisition of a membrane-residing substrate and product release. Finally, assays for determination of the activities of secreted PLA2, soybean LO, and human 5-LO are described.
Collapse
Affiliation(s)
- S A Tatulian
- College of Sciences, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
14
|
Wee CL, Ulmschneider MB, Sansom MSP. Membrane/Toxin Interaction Energetics via Serial Multiscale Molecular Dynamics Simulations. J Chem Theory Comput 2015; 6:966-76. [PMID: 26613320 DOI: 10.1021/ct900652s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Computing free energies of complex biomolecular systems via atomistic (AT) molecular dynamics (MD) simulations remains a challenge due to the need for adequate sampling and convergence. Recent coarse-grained (CG) methodology allows simulations of significantly larger systems (∼10(6) to 10(8) atoms) over longer (μs/ms) time scales. Such CG models appear to be capable of making semiquantitative predictions. However, their ability to reproduce accurate thermodynamic quantities remains uncertain. We have recently used CG MD simulations to compute the potential of mean force (PMF) or free energy profile of a small peptide toxin interacting with a lipid bilayer along a 1D reaction coordinate. The toxin studied was VSTx1 (Voltage Sensor Toxin 1) from spider venom which inhibits the archeabacterial voltage-gated potassium (Kv) channel KvAP by binding to the voltage-sensor (VS) domains. Here, we re-estimate this PMF profile using (i) AT MD simulations with explicit membrane and solvent and (ii) an implicit membrane and solvent (generalized Born; GBIM) model where only the peptide was explicit. We used the CG MD free energy simulations to guide the setup of the corresponding AT MD simulations. The aim was to avoid local minima in the AT simulations which would be difficult over shorter AT time scales. A cross-comparison of the PMF profiles revealed a conserved topology, although there were differences in the magnitude of the free energies. The CG and AT simulations predicted a membrane/water interface free energy well of -27 and -23 kcal/mol, respectively (with respect to water). The GBIM model, however, gave a reduced interfacial free energy well (-12 kcal/mol). In addition, the CG and GBIM models predicted a free energy barrier of +61 and +96 kcal/mol, respectively, for positioning the toxin at the center of the bilayer, which was considerably smaller in the AT simulations (+26 kcal/mol). Thus, we present a framework for serially combining CG and AT simulations to estimate the free energy of peptide/membrane interactions. Such approaches for combining simulations at different levels of granularity will become increasingly important in future studies of complex membrane/protein systems.
Collapse
Affiliation(s)
- Chze Ling Wee
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Martin B Ulmschneider
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
15
|
Jefferys E, Sands ZA, Shi J, Sansom MS, Fowler PW. Alchembed: A Computational Method for Incorporating Multiple Proteins into Complex Lipid Geometries. J Chem Theory Comput 2015; 11:2743-2754. [PMID: 26089745 PMCID: PMC4467903 DOI: 10.1021/ct501111d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 02/06/2023]
Abstract
A necessary step prior to starting any membrane protein computer simulation is the creation of a well-packed configuration of protein(s) and lipids. Here, we demonstrate a method, alchembed, that can simultaneously and rapidly embed multiple proteins into arrangements of lipids described using either atomistic or coarse-grained force fields. During a short simulation, the interactions between the protein(s) and lipids are gradually switched on using a soft-core van der Waals potential. We validate the method on a range of membrane proteins and determine the optimal soft-core parameters required to insert membrane proteins. Since all of the major biomolecular codes include soft-core van der Waals potentials, no additional code is required to apply this method. A tutorial is included in the Supporting Information.
Collapse
Affiliation(s)
- Elizabeth Jefferys
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Zara A. Sands
- UCB
NewMedicines, Chemin
du Foriest, 1420 Braine-l’Alleud, Belgium
| | - Jiye Shi
- UCB
NewMedicines, Chemin
du Foriest, 1420 Braine-l’Alleud, Belgium
| | - Mark S.
P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Philip W. Fowler
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
16
|
Crystal structure of phospholipase PA2-Vb, a protease-activated receptor agonist from theTrimeresurus stejnegerisnake venom. FEBS Lett 2014; 588:4604-12. [DOI: 10.1016/j.febslet.2014.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
|
17
|
Charlier L, Louet M, Chaloin L, Fuchs P, Martinez J, Muriaux D, Favard C, Floquet N. Coarse-grained simulations of the HIV-1 matrix protein anchoring: revisiting its assembly on membrane domains. Biophys J 2014; 106:577-85. [PMID: 24507598 DOI: 10.1016/j.bpj.2013.12.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/21/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022] Open
Abstract
In the accepted model for human immunodeficiency virus preassembly in infected host cells, the anchoring to the intracellular leaflet of the membrane of the matrix domain (MA) that lies at the N-terminus of the viral Gag protein precursor appears to be one of the crucial steps for particle assembly. In this study, we simulated the membrane anchoring of human immunodeficiency virus-1 myristoylated MA protein using a coarse-grained representation of both the protein and the membrane. Our calculations first suggest that the myristoyl group could spontaneously release from its initial hydrophobic pocket before MA protein interacts with the lipid membrane. All-atom simulations confirmed this possibility with a related energy cost estimated to be ~5 kcal.mol(-1). The phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) head binds preferentially to the MA highly basic region as described in available NMR data, but interestingly without flipping of its 2' acyl chain into the MA protein. Moreover, MA was able to confine PI(4,5)P2 lipids all around its molecular surface after having found a stable orientation at the membrane surface. Our results suggest that this orientation is dependent on Myr anchoring and that this confinement induces a lateral segregation of PI(4,5)P2 in domains. This is consistent with a PI(4,5)P2 enrichment of the virus envelope as compared to the host cell membrane.
Collapse
Affiliation(s)
- Landry Charlier
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Université Montpellier 1, Université Montpellier 2, Faculté de Pharmacie, Montpellier cedex 05, France
| | - Maxime Louet
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Université Montpellier 1, Université Montpellier 2, Faculté de Pharmacie, Montpellier cedex 05, France
| | - Laurent Chaloin
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) CNRS-UMR 5236, Université Montpellier 1 - Université Montpellier 2, Montpellier Cedex 5, France
| | - Patrick Fuchs
- Dynamique des Structures et Interactions des Macromolécules Biologiques INTS, INSERM UMR-S665, Université Paris Diderot, Alexandre Cabanel, Paris
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Université Montpellier 1, Université Montpellier 2, Faculté de Pharmacie, Montpellier cedex 05, France
| | - Delphine Muriaux
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) CNRS-UMR 5236, Université Montpellier 1 - Université Montpellier 2, Montpellier Cedex 5, France
| | - Cyril Favard
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) CNRS-UMR 5236, Université Montpellier 1 - Université Montpellier 2, Montpellier Cedex 5, France.
| | - Nicolas Floquet
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Université Montpellier 1, Université Montpellier 2, Faculté de Pharmacie, Montpellier cedex 05, France.
| |
Collapse
|
18
|
Ramakrishnan C, Joshi V, Joseph JM, Vishwanath BS, Velmurugan D. Identification of Novel Inhibitors ofDaboia russelliPhospholipase A2Using the Combined Pharmacophore Modeling Approach. Chem Biol Drug Des 2014; 84:379-92. [DOI: 10.1111/cbdd.12332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| | - Vikram Joshi
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka 570006 India
| | - Joseph Mavelithuruthel Joseph
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| | - Bannikuppe S. Vishwanath
- Department of Studies in Biochemistry; University of Mysore; Manasagangotri Mysore Karnataka 570006 India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Maraimalai (Guindy) Campus Chennai 600025 India
| |
Collapse
|
19
|
Galassi VV, Villarreal MA, Posada V, Montich GG. Interactions of the fatty acid-binding protein ReP1-NCXSQ with lipid membranes. Influence of the membrane electric field on binding and orientation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:910-20. [DOI: 10.1016/j.bbamem.2013.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/17/2022]
|
20
|
Kalli AC, Campbell ID, Sansom MSP. Conformational changes in talin on binding to anionic phospholipid membranes facilitate signaling by integrin transmembrane helices. PLoS Comput Biol 2013; 9:e1003316. [PMID: 24204243 PMCID: PMC3814715 DOI: 10.1371/journal.pcbi.1003316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023] Open
Abstract
Integrins are heterodimeric (αβ) cell surface receptors that are activated to a high affinity state by the formation of a complex involving the α/β integrin transmembrane helix dimer, the head domain of talin (a cytoplasmic protein that links integrins to actin), and the membrane. The talin head domain contains four sub-domains (F0, F1, F2 and F3) with a long cationic loop inserted in the F1 domain. Here, we model the binding and interactions of the complete talin head domain with a phospholipid bilayer, using multiscale molecular dynamics simulations. The role of the inserted F1 loop, which is missing from the crystal structure of the talin head, PDB:3IVF, is explored. The results show that the talin head domain binds to the membrane predominantly via cationic regions on the F2 and F3 subdomains and the F1 loop. Upon binding, the intact talin head adopts a novel V-shaped conformation which optimizes its interactions with the membrane. Simulations of the complex of talin with the integrin α/β TM helix dimer in a membrane, show how this complex promotes a rearrangement, and eventual dissociation of, the integrin α and β transmembrane helices. A model for the talin-mediated integrin activation is proposed which describes how the mutual interplay of interactions between transmembrane helices, the cytoplasmic talin protein, and the lipid bilayer promotes integrin inside-out activation. Transmission of signals across the cell membrane is an essential process for all living organisms. Integrins are one example of cell surface receptors (αβ) which, uniquely, form a bidirectional signalling pathway across the membrane. Integrins are crucial for many cellular processes and play key roles in pathological defects such as cardiovascular diseases and cancer. They are activated to a high affinity state by the intracellular protein talin in a process known as ‘inside-out activation’. Despite their importance and the existence of functional and structural data, the mechanism by which talin activates integrin remains elusive. In this study we use a multi-scale computational approach, which combines coarse-grained and atomistic molecular dynamics simulations, to suggest how the formation of the complex between the talin head domain, the cell membrane and the integrin moves the integrin equilibrium towards an active state. Our results show that conformational changes within the talin head domains optimize its interactions with the cell membrane. Upon binding to the integrin, talin facilitates rearrangement of the integrin TM region thus promoting integrin activation. This study also provides a demonstration of the strengths of a computational multi-scale approach in studies of membrane interactions and receptor conformational changes and associated proteins that enable transmembrane signaling.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Iain D. Campbell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Bucher D, Hsu YH, Mouchlis VD, Dennis EA, McCammon JA. Insertion of the Ca²⁺-independent phospholipase A₂ into a phospholipid bilayer via coarse-grained and atomistic molecular dynamics simulations. PLoS Comput Biol 2013; 9:e1003156. [PMID: 23935474 PMCID: PMC3723492 DOI: 10.1371/journal.pcbi.1003156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/11/2013] [Indexed: 01/19/2023] Open
Abstract
Group VI Ca²⁺-independent phospholipase A₂ (iPLA₂) is a water-soluble enzyme that is active when associated with phospholipid membranes. Despite its clear pharmaceutical relevance, no X-ray or NMR structural information is currently available for the iPLA₂ or its membrane complex. In this paper, we combine homology modeling with coarse-grained (CG) and all-atom (AA) molecular dynamics (MD) simulations to build structural models of iPLA₂ in association with a phospholipid bilayer. CG-MD simulations of the membrane insertion process were employed to provide a starting point for an atomistic description. Six AA-MD simulations were then conducted for 60 ns, starting from different initial CG structures, to refine the membrane complex. The resulting structures are shown to be consistent with each other and with deuterium exchange mass spectrometry (DXMS) experiments, suggesting that our approach is suitable for the modeling of iPLA₂ at the membrane surface. The models show that an anchoring region (residues 710-724) forms an amphipathic helix that is stabilized by the membrane. In future studies, the proposed iPLA₂ models should provide a structural basis for understanding the mechanisms of lipid extraction and drug-inhibition. In addition, the dual-resolution approach discussed here should provide the means for the future exploration of the impact of lipid diversity and sequence mutations on the activity of iPLA₂ and related enzymes.
Collapse
Affiliation(s)
- Denis Bucher
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
22
|
Abstract
The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes.
Collapse
Affiliation(s)
- Ryan Bradley
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-215-898-0487; Fax: +1-215-573-2071
| |
Collapse
|
23
|
Liu DC, Jow GM, Chuang CC, Peng YJ, Hsu PH, Tang CY. Densin-180 is Not a Transmembrane Protein. Cell Biochem Biophys 2013; 67:773-83. [PMID: 23516094 DOI: 10.1007/s12013-013-9570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Dai-Chi Liu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Qin SS, Yu YX, Li QK, Yu ZW. Interaction of Human Synovial Phospholipase A2 with Mixed Lipid Bilayers: A Coarse-Grain and All-Atom Molecular Dynamics Simulation Study. Biochemistry 2013; 52:1477-89. [DOI: 10.1021/bi3012687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shan-Shan Qin
- Key Laboratory of Bioorganic
Phosphorous Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yang-Xin Yu
- Laboratory of Chemical Engineering
Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Qi-Kai Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic
Phosphorous Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
25
|
Abstract
The time and length scales accessible by biomolecular simulations continue to increase. This is in part due to improvements in algorithms and computing performance, but is also the result of the emergence of coarse-grained (CG) potentials, which complement and extend the information obtainable from fully detailed models. CG methods have already proven successful for a range of applications that benefit from the ability to rapidly simulate spontaneous self-assembly within a lipid membrane environment, including the insertion and/or oligomerization of a range of "toy models," transmembrane peptides, and single- and multi-domain proteins. While these simplified approaches sacrifice atomistic level detail, it is now straightforward to "reverse map" from CG to atomistic descriptions, providing a strategy to assemble membrane proteins within a lipid environment, prior to all-atom simulation. Moreover, recent developments have been made in "dual resolution" techniques, allowing different molecules in the system to be modeled with atomistic or CG resolution simultaneously.
Collapse
Affiliation(s)
- Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK
| | | |
Collapse
|
26
|
Pleskot R, Pejchar P, Žárský V, Staiger CJ, Potocký M. Structural insights into the inhibition of actin-capping protein by interactions with phosphatidic acid and phosphatidylinositol (4,5)-bisphosphate. PLoS Comput Biol 2012; 8:e1002765. [PMID: 23133367 PMCID: PMC3486809 DOI: 10.1371/journal.pcbi.1002765] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
The actin cytoskeleton is a dynamic structure that coordinates numerous fundamental processes in eukaryotic cells. Dozens of actin-binding proteins are known to be involved in the regulation of actin filament organization or turnover and many of these are stimulus-response regulators of phospholipid signaling. One of these proteins is the heterodimeric actin-capping protein (CP) which binds the barbed end of actin filaments with high affinity and inhibits both addition and loss of actin monomers at this end. The ability of CP to bind filaments is regulated by signaling phospholipids, which inhibit the activity of CP; however, the exact mechanism of this regulation and the residues on CP responsible for lipid interactions is not fully resolved. Here, we focus on the interaction of CP with two signaling phospholipids, phosphatidic acid (PA) and phosphatidylinositol (4,5)-bisphosphate (PIP(2)). Using different methods of computational biology such as homology modeling, molecular docking and coarse-grained molecular dynamics, we uncovered specific modes of high affinity interaction between membranes containing PA/phosphatidylcholine (PC) and plant CP, as well as between PIP(2)/PC and animal CP. In particular, we identified differences in the binding of membrane lipids by animal and plant CP, explaining previously published experimental results. Furthermore, we pinpoint the critical importance of the C-terminal part of plant CPα subunit for CP-membrane interactions. We prepared a GST-fusion protein for the C-terminal domain of plant α subunit and verified this hypothesis with lipid-binding assays in vitro.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Plant Physiology, Charles University in Prague, Prague, Czech Republic
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
27
|
Antimicrobial selectivity based on zwitterionic lipids and underlying balance of interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2192-201. [DOI: 10.1016/j.bbamem.2012.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 04/26/2012] [Accepted: 05/09/2012] [Indexed: 01/03/2023]
|
28
|
Kalli AC, Wegener KL, Goult BT, Anthis NJ, Campbell ID, Sansom MS. The structure of the talin/integrin complex at a lipid bilayer: an NMR and MD simulation study. Structure 2010; 18:1280-8. [PMID: 20947017 PMCID: PMC3032884 DOI: 10.1016/j.str.2010.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/05/2010] [Accepted: 07/27/2010] [Indexed: 11/04/2022]
Abstract
Integrins are cell surface receptors crucial for cell migration and adhesion. They are activated by interactions of the talin head domain with the membrane surface and the integrin β cytoplasmic tail. Here, we use coarse-grained molecular dynamic simulations and nuclear magnetic resonance spectroscopy to elucidate the membrane-binding surfaces of the talin head (F2-F3) domain. In particular, we show that mutations in the four basic residues (K258E, K274E, R276E, and K280E) in the F2 binding surface reduce the affinity of the F2-F3 for the membrane and modify its orientation relative to the bilayer. Our results highlight the key role of anionic lipids in talin/membrane interactions. Simulation of the F2-F3 in complex with the α/β transmembrane dimer reveals information for its orientation relative to the membrane. Our studies suggest that the perturbed orientation of talin relative to the membrane in the F2 mutant would be expected to in turn perturb talin/integrin interactions.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Kate L. Wegener
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Benjamin T. Goult
- University of Leicester, Department Biochemistry, Room 1/40, Henry Wellcome Building, Leicester LE1 9HN, UK
| | - Nicholas J. Anthis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Iain D. Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
29
|
Ramakrishnan C, Subramanian V, Velmurugan D. Molecular Dynamics Study of Secretory Phospholipase A2 of Russell’s Viper and Bovine Pancreatic Sources. J Phys Chem B 2010; 114:13463-72. [DOI: 10.1021/jp102073f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| | - V. Subramanian
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| | - D. Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and Central Leather Research Institute, Adyar, Chennai 600020, India
| |
Collapse
|
30
|
Haimi P, Hermansson M, Batchu KC, Virtanen JA, Somerharju P. Substrate efflux propensity plays a key role in the specificity of secretory A-type phospholipases. J Biol Chem 2010; 285:751-60. [PMID: 19887372 PMCID: PMC2804224 DOI: 10.1074/jbc.m109.061218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/01/2009] [Indexed: 01/01/2023] Open
Abstract
To better understand the principles underlying the substrate specificity of A-type phospholipases (PLAs), a high throughput mass spectrometric assay was employed to study the effect of acyl chain length and unsaturation of phospholipids on their rate of hydrolysis by three different secretory PLAs in micelles and vesicle bilayers. With micelles, each enzyme responded differently to substrate acyl chain unsaturation and double bond position, probably reflecting differences in the accommodative properties of their substrate binding sites. Experiments with saturated acyl positional isomers indicated that the length of the sn2 chain was more critical than that of the sn1 chain, suggesting tighter association of the former with the enzyme. Only the first 9-10 carbons of the sn2 acyl chain seem to interact intimately with the active site. Strikingly, no discrimination between positional isomers was observed with vesicles, and the rate of hydrolysis decreased far more with increasing chain length than with micelles, suggesting that translocation of the phospholipid substrate to the active site is rate-limiting with bilayers. Supporting this conclusion, acyl chain structure affected hydrolysis and spontaneous intervesicle transfer, which correlates with lipid efflux propensity, analogously. We conclude that substrate efflux propensity plays a more important role in the specificity of secretory PLA(2)s than commonly thought and could also be a key attribute in phospholipid homeostasis in which (unknown) PLA(2)s are key players.
Collapse
Affiliation(s)
- Perttu Haimi
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Martin Hermansson
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Krishna Chaithanya Batchu
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Jorma A. Virtanen
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Pentti Somerharju
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| |
Collapse
|
31
|
Manna M, Mukhopadhyay C. Cause and effect of melittin-induced pore formation: a computational approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12235-12242. [PMID: 19754202 DOI: 10.1021/la902660q] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Melittin embedded in a palmitoyl oleyl phosphatidylcholine bilayer at a high peptide/lipid ratio (1:30) was simulated in the presence of explicit water and ions. The simulation results indicate the incipience of an ion-permeable water pore through collective membrane perturbation by bound peptides. The positively charged residues of melittin not only act as "anchors" but also disrupt the membrane, leading to cell lysis. A detailed analysis of the lipid tail order parameter profile depicts localized membrane perturbation. The lipids in the vicinity of the aqueous cavity adopt a tilted conformation, which allows local bilayer thinning. The prepore thus formed can be considered as the melittin-induced structural defects in the bilayer membrane. Because of the strong cationic nature, the melittin-induced prepore exhibits selectivity toward anions over cations. As Cl(-) ions entered into the prepore, they are electrostatically entrapped by positively charged residues located at its wall. The confined motion of the Cl(-) ions in the membrane interior is obvious from calculated diffusion coefficients. Moreover, reorientation of the local lipids occurs in such a way that few lipid heads along with peptide helices can line the surface of the penetrating aqueous phase. The flipping of lipids argued in favor of melittin-induced toroidal pore over a barrel-stave mechanism. Thus, our result provides atomistic level details of the mechanism of membrane disruption by antimicrobial peptide melittin.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India
| | | |
Collapse
|
32
|
Luik P, Chew C, Aittoniemi J, Chang J, Wentworth P, Dwek RA, Biggin PC, Vénien-Bryan C, Zitzmann N. The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc Natl Acad Sci U S A 2009; 106:12712-6. [PMID: 19590017 PMCID: PMC2722341 DOI: 10.1073/pnas.0905966106] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Indexed: 12/24/2022] Open
Abstract
Infection with the hepatitis C virus (HCV) has a huge impact on global health putting more than 170 million people at risk of developing severe liver disease. The HCV encoded p7 ion channel is essential for the production of infectious viruses. Despite a growing body of functional data, little is known about the 3-dimensional (3D) structure of the channel. Here, we present the 3D structure of a full-length viroporin, the detergent-solubilized hexameric 42 kDa form of the HCV p7 ion channel, as determined by single-particle electron microscopy using the random conical tilting approach. The reconstruction of such a small protein complex was made possible by a combination of high-contrast staining, the symmetry, and the distinct structural features of the channel. The orientation of the p7 monomers within the density was established using immunolabeling with N and C termini specific F(ab) fragments. The density map at a resolution of approximately 16 A reveals a flower-shaped protein architecture with protruding petals oriented toward the ER lumen. This broadest part of the channel presents a comparatively large surface area providing potential interaction sites for cellular and virally encoded ER resident proteins.
Collapse
Affiliation(s)
- Philipp Luik
- Department of Biochemistry and Oxford Glycobiology Institute
| | - Chee Chew
- Structural Bioinformatics and Computational Biochemistry
| | | | | | | | - Raymond A. Dwek
- Department of Biochemistry and Oxford Glycobiology Institute
| | | | - Catherine Vénien-Bryan
- Laboratory of Molecular Biophysics, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department of Biochemistry and Oxford Glycobiology Institute
| |
Collapse
|
33
|
Burke JE, Babakhani A, Gorfe AA, Kokotos G, Li S, Woods VL, McCammon JA, Dennis EA. Location of inhibitors bound to group IVA phospholipase A2 determined by molecular dynamics and deuterium exchange mass spectrometry. J Am Chem Soc 2009; 131:8083-91. [PMID: 19459633 PMCID: PMC2762749 DOI: 10.1021/ja900098y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An analysis of group IVA (GIVA) phospholipase A(2) (PLA(2)) inhibitor binding was conducted using a combination of deuterium exchange mass spectrometry (DXMS) and molecular dynamics (MD). Models of the GIVA PLA(2) inhibitors pyrrophenone and the 2-oxoamide AX007 docked into the protein were designed on the basis of deuterium exchange results, and extensive molecular dynamics simulations were run to determine protein-inhibitor contacts. The models show that both inhibitors interact with key residues that also exhibit changes in deuterium exchange upon inhibitor binding. Pyrrophenone is bound to the protein through numerous hydrophobic residues located distal from the active site, while the oxoamide is bound mainly through contacts near the active site. We also show differences in protein dynamics around the active site between the two inhibitor-bound complexes. This combination of computational and experimental methods is useful in defining more accurate inhibitor binding sites and can be used in the generation of better inhibitors against GIVA PLA(2).
Collapse
Affiliation(s)
- John E. Burke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
| | - Arneh Babakhani
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
| | - Alemayehu A. Gorfe
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
| | - George Kokotos
- Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Sheng Li
- Department of Medicine and Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
| | - Virgil L. Woods
- Department of Medicine and Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
- Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr MC 0601, La Jolla, California 92093-0601
| |
Collapse
|
34
|
Ayton GS, Voth GA. Systematic multiscale simulation of membrane protein systems. Curr Opin Struct Biol 2009; 19:138-44. [PMID: 19362465 DOI: 10.1016/j.sbi.2009.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 02/06/2023]
Abstract
Current multiscale simulation approaches for membrane protein systems vary depending on their degree of connection to the underlying molecular scale interactions. Various approaches have been developed that include such information into coarse-grained models of both the membrane and the proteins. By contrast, other approaches employ parameterizations obtained from experimental data. Mesoscopic models operate at larger scales and have also been employed to examine membrane remodeling, protein inclusions, and ion channel gating. When bridged together such that molecular-level information is propagated between the different scales, a systematic multiscale methodology for membrane protein systems can be achieved.
Collapse
Affiliation(s)
- Gary S Ayton
- Center for Biological Modeling and Simulation, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
35
|
Balali-Mood K, Bond PJ, Sansom MSP. Interaction of monotopic membrane enzymes with a lipid bilayer: a coarse-grained MD simulation study. Biochemistry 2009; 48:2135-45. [PMID: 19161285 DOI: 10.1021/bi8017398] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monotopic membrane proteins bind tightly to cell membranes but do not generally span the lipid bilayer. Their interactions with lipid bilayers may be studied via coarse-grained molecular dynamics (CG-MD) simulations. Understanding such interactions is important as monotopic enzymes frequently act on hydrophobic substrates, while X-ray structures rarely provide direct information about their interactions with membranes. CG-MD self-assembly simulations enable prediction of the orientation and depth of insertion into a lipid bilayer of a monotopic protein, and also of the interactions of individual protein residues with lipid molecules. The CG-MD method has been evaluated via comparison with extended (>30 ns) atomistic simulations of monoamine oxidase, revealing good agreement between the results of coarse-grained and atomistic simulations. CG-MD simulations have been applied to a set of 11 monotopic proteins for which three-dimensional structures are available. These proteins may be divided into two groups on the basis of the results of the simulations. One group consists of those proteins which are inserted into the lipid bilayer to a limited extent, interacting mainly at the phospholipid-water interface. The second group consists of those which are inserted more deeply into the bilayer. Those monotopic proteins which are inserted more deeply cause significant local perturbation of bilayer properties such as bilayer thickness. Deeper insertion seems to correlate with a greater number of basic residues in the "foot" whereby a monotopic protein interacts with the membrane.
Collapse
Affiliation(s)
- Kia Balali-Mood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
36
|
Vallejo DF, Zamarreño F, Guérin DMA, Grigera JR, Costabel MD. Prediction of the most favorable configuration in the ACBP-membrane interaction based on electrostatic calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:696-700. [PMID: 19150435 DOI: 10.1016/j.bbamem.2008.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 11/19/2022]
Abstract
Acyl-CoA binding proteins (ACBPs) are highly conserved 10 kDa cytosolic proteins that bind medium- and long-chain acyl-CoA esters. They act as intracellular carriers of acyl-CoA and play a role in acyl-CoA metabolism, gene regulation, acyl-CoA-mediated cell signaling, transport-mediated lipid synthesis, membrane trafficking and also, ACBPs were indicated as a possible inhibitor of diazepam binding to the GABA-A receptor. To estimate the importance of the non-specific electrostatic energy in the ACBP-membrane interaction, we computationally modeled the interaction of HgACBP with both anionic and neutral membranes. To compute the Free Electrostatic Energy of Binding (dE), we used the Finite Difference Poisson Boltzmann Equation (FDPB) method as implemented in APBS. In the most energetically favorable orientation, ACBP brings charged residues Lys18 and Lys50 and hydrophobic residues Met46 and Leu47 into membrane surface proximity. This conformation suggests that these four ACBP amino acids are most likely to play a leading role in the ACBP-membrane interaction and ligand intake. Thus, we propose that long range electrostatic forces are the first step in the interaction mechanism between ACBP and membranes.
Collapse
Affiliation(s)
- Diego F Vallejo
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB) CCT La Plata- CONICET- UNLP-CIC, La Plata, Argentina
| | | | | | | | | |
Collapse
|
37
|
Sherwood P, Brooks BR, Sansom MSP. Multiscale methods for macromolecular simulations. Curr Opin Struct Biol 2008; 18:630-40. [PMID: 18721882 PMCID: PMC6407689 DOI: 10.1016/j.sbi.2008.07.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/24/2022]
Abstract
In this article we review the key modeling tools available for simulating biomolecular systems. We consider recent developments and representative applications of mixed quantum mechanics/molecular mechanics (QM/MM), elastic network models (ENMs), coarse-grained molecular dynamics, and grid-based tools for calculating interactions between essentially rigid protein assemblies. We consider how the different length scales can be coupled, both in a sequential fashion (e.g. a coarse-grained or grid model using parameterization from MD simulations), and via concurrent approaches, where the calculations are performed together and together control the progression of the simulation. We suggest how the concurrent coupling approach familiar in the context of QM/MM calculations can be generalized, and describe how this has been done in the CHARMM macromolecular simulation package.
Collapse
|