1
|
Cross C, Pordal A. A Rare Case of Gastric Outlet Obstruction Caused by a Duodenal Carcinoid. Cureus 2025; 17:e77729. [PMID: 39974256 PMCID: PMC11839212 DOI: 10.7759/cureus.77729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
In this case report, we discuss a very rare presentation of a duodenal carcinoid tumor causing a gastric outlet obstruction that was initially misdiagnosed as gastroparesis due to uncontrolled diabetes. This tumor did not present with the usual symptoms or as carcinoid syndrome, as it was negative for all tumor markers and metanephrines. Treatment typically includes preoperative administration of somatostatin analogs, however, these were not used as the tumor showed no evidence of hormone secretion. Early operative treatment is indicated due to the poor prognosis associated with metastatic disease; however, this nonfunctioning tumor, with less than 3% Ki-67 positivity, was classified as low-grade. During esophagogastroduodenoscopy (EGD) and surgical resection, the mass was observed to be highly mobile, intermittently prolapsing retrograde through the pylorus and acting as a one-way valve, obstructing the passage of fluids and food into the duodenum. Consequently, this gastric outlet-like picture was intermittent. The patient's history of uncontrolled diabetes and gastroparesis complicated the diagnosis as each episode of vomiting resolved on its own without any interventions. This made diagnosis of his underlying condition difficult. In this case, we present this rare type of carcinoid obstruction as well as surgical options and surveillance for these tumors.
Collapse
Affiliation(s)
- Caitlyn Cross
- General Surgery, Garden City Hospital, Garden City, USA
| | - Angad Pordal
- General Surgery, Garden City Hospital, Garden City, USA
| |
Collapse
|
2
|
Multone E, La Rosa S, Sempoux C, Uccella S. PD-L1 expression, tumor-infiltrating lymphocytes, and mismatch repair proteins status in digestive neuroendocrine neoplasms: exploring their potential role as theragnostic and prognostic biomarkers. Virchows Arch 2024; 485:841-851. [PMID: 38771338 PMCID: PMC11564274 DOI: 10.1007/s00428-024-03825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Theragnostic biomarkers are still needed to select patients with digestive neuroendocrine neoplasms (NENs) for an optimal management. The PD-1/PD-L1 pathway plays a pivotal role in T cells activation and host immune response to cancer and PD-L1 expression in tumor and/or immune cells is used to identify patients who would benefit of treatment with immune checkpoint inhibitors. However, its role as a biomarker is still unclear in digestive NENs. We investigated PD-L1 expression in 68 well-characterized digestive NENs (32 NETs, 32 NECs and 4 MiNENs) and TPS and CPS scores were calculated. In addition, tumor infiltrating T-lymphocytes and mismatch repair protein expression (MMR) were evaluated. All results were correlated with clinicopathological features. PD-L1 expression was higher in NECs than in NETs: TPS > 1% and/or CPS > 1 were observed in 16% of NETs, 68.8% of NECs and 50% of MiNENs (p: 0.05). The mean TPS score in positive cases was 6.3% in NETs, 16.2% in NECs and 5% in MiNENs. The CPS score was 4.8 in NETs, 8.1 in NECs and 6 in MiNENs. MMR-deficient neoplasms were more frequently observed in NECs than in NETs (p: < 0.05) as well as intra-tumor immune infiltration (p: 0.00001). No correlation between PD-L1 expression and survival or other clinicopathological parameters was observed. Our results suggest that treatment with immune checkpoint inhibitors may have a potential role only in selected cases, mainly in NECs and MiNENs.
Collapse
Affiliation(s)
- Eléonore Multone
- Institute of Pathology, Department of Laboratory Medicine and Pathology, University of Lausanne, Lausanne, Switzerland
| | - Stefano La Rosa
- Institute of Pathology, Department of Laboratory Medicine and Pathology, University of Lausanne, Lausanne, Switzerland.
- Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy.
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy.
| | - Christine Sempoux
- Institute of Pathology, Department of Laboratory Medicine and Pathology, University of Lausanne, Lausanne, Switzerland
| | - Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Service, Istituti Di Ricovero E Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
3
|
García-Torralba E, Garcia-Lorenzo E, Doger B, Spada F, Lamarca A. Immunotherapy in Neuroendocrine Neoplasms: A Diamond to Cut. Cancers (Basel) 2024; 16:2530. [PMID: 39061170 PMCID: PMC11275146 DOI: 10.3390/cancers16142530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
A raise in the incidence of NENs is expected. Therefore, the identification of new therapeutic strategies, such as immunotherapy, remains crucial. To date, immune checkpoint inhibitors as monotherapy have shown modest activity in unselected NENs. Although immunotherapy combos (plus another immune agents or chemotherapy, among others) are potentially more active than single agents, this has not been uniformly confirmed, even in high-grade NENs. Other immunotherapeutic strategies under development include bispecific antibodies, targeting specific tumor antigens like DLL3, and cell therapy. Currently, no predictive immune biomarkers are available to guide clinical decisions. A comprehensive tumor molecular profiling approach needs to be developed for the selection of patients with NEN who could potentially benefit from immunotherapy. Ideally, clinical trials should incorporate this tumor molecular profiling to identify predictive biomarkers and improve efficacy. Achieving this goal requires an international collaborative effort.
Collapse
Affiliation(s)
- Esmeralda García-Torralba
- Department of Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain;
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain
- IMIB-Arrixaca, 30120 Murcia, Spain
| | - Esther Garcia-Lorenzo
- START Madrid-FJD, Early Phase Clinical Trials Unit, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Bernard Doger
- START Madrid-FJD, Early Phase Clinical Trials Unit, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Francesca Spada
- European Institute of Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy;
| | - Angela Lamarca
- Department of Oncology, OncoHealth Institute, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation, Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Cai D, Wang X, Yu H, Bai C, Mao Y, Liang M, Xia X, Liu S, Wang M, Lu X, Du J, Shen X, Guan W. Infiltrating characteristics and prognostic value of tertiary lymphoid structures in resected gastric neuroendocrine neoplasm patients. Clin Transl Immunology 2024; 13:e1489. [PMID: 38322490 PMCID: PMC10844765 DOI: 10.1002/cti2.1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 01/21/2024] [Indexed: 02/08/2024] Open
Abstract
Objectives Tertiary lymphoid structures (TLSs) are lymphocyte aggregates that play an anti-tumor role in most solid tumors. However, the functions of TLS in gastric neuroendocrine neoplasms (GNENs) remain unknown. This study aimed to determine the characteristics and prognostic values of TLS in resected GNEN patients. Methods Haematoxylin-eosin, immunohistochemistry (IHC) and multiple fluorescent IHC staining were used to assess TLS to investigate the correlation between TLSs and clinicopathological characteristics and its prognostic value. Results Tertiary lymphoid structures were identified in 84.3% of patients with GNEN. They were located in the stromal area or outside the tumor tissue and mainly composed of B and T cells. A high density of TLSs promoted an anti-tumor immune response in GNEN. CD15+ TANs and FOXP3+ Tregs in TLSs inhibited the formation of TLSs. High TLS density was significantly associated with prolonged recurrence-free survival (RFS) and overall survival (OS) of GNENs. Univariate and multivariate Cox regression analyses revealed that TLS density, tumor size, tumor-node-metastasis (TNM) stage and World Health Organisation (WHO) classification were independent prognostic factors for OS, whereas TLS density, tumor size and TNM stage were independent prognostic factors for RFS. Finally, OS and RFS nomograms were developed and validated, which were superior to the WHO classification and the TNM stage. Conclusion Tertiary lymphoid structures were mainly located in the stromal area or outside the tumor area, and high TLS density was significantly associated with the good prognosis of patients with GNEN. Incorporating TLS density into a nomogram may improve survival prediction in patients with resected GNEN.
Collapse
Affiliation(s)
- Daming Cai
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xingzhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Heng Yu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Chunhua Bai
- Dermatology and Interventional Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yonghuan Mao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Mengjie Liang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Song Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Meng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiaofeng Lu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Junfeng Du
- Department of General Surgery, The 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Xiaofei Shen
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of General SurgeryDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
5
|
Chmiel P, Rychcik-Pazyrska P, Stec R. Defining Tumor Microenvironment as a Possible Target for Effective GEP-NENs Immunotherapy-A Systematic Review. Cancers (Basel) 2023; 15:5232. [PMID: 37958406 PMCID: PMC10648089 DOI: 10.3390/cancers15215232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogenous and recurrent group of malignancies originating from neuroendocrine secretory cells diffused on all parts of the human body. Gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs) account for most NENs. Considering the abundance of possible origins, locations, and tumor specifications, there is still no consensus about optimal treatment options for these neoplasms. In light of the escalating immunotherapeutic approaches, it is crucial to define indications for such therapy in GEP-NETs. Bearing in mind the significance of pathophysiological mechanisms and tumor microenvironment (TME) impact on carcinogenesis, defining TME structure and correlation with the immune system in GEP-NETs appears essential. This paper aimed to assess the characterization of the tumor immune microenvironment for a better understanding of the possible therapeutic options in GEP-NETS. The authors performed a systematic review, extracting papers from the PubMed, Web of Science, and Scopus databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Among 3800 articles identified through database searching, 292 were assessed for eligibility. Ultimately, 28 articles were included in the qualitative synthesis. This paper sums up the research on the immune cell infiltrates, immune checkpoint expression, cytokine profile, neoangiogenesis, and microbiome in the TME of GEP-NETs.
Collapse
|
6
|
Zou Y, Li D, Yu X, Zhou C, Zhu C, Yuan Y. Correlation of Neuroendocrine Differentiation with a Distinctively Suppressive Immune Microenvironment in Gastric Cancer. Neuroendocrinology 2023; 114:192-206. [PMID: 37827134 PMCID: PMC10836751 DOI: 10.1159/000534427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Neuroendocrine neoplasms (NENs) harbored significantly suppressive tumor immune microenvironments (TIMEs). However, the immunological effects of neuroendocrine differentiation (NED) on non-NENs, such as gastric cancer (GC), were unknown. METHODS Between pure gastric cancer (PGC) and GC-NED, TIME features were scored based on expression data and validated on serial whole-tissue sections of surgical samples, with tertiary lymphoid structures (TLSs) and the extra-TLS zone evaluated independently using multi-marker immunohistochemical staining. Risk analyses of TIME features on tumor behaviors were performed in GC-NED. The universal immunological effects of NED were explored preliminarily in adenocarcinomas arising in other organs. RESULTS Based on over 11,500 annotated TLSs and 2,700 extra-TLS zones, compared with PGC, GC-NED harbored a distinctively more suppressive TIME characterized by increased but immature TLSs, with higher naïve B-cell and follicular regulatory T-cell densities and downregulated TLS maturation-related cell ratios inside TLSs; increased naïve B-cell and regulatory T-cell densities; and a high proportion of exhausted T cells in the extra-TLS zone. The upregulated tumor PD-L1 expression and its close correlations with TLS formation and maturation were remarkable exclusively in GC-NED. TIME features, especially those regarding TLSs, were significantly correlated with tumor growth and invasion. The desynchrony between TLS formation and maturation and increased naïve or regulatory immune cell infiltration was observed in adenocarcinomas of the colorectum, pancreas, lung, and prostate. CONCLUSION NED highlighted a distinct GC entity with more suppressive TIME features correlated with tumor behaviors, indicating a cohort that would benefit more from immunotherapies.
Collapse
Affiliation(s)
- Yi Zou
- Department of Pathology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Li
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Yu
- Department of Pathology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqi Zhou
- Department of Pathology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Chunpeng Zhu
- Department of Gastroenterology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Kaur J, Vijayvergia N. Narrative Review of Immunotherapy in Gastroentero-Pancreatic Neuroendocrine Neoplasms. Curr Oncol 2023; 30:8653-8664. [PMID: 37754542 PMCID: PMC10527684 DOI: 10.3390/curroncol30090627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Gastroentero-pancreatic Neuroendocrine Neoplasms (GEP-NENs) are a diverse group of rare tumors that arise from neuroendocrine cells in the gastrointestinal tract and pancreas, and they can vary significantly in terms of clinical behavior and prognosis. Immunotherapy, particularly immune checkpoint inhibitors, has shown remarkable success in various malignancies by harnessing the body's immune system to target and eliminate cancer cells. Immune checkpoint inhibitor clinical studies in GEP-NENs have yielded promising outcomes, particularly in individuals with advanced and refractory disease. Objective responses and disease stabilization have been observed in some cases, even in those previously unresponsive to traditional treatments like chemotherapy or targeted therapies. However, it's important to note that the efficacy of immunotherapy in GEP-NENs can vary widely depending on tumor characteristics, the immune microenvironment, and patient factors. As such, identifying predictive biomarkers to select the most suitable patients for immunotherapy remains an ongoing challenge. Immunotherapy has considerable potential for treating GEP-NENs, but research is still in its early stages. Several combinations are being explored to enhance the effectiveness of immunotherapy and improve the outcomes of treatment, such as combining immunotherapy with other targeted therapies or chemotherapy.
Collapse
Affiliation(s)
| | - Namrata Vijayvergia
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA;
| |
Collapse
|
8
|
Pan WX, Zhang XM, Hao SL, Han W. Progress in immunotherapy for neuroendocrine neoplasm of the digestive system. World J Gastroenterol 2023; 29:4174-4185. [PMID: 37475845 PMCID: PMC10354576 DOI: 10.3748/wjg.v29.i26.4174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are rare heterogeneous tumors that can develop in almost any organ, with the digestive organs, including the gastrointestinal tract and pancreas being the most commonly affected sites. Despite the fact that advances in initial therapies have progressed, there is presently no recognized effective treatment for advanced NEN. Immune checkpoint inhibitors (ICIs) have shown superior efficacy in treating several types of solid tumors. Despite their successful role in the treatment of partial NENs, such as small cell lung cancer, and Merkel cell carcinoma, the role of ICIs in most of the NENs remains limited. Nevertheless, due to their specific anti-tumor mechanisms and acceptable safety profile, ICIs are a promising avenue for further study in NENs therapy. Recent clinical trials have illustrated that combination therapy with ICI is more efficient than monotherapy, and multiple clinical trials are constantly ongoing to evaluate the efficacy and safety of these combination therapies. Therefore, the purpose of this review is to provide a comprehensive summary of the clinical progress of immunotherapy in NENs affecting the digestive system, with a specific emphasis on the application of programmed cell death protein 1/programmed death receptor ligand 1 inhibitor. Furthermore, this review has an exploration of the potential beneficiary population and the inherent value of utilizing immunotherapy in the management of NENs.
Collapse
Affiliation(s)
- Wei-Xuan Pan
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Xin-Mu Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shao-Long Hao
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Wei Han
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| |
Collapse
|
9
|
Emerging Immunotherapeutic and Diagnostic Modalities in Carcinoid Tumors. Molecules 2023; 28:molecules28052047. [PMID: 36903295 PMCID: PMC10004351 DOI: 10.3390/molecules28052047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Evasion of innate immunity represents a frequently employed method by which tumor cells survive and thrive. Previously, the development of immunotherapeutic agents capable of overcoming this evasion has realized pronounced clinical utility across a variety of cancer types. More recently, immunological strategies have been investigated as potentially viable therapeutic and diagnostic modalities in the management of carcinoid tumors. Classic treatment options for carcinoid tumors rely upon surgical resection or non-immune pharmacology. Though surgical intervention can be curative, tumor characteristics, such as size, location, and spread, heavily limit success. Non-immune pharmacologic treatments can be similarly limited, and many demonstrate problematic side effects. Immunotherapy may be able to overcome these limitations and further improve clinical outcomes. Similarly, emerging immunologic carcinoid biomarkers may improve diagnostic capabilities. Recent developments in immunotherapeutic and diagnostic modalities of carcinoid management are summarized here.
Collapse
|
10
|
Popa Ilie IR, Georgescu CE. Immunotherapy in Gastroenteropancreatic Neuroendocrine Neoplasia. Neuroendocrinology 2023; 113:262-278. [PMID: 34348340 DOI: 10.1159/000518106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
The worldwide prevalence and incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) and of NENs, in general, have been increasing recently. While valuing the considerable progress made in the treatment strategies for GEP-NEN in recent years, patients with advanced, metastasized disease still have a poor prognosis, which calls for urgent novel therapies. The immune system plays a dual role: both host-protecting and "tumor-promoting." Hence, immunotherapy is potentially a powerful weapon to help NEN patients. However, although recent successes with checkpoint inhibitors have shown that enhancing antitumor immunity can be effective, the dynamic nature of the immunosuppressive tumor microenvironment presents significant hurdles to the broader application of these therapies. Studies led to their approval in NEN of the lung and Merkel cell carcinoma, whereas results in other settings have not been so encouraging. Oncolytic viruses can selectively infect and destroy cancer cells, acting as an in situ cancer vaccine. Moreover, they can remodel the tumor microenvironment toward a T cell-inflamed phenotype. Oncolytic virotherapy has been proposed as an ablative and immunostimulatory treatment strategy for solid tumors that are resistant to checkpoint inhibitors alone. Future efforts should focus on finding the best way to include immunotherapy in the GEP-NEN treatment scenario. In this context, this study aims at providing a comprehensive generalized review of the immune checkpoint blockade and the oncolytic virotherapy use in GEP-NENs that might improve GEP-NEN treatment strategies.
Collapse
Affiliation(s)
- Ioana Rada Popa Ilie
- Department of Endocrinology, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Rösner E, Kaemmerer D, Sänger J, Lupp A. Evaluation of PD-L1 expression in a large set of gastroenteropancreatic neuroendocrine tumours and correlation with clinicopathological data. Transl Oncol 2022; 25:101526. [PMID: 36067541 PMCID: PMC9468575 DOI: 10.1016/j.tranon.2022.101526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Targeting programmed death protein 1 (PD-1) or its ligand PD-L1 is a promising therapeutic approach for many types of cancer in which PD-L1 is overexpressed. However, data on PD-L1 expression levels in gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are limited and contradictory. METHODS We evaluated PD-L1 expression in 457 archived, formalin-fixed, paraffin-embedded GEP-NEN samples from 175 patients by immunohistochemistry using the highly sensitive monoclonal anti-PD-L1 antibody 73-10. The immunostaining was semiquantitatively evaluated using a 12-point immunoreactivity score (IRS) taking both PD-L1-positive tumour cells and immune cells into account. Tumour samples with an IRS ≥ 3 were considered PD-L1-positive. Results were correlated with clinicopathological data and with the expression of several typical markers and receptors for neuroendocrine tumours. RESULTS Of the GEP-NEN samples, 73% were PD-L1-positive. The median IRS value across all samples was 4.0, corresponding to low expression. PD-L1 immunostaining was predominantly localised at the plasma membrane of the tumour cells. Positive correlations were observed between PD-L1 expression and tumour grading or Ki-67 index, between PD-L1 expression and the expression of chromogranin A, and between PD-L1 expression and the expression of each of the five somatostatin receptors. PD-L1 expression was lower in tumours with lymph node metastases at diagnosis than in those without regional metastasis and lower in high-stage than in earlier-stage tumours. No association was noted between PD-L1 expression and patient survival. CONCLUSIONS PD-L1 expression is common in GEP-NENs and increases with malignancy. Therefore, especially in high-grade GEP-NENs, targeting the PD-1/PD-L1 axis could be a promising additional therapeutic strategy.
Collapse
Affiliation(s)
- Erik Rösner
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, Jena D-07747, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, Jena D-07747, Germany.
| |
Collapse
|
12
|
Liu M, Hu W, Zhang Y, Zhang N, Chen L, Lin Y, Wang Y, Luo Y, Guo Y, Chen M, Chen J. Clinical implications of immune checkpoint markers and immune infiltrates in patients with thymic neuroendocrine neoplasms. Front Oncol 2022; 12. [DOI: 36203421 10.3389/fonc.2022.917743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The potential response of immune checkpoint blockade (ICB) in thymic neuroendocrine neoplasms (T-NEN) is largely unknown and full of great expectations. The expression of immune checkpoint molecules and immune infiltrates greatly determine the response to ICB. However, studies regarding the immune landscape in T-NEN are scarce. This work was aimed to characterize the immune landscape and its association with clinical characteristics in T-NEN. The expression of programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand-1 (PD-L1), and the density of tumor-infiltrating lymphocytes (TILs), monocytes, and granulocytes were determined by immunohistochemical (IHC) staining on tumor tissues from T-NEN. Immune landscapes were delineated and correlated with clinicopathological factors. We found that T-NEN with increased immune cell infiltration and enhanced expression of PD-1/PD-L1 tended to have restricted tumor size and less metastases. A higher density of CD8+ TILs was associated with a significantly lower rate of bone metastasis. In addition, we presented three cases of T-NEN who progressed after multiple lines of therapies and received ICB for alternative treatment. ICB elicited durable partial responses with satisfactory safety in two patients with atypical carcinoid, but showed resistance in 1 patient with large cell neuroendocrine carcinoma. This innovative study delineated for the first time the heterogeneous immune landscape in T-NEN and identified CD8+ TILs as a potential marker to predict bone metastasis. An “immune-inflamed” landscape with the presence of TILs predominated in T-NEN, making T-NEN a potentially favorable target for ICB treatment. Further judicious designs of “tailor-made” clinical trials of ICB in T-NEN are urgently needed.
Collapse
|
13
|
Liu M, Hu W, Zhang Y, Zhang N, Chen L, Lin Y, Wang Y, Luo Y, Guo Y, Chen M, Chen J. Clinical implications of immune checkpoint markers and immune infiltrates in patients with thymic neuroendocrine neoplasms. Front Oncol 2022; 12:917743. [PMID: 36203421 PMCID: PMC9531766 DOI: 10.3389/fonc.2022.917743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The potential response of immune checkpoint blockade (ICB) in thymic neuroendocrine neoplasms (T-NEN) is largely unknown and full of great expectations. The expression of immune checkpoint molecules and immune infiltrates greatly determine the response to ICB. However, studies regarding the immune landscape in T-NEN are scarce. This work was aimed to characterize the immune landscape and its association with clinical characteristics in T-NEN. The expression of programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand-1 (PD-L1), and the density of tumor-infiltrating lymphocytes (TILs), monocytes, and granulocytes were determined by immunohistochemical (IHC) staining on tumor tissues from T-NEN. Immune landscapes were delineated and correlated with clinicopathological factors. We found that T-NEN with increased immune cell infiltration and enhanced expression of PD-1/PD-L1 tended to have restricted tumor size and less metastases. A higher density of CD8+ TILs was associated with a significantly lower rate of bone metastasis. In addition, we presented three cases of T-NEN who progressed after multiple lines of therapies and received ICB for alternative treatment. ICB elicited durable partial responses with satisfactory safety in two patients with atypical carcinoid, but showed resistance in 1 patient with large cell neuroendocrine carcinoma. This innovative study delineated for the first time the heterogeneous immune landscape in T-NEN and identified CD8+ TILs as a potential marker to predict bone metastasis. An “immune-inflamed” landscape with the presence of TILs predominated in T-NEN, making T-NEN a potentially favorable target for ICB treatment. Further judicious designs of “tailor-made” clinical trials of ICB in T-NEN are urgently needed.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-sen Cancer Center, Guangzhou, China
| | - Yixuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luohai Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- Department of Oncology Interventional Therapy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Guo
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Minhu Chen, ; Jie Chen,
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Minhu Chen, ; Jie Chen,
| |
Collapse
|
14
|
Agarwal P, Mohamed A. Systemic Therapy of Advanced Well-differentiated Small Bowel Neuroendocrine Tumors Progressive on Somatostatin Analogues. Curr Treat Options Oncol 2022; 23:1233-1246. [PMID: 35939200 DOI: 10.1007/s11864-022-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2022] [Indexed: 11/30/2022]
Abstract
OPINION STATEMENT Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumors whose management requires a nuanced and multi-disciplinary approach in order to control symptoms, halt tumor growth, and improve survival outcomes. Of late, the treatment landscape of NENs has advanced considerably as a result of several pivotal clinical trials, which have established somatostatin analogues as first-line therapy for advanced, metastatic, well-differentiated neuroendocrine tumors (NETs). However, an evolving classification system as well as an increased understanding of distinct clinical, molecular, and biologic features contribute to complexity in management. In particular, there remains limited randomized prospective data in the somatostatin analogue (SSA)-refractory setting for patients with primary tumors that originate in the small bowel. For well-differentiated small bowel neuroendocrine tumors (SBNETs), treatment beyond SSAs includes radionuclide therapy, targeted agents, liver-directed therapy, and to a lesser extent, cytotoxic chemotherapy. In the current era, selection of these agents is largely based on expert opinion in the context of patient and tumor characteristics without definitive data on the preferred order of agents to administer. In this review, we aim to describe the treatment landscape of metastatic SBNETs beyond SSAs and provide an overview of novel treatments which are currently under clinical evaluation.
Collapse
Affiliation(s)
- Parul Agarwal
- Hematology/Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, PCAM 10 South Pavilion, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Amr Mohamed
- Department of Medical Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, 11100 Euclid Avenue, Lakeside, Cleveland, OH, 44106, USA.
| |
Collapse
|
15
|
Xu S, Ye C, Chen R, Li Q, Ruan J. The Landscape and Clinical Application of the Tumor Microenvironment in Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2022; 14:cancers14122911. [PMID: 35740577 PMCID: PMC9221445 DOI: 10.3390/cancers14122911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The tumor microenvironment (TME) plays a role in promoting tumor progression. Elucidating the relationship between the TME and tumor cells will benefit current therapies. Therefore, this review summarizes the most recent relationship between the TME and tumor characteristics, discusses the differences in the TME at various sites along the digestive tract, and compares the TMEs of neuroendocrine tumors and neuroendocrine carcinomas. Microbial ecological changes in the TME were reviewed. The clinical application of the TME was summarized from bench to bedside. The TME can be used as a tumor drug target for diagnostic value, prognosis prediction, and efficacy evaluation, further revealing the potential of immune checkpoints combined with antiangiogenic drugs. The clinical application prospects of adoptive cell therapy and oncolytic viruses were described. The potential therapeutic approaches and strategies for gastrointestinal neuroendocrine neoplasms are considered. Abstract Gastroenteropancreatic neuroendocrine neoplasms feature high heterogeneity. Neuroendocrine tumor cells are closely associated with the tumor microenvironment. Tumor-infiltrating immune cells are mutually educated by each other and by tumor cells. Immune cells have dual protumorigenic and antitumorigenic effects. The immune environment is conducive to the invasion and metastasis of the tumor; in turn, tumor cells can change the immune environment. These cells also form cytokines, immune checkpoint systems, and tertiary lymphoid structures to participate in the process of mutual adaptation. Additionally, the fibroblasts, vascular structure, and microbiota exhibit interactions with tumor cells. From bench to bedside, clinical practice related to the tumor microenvironment is also regarded as promising. Targeting immune components and angiogenic regulatory molecules has been shown to be effective. The clinical efficacy of immune checkpoint inhibitors, adoptive cell therapy, and oncolytic viruses remains to be further discussed in clinical trials. Moreover, combination therapy is feasible for advanced high-grade tumors. The regulation of the tumor microenvironment based on multiple omics results can suggest innovative therapeutic strategies to prevent tumors from succeeding in immune escape and to support antitumoral effects.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
- Correspondence:
| |
Collapse
|
16
|
Garcia-Alvarez A, Cubero JH, Capdevila J. What Is the Status of Immunotherapy in Neuroendocrine Neoplasms? Curr Oncol Rep 2022; 24:451-461. [PMID: 35171460 DOI: 10.1007/s11912-022-01235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Immunotherapy has changed the treatment of patients with advanced cancer, with different phase III trials showing durable responses across different histologies. This review focuses on the preclinical and clinical evidence of potential predictive biomarkers of response and efficacy of immunotherapy in neuroendocrine neoplasms (NENs) of gastro-entero-pancreatic origin. RECENT FINDINGS PD-L1 staining by immunohistochemistry has shown heterogeneous results across different studies in both well-differentiated neuroendocrine tumors (NETs) and poorly-differentiated neuroendocrine carcinomas (NECs). Tumor mutational burden in NENs is low, but seems to be higher in NECs. Immune infiltrate (CD3+ lymphocytes) at the tumor microenvironment (TME) is present in NETs and NECs. However, results from clinical trials with immunotherapy as monotherapy o combinations have shown limited efficacy. Further investigation into new strategies aside from anti-CTLA-4/PD-1/PD-L1 antibodies, validation of predictive biomarkers, and better population selection for clinical trials in NENs are more than needed in the near future.
Collapse
Affiliation(s)
- Alejandro Garcia-Alvarez
- Vall d'Hebron University Hospital, Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall Hebron Institute of Oncology (VHIO), Pg Vall d'Hebron, 119-129 (08035), Barcelona, Spain.
| | - Jorge Hernando Cubero
- Vall d'Hebron University Hospital, Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall Hebron Institute of Oncology (VHIO), Pg Vall d'Hebron, 119-129 (08035), Barcelona, Spain
| | - Jaume Capdevila
- Vall d'Hebron University Hospital, Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall Hebron Institute of Oncology (VHIO), Pg Vall d'Hebron, 119-129 (08035), Barcelona, Spain
| |
Collapse
|
17
|
Arrivi G, Fazio N. Gastroenteropancreatic Neuroendocrine Neoplasms (GEP NENs) : The Role of Checkpoint Inhibitors. Curr Cancer Drug Targets 2022; 22:629-638. [PMID: 35034595 DOI: 10.2174/1568009622666220114124335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/11/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The treatment options for GEP-NENs includes various drugs and is based on grading, morphology and location of the primary. <p> Objective: The aim of our work is to investigate the clinical impact of new immune checkpoint inhibitors in order to define a new possible strategy of use within GEP-NENs. <p> Method: A scientific literature search from 2015 to January 2020 was performed by using PubMed and Embase: reviews and prospective or retrospective studies with a minimum of twenty patients were selected; conference proceedings were included. <p> Results: several studies have been conducted to assess the role of immune checkpoint inhibitors in NENs, but nowadays the current knowledge in this field is mainly based on a phase I-II studies. Immunotherapy showed limited antitumor activity, but higher response rate was reported in poor-differentiated neuroendocrine tumors. No specific biomarkers were identified for patient selection and response assessment. <p> Conclusion: Immunotherapy appears as a powerful possibility to help our patients, but nowadays we see many gaps in this field. We must balance therapeutic possibility offered by precision oncology with the understanding the limitations of application of testing and treatment in clinical practice. Future efforts should focus on research of the best patients to candidate for immunotherapy in term of disease characteristics and previous treatments, and how to select them with accurate biomarkers.
Collapse
Affiliation(s)
- Giulia Arrivi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Oncology Unit, Sant' Andrea University Hospital, Rome, Italy
| | - Nicola Fazio
- Gastrointestinal and Neuroendocrine Oncology Unit, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| |
Collapse
|
18
|
Rico K, Duan S, Pandey RL, Chen Y, Chakrabarti JT, Starr J, Zavros Y, Else T, Katona BW, Metz DC, Merchant JL. Genome analysis identifies differences in the transcriptional targets of duodenal versus pancreatic neuroendocrine tumours. BMJ Open Gastroenterol 2021; 8:bmjgast-2021-000765. [PMID: 34750164 PMCID: PMC8576490 DOI: 10.1136/bmjgast-2021-000765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Gastroenteropancreatic neuroendocrine tumours (GEP-NETs) encompass a diverse group of neoplasms that vary in their secretory products and in their location within the gastrointestinal tract. Their prevalence in the USA is increasing among all adult age groups. Aim To identify the possible derivation of GEP-NETs using genome-wide analyses to distinguish small intestinal neuroendocrine tumours, specifically duodenal gastrinomas (DGASTs), from pancreatic neuroendocrine tumours. Design Whole exome sequencing and RNA-sequencing were performed on surgically resected GEP-NETs (discovery cohort). RNA transcript profiles available in the Gene Expression Omnibus were analysed using R integrated software (validation cohort). Digital spatial profiling (DSP) was used to analyse paraffin-embedded GEP-NETs. Human duodenal organoids were treated with 5 or 10 ng/mL of tumor necrosis factor alpha (TNFα) prior to qPCR and western blot analysis of neuroendocrine cell specification genes. Results Both the discovery and validation cohorts of small intestinal neuroendocrine tumours induced expression of mesenchymal and calcium signalling pathways coincident with a decrease in intestine-specific genes. In particular, calcium-related, smooth muscle and cytoskeletal genes increased in DGASTs, but did not correlate with MEN1 mutation status. Interleukin 17 (IL-17) and tumor necrosis factor alpha (TNFα) signalling pathways were elevated in the DGAST RNA-sequencing. However, DSP analysis confirmed a paucity of immune cells in DGASTs compared with the adjacent tumour-associated Brunner’s glands. Immunofluorescent analysis showed production of these proinflammatory cytokines and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) by the tumours and stroma. Human duodenal organoids treated with TNFα induced neuroendocrine tumour genes, SYP, CHGA and NKX6.3. Conclusions Stromal–epithelial interactions induce proinflammatory cytokines that promote Brunner’s gland reprogramming.
Collapse
Affiliation(s)
- Karen Rico
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Suzann Duan
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Ritu L Pandey
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Yuliang Chen
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Jayati T Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Julie Starr
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Tobias Else
- Department of Internal Medicine-Endocrinology, University of Michigan, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Bryson W Katona
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - David C Metz
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Juanita L Merchant
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| |
Collapse
|
19
|
Albertelli M, Dotto A, Nista F, Veresani A, Patti L, Gay S, Sciallero S, Boschetti M, Ferone D. "Present and future of immunotherapy in Neuroendocrine Tumors". Rev Endocr Metab Disord 2021; 22:615-636. [PMID: 33851319 PMCID: PMC8346388 DOI: 10.1007/s11154-021-09647-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Immunotherapy, so promising in many neoplasms, still does not have a precise role in the treatment of neuroendocrine neoplasms (NENs). In this article, we provide an overview on the current knowledge about immunotherapy with immune checkpoint inhibitors (ICIs) applied to NENs, evaluating future perspectives in this setting of tumors.Evidence so far available for ICIs in gastroenteropancreatic (GEP)-NENs is definitively not as robust as for other tumors such as Small Cell Lung Cancer or Merkel Cell Carcinoma. In fact, with regard to the well-differentiated forms of NENs (NETs), the results obtained nowadays have been disappointing. However, the near future, might reserve interesting results for ICIs in GEP-NEN from a total of nine different ICI drugs, used throughout 19 randomised controlled trials. Such numbers highlight the growing attention gathering around NENs and ICIs, in response to the need of stronger evidences supporting such therapy.For the future, the most important aspect will be to study strategies that can make NETs more susceptible to response to ICI and, thus, enhance the effectiveness of these treatments. Therefore, the combination of conventional therapy, target therapy and immunotherapy deserve attention and warrant to be explored. A sequential chemotherapy, possibly inducing an increase in tumor mutational burden and tested before immunotherapy, could be a hypothesis deserving more consideration. A radiation treatment that increases tumor-infiltrating lymphocytes, could be another approach to explore before ICIs in NENs. Equally essential will be the identification of biomarkers useful for selecting patients potentially responsive to this type of treatment.
Collapse
Affiliation(s)
- Manuela Albertelli
- Endocrinology Unit, IRCCS AOU San Martino, Genoa, Italy.
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - Andrea Dotto
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Federica Nista
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Alessandro Veresani
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Luca Patti
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Stefano Gay
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | - Mara Boschetti
- Endocrinology Unit, IRCCS AOU San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS AOU San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
20
|
The Microenvironment of Small Intestinal Neuroendocrine Tumours Contains Lymphocytes Capable of Recognition and Activation after Expansion. Cancers (Basel) 2021; 13:cancers13174305. [PMID: 34503115 PMCID: PMC8431118 DOI: 10.3390/cancers13174305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The body‘s immune system can recognize tumors because they often contain proteins that are either different from or more abundant than in normal cells. Here, we characterised the immune cells of a rare tumor type called small-intestinal neuroendocrine tumors (SINET). We find that so called tumour-infiltrating lymphocytes (TILs) can be grown in the laboratory and activated by challenging them with digested tumor. This study provides insights into the largely unknown SINET immune landscape and reveals the anti-tumour reactivity of TILs, which might merit adoptive T cell transfer as a feasible treatment option for patients with SINET. Abstract Traditionally, immune evasion and immunotherapy have been studied in cancers with a high mutational load such as melanoma or lung cancer. In contrast, small intestinal neuroendocrine tumours (SINETs) present a low frequency of somatic mutations and are described as genetically stable tumours, rendering immunotherapies largely unchartered waters for SINET patients. SINETs frequently metastasise to the regional lymph nodes and liver at the time of diagnosis, and no curative treatments are currently available for patients with disseminated disease. Here, we characterised the immune landscape of SINET and demonstrated that tumour-infiltrating lymphocytes (TILs) can be expanded and activated during autologous tumour challenge. The composition of lymphocyte subsets was determined by immunophenotyping of the SINET microenvironment in one hepatic and six lymph node metastases. TILs from these metastases were successfully grown out, enabling immunophenotyping and assessment of PD-1 expression. Expansion of the TILs and exposure to autologous tumour cells in vitro resulted in increased T lymphocyte degranulation. This study provides insights into the largely unknown SINET immune landscape and reveals the anti-tumour reactivity of TILs, which might merit adoptive T cell transfer as a feasible treatment option for patients with SINET.
Collapse
|
21
|
MacFarlane AW, Yeung HM, Alpaugh RK, Dulaimi E, Engstrom PF, Dasari A, Campbell KS, Vijayvergia N. Impacts of pembrolizumab therapy on immune phenotype in patients with high-grade neuroendocrine neoplasms. Cancer Immunol Immunother 2021; 70:1893-1906. [PMID: 33398390 PMCID: PMC8195815 DOI: 10.1007/s00262-020-02811-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
High grade neuroendocrine neoplasms (G3 NENs) are rare aggressive tumors with limited treatment options. Twenty-one previously treated patients with metastatic extra-pulmonary G3 NENs were treated with pembrolizumab. Baseline tumor samples were assessed for PD-L1 and tumor infiltrating lymphocytes (TIL). Peripheral blood samples drawn pre-treatment, prior to cycle three, and at disease progression were analyzed by flow cytometry. One patient achieved partial response, two had stable disease, and 18 exhibited progressive disease. The partially responding patient did not progress after 392 days, and the median progression-free survival (PFS) was 59 days. Longer PFS correlated independently with higher pre-treatment peripheral blood T-cell counts and lower pre-treatment activation state (CD69 expression) of naïve T cells and NK cells. Peripheral T-cell viability was reduced in patients with greater TILs. Post-treatment, T cells had reduced numbers of CD4+ cells, reduced PD-1 expression, increased activation of effector (CD62L-) cells, and increased expression of TIGIT. Baseline TIGIT expression on peripheral T cells also correlated positively with Ki67 in tumor. Patients with higher baseline T-cell expression of TIM-3 had shorter PFS. Despite limited activity of pembrolizumab, this study highlights the immune phenotype in this rare tumor type before and after treatment. High baseline peripheral T-cell count and reduced activation of T and NK cell subsets were associated with improved outcomes. Furthermore, increased post-treatment TIGIT and elevated baseline TIM-3 expression suggest that these may limit the efficacy of pembrolizumab, providing a rationale for combination immunotherapy (PD-1 with TIGIT and/or TIM-3 antibodies) to treat extra-pulmonary G3 NENs.
Collapse
Affiliation(s)
- Alexander W MacFarlane
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Ho-Man Yeung
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - R Katherine Alpaugh
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Paul F Engstrom
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kerry S Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| | - Namrata Vijayvergia
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
22
|
Tanno L, Naheed S, Dunbar J, Tod J, Lopez MA, Taylor J, Machado M, Green B, Ashton-Key M, Chee SJ, Wood O, Pearce NW, Thomas GJ, Friedmann PS, Cave J, Ottensmeier CH. Analysis of Immune Landscape in Pancreatic and Ileal Neuroendocrine Tumours Demonstrates an Immune Cold Tumour Microenvironment. Neuroendocrinology 2021; 112:370-383. [PMID: 34157710 DOI: 10.1159/000517688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Neuroendocrine tumours (NETs) are rare tumours with an increasing incidence. While low- and intermediate-grade pancreatic NET (PanNET) and small intestinal NET (siNET) are slow growing, they have a relatively high rate of metastasizing to the liver, leading to substantially worse outcomes. In many solid tumours, the outcome is determined by the quality of the antitumour immune response. However, the quality and significance of antitumour responses in NETs are incompletely understood. This study provides clinico-pathological analyses of the tumour immune microenvironment in PanNET and siNETs. METHODS Formalin-fixed paraffin-embedded tissue from consecutive resected PanNETs (61) and siNETs (131) was used to construct tissue microarrays (TMAs); 1-mm cores were taken from the tumour centre, stroma, tumour edge, and adjacent healthy tissue. TMAs were stained with antibodies against CD8, CD4, CD68, FoxP3, CD20, and NCR1. T-cell counts were compared with counts from lung cancers. RESULTS For PanNET, median counts were CD8+ 35.4 cells/mm2, CD4+ 7.6 cells/mm2, and CD68+ macrophages 117.7 cells/mm2. For siNET, there were CD8+ 39.2 cells/mm2, CD4+ 24.1 cells/mm2, and CD68+ 139.2 cells/mm2. The CD8+ cell density in the tumour and liver metastases were significantly lower than in the adjacent normal tissues, without evidence of a cell-rich area at the tumour edge that might have suggested immune exclusion. T-cell counts in lung cancer were significantly higher than those in PanNET and siNETs: CD8+ 541 cells/mm2 and CD4+ 861 cells/mm2 (p ≤ 0.0001). CONCLUSION PanNETs and siNETs are immune cold with no evidence of T cell exclusion; the low density of immune infiltrates indicates poor antitumour immune responses.
Collapse
Affiliation(s)
- Lulu Tanno
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Hepato-Pancreato-Biliary Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Salma Naheed
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Medical Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jonathan Dunbar
- Department of Radiology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jo Tod
- Department of Gastroenterology, University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | - Maria A Lopez
- Department of Research Histology, University of Southampton, Southampton, UK
| | - Julian Taylor
- Department of Research Histology, University of Southampton, Southampton, UK
| | - Maria Machado
- Department of Research Histology, University of Southampton, Southampton, UK
| | - Bryan Green
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Margaret Ashton-Key
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Serena J Chee
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Oliver Wood
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Neil W Pearce
- Department of Hepato-Pancreato-Biliary Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter S Friedmann
- Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton, Southampton, UK
| | - Judith Cave
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Medical Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christian H Ottensmeier
- School of Cancer Sciences, and CRUK and NIHR Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
23
|
Lee W, Kim MJ, Choi Y, Kim H. PD-L1 expression and patient outcomes in gastrointestinal neuroendocrine neoplasm: a meta-analysis. Transl Cancer Res 2021; 10:2210-2218. [PMID: 35116539 PMCID: PMC8798646 DOI: 10.21037/tcr-20-3482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Programmed cell death ligand 1 (PD-L1) is a known prognostic and therapeutic marker in malignant tumors. This meta-analysis aimed to investigate the association of PD-L1 expression with the clinicopathological parameters and survival outcomes of gastrointestinal neuroendocrine neoplasms (NENs). METHODS PubMed, EMBASE, Web of Science, OVID Medline, the Cochrane Library, and Google Scholar were searched for relevant studies June 30, 2020. Studies reporting PD-L1 immunohistochemistry of gastrointestinal NEN with associated survival data or clinicopathological parameters were included. RESULTS In total, 10 studies were included. Odd ratios (ORs) were combined to evaluate association between PD-L1 expression and clinicopathological parameters. Hazard ratios (HR) and standard errors were combined to evaluate the association between PD-L1 expression and overall survival. PD-L1 expression was significantly associated with higher tumor grade [OR: 3.42; 95% confidence interval (CI): 2.00-5.85, P<0.05] and lymph node metastasis (OR: 1.94; 95% CI: 1.13-3.34, P=0.02). However, PD-L1 expression was not associated with age, sex, and tumor stage. The pooled hazard ratio (HR: 2.45, 95% CI: 1.20-4.98, P<0.05) showed a significant association between PD-L1 expression and shorter overall survival. DISCUSSION The results of this meta-analysis show that PD-L1 expression in tumor cells of gastrointestinal NEN can be used as a biomarker of worse survival and important clinicopathological parameters. Further, it can also be used as a therapeutic biomarker for developing novel treatment modalities that can improve prognosis. Although the results of this meta-analysis are more robust than those of the individual studies analyzed, this study also has several limitations. Further studies with a larger study population and consistent method for evaluating PD-L1 expression are needed to validate our results.
Collapse
Affiliation(s)
- Woojoo Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Min-Ju Kim
- Department of Pathology, Soonchunhyang University College of Medicine, Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Younghee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Gyeonggi-do, Republic of Korea
| | - Hyunchul Kim
- Department of Pathology, CHA Ilsan Medical Center, Gyeonggi-do, Republic of Korea
| |
Collapse
|
24
|
Peptide Receptor Radionuclide Therapy (PRRT) with 177Lu-DOTATATE; Differences in Tumor Dosimetry, Vascularity and Lesion Metrics in Pancreatic and Small Intestinal Neuroendocrine Neoplasms. Cancers (Basel) 2021; 13:cancers13050962. [PMID: 33668887 PMCID: PMC7956792 DOI: 10.3390/cancers13050962] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Patients suffering from disseminated, progressive, neuroendocrine neoplasms with a sufficient amount of somatostatin receptors and good kidney function can be treated with radioactive hormone-like molecules to prolong their life. In this study, the radioactivity in one tumor per patient at each treatment cycle was calculated and compared between 23 patients with pancreatic and 25 patients with small intestinal neuroendocrine neoplasia. Both types of tumors absorb a larger amount of radioactivity during early cycles that subsequently decline in the later cycles. This finding was more pronounced in the pancreatic tumors, which also expressed higher blood perfusion in the early cycles, known to facilitate the effect of radiation. This could be part of the reason why the pancreatic tumors shrunk more rapidly than the small intestinal ones. Our results also imply that increased administered activity in the early therapy cycles may be beneficial, at least in pancreatic neuroendocrine tumor patients. Abstract Dosimetry during peptide receptor radionuclide therapy (PRRT) has mainly focused on normal organs and less on the tumors. The absorbed dose in one target tumor per patient and several response related factors were assessed in 23 pancreatic neuroendocrine neoplasms (P-NENs) and 25 small-intestinal NEN (SI-NENs) during PRRT with 177Lu-DOTATATE. The total administered activity per patient was (mean ± standard error of mean (SEM) 31.8 ± 1.9 GBq for P-NENs and 36 ± 1.94 GBq for SI-NENs. The absorbed tumor dose was 143.5 ± 2 Gy in P-NENs, 168.2 ± 2 Gy in SI-NENs. For both NEN types, a dose–response relationship was found between the absorbed dose and tumor shrinkage, which was more pronounced in P-NENs. A significant drop in the absorbed dose per cycle was shown during the course of PRRT. Tumor vascularization was higher in P-NENs than in SI-NENs at baseline but equal post-PRRT. The time to progression (RECIST 1.1) was similar for patients with P-NEN (mean ± SEM 30 ± 1 months) and SI-NEN (33 ± 1 months). In conclusion, a dose response relationship was established for both P-NENs and SI-NENs and a significant drop in the absorbed dose per cycle was shown during the course of PRRT, which warrants further investigation to understand the factors impacting PRRT to improve personalized treatment protocol design.
Collapse
|
25
|
Pinato DJ, Vallipuram A, Evans JS, Wong C, Zhang H, Brown M, Dina RE, Trivedi P, Akarca AU, Marafioti T, Mauri FA, Sharma R. Programmed Cell Death Ligand Expression Drives Immune Tolerogenesis across the Diverse Subtypes of Neuroendocrine Tumours. Neuroendocrinology 2021; 111:465-474. [PMID: 32097935 DOI: 10.1159/000506745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION A comprehensive characterization of the tumour microenvironment is lacking in neuroendocrine tumours (NETs), where programmed cell death-1 receptor-ligand (PD-1/PD-L1) inhibitors are undergoing efficacy testing. OBJECTIVE We investigated drivers of cancer-related immunosuppression across NETs of various sites and grades using multi-parameter immunohistochemistry and targeted transcriptomic profiling. METHODS Tissue microarrays (n = 102) were stained for PD-L1 and 2 and indoleamine deoxygenase-1 (IDO-1) and evaluated in relationship to functional characteristics of tumour-infiltrating T-lymphocytes (TILs) and biomarkers of hypoxia/angiogenesis. PD-L1 expression was tested in circulating tumour cells (CTCs, n = 12) to evaluate its relationship with metastatic dissemination. RESULTS PD-L1 expression was highest in lung NETs (n = 30, p = 0.007), whereas PD-L2 was highest in pancreatic NETs (n = 53, p < 0.001) with no correlation with grade or hypoxia/angiogenesis. PD-L1+ NETs (n = 26, 25%) had greater CD4+/FOXP3+ and CD8+/PD1+ TILs (p < 0.001) and necrosis (p = 0.02). CD4+/FOXP3+ infiltrate had the highest PD-L1/IDO-1 co-expressing tumours (p = 0.006). Grade 3 well-differentiated NETs had lower CD4+/FOXP3+ and CD8+/PD1+ TIL density (p < 0.001), and NanoString immune profiling revealed enrichment of macrophage-related transcripts in cases with poorer prognosis. We identified PD-L1(+) CTC subpopulations in 75% of evaluated patients (n = 12). CONCLUSIONS PD-L1 expression correlates with T-cell exhaustion independent of tumour hypoxia and is enhanced in a subpopulation of CTCs, suggesting its relevance to the progression of NETs. These findings support a potential therapeutic role for PD-L1 inhibitors in a subset of NETs.
Collapse
Affiliation(s)
- David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom,
| | - Anu Vallipuram
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Joanne S Evans
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Clement Wong
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Hua Zhang
- Department of Medical Oncology, LC-4112, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew Brown
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Roberto E Dina
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Pritesh Trivedi
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ayse U Akarca
- Department of Histopathology, Rockefeller Building, University College London Hospital, London, United Kingdom
| | - Teresa Marafioti
- Department of Histopathology, Rockefeller Building, University College London Hospital, London, United Kingdom
| | - Francesco A Mauri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
26
|
Liu M, Zhang Y, Chen L, Lin Y, He Q, Zeng Y, Chen M, Chen J. Myeloid-derived suppressor cells in gastroenteropancreatic neuroendocrine neoplasms. Endocrine 2021; 71:242-252. [PMID: 33010002 DOI: 10.1007/s12020-020-02467-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Expanded myeloid-derived suppressor cells (MDSCs) correlate with disseminated metastases and poor prognosis in various human cancers. However, the role of MDSCs in gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) is still unknown. We investigated the distribution of MDSCs and their clinical significance in patients with GEP-NENs. METHODS Peripheral blood mononuclear cells (PBMCs) and paraffin-embedded tumor tissues were acquired from patients with GEP-NENs. Multicolor flow cytometry was performed to determine the frequency of MDSCs in peripheral blood, and immunohistochemistry was performed to determine the distribution of MDSCs in primary NEN tissues. RESULTS Compared to healthy donors, patients with GEP-NENs had significantly higher levels of circulating monocytic (M)-MDSCs. Frequency of M-MDSCs in both peripheral blood and primary NEN tissues was significantly higher in GEP-NEN patients with metastases compared to patients without metastases. Tumor-infiltrating M-MDSCs can serve as a valuable prognostic marker of metastasis in patients with GEP-NENs, as indicated by the area under the curve (AUC) = 0.71; 95% confidence interval (CI) = 0.56-0.87, p < 0.01. CONCLUSIONS High M-MDSC levels were associated with significantly increased metastases in patients with GEP-NENs. M-MDSCs appear to be a promising prognostic immunologic biomarker and therapeutic target in GEP-NEN management.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yixuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Luohai Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao He
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Busse A, Mochmann LH, Spenke C, Arsenic R, Briest F, Jöhrens K, Lammert H, Sipos B, Kühl AA, Wirtz R, Pavel M, Hummel M, Kaemmerer D, Baum RP, Grabowski P. Immunoprofiling in Neuroendocrine Neoplasms Unveil Immunosuppressive Microenvironment. Cancers (Basel) 2020; 12:E3448. [PMID: 33228231 PMCID: PMC7699546 DOI: 10.3390/cancers12113448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Checkpoint inhibitors have shown promising results in a variety of tumors; however, in neuroendocrine tumors (NET) and neuroendocrine carcinomas (NEC), low response rates were reported. We aimed herein to investigate the tumor immune microenvironment in NET/NEC to determine whether checkpoint pathways like programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) might play a role in immune escape and whether other escape mechanisms might need to be targeted to enable a functional antitumor response. Forty-eight NET and thirty NEC samples were analyzed by immunohistochemistry (IHC) and mRNA immunoprofiling including digital spatial profiling. Through IHC, both NET/NEC showed stromal, but less intratumoral CD3+ T cell infiltration, although this was significantly higher in NEC compared to NET. Expression of PD1, PD-L1, and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) on immune cells was low or nearly absent. mRNA immunoprofiling revealed low expression of IFNγ inducible genes in NET and NEC without any spatial heterogeneity. However, we observed an increased mRNA expression of chemokines, which attract myeloid cells in NET and NEC, and a high abundance of genes related to immunosuppressive myeloid cells and genes with immunosuppressive functions like CD47 and CD74. In conclusion, NET and NEC lack signs of an activation of the adaptive immune system, but rather show abundance of several immunosuppressive genes that represent potential targets for immunomodulation.
Collapse
Affiliation(s)
- Antonia Busse
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Liliana H. Mochmann
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
| | - Christiane Spenke
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
| | - Ruza Arsenic
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (R.A.); (K.J.); (H.L.); (M.H.)
- Institute für histologische und zytologische Diagnostik AG Aarau, 5000 Aarau, Switzerland
| | - Franziska Briest
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
| | - Korinna Jöhrens
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (R.A.); (K.J.); (H.L.); (M.H.)
- Institute of Pathology, Carl Gustav Carus University Hospital Dresden, 01307 Dresden, Germany
| | - Hedwig Lammert
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (R.A.); (K.J.); (H.L.); (M.H.)
| | - Bence Sipos
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, 72076 Tübingen, Germany;
- Private Practice of Pathology and Molecular Pathology, 70176 Stuttgart, Germany
| | - Anja A. Kühl
- iPATH Berlin—Immunopathology for Experimental Models, Core Unit of the Charité, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany;
| | - Ralph Wirtz
- Stratifyer Molecular Oncology GmbH, 50935 Cologne, Germany;
| | - Marianne Pavel
- Department of Endocrinology, Universitatsklinikum Erlangen, 91054 Erlangen, Germany;
| | - Michael Hummel
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (R.A.); (K.J.); (H.L.); (M.H.)
- Central Biobank, Berlin Institute of Health, 10178 Berlin, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, 99437 Bad Berka, Germany;
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt in der DKD HELIOS Klinik, 65191 Wiesbaden, Germany;
| | - Patricia Grabowski
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
- Institute of Medical Immunology, Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
28
|
Al-Toubah T, Cives M, Strosberg J. Novel immunotherapy strategies for treatment of neuroendocrine neoplasms. Transl Gastroenterol Hepatol 2020; 5:54. [PMID: 33073049 PMCID: PMC7530319 DOI: 10.21037/tgh.2019.12.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022] Open
Abstract
Neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs) are a heterogeneous family of neoplasms. Well-differentiated tumors are often slow growing and characterized by low tumor mutational burden. Poorly differentiated NECs are aggressive, with an increased mutational burden and higher propensity to express PD-L1. While the therapeutic landscape for neuroendocrine neoplasms (NENs) has evolved substantially over the past decade, immunotherapy has been unexplored in NENs until recently. Checkpoint inhibitors such as anti-PD-1 and anti-CTLA-4 agents, bi-specific tumor-targeting antibodies, and chimeric antigen receptor (CAR) T-cell therapy are examples of treatments that have demonstrated efficacy in other cancers and have recently been investigated in NENs. This review examines the immune landscape of NENs in detail, summarizes recent clinical study results, and discusses potential future directions for immunotherapy.
Collapse
Affiliation(s)
- Taymeyah Al-Toubah
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Jonathan Strosberg
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
29
|
Zhang WH, Wang WQ, Han X, Gao HL, Xu SS, Li S, Li TJ, Xu HX, Li H, Ye LY, Lin X, Wu CT, Long J, Yu XJ, Liu L. Infiltrating pattern and prognostic value of tertiary lymphoid structures in resected non-functional pancreatic neuroendocrine tumors. J Immunother Cancer 2020; 8:e001188. [PMID: 33055204 PMCID: PMC7559054 DOI: 10.1136/jitc-2020-001188] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are associated with favorable survival and play a critical role in most solid tumors. However, investigations of TLS are lacking in patients with grade 1 or grade 2 (G1/G2) non-functional pancreatic neuroendocrine tumors (NF-PanNETs). This study aimed to investigate the presence, cellular composition, association with tumor-infiltrating immune cells, and prognostic value of TLS in G1/G2 NF-PanNETs. METHODS Tumor tissues from a 182-patient Fudan cohort and a 125-patient external validation set were assessed by H&E staining, immunohistochemistry, and/or multispectral fluorescent immunohistochemistry. RESULTS TLS were identified in more than one-third of patients with G1/G2 NF-PanNETs and were located peritumorally, either just outside the tumor tissue or in the stromal area. TLS were mainly composed of B-cell follicles with germinal centers and T-cell zones with dendritic cells. Kaplan-Meier analyses showed that the presence of TLS correlated with both longer recurrence-free survival (RFS, p<0.001) and overall survival (OS, p=0.001), but the number of TLS had no prognostic significance. Multivariate Cox-regression analyses demonstrated that the presence of TLS, WHO classification, and 8th edition American Joint Committee on Cancer (AJCC8th) tumor-node-metastasis (TNM) stage were independent prognostic factors for RFS (p=0.004, p=0.001, and p<0.001, respectively) and OS (p=0.009, p=0.008, and p=0.019, respectively). These results were confirmed using an external validation set. Finally, a nomogram incorporating the presence of TLS was constructed to predict the probability of 5-year RFS of resected G1/G2 NF-PanNETs, which improved on the current WHO classification and AJCC8th TNM stage. CONCLUSIONS The presence of TLS is an independent and favorable predictor of resected G1/G2 NF-PanNETs, which may play a role in cancer immunobiology.
Collapse
Affiliation(s)
- Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuai-Shuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Long
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Rindi G, Wiedenmann B. Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine. Nat Rev Endocrinol 2020; 16:590-607. [PMID: 32839579 DOI: 10.1038/s41574-020-0391-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Over the past 5 years, a number of notable research advances have been made in the field of neuroendocrine cancer, specifically with regard to neuroendocrine cancer of the gastrointestinal tract. The aim of this Review is to provide an update on current knowledge that has proven effective for the clinical management of patients with these tumours. For example, for the first time in the tubular gastrointestinal tract, well-differentiated high-grade (grade 3) tumours and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are defined in the WHO classification. This novel classification enables efficient identification of the most aggressive well-differentiated neuroendocrine tumours and helps in defining the degree of aggressiveness of MiNENs. The Review also discusses updates to epidemiology, cell biology (including vesicle-specific components) and the as-yet-unresolved complex genetic background that varies according to site and differentiation status. The Review summarizes novel diagnostic instruments, including molecules associated with the secretory machinery, novel radiological approaches (including pattern recognition techniques), novel PET tracers and liquid biopsy combined with DNA or RNA assays. Surgery remains the treatment mainstay; however, peptide receptor radionuclide therapy with novel radioligands and new emerging medical therapies (including vaccination and immunotherapy) are evolving and being tested in clinical trials, which are summarized and critically reviewed here.
Collapse
Affiliation(s)
- Guido Rindi
- Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité Mitte, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
31
|
Zhang WH, Wang WQ, Gao HL, Xu SS, Li S, Li TJ, Han X, Xu HX, Li H, Jiang W, Ye LY, Lin X, Wu CT, Yu XJ, Liu L. Tumor-Infiltrating Neutrophils Predict Poor Survival of Non-Functional Pancreatic Neuroendocrine Tumor. J Clin Endocrinol Metab 2020; 105:dgaa196. [PMID: 32285127 DOI: 10.1210/clinem/dgaa196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study retrospectively characterized the immune infiltrating profile in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs). METHODS Tumor tissues from the 109-patient Fudan cohort and a 73-patient external validation set were evaluated by immunohistochemistry for 9 immune cell types: tumor-infiltrating neutrophils (TINs), tumor-associated macrophages (TAMs), CD11c+ dendritic cells, anti-NCR1+ natural killer (NK) cells, CD4+ and CD8+ T cells, CD45RO+ memory T cells, FOXP3+ regulatory T cells (Tregs), and CD20+ B cells. RESULTS TINs were primarily distributed in the intratumoral area, dendritic cells and NK cells were scattered evenly in intratumoral and stromal areas, and Tregs were rarely detected. The remaining 5 cell types were primarily present in peritumoral stroma. Total TINs (P < .001) and TAMs (P = .002) increased as NF-PanNET grade rose. Kaplan-Meier analyses showed that high intratumoral TINs, total TAMs, and stromal CD4+ T-cell infiltration correlated with shorter recurrence-free survival (RFS, P = .010, P = .027, and P = .035, respectively) and overall survival (OS, P = .017, P = .029, and P = .045, respectively). Additionally, high intratumoral CD8+ T cell infiltration correlated with prolonged RFS (P = .039). Multivariate Cox regression demonstrated that intratumoral TINs, World Health Organization (WHO) classification, and eighth edition of the American Joint Committee on Cancer tumor-node-metastasis staging system (AJCC8th TNM) were independent factors for RFS (P = .043, P = .023, and P = .029, respectively), whereas intratumoral TINs and WHO classification were independent factors for OS (P = .010 and P = .007, respectively). Furthermore, the combination of TINs, WHO classification, and AJCC8th TNM remarkably improved prognostic accuracy for RFS. These results have been verified in the external validation set. CONCLUSION Intratumoral TINs are an independent and unfavorable predictor of postoperative NF-PanNETs. A combination of TINs, WHO classification, and AJCC8th TNM could improve prognostic accuracy for RFS.
Collapse
Affiliation(s)
- Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuai-Shuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wang Jiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Hofland J, Kaltsas G, de Herder WW. Advances in the Diagnosis and Management of Well-Differentiated Neuroendocrine Neoplasms. Endocr Rev 2020; 41:bnz004. [PMID: 31555796 PMCID: PMC7080342 DOI: 10.1210/endrev/bnz004] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Neuroendocrine neoplasms constitute a diverse group of tumors that derive from the sensory and secretory neuroendocrine cells and predominantly arise within the pulmonary and gastrointestinal tracts. The majority of these neoplasms have a well-differentiated grade and are termed neuroendocrine tumors (NETs). This subgroup is characterized by limited proliferation and patients affected by these tumors carry a good to moderate prognosis. A substantial subset of patients presenting with a NET suffer from the consequences of endocrine syndromes as a result of the excessive secretion of amines or peptide hormones, which can impair their quality of life and prognosis. Over the past 15 years, critical developments in tumor grading, diagnostic biomarkers, radionuclide imaging, randomized controlled drug trials, evidence-based guidelines, and superior prognostic outcomes have substantially altered the field of NET care. Here, we review the relevant advances to clinical practice that have significantly upgraded our approach to NET patients, both in diagnostic and in therapeutic options.
Collapse
Affiliation(s)
- Johannes Hofland
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus MC Cancer Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gregory Kaltsas
- 1st Department of Propaupedic Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Wouter W de Herder
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus MC Cancer Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Clift AK, Kidd M, Bodei L, Toumpanakis C, Baum RP, Oberg K, Modlin IM, Frilling A. Neuroendocrine Neoplasms of the Small Bowel and Pancreas. Neuroendocrinology 2020; 110:444-476. [PMID: 31557758 PMCID: PMC9175236 DOI: 10.1159/000503721] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
The traditionally promulgated perspectives of neuroendocrine neoplasms (NEN) as rare, indolent tumours are blunt and have been outdated for the last 2 decades. Clear increments in their incidence over the past decades render them increasingly clinically relevant, and at initial diagnosis many present with nodal and/or distant metastases (notably hepatic). The molecular pathogenesis of these tumours is increasingly yet incompletely understood. Those arising from the small bowel (SB) or pancreas typically occur sporadically; the latter may occur within the context of hereditary tumour predisposition syndromes. NENs can also be associated with endocrinopathy of hormonal hypersecretion. Tangible advances in the development of novel biomarkers, functional imaging modalities and therapy are especially applicable to this sub-set of tumours. The management of SB and pancreatic neuroendocrine tumours (NET) may be challenging, and often comprises a multidisciplinary approach wherein surgical, medical, interventional radiological and radiotherapeutic modalities are implemented. This review provides a comprehensive overview of the epidemiology, pathophysiology, diagnosis and treatment of SB and pancreatic NETs. Moreover, we provide an outlook of the future in these tumour types which will include the development of precision oncology frameworks for individualised therapy, multi-analyte predictive biomarkers, artificial intelligence-derived clinical decision support tools and elucidation of the role of the microbiome in NEN development and clinical behaviour.
Collapse
Affiliation(s)
- Ashley Kieran Clift
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Mark Kidd
- Wren Laboratories, Branford, Connecticut, USA
| | - Lisa Bodei
- Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Centre, New York, New York, USA
| | - Christos Toumpanakis
- Centre for Gastroenterology/Neuroendocrine Tumour Unit, Royal Free Hospital, London, United Kingdom
| | - Richard P Baum
- Theranostics Centre for Molecular Radiotherapy and Precision Oncology, Zentralklinik, Bad Berka, Germany
| | - Kjell Oberg
- Department of Endocrine Oncology, Uppsala University, Uppsala, Sweden
| | - Irvin M Modlin
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrea Frilling
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom,
| |
Collapse
|
34
|
Gastroenteropancreatic neuroendocrine neoplasms and inflammation: A complex cross-talk with relevant clinical implications. Crit Rev Oncol Hematol 2019; 146:102840. [PMID: 31918344 DOI: 10.1016/j.critrevonc.2019.102840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a group of tumors originating from the neuroendocrine system. They mainly occur in the digestive system and the respiratory tract. It is well-know a strict interaction between neuroendocrine system and inflammation, which can play an important role in NEN carcinogenesis. Inflammatory mediators, which are produced by the tumor microenvironment, can favor cancer induction and progression, and can promote immune editing. On the other hand, a balanced immune system represents a relevant step in cancer prevention through the elimination of dysplastic and cancer cells. Therefore, an inflammatory response may be both pro- and anti-tumorigenic. In this review, we provide an overview concerning the complex interplay between inflammation and gastroenteropancreatic NENs, focusing on the tumorigenesis and clinical implications in these tumors.
Collapse
|
35
|
Zhang WH, Wang WQ, Gao HL, Yu XJ, Liu L. The tumor immune microenvironment in gastroenteropancreatic neuroendocrine neoplasms. Biochim Biophys Acta Rev Cancer 2019; 1872:188311. [PMID: 31442475 DOI: 10.1016/j.bbcan.2019.188311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a group of rare tumors that are increasing in prevalence. The complex tumor immune microenvironment (TIME) plays an important role in tumor development and the response to immunotherapy but is poorly understood. In this review, the components of the TIME are described in detail, including discussion about infiltrating immune cells, the immune checkpoint system, the cytokine and chemokine milieu, and immunomodulatory factors. Moreover, a comparison between TIMEs among different types of GEP-NENs and the interplay among the TIME, tumor cells, and the stromal microenvironment is described. Novel treatment options for GEP-NENs and potential biomarkers for the immune response are also characterized. We provide a comprehensive generalized review of the TIME that can inform GEP-NEN treatment strategies.
Collapse
Affiliation(s)
- Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Taïeb D, Jha A, Treglia G, Pacak K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer 2019; 26:R627-R652. [PMID: 31561209 PMCID: PMC7002202 DOI: 10.1530/erc-19-0165] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
In recent years, advancement in genetics has profoundly helped to gain a more comprehensive molecular, pathogenic, and prognostic picture of pheochromocytomas and paragangliomas (PPGLs). Newly discovered molecular targets, particularly those that target cell membranes or signaling pathways have helped move nuclear medicine in the forefront of PPGL precision medicine. This is mainly based on the introduction and increasing experience of various PET radiopharmaceuticals across PPGL genotypes quickly followed by implementation of novel radiotherapies and revised imaging algorithms. Particularly, 68Ga-labeled-SSAs have shown excellent results in the diagnosis and staging of PPGLs and in selecting patients for PRRT as a potential alternative to 123/131I-MIBG theranostics. PRRT using 90Y/177Lu-DOTA-SSAs has shown promise for treatment of PPGLs with improvement of clinical symptoms and/or disease control. However, more well-designed prospective studies are required to confirm these findings, in order to fully exploit PRRT's antitumoral properties to obtain the final FDA approval. Such an approval has recently been obtained for high-specific-activity 131I-MIBG for inoperable/metastatic PPGL. The increasing experience and encouraging preliminary results of these radiotherapeutic approaches in PPGLs now raises an important question of how to further integrate them into PPGL management (e.g. monotherapy or in combination with other systemic therapies), carefully taking into account the PPGLs locations, genotypes, and growth rate. Thus, targeted radionuclide therapy (TRT) should preferably be performed at specialized centers with an experienced interdisciplinary team. Future perspectives include the introduction of dosimetry and biomarkers for therapeutic responses for more individualized treatment plans, α-emitting isotopes, and the combination of TRT with other systemic therapies.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Treglia
- Clinic of Nuclear Medicine and PET/CT Center, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
- Health Technology Assessment Unit, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Milione M, Miceli R, Barretta F, Pellegrinelli A, Spaggiari P, Tagliabue G, Centonze G, Paolino C, Mangogna A, Kankava K, Pusceddu S, Giacomelli L, Corti A, Cotsoglou C, Mazzaferro V, Sozzi G, de Braud F, Pruneri G, Anichini A. Microenvironment and tumor inflammatory features improve prognostic prediction in gastro-entero-pancreatic neuroendocrine neoplasms. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:217-226. [PMID: 31136102 PMCID: PMC6817832 DOI: 10.1002/cjp2.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022]
Abstract
Microenvironment‐related immune and inflammatory markers, when combined with established Ki‐67 and morphology parameters, can improve prognostic prediction in gastro‐entero‐pancreatic neuroendocrine neoplasms (GEP‐NENs). Therefore, we evaluated the prognostic value of microenvironment and tumor inflammatory features (MoTIFs) in GEP‐NENs. For this purpose, formalin‐fixed paraffin‐embedded tissue sections from 350 patients were profiled by immunohistochemistry for immune, inflammatory, angiogenesis, proliferation, NEN‐, and fibroblast‐related markers. A total of 314 patients were used to generate overall survival (OS) and disease‐free survival (DFS) MoTIFs prognostic indices (PIs). PIs and additional variables were assessed using Cox models to generate nomograms for predicting 5‐year OS and DFS. A total of 36 patients were used for external validation of PIs and nomograms' prognostic segregations. From our analysis, G1/G2 versus G3 GEP‐NENs showed phenotypic divergence with immune‐inflammatory markers. HLA, CD3, CD8, and PD‐1/PD‐L1 IHC expression separated G3 into two sub‐categories with high versus low adaptive immunity‐related features. MoTIFs PI for OS based on COX‐2Tumor(T) > 4, PD‐1Stromal(S) > 0, CD8S < 1, and HLA‐IS < 1 was associated with worst survival (hazard ratio [HR] 2.50; 95% confidence interval [CI], 2.12–2.96; p < 0.0001). MoTIFs PI for DFS was based on COX‐2T > 4, PD‐1S > 4, HLA‐IS < 1, HLA‐IT < 2, HLA‐DRS < 6 (HR 1.77; 95% CI, 1.58–1.99; p < 0.0001). Two nomograms were developed including morphology (HR 4.83; 95% CI, 2.30–10.15; p < 0.001) and Ki‐67 (HR 11.32; 95% CI, 5.28–24.24; p < 0.001) for OS, and morphology (PI = 0: HR 10.23; 95% CI, 5.67–18.47; PI = 5: HR 2.87; 95% CI, 1.21–6.81; p < 0.001) and MoTIFs PI for DFS in well‐differentiated GEP‐NENs (HR 6.21; 95% CI, 2.52–13.31; p < 0.001). We conclude that G1/G2 to G3 transition is associated with immune‐inflammatory profile changes; in fact, MoTIFs combined with morphology and Ki‐67 improve 5‐year DFS prediction in GEP‐NENs. The immune context of a subset of G3 poorly differentiated tumors is consistent with activation of adaptive immunity, suggesting a potential for responsiveness to immunotherapy targeting immune checkpoints.
Collapse
Affiliation(s)
- Massimo Milione
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosalba Miceli
- Medical Statistics, Biometry and Bioinformatics, Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Barretta
- Medical Statistics, Biometry and Bioinformatics, Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Pellegrinelli
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy.,Department of Pathology, ASST Franciacorta, Mellino Mellini Hospital, Chiari, Brescia, Italy
| | - Paola Spaggiari
- Department of Pathology, Cancer Center Humanitas Research Hospital, Milan, Italy
| | - Giovanna Tagliabue
- Cancer Registry Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Paolino
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy.,Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Unit of Pathology, Clinical Department of Medical, Surgical and Health Science, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - Ketevani Kankava
- Teaching, Scientific and Diagnostic Pathology Laboratory, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Giacomelli
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.,Polistudium SRL, Milan, Italy
| | | | - Christian Cotsoglou
- Hepato-Bilio-Pancreatic Surgery and Liver Transplantation, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Mazzaferro
- Hepato-Bilio-Pancreatic Surgery and Liver Transplantation, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Sozzi
- Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy.,School of Medicine, University of Milan, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy.,School of Medicine, University of Milan, Milan, Italy
| | - Andrea Anichini
- Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
38
|
Passarelli A, Tucci M, Mannavola F, Felici C, Silvestris F. The metabolic milieu in melanoma: Role of immune suppression by CD73/adenosine. Tumour Biol 2019; 42:1010428319837138. [PMID: 30957676 DOI: 10.1177/1010428319837138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mechanisms leading to immune escape of melanoma have been largely investigated in relation to its tumour immunogenicity and features of inflamed microenvironment that promote the immune suppression during the disease progression. These findings have recently led to advantages in terms of immunotherapy-based approaches as rationale for overcoming the immune escape. However, besides immune checkpoints, other mechanisms including the adenosine produced by ectonucleotidases CD39 and CD73 contribute to the melanoma progression due to the immunosuppression induced by the tumour milieu. On the other hand, CD73 has recently emerged as both promising therapeutic target and unfavourable prognostic biomarker. Here, we review the major mechanisms of immune escape activated by the CD39/CD73/adenosine pathway in melanoma and focus potential therapeutic strategies based on the control of CD39/CD73 downstream adenosine receptor signalling. These evidences provide the basis for translational strategies of immune combination, while CD73 would serve as potential prognostic biomarker in metastatic melanoma.
Collapse
Affiliation(s)
- Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
39
|
Cives M, Pelle' E, Quaresmini D, Rizzo FM, Tucci M, Silvestris F. The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology 2019; 109:83-99. [PMID: 30699437 DOI: 10.1159/000497355] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
Neuroendocrine tumors (NETs) include a heterogeneous group of malignancies arising in the diffuse neuroendocrine system and characterized by indolent growth. Complex interactions take place among the cellular components of the microenvironment of these tumors, and the recognition of the molecular mediators of their interplay and cross talk is crucial to discover novel therapeutic targets. NET cells overexpress a plethora of proangiogenic molecules including vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, semaphorins, and angiopoietins that promote both recruitment and proliferation of endothelial cell precursors, thus resulting among the most vascularized cancers with a microvessel density 10-fold higher than epithelial tumors. Also, NETs operate multifaceted interactions with stromal cells, both at local and distant sites, and whether their paracrine secretion of serotonin, connective tissue growth factor, and transforming growth factor β primarily drives the fibroblast activation to enhance the tumor proliferation, on the other side NET-derived profibrotic factors accelerate the extracellular matrix remodeling and contribute to heart valves and/or mesenteric fibrosis development, namely, major complications of functioning NETs. However, at present, little is known on the immune landscape of NETs, but accumulating evidence shows that tumor-infiltrating neutrophils, mast cells, and/or macrophages concur to promote the neoangiogenic switch of these tumors by either direct or indirect mechanisms. On the other hand, immune checkpoint molecules are heterogeneously expressed in NETs' surrounding cells, and it is unclear whether or not tumor-infiltrating lymphocytes are antitumor armed within the microenvironment, given their low mutational load. Here, we review the current knowledge on both gastroenteropancreatic and pulmonary NETs' microenvironment as well as both established and innovative treatments aimed at targeting the tumor-host interplay.
Collapse
Affiliation(s)
- Mauro Cives
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Pelle'
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Quaresmini
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Francesca Maria Rizzo
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy,
| |
Collapse
|