1
|
Zhai P, Zhang H, Li Q, Hu Z, Zhang H, Yang M, Xing C, Guo Y. SETBP1 activation upon MDM4-enhanced ubiquitination of NR3C1 triggers dissemination of colorectal cancer cells. Clin Exp Metastasis 2024; 41:747-764. [PMID: 38796806 DOI: 10.1007/s10585-024-10294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Colorectal cancer (CRC) presents a growing concern globally, marked by its escalating incidence and mortality rates, thus imposing a substantial health burden. This investigation delves into the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in CRC metastasis and explores the associated mechanism. Through a comprehensive bioinformatics analysis, NR3C1 emerged as a gene with diminished expression levels in CRC. This finding was corroborated by observations of a low-expression pattern of NR3C1 in both CRC tissues and cells. Furthermore, experiments involving NR3C1 knockdown revealed an exacerbation of proliferation, migration, and invasion of CRC cells in vitro. Subsequent assessments in mouse xenograft tumor models, established by injecting human HCT116 cells either through the tail vein or at the cecum termini, demonstrated a reduction in tumor metastasis to the lung and liver, respectively, upon NR3C1 knockdown. Functionally, NR3C1 (glucocorticoid receptor) suppressed SET binding protein 1 (SETBP1) transcription by binding to its promoter region. Notably, mouse double minute 4 (MDM4) was identified as an upstream regulator of NR3C1, orchestrating its downregulation via ubiquitination-dependent proteasomal degradation. Further investigations unveiled that SETBP1 knockdown suppressed migration and invasion, and epithelial to mesenchymal transition of CRC cells, consequently impeding in vivo metastasis in murine models. Conversely, upregulation of MDM4 exacerbated the metastatic phenotype of CRC cells, a propensity mitigated upon additional upregulation of NR3C1. In summary, this study elucidates a cascade wherein MDM4-mediated ubiquitination of NR3C1 enables the transcriptional activation of SETBP1, thereby propelling the dissemination of CRC cells.
Collapse
Affiliation(s)
- Peng Zhai
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, Jiangsu, People's Republic of China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China
- Department of Gerneral Surgery, The Second Afilliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Zhifeng Hu
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Huaguo Zhang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Yunhu Guo
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Anastasopoulou S, Swann G, Andres-Jensen L, Attarbaschi A, Barzilai-Birenboim S, Erdelyi DJ, Escherich G, Hamadeh L, Harila A, Lopez-Lopez E, McGowan S, Möricke A, Putti C, Sagi JC, Schmiegelow K, Ullrich NJ, van der Sluis IM, Wahid QUA, Winick N, Sramkova L, Zalcberg Y, Zapotocka E, Bhojwani D, Halsey C. Severe steroid-related neuropsychiatric symptoms during paediatric acute lymphoblastic leukaemia therapy-An observational Ponte di Legno Toxicity Working Group Study. Br J Haematol 2024; 205:1450-1459. [PMID: 38924051 DOI: 10.1111/bjh.19610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Steroids are a mainstay in the treatment of acute lymphoblastic leukaemia (ALL) in children and adolescents; however, their use can cause clinically significant steroid-related neuropsychiatric symptoms (SRNS). As current knowledge on SRNS during ALL treatment is limited, we mapped the phenotypes, occurrence and treatment strategies using a database created by the international Ponte di Legno Neurotoxicity Working Group including data on toxicity in the central nervous system (CNS) in patients treated with frontline ALL protocols between 2000 and 2017. Ninety-four of 1813 patients in the CNS toxicity database (5.2%) experienced clinically significant SRNS with two peaks: one during induction and one during intensification phase. Dexamethasone was implicated in 86% of SRNS episodes. The most common symptoms were psychosis (52%), agitation (44%) and aggression (31%). Pharmacological treatment, mainly antipsychotics and benzodiazepines, was given to 87% of patients while 38% were hospitalised due to their symptoms. Recurrence of symptoms was reported in 29% of patients and two previously healthy patients required ongoing pharmacological treatment at the last follow up. Awareness of SRNS during ALL treatment and recommendation on treatment strategies merit further studies and consensus.
Collapse
Affiliation(s)
- Stavroula Anastasopoulou
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Gemma Swann
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Liv Andres-Jensen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Shlomit Barzilai-Birenboim
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel J Erdelyi
- Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Gabriele Escherich
- University Medical Centre Hamburg-Eppendorf, Clinic of Paediatric Haematology and Oncology, Hamburg, Germany
| | - Lina Hamadeh
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Arja Harila
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Elixabet Lopez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Pediatric Oncology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Sheena McGowan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Anja Möricke
- Department of Pediatrics I, Pediatric Hematology/Oncology, ALL-BFM Study Group, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Caterina Putti
- Department of Woman and Child Health, Clinic of Pediatric Haematology-Oncology, University of Padova, Padova, Italy
| | - Judit C Sagi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Qurat-Ul-Ain Wahid
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Naomi Winick
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lucie Sramkova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Yair Zalcberg
- Maccabi Healthcare Services and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ester Zapotocka
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Deepa Bhojwani
- Children's Hospital Los Angeles, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, California, Los Angeles, USA
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
3
|
Song J, Yang K, Gajendran B, Varier KM, Li W, Liu Q, Rao Q, Hang Y, Shen X, Liu S, Huang L, Xu M, Li Y. A New Indole Derivative, LWX-473, Overcomes Glucocorticoid Resistance in Jurkat Cells by Activating Mediators of Apoptosis. FRONT BIOSCI-LANDMRK 2024; 29:163. [PMID: 38682179 DOI: 10.31083/j.fbl2904163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Glucocorticoids (GCs) are commonly used as the primary chemotherapy for lymphoid malignancies, including acute lymphoblastic leukemia (ALL). However, the development of GC resistance limits their prolonged use. METHODS In this study, we investigated the potential of a newly synthesized indole derivative called LWX-473, in combination with the classic GC Dexamethasone (DEX), to enhance the responsiveness of Jurkat cells to GC treatment. RESULTS Our findings demonstrate that LWX-473 alone or in combination with DEX significantly improves GC-induced cell apoptosis and arrests the cell cycle in the G1 phase. Notably, the combination of LWX-473 and DEX exhibits superior efficacy in killing Jurkat cells compared to LWX-473 alone. Importantly, this compound demonstrates reduced toxicity towards normal cells. CONCLUSIONS Our study reveals that LWX-473 has the ability to restore the sensitivity of Jurkat cells to DEX by modulating the mitochondrial membrane potential, activating the expression of DEX-liganded glucocorticoid receptor (GR), and inhibiting key molecules in the JAK/STAT signaling pathway. These findings suggest that LWX-473 could be a potential therapeutic agent for overcoming GC resistance in lymphoid malignancies.
Collapse
Affiliation(s)
- Jingrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Basic Medicine, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Kun Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, Guizhou, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Krishnapriya M Varier
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Wenxue Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Qin Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Qing Rao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Yubing Hang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Xiangchun Shen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Sheng Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Lei Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Mei Xu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| |
Collapse
|
4
|
Zhai P, Zhang H, Li Q, Yang M, Guo Y, Xing C. DNMT1-mediated NR3C1 DNA methylation enables transcription activation of connexin40 and augments angiogenesis during colorectal cancer progression. Gene 2024; 892:147887. [PMID: 37813207 DOI: 10.1016/j.gene.2023.147887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer (CRC) continues to be a major contributor to cancer-related mortality. Connexin 40 (CX40) is one of the major gap junction proteins with the capacity in regulating cell-to-cell communication and angiogenesis. This study investigates its role in angiogenesis in CRC and explores the regulatory mechanism. Aberrant high CX40 expression was detected in tumor tissues, which was associated with a poor prognosis in CRC patients. Elevated CX40 expression was detected in CRC cell lines as well. Conditioned medium of SW620 and HT29 cell lines was used to induce angiogenesis of human umbilical vein endothelial cells (HUVECs). CX40 knockdown in CRC cells reduced angiogenesis and mobility of HUVECs and blocked CRC cell proliferation, mobility, and survival. Following bioinformatics predictions, we validated by chromatin immunoprecipitation and luciferase assays that nuclear receptor subfamily 3 group C member 1 (NR3C1), which was poorly expressed in CRC samples, suppressed CX40 transcription. The poor NR3C1 expression was attributive to DNA hypermethylation induced by DNA methyltransferase 1 (DNMT1). Restoration of NR3C1 suppressed the pro-angiogenic effect, proliferation and survival, and tumorigenic activity of CRC cells, which were, however, rescued by CX40 upregulation. Collectively, this study demonstrates that transcription activation of CX40 upon DNMT1-mediated NR3C1 DNA methylation potentiates angiogenesis in CRC.
Collapse
Affiliation(s)
- Peng Zhai
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China; Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu, PR China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China; Department of Gerneral Surgery, The Second Afilliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, PR China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Yunhu Guo
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an 223300, Jiangsu, PR China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, PR China.
| |
Collapse
|
5
|
Milara J, Morell A, Roger I, Montero P, Cortijo J. Mechanisms underlying corticosteroid resistance in patients with asthma: a review of current knowledge. Expert Rev Respir Med 2023; 17:701-715. [PMID: 37658478 DOI: 10.1080/17476348.2023.2255124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Corticosteroids are the most cost-effective anti-inflammatory drugs available for the treatment of asthma. Despite their effectiveness, several asthmatic patients have corticosteroid resistance or insensitivity and exhibit a poor response. Corticosteroid insensitivity implies a poor prognosis due to challenges in finding alternative therapeutic options for asthma. AREAS COVERED In this review, we describe asthma phenotypes and endotypes, as well as their differential responsiveness to corticosteroids. In addition, we describe the mechanism of action of corticosteroids underlying their regulation of the expression of glucocorticoid receptors (GRs) and their anti-inflammatory effects. Furthermore, we summarize the mechanistic evidence underlying corticosteroid-insensitive asthma, which is mainly related to changes in GR gene expression, structure, and post-transcriptional modifications. Finally, various pharmacological strategies designed to reverse corticosteroid insensitivity are discussed. EXPERT OPINION Corticosteroid insensitivity is influenced by the asthma phenotype, endotype, and severity, and serves as an indication for biological therapy. The molecular mechanisms underlying corticosteroid-insensitive asthma have been used to develop targeted therapeutic strategies. However, the lack of clinical trials prevents the clinical application of these treatments.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Anselm Morell
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
6
|
Ryu JW, Shin HY, Kim HS, Han GH, Kim JW, Lee HN, Cho H, Chung JY, Kim JH. Prognostic value of β-Arrestins in combination with glucocorticoid receptor in epithelial ovarian cancer. Front Oncol 2023; 13:1104521. [PMID: 36969037 PMCID: PMC10036403 DOI: 10.3389/fonc.2023.1104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Hormones may be key factors driving cancer development, and epidemiological findings suggest that steroid hormones play a crucial role in ovarian tumorigenesis. We demonstrated that high glucocorticoid receptor (GR) expression is associated with a poor prognosis of epithelial ovarian cancer. Recent studies have shown that the GR affects β-arrestin expression, and vice versa. Hence, we assessed the clinical significance of β-arrestin expression in ovarian cancer and determined whether β-arrestin and the GR synergistically have clinical significance and value as prognostic factors. We evaluated the expression of β-arrestins 1 and 2 and the GR in 169 patients with primary epithelial ovarian cancer using immunohistochemistry. The staining intensity was graded on a scale of 0-4 and multiplied by the percentage of positive cells. We divided the samples into two categories based on the expression levels. β-arrestin 1 and GR expression showed a moderate correlation, whereas β-arrestin 2 and GR expression did not demonstrate any correlation. Patients with high β-arrestin 1 and 2 expression exhibited improved survival rates, whereas patients with low GR expression showed a better survival rate. Patients with high β-arrestin 1 and low GR levels had the best prognosis among all groups. β-arrestin is highly expressed in ovarian cancer, suggesting its potential as a diagnostic and therapeutic biomarker. The combination of β-arrestin and GR demonstrated greater predictive prognostic power than GR expression alone, implicating another possible role in prognostication.
Collapse
Affiliation(s)
- Ji-Won Ryu
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Sun Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gwan Hee Han
- Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hae-Nam Lee
- Department of Obstetrics and Gynecology, Catholic University of Korea Bucheon St. Mary’s Hospital, Bucheon, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Obrador E, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. Survival Mechanisms of Metastatic Melanoma Cells: The Link between Glucocorticoids and the Nrf2-Dependent Antioxidant Defense System. Cells 2023; 12:cells12030418. [PMID: 36766760 PMCID: PMC9913432 DOI: 10.3390/cells12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Circulating glucocorticoids increase during stress. Chronic stress, characterized by a sustained increase in serum levels of cortisol, has been associated in different cases with an increased risk of cancer and a worse prognosis. Glucocorticoids can promote gluconeogenesis, mobilization of amino acids, fat breakdown, and impair the body's immune response. Therefore, conditions that may favor cancer growth and the acquisition of radio- and chemo-resistance. We found that glucocorticoid receptor knockdown diminishes the antioxidant protection of murine B16-F10 (highly metastatic) melanoma cells, thus leading to a drastic decrease in their survival during interaction with the vascular endothelium. The BRAFV600E mutation is the most commonly observed in melanoma patients. Recent studies revealed that VMF/PLX40-32 (vemurafenib, a selective inhibitor of mutant BRAFV600E) increases mitochondrial respiration and reactive oxygen species (ROS) production in BRAFV600E human melanoma cell lines. Early-stage cancer cells lacking Nrf2 generate high ROS levels and exhibit a senescence-like growth arrest. Thus, it is likely that a glucocorticoid receptor antagonist (RU486) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated melanoma. In fact, during early progression of skin melanoma metastases, RU486 and VMF induced metastases regression. However, treatment at an advanced stage of growth found resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in different human models). Moreover, melanoma resistance was decreased if AKT and NF-κB signaling pathways were blocked. These findings highlight mechanisms by which metastatic melanoma cells adapt to survive and could help in the development of most effective therapeutic strategies.
Collapse
Affiliation(s)
- Elena Obrador
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| | - Rosario Salvador-Palmer
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | - María Oriol-Caballo
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | | | - José M. Estrela
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| |
Collapse
|
8
|
Khalighi S, Joseph P, Babu D, Singh S, LaFramboise T, Guda K, Varadan V. SYSMut: decoding the functional significance of rare somatic mutations in cancer. Brief Bioinform 2022; 23:bbac280. [PMID: 35804437 PMCID: PMC9618165 DOI: 10.1093/bib/bbac280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Current tailored-therapy efforts in cancer are largely focused on a small number of highly recurrently mutated driver genes but therapeutic targeting of these oncogenes remains challenging. However, the vast number of genes mutated infrequently across cancers has received less attention, in part, due to a lack of understanding of their biological significance. We present SYSMut, an extendable systems biology platform that can robustly infer the biologic consequences of somatic mutations by integrating routine multiomics profiles in primary tumors. We establish SYSMut's improved performance vis-à-vis state-of-the-art driver gene identification methodologies by recapitulating the functional impact of known driver genes, while additionally identifying novel functionally impactful mutated genes across 29 cancers. Subsequent application of SYSMut on low-frequency gene mutations in head and neck squamous cell (HNSC) cancers, followed by molecular and pharmacogenetic validation, revealed the lipidogenic network as a novel therapeutic vulnerability in aggressive HNSC cancers. SYSMut is thus a robust scalable framework that enables the discovery of new targetable avenues in cancer.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center
- Department of Genetics and genome Sciences
| | - Peronne Joseph
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center
| | - Deepak Babu
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center
| | - Salendra Singh
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center
| | | | - Kishore Guda
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center
- Digestive Health Research Institute
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH-44106 U.S.A
| | - Vinay Varadan
- Division of General Medical Sciences-Oncology, Case Comprehensive Cancer Center
| |
Collapse
|
9
|
Risk of diabetes and the impact on preexisting diabetes in lymphoma patients treated with steroid-containing immunochemotherapy. Blood Adv 2022; 6:4427-4435. [PMID: 35679481 DOI: 10.1182/bloodadvances.2021006859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/29/2022] [Indexed: 01/08/2023] Open
Abstract
First-line treatments for lymphomas often include high doses of prednisolone, but the risks of new-onset diabetes mellitus (DM) or worsening of pre-existing DM following treatment with cyclic high dose corticosteroids is unknown. This cohort study matched non-Hodgkin lymphoma (NHL) patients treated with steroid-containing immunochemotherapy, i.e. R-CHOP(-like) and R-CVP, between 2002 and 2015 to individuals from the Danish population to investigate the risks of new-onset DM. For patients with pre-existing DM, the risks of insulin dependency and anthracycline-associated cardiovascular diseases (CVD) were assessed. In total, 5,672 NHL patients and 28,360 matched comparators were included. Time-varying incidence rate ratios (IRRs) showed increased risk of DM in the first year after treatment compared to matched comparators with the highest IRR being 2.7. The absolute risks were higher among patients in the first two years, but the difference was clinically insignificant. NHL patients with pre-existing DM had increased risks of insulin prescriptions with 0.5-, 5-, and 10-year cumulative risk differences of insulin treatment of 15.3, 11.8, and 6.0 percentage units as compared to the DM comparators. In a landmark analysis at one year, DM patients with lymphoma had decreased risks of insulin dependency compared to comparators. Time-varying IRRs showed a higher CVD risk for NHL patients with DM as compared to comparators in the first year after treatment. NHL patients treated with steroid-containing immunochemotherapy regimens have a clinically insignificant increased risk of DM in the first year following treatment, and patients with pre-existing DM have a temporary increased risk of insulin prescriptions and CVD.
Collapse
|
10
|
The long noncoding RNA HOTAIRM1 controlled by AML1 enhances glucocorticoid resistance by activating RHOA/ROCK1 pathway through suppressing ARHGAP18. Cell Death Dis 2021; 12:702. [PMID: 34262023 PMCID: PMC8280127 DOI: 10.1038/s41419-021-03982-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Acquired resistance to glucocorticoids (GCs) is an obstacle to the effective treatment of leukemia, but the molecular mechanisms of steroid insensitivity have not been fully elucidated. In this study, we established an acquired GC-resistant leukemia cell model and found a long noncoding RNA, HOTAIRM1, was overexpressed in the resistant cells by transcriptional profiling, and was higher expressed in patients with poor prognosis. The whole-genome-binding sites of HOTAIRM1 were determined by ChIRP-seq (chromatin isolation by RNA purification combined with sequencing) analysis. Further study determined that HOTAIRM1 bound to the transcriptional inhibitory region of ARHGAP18 and repressed the expression of ARHGAP18, which led to the increase of RHOA/ROCK1 signaling pathway and promoted GC resistance through antiapoptosis of leukemia cells. The inhibition of ROCK1 in GC-resistant cells could restore GCs responsiveness. In addition, HOTAIRM1 could also act as a protein sequester to prevent transcription factor AML1(acute myeloid leukemia 1) from binding to the regulatory region of ARHGAP18 by interacting with AML1. At last, we also proved AML1 could directly activate the expression of HOTAIRM1 through binding to the promoter of HOTAIRM1, which enriched the knowledge on the regulation of lncRNAs. This study revealed epigenetic causes of glucocorticoid resistance from the perspective of lncRNA, and laid a foundation for the optimization of glucocorticoid-based leukemia treatment strategy in clinic.
Collapse
|
11
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
12
|
Ramadhani FJ, Kang SH, Kawala RA, Chung BY, Bai HW, Kang BS. γ‑irradiated prednisolone promotes apoptosis of liver cancer cells via activation of intrinsic apoptosis signaling pathway. Mol Med Rep 2021; 23:425. [PMID: 33846797 PMCID: PMC8047763 DOI: 10.3892/mmr.2021.12064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2021] [Indexed: 11/05/2022] Open
Abstract
Prednisolone is an anti‑inflammatory drug used to treat a number of conditions, including liver disease and cancer. Numerous studies have demonstrated that glucocorticoids such as prednisolone modified by ionizing radiation can promote anticancer activity in cancer cells. To the best of our knowledge, however, the effect of ionizing radiation on prednisolone structure and cancer cells has not yet been identified. The present study created a novel prednisolone derivative using γ‑irradiation, and its anticancer properties were investigated in liver cancer cells. The present study confirmed the structure of the new prednisolone derivative using liquid chromatogram‑mass spectrometry. MTT assays determined the cytotoxic effects of γ‑irradiated (IR)‑prednisolone in liver cancer cells. Flow cytometry analysis evaluated apoptosis, mitochondrial membrane potential and cell cycle distribution. Western blotting was used to analyze the proteins associated with apoptosis. The chromatogram profile revealed that IR‑prednisolone produced a number of peaks compared with the single peak of the original prednisolone. In contrast to prednisolone, the MTT results showed that IR‑prednisolone significantly prevented the growth of liver cancer cells. IR‑prednisolone promoted apoptosis and arrested the cell cycle at the G0/G1 stage in Huh7 cells. IR‑prednisolone also altered the mitochondrial membrane potential and activated caspase‑associated proteins, which activated the intrinsic apoptotic signaling pathway. In conclusion, IR‑prednisolone promoted anticancer effects in liver cancer cells via apoptosis activation. The present study demonstrated that IR‑prednisolone may be a potential anticancer agent against liver cancer, although specific molecules have yet to be identified.
Collapse
Affiliation(s)
- Fatuma Jumapili Ramadhani
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 56212, Republic of Korea
| | - Seong Hee Kang
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 56212, Republic of Korea
| | - Remigius Ambrose Kawala
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 56212, Republic of Korea
| | - Byung Yeoup Chung
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 56212, Republic of Korea
| | - Hyoung-Woo Bai
- Radiation Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 56212, Republic of Korea
| | - Bo Sun Kang
- Department of Radiological Science, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
13
|
Ramos-Ramírez P, Tliba O. Glucocorticoid Receptor β (GRβ): Beyond Its Dominant-Negative Function. Int J Mol Sci 2021; 22:3649. [PMID: 33807481 PMCID: PMC8036319 DOI: 10.3390/ijms22073649] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and "directly" regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ 08901, USA
| |
Collapse
|
14
|
Glucocorticoids enhance the antileukemic activity of FLT3 inhibitors in FLT3-mutant acute myeloid leukemia. Blood 2021; 136:1067-1079. [PMID: 32396937 DOI: 10.1182/blood.2019003124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/24/2020] [Indexed: 02/01/2023] Open
Abstract
FLT3 is a frequently mutated gene that is highly associated with a poor prognosis in acute myeloid leukemia (AML). Despite initially responding to FLT3 inhibitors, most patients eventually relapse with drug resistance. The mechanism by which resistance arises and the initial response to drug treatment that promotes cell survival is unknown. Recent studies show that a transiently maintained subpopulation of drug-sensitive cells, so-called drug-tolerant "persisters" (DTPs), can survive cytotoxic drug exposure despite lacking resistance-conferring mutations. Using RNA sequencing and drug screening, we find that treatment of FLT3 internal tandem duplication AML cells with quizartinib, a selective FLT3 inhibitor, upregulates inflammatory genes in DTPs and thereby confers susceptibility to anti-inflammatory glucocorticoids (GCs). Mechanistically, the combination of FLT3 inhibitors and GCs enhances cell death of FLT3 mutant, but not wild-type, cells through GC-receptor-dependent upregulation of the proapoptotic protein BIM and proteasomal degradation of the antiapoptotic protein MCL-1. Moreover, the enhanced antileukemic activity by quizartinib and dexamethasone combination has been validated using primary AML patient samples and xenograft mouse models. Collectively, our study indicates that the combination of FLT3 inhibitors and GCs has the potential to eliminate DTPs and therefore prevent minimal residual disease, mutational drug resistance, and relapse in FLT3-mutant AML.
Collapse
|
15
|
Lambrou GI, Adamaki M, Hatziagapiou K, Vlahopoulos S. Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update. Curr Drug Res Rev 2021; 12:131-149. [PMID: 32077838 DOI: 10.2174/2589977512666200220122650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Resistance to glucocorticoid (GC)-induced apoptosis in Acute Lymphoblastic Leukemia (ALL), is considered one of the major prognostic factors for the disease. Prednisolone is a corticosteroid and one of the most important agents in the treatment of acute lymphoblastic leukemia. The mechanics of GC resistance are largely unknown and intense ongoing research focuses on this topic. AIM The aim of the present study is to review some aspects of GC resistance in ALL, and in particular of Prednisolone, with emphasis on previous and present knowledge on gene expression and signaling pathways playing a role in the phenomenon. METHODS An electronic literature search was conducted by the authors from 1994 to June 2019. Original articles and systematic reviews selected, and the titles and abstracts of papers screened to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Identification of gene targets responsible for glucocorticoid resistance may allow discovery of drugs, which in combination with glucocorticoids may increase the effectiveness of anti-leukemia therapies. The inherent plasticity of clinically evolving cancer justifies approaches to characterize and prevent undesirable activation of early oncogenic pathways. CONCLUSION Study of the pattern of intracellular signal pathway activation by anticancer drugs can lead to development of efficient treatment strategies by reducing detrimental secondary effects.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| |
Collapse
|
16
|
Brkic Z, Zivanovic A, Adzic M. Sex-specific Effects of Lipopolysaccharide on Hippocampal Mitochondrial Processes in Neuroinflammatory Model of Depression. Neuroscience 2020; 451:174-183. [PMID: 33039525 DOI: 10.1016/j.neuroscience.2020.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
Mitochondria play a significant role in pathogenesis of clinical depression and their function can be impaired by inflammation and alterations in hypothalamic-pituitary-adrenal axis. Sexual context is also a relevant factor in the incidence of mood disorders, and could have a strong influence during an immune challenge. Therefore, in this study we investigated whether the effects of seven-day lipopolysaccharide (LPS) treatment on glucocorticoid receptor (GR) could be associated with apoptosis and alterations in energy metabolism in hippocampus of female and male Wistar rats with depressive-like behavior. To that end, we measured the mitochondrial levels of GR and its phosphoisoforms pGR232 and pGR246 in hippocampus of female and male rats, as well as the mRNA levels of two GR-regulated mitochondrial genes, cyclooxygenase -1 and -3 (COX-1 and -3). We also measured alterations in the extrinsic and intrinsic apoptotic pathways in mitochondria and cytosol of hippocampus of these animals, and the levels of cleaved cytosolic poly [ADP-ribose] polymerase-1 (PARP-1) protein. We discovered that even though LPS treatment induced behavioral alterations and affected corticosterone levels and apoptosis in a similar manner in both sexes, it affected mitochondrial GR differently in males and females. Namely, the treatment decreased levels of mitochondrial GR and pGR232/pGR246 ratio only in females, and these alterations were followed by decreased mRNA levels of COX-1 and COX-3 only in this sex. The alterations in COX-1 and COX-3 mRNA levels could indicate impaired oxidative metabolism and diminished mitochondrial function in hippocampus of this sex.
Collapse
Affiliation(s)
- Zeljka Brkic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia.
| | - Ana Zivanovic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| |
Collapse
|
17
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Junking M, Rattanaburee T, Panya A, Budunova I, Haegeman G, Yenchitsomanus PT. Anti-Proliferative Effects of Compound A and Its Effect in Combination with Cisplatin in Cholangiocarcinoma Cells. Asian Pac J Cancer Prev 2020; 21:2673-2681. [PMID: 32986368 PMCID: PMC7779449 DOI: 10.31557/apjcp.2020.21.9.2673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal cancer with high resistance to anticancer drugs. The development of new drugs or compounds to be used alone or in combination with currently available chemotherapeutic agents to improve the treatment of CCA is needed. Compound A (CpdA), which is a small plant-derived glucocorticoid receptor modulator, strongly inhibited the growth and survival of several cancers. However, the effect of CpdA on cholangiocarcinoma has not been elucidated. The aim of this study was to investigate the effect of CpdA on CCA. METHODS Cytotoxicity of CpdA was tested in primary cells including peripheral blood mononuclear cells (PBMCs), fibroblasts, and human umbilical vein endothelial cells (HUVECs), as well as on CCA cell lines (KKU-100, KKU-055, and KKU-213) was examined. Cell cycle distribution and IL-6 expression was assessed by flow cytometry and real-time polymerase chain reaction, respectively. The effect of combination CpdA and cisplatin was evaluated by cell viability assay. RESULTS CpdA significantly inhibited cell cycle at G1 phase in CCA cell lines, and reduced IL-6 mRNA expression. However, combination CpdA and cisplatin did not enhance the inhibitory effect. TGFβR-II expression was increased in CCA cells after the combination treatment. CONCLUSIONS These results indicate the potential of CpdA for CCA treatment. However, combination treatment with CpdA and cisplatin increased CCA cell survival. The molecular mechanism is likely attributable to promotes cell survival via the TGFβR-II signaling pathway. The combination of CpdA with other anticancer drugs for CCA treatment should be further examined.
Collapse
Affiliation(s)
- Mutita Junking
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidarath Rattanaburee
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Sun YL, Zhang Y, Guo YC, Yang ZH, Xu YC. A Prognostic Model Based on Six Metabolism-Related Genes in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5974350. [PMID: 32953885 PMCID: PMC7482003 DOI: 10.1155/2020/5974350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
An increasing number of studies have shown that abnormal metabolism processes are closely correlated with the genesis and progression of colorectal cancer (CRC). In this study, we systematically explored the prognostic value of metabolism-related genes (MRGs) for CRC patients. A total of 289 differentially expressed MRGs were screened based on The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB), and 72 differentially expressed transcription factors (TFs) were obtained from TCGA and the Cistrome Project database. The clinical samples obtained from TCGA were randomly divided at a ratio of 7 : 3 to obtain the training group (n = 306) and the test group (n = 128). After univariate and multivariate Cox regression analyses, we constructed a prognostic model based on 6 MRGs (AOC2, ENPP2, ADA, GPD1L, ACADL, and CPT2). Kaplan-Meier survival analysis of the training group, validation group, and overall samples proved that the model had statistical significance in predicting the outcomes of patients. Independent prognosis analysis suggested that this risk score might serve as an independent prognosis factor for CRC patients. Moreover, we combined the prognostic model and the clinical characteristics in a nomogram to predict the overall survival of CRC patients. Furthermore, gene set enrichment analysis (GSEA) was conducted to identify the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the high- and low-risk groups, which might provide novel therapeutic targets for CRC patients. We discovered through the protein-protein interaction (PPI) network and TF-MRG regulatory network that 7 hub genes were retrieved from the PPI network and 4 kinds of differentially expressed TFs (NR3C1, MYH11, MAF, and CBX7) positively regulated 4 prognosis-associated MRGs (GSTM5, PTGIS, ENPP2, and P4HA3).
Collapse
Affiliation(s)
- Yuan-Lin Sun
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yu-Chen Guo
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Zi-Hao Yang
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yue-Chao Xu
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| |
Collapse
|
20
|
Clark EA, Wu F, Chen Y, Kang P, Kaiser UB, Fang R, Shi YG. GR and LSD1/KDM1A-Targeted Gene Activation Requires Selective H3K4me2 Demethylation at Enhancers. Cell Rep 2020; 27:3522-3532.e3. [PMID: 31216473 PMCID: PMC7433711 DOI: 10.1016/j.celrep.2019.05.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/27/2018] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
KDM1A-mediated H3K4 demethylation is a well-established mechanism underlying transcriptional gene repression, but its role in gene activation is less clear. Here, we report a critical function and mechanism of action of KDM1A in glucocorticoid receptor (GR)-mediated gene transcription. Biochemical purification of the nuclear GR complex revealed KDM1A as an integral component. In cell-free assays, GR modulates KDM1A-catalyzed H3K4 progressive demethylation by limiting the loss of H3K4me1. Similarly, in cells, KDM1A binds to most GR binding sites in the genome, where it removes preprogrammed H3K4me2 but leaves H3K4me1 untouched. Blocking KDM1A catalytic activity prevents H3K4me2 removal, severely impairs GR binding to chromatin, and dysregulates GR-targeted genes. Taken together, these data suggest KDM1A-mediated H3K4me2 demethylation at GRBSs promotes GR binding and plays an important role in glucocorticoid-induced gene transcription, broadening the mechanisms that contribute to nuclear receptor-mediated gene activation. Clark et al. dissected the interplay of glucocorticoid receptor (GR) and KDM1A in glucocorticoid-mediated gene regulation. GR recruits KDM1A, which consequently removes preprogrammed H3K4me2 and stabilizes GR-chromatin interaction. KDM1A demethylation of H3K4me2 at GR-targeted enhancers is important for GC-mediated gene transcription, offering a molecular mechanism for H3K4me2 demethylation in gene activation.
Collapse
Affiliation(s)
- Erin A Clark
- Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and BCMP, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Feizhen Wu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yirui Chen
- Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and BCMP, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paco Kang
- Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and BCMP, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and BCMP, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Fang
- Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and BCMP, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yujiang G Shi
- Division of Endocrinology, Diabetes and Hypertension, Departments of Medicine and BCMP, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Barden A, Phillips M, Mas E, Hill LM, Mowat I, Loh P, Corcoran T, Mori TA. Effects of antiemetic doses of dexamethasone on plasma mediators of inflammation resolution and pain after surgery in women. Prostaglandins Other Lipid Mediat 2020; 149:106427. [DOI: 10.1016/j.prostaglandins.2020.106427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/27/2023]
|
22
|
Čikoš Š, Babeľová J, Špirková A, Burkuš J, Kovaříková V, Šefčíková Z, Fabian D, Koppel J. Glucocorticoid receptor isoforms and effects of glucocorticoids in ovulated mouse oocytes and preimplantation embryos†. Biol Reprod 2020; 100:351-364. [PMID: 30188986 DOI: 10.1093/biolre/ioy196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/06/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
To investigate possible involvement of glucocorticoid receptor (GR) in mediating effects of maternal stress or therapeutically administered glucocorticoids on early embryo, we analyzed the expression of GR subtypes in ovulated mouse oocytes and preimplantation embryos. RT-PCR analysis results showed that GRα and GRγ transcripts are relatively highly expressed in mouse oocytes, and both transcripts are present at lower amounts in preimplantation embryos. We also detected low expression of two other splice variants, GRβ and a transcript orthologous to the human GR-P subtype, mainly at the blastocyst stage. Using western blot analysis, we detected several GR protein bands that differed in size between oocytes and preimplantation embryos. To compare the effects of corticosterone (a major endogenous glucocorticoid in rodents) and dexamethasone (a synthetic glucocorticoid) on early embryos, we cultured mouse preimplantation embryos in the presence of these glucocorticoids. Corticosterone showed a strong inhibitory effect on embryo development (starting from a 50 μM concentration), without a significant influence on apoptosis incidence. On the other hand, dexamethasone induced apoptosis in early embryo cells (starting from a 1.5 μM concentration), and its effect on embryo development was less detrimental than that found with the same dose of corticosterone. In summary, our results showed that different GR subtypes are expressed in ovulated mouse oocytes and preimplantation embryos and that the composition of GR subtypes changes during early embryo development. Moreover, we found significant differences in the effects of the two glucocorticoids on early embryo development, which might be associated with activation of different GR subtypes.
Collapse
Affiliation(s)
- Štefan Čikoš
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Janka Babeľová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Alexandra Špirková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Ján Burkuš
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Veronika Kovaříková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Juraj Koppel
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| |
Collapse
|
23
|
Chen Y, Jiang P, Wen J, Wu Z, Li J, Chen Y, Wang L, Gan D, Chen Y, Yang T, Lin M, Hu J. Integrated bioinformatics analysis of the crucial candidate genes and pathways associated with glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Med 2020; 9:2918-2929. [PMID: 32096603 PMCID: PMC7163086 DOI: 10.1002/cam4.2934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Glucocorticoids (GC) are the foundation of the chemotherapy regimen in acute lymphoblastic leukemia (ALL). However, resistance to GC is observed more frequently than resistance to other chemotherapy agents in patients with ALL relapse. Moreover, the mechanism underlying the development of GC resistance in ALL has not yet been fully uncovered. In this study, we used bioinformatic analysis methods to integrate the candidate genes and pathways participating in GC resistance in ALL and subsequently verified the bioinformatics findings with in vitro cell experiments. Ninety‐nine significant common differentially expressed genes (DEGs) associated with GC resistance were determined by integrating two gene profile datasets, including GC‐sensitive and ‐resistant samples. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) and REACTOME pathways analysis, the signaling pathways in which DEGs were significantly enriched were clustered. The GC resistance‐related biologically functional interactions were visualized as DEG‐associated Protein–Protein Interaction (PPI) network complexes, with 98 nodes and 127 edges. MYC, a node which displayed the highest connectivity in all edges, was highlighted as the core gene in the PPI network. Increased C‐MYC expression was observed in adriamycin‐resistant BALL‐1/ADR cells, which we demonstrated was also resistant to dexamethasone. These results outlined a panorama in which the solitary and scattered experimental results were integrated and expanded. The potential promising target of the candidate pathways and genes involved in GC resistance of ALL was concomitantly revealed.
Collapse
Affiliation(s)
- Yanxin Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Peifang Jiang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jingjing Wen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Zhengjun Wu
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jiazheng Li
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Yuwen Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Lingyan Wang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Donghui Gan
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Yingyu Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Ting Yang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Minhui Lin
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jianda Hu
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
24
|
Ide H, Inoue S, Mizushima T, Kashiwagi E, Zheng Y, Miyamoto H. Role of glucocorticoid signaling in urothelial tumorigenesis: Inhibition by prednisone presumably through inducing glucocorticoid receptor transrepression. Mol Carcinog 2019; 58:2297-2305. [PMID: 31535408 DOI: 10.1002/mc.23118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Glucocorticoids, including dexamethasone (DEX) and prednisone (PRED), have been prescribed in patients with neoplastic disease as cytotoxic agents or comedications. Nonetheless, it remains uncertain whether they have an impact on the development of bladder cancer. We, therefore, assessed the functional role of the glucocorticoid-mediated glucocorticoid receptor (GR) signaling in urothelial tumorigenesis. Tumor formation was significantly delayed in xenograft-bearing mice with implantation of control bladder cancer UMUC3 cells or nonneoplastic urothelial SVHUC cells undergoing malignant transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA), compared with respective GR knockdown xenografts. Using the in vitro system with MCA-SVHUC cells, we screened 11 GR ligands, including DEX, and found significant inhibitory effects of PRED on their neoplastic transformation. The effects of PRED were restored by a GR antagonist RU486 in GR-positive MCA-SVHUC cells, while PRED failed to inhibit the neoplastic transformation of GR knockdown cells. Significant decreases in the expression levels of oncogenes (c-Fos/c-Jun) and significant increases in those of a tumor suppressor UGT1A were seen in MCA-SVHUC-control cells (vs GR-short hairpin RNA) or PRED-treated MCA-SVHUC-control cells (vs mock). In addition, N-butyl-N-(4-hydroxybutyl) nitrosamine induced bladder cancer in all of eight mock-treated mice vs seven (87.5%) of DEX-treated (P = .302) or four (50%) of PRED-treated (P = .021) animals. Finally, DEX was found to considerably induce both transactivation (activation of glucocorticoid-response element mediated transcription and expression of its targets) and transrepression (suppression of nuclear factor-kappa B transactivation and expression of its regulated genes) of GR in SVHUC cells, while PRED more selectively induced GR transrepression. These findings suggest that PRED could prevent urothelial tumorigenesis presumably via inducing GR transrepression.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Satoshi Inoue
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Taichi Mizushima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Eiji Kashiwagi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yichun Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Hiroshi Miyamoto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York.,James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York.,Department of Urology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
25
|
Huang WW, Zhu WZ, Mu DL, Ji XQ, Nie XL, Li XY, Wang DX, Ma D. Perioperative Management May Improve Long-term Survival in Patients After Lung Cancer Surgery: A Retrospective Cohort Study. Anesth Analg 2019. [PMID: 29517574 PMCID: PMC5908254 DOI: 10.1213/ane.0000000000002886] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND: Surgical resection is the main treatment for patients with non–small-cell lung cancer (NSCLC), but patients’ long-term outcome is still challenging. The purpose of this study was to identify predictors of long-term survival in patients after lung cancer surgery. METHODS: Patients who underwent surgery for NSCLC from January 1, 2006, to December 31, 2009, were enrolled into this retrospective cohort study. The primary outcome was the survival length after surgery. Predictors of long-term survival were screened with the multivariable Cox proportional hazard model. RESULTS: Postoperative follow-up was completed in 588 patients with a median follow-up duration of 5.2 years (interquartile range, 2.0–6.8). Two hundred ninety-one patients (49.5%) survived at the end of follow-up with median survival duration of 64.3 months (interquartile range, 28.5–81.6). The overall survival rates were 90.8%, 70.0%, and 57.1% at the end of the first, third, and fifth year after surgery, respectively. Limited resection (hazard ratio [HR], 1.46; 95% confidence interval [CI], 1.08–1.98; P = .013) and large tumor size (HR, 1.29; 95% CI, 1.17–1.42; P < .001) were associated with short survival; whereas high body mass index grade (HR, 0.82; 95% CI, 0.69–0.97; P = .021), highly differentiated tumor (HR, 0.59; 95% CI, 0.37–0.93; P = .024), dissection of mediastinal lymph node during surgery (HR, 0.45; 95% CI, 0.30–0.67; P < .001), and perioperative use of dexamethasone (HR, 0.70; 95% CI, 0.54–0.90; P = .006) were associated with long survival. No association was found between perioperative use of flurbiprofen axetil and long survival (HR, 0.80; 95% CI, 0.62–1.03; P = .086). However, combined administration of dexamethasone and flurbiprofen axetil was associated with longer survival (compared to no use of both: adjusted HR, 0.57; 95% CI, 0.38–0.84; P = .005). CONCLUSIONS: Certain factors in particular perioperative dexamethasone and flurbiprofen axetil therapy may improve patients’ long-term survival after surgery for NSCLC. Given the small sample size, these findings should be interpreted with caution, and randomized clinical trials are needed for further clarification.
Collapse
Affiliation(s)
- Wen-Wen Huang
- From the Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Wen-Zhi Zhu
- From the Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China.,Departments of Anesthesiology
| | - Dong-Liang Mu
- From the Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xin-Qiang Ji
- Medical Records and Statistics, Peking University Cancer Hospital, Beijing, China
| | - Xiao-Lu Nie
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xue-Ying Li
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Dong-Xin Wang
- From the Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Daqing Ma
- Section of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Petrykey K, Lippé S, Robaey P, Sultan S, Laniel J, Drouin S, Bertout L, Beaulieu P, St-Onge P, Boulet-Craig A, Rezgui A, Yasui Y, Sapkota Y, Krull KR, Hudson MM, Laverdière C, Sinnett D, Krajinovic M. Influence of genetic factors on long-term treatment related neurocognitive complications, and on anxiety and depression in survivors of childhood acute lymphoblastic leukemia: The Petale study. PLoS One 2019; 14:e0217314. [PMID: 31181069 PMCID: PMC6557490 DOI: 10.1371/journal.pone.0217314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A substantial number of survivors of childhood acute lymphoblastic leukemia suffer from treatment-related late adverse effects including neurocognitive impairment. While multiple studies have described neurocognitive outcomes in childhood acute lymphoblastic leukemia (ALL) survivors, relatively few have investigated their association with individual genetic constitution. METHODS To further address this issue, genetic variants located in 99 genes relevant to the effects of anticancer drugs and in 360 genes implicated in nervous system function and predicted to affect protein function, were pooled from whole exome sequencing data of childhood ALL survivors (PETALE cohort) and analyzed for an association with neurocognitive complications, as well as with anxiety and depression. Variants that sustained correction for multiple testing were genotyped in entire cohort (n = 236) and analyzed with same outcomes. RESULTS Common variants in MTR, PPARA, ABCC3, CALML5, CACNB2 and PCDHB10 genes were associated with deficits in neurocognitive tests performance, whereas a variant in SLCO1B1 and EPHA5 genes was associated with anxiety and depression. Majority of associations were modulated by intensity of treatment. Associated variants were further analyzed in an independent SJLIFE cohort of 545 ALL survivors. Two variants, rs1805087 in methionine synthase, MTR and rs58225473 in voltage-dependent calcium channel protein encoding gene, CACNB2 are of particular interest, since associations of borderline significance were found in replication cohort and remain significant in combined discovery and replication groups (OR = 1.5, 95% CI, 1-2.3; p = 0.04 and; OR = 3.7, 95% CI, 1.25-11; p = 0.01, respectively). Variant rs4149056 in SLCO1B1 gene also deserves further attention since previously shown to affect methotrexate clearance and short-term toxicity in ALL patients. CONCLUSIONS Current findings can help understanding of the influence of genetic component on long-term neurocognitive impairment. Further studies are needed to confirm whether identified variants may be useful in identifying survivors at increased risk of these complications.
Collapse
Affiliation(s)
- Kateryna Petrykey
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah Lippé
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Robaey
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - Serge Sultan
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Laniel
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Drouin
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Laurence Bertout
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Pascal St-Onge
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Aubrée Boulet-Craig
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Aziz Rezgui
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
| | - Yutaka Yasui
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Yadav Sapkota
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Kevin R. Krull
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Melissa M. Hudson
- Epidemiology and Cancer Control Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
- Oncology Department, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Caroline Laverdière
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Taguchi H, Oishi K, Shingu K, Matsumoto H, Masuzawa M. Intrathecal betamethasone for cancer pain: A study of its analgesic efficacy and safety. Acta Anaesthesiol Scand 2019; 63:659-667. [PMID: 30536525 PMCID: PMC6587555 DOI: 10.1111/aas.13305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND A preliminary study has shown effective cancer pain relief by intrathecal betamethasone (ITB). However, further evidence is needed to support this new approach. METHODS Cancer patients with opioid-resistant pain received lumbar intrathecal administration of betamethasone 2 or 3 mg once a week for 28 days. Immediate and short-term analgesia (using a percentage pain reduction scale and a numerical rating scale, NRS) and long-term analgesia (using NRS) were assessed. Patients were classified into two groups according to the most painful site of metastasis: vertebral column and/or surrounding nerve plexus metastases (group A) and other metastases distal from the vertebral column (group B). RESULTS A total of 104 patients received ITB. Pain relief was observed not only in the lower half but also in the upper half of the body. The proportion of group A patients who experienced immediate analgesia was 81% (47/58), which was significantly greater than that of group B (P < 0.001). A decrease in NRS scores 1 day after ITB administration was observed in significantly more patients in group A than in group B (P < 0.001). Long-term analgesia was also recorded in a greater proportion of patients in group A than in group B in the 7-day (59%, 38/64 vs 6%, 2/33) and 28-day periods (71%, 40/56 vs 31%, 8/26) (P < 0.001). No adverse effects related to neurotoxicity were recorded. CONCLUSION Intrathecal injection of betamethasone produced analgesia for opioid-resistant cancer pain, and may be a potent therapeutic option for intolerable pain from vertebral column and/or surrounding nerve plexus metastases.
Collapse
Affiliation(s)
- Hitoshi Taguchi
- Department of Anesthesiology Kansai Medical University Medical Center Moriguchi Japan
| | - Keiko Oishi
- Department of Anesthesiology Kansai Medical University Medical Center Moriguchi Japan
| | - Koh Shingu
- Department of Anesthesiology Kansai Medical University Hirakata Japan
| | - Hideo Matsumoto
- Department of Anesthesiology Kansai Medical University Medical Center Moriguchi Japan
| | - Munehiro Masuzawa
- Department of Anesthesiology Kansai Medical University Medical Center Moriguchi Japan
| |
Collapse
|
28
|
Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 2019; 10:1689. [PMID: 30976076 PMCID: PMC6459836 DOI: 10.1038/s41467-019-09397-2] [Citation(s) in RCA: 559] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME might be regulated. Like GSDME-N, inflammasome-generated gasdermin D-N (GSDMD-N), can also permeabilize the mitochondria linking inflammasome activation to downstream activation of the apoptosome. Collectively, our results point to a role of gasdermin proteins in targeting the mitochondria to promote cytochrome c release to augment the mitochondrial apoptotic pathway. Gasdermins mediate lytic cell death by forming pores in the plasma membrane. Here the authors show that gasdermins also permeabilize mitochondrial membrane, thereby facilitating intrinsic apoptosis pathway, downstream of apoptotic (Gasdermin E) and inflammatory (Gasdermin D) caspase activation.
Collapse
Affiliation(s)
- Corey Rogers
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Dan A Erkes
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alexandria Nardone
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Teresa Fernandes-Alnemri
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
29
|
Malik SS, Masood N, Fatima I, Kazmi Z. Microbial-Based Cancer Therapy: Diagnostic Tools and Therapeutic Strategies. MICROORGANISMS FOR SUSTAINABILITY 2019:53-82. [DOI: 10.1007/978-981-13-8844-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
30
|
Evaluation of Histological, Immunohistochemical, Clinical and Genetic Prognostic Factors Associated with the Response of Canine Mast Cell Tumours to Glucocorticotherapy. J Comp Pathol 2018; 165:72-81. [PMID: 30502801 DOI: 10.1016/j.jcpa.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/29/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022]
Abstract
Mast cell tumours (MCTs) are one of the most frequent neoplasms in dogs. Glucocorticoids (GCs) are widely used in the management of this disease, although no guidelines for their use have been established. The aim of this study was to evaluate the correlation of MCT prognostic factors with measurable response to GCs. This retrospective study included 60 dogs treated with prednisone or prednisolone prior to surgical biopsy of MCT. Incisional or excisional biopsy was performed 7-14 days after initiation of GC therapy. Histopathology, immunohistochemical labelling for Ki67 and KITr, and polymerase chain reaction for the c-KIT gene were performed. Partial response occurred in 63.3% of cases (38/60), while 36.7% (22/60) did not respond. A response to GCs was correlated with lower stage of the disease, low histological grade, lower pattern of KITr expression and Ki67 score. Response to GCs was positively correlated with well-established favourable prognostic factors.
Collapse
|
31
|
Barden A, Phillips M, Hill LM, Fletcher EM, Mas E, Loh PS, French MA, Ho KM, Mori TA, Corcoran TB. Antiemetic doses of dexamethasone and their effects on immune cell populations and plasma mediators of inflammation resolution in healthy volunteers. Prostaglandins Leukot Essent Fatty Acids 2018; 139:31-39. [PMID: 30471772 DOI: 10.1016/j.plefa.2018.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The synthetic glucocorticoid dexamethasone is a commonly administered antiemetic. It has immunosuppressive effects and may alter postoperative blood glucose concentrations. Dexamethasone can effect key enzymes involved in inflammation resolution that is an active process driven by specialised lipid mediators of inflammation resolution (SPM). The purpose of this study in healthy volunteers was to examine whether dexamethasone effects cell populations and synthesis of SPM that are critical for the resolution of inflammation. METHODS Thirty-two healthy volunteers were randomly allocated to receive saline (Control) or dexamethasone 2 mg, 4 mg or 8 mg intravenously. Venous blood samples were collected at baseline before administration of treatment, and at 4 h, 24 h and one-week post-treatment. At each time point, measurements included blood glucose and macrophage migration inhibition factor (MMIF), full blood count including lymphocyte subsets, monocytes, neutrophils, eosinophils and basophils by flow cytometry, and plasma SPM using liquid chromatography tandem mass spectrometry. The effect of dexamethasone dose and time on all measures was analysed using linear mixed models. RESULTS There was a dose-dependent increase in neutrophil count after dexamethasone that persisted for 24 h. In contrast, there was a dose-dependent reduction in counts of monocytes, lymphocytes, basophils and eosinophils 4 h after dexamethasone, followed by a rebound increase in cell counts at 24 h. Seven days after administration of dexamethasone, all cell counts were similar to baseline levels. MMIF concentration, glucose and natural killer cell counts were not significantly affected by dexamethasone. There was a significant gender effect on plasma SPM such that levels of 17-HDHA, RvD1, 17R-RvD1 and RvE2 in females were on average 14%-50% lower than males. In a linear mixed model that adjusted for neutrophil count, there was a significant interaction between the dose of dexamethasone and time, on plasma 17R-RvD1 such that plasma 17R-RvD1 fell in a dose-dependent manner until 4 h after administration of dexamethasone. There were no significant effects of dexamethasone on the other plasma SPM (18-HEPE, RvE2, 17-HDHA, RvD1, RvD2 and 14-HDHA) measured. DISCUSSION This is the first study in healthy volunteers to demonstrate that commonly employed antiemetic doses of dexamethasone affect immune cell populations and plasma levels of 17R-RvD1 an SPM with anti-nociceptive properties. If similar changes occur in surgical patients, then this may have implications for acute infection risk in the post-operative period.
Collapse
Affiliation(s)
- Anne Barden
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Box X2214 GPO Perth, Western Australia 6847, Australia.
| | - Michael Phillips
- Harry Perkins Institute for Medical Research, University of Western Australia, Australia
| | - Lisa M Hill
- Department of Anaesthesia, St John of God Midland and Mount Lawley Hospitals, Perth, Western Australia, Australia
| | - Evelyn M Fletcher
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Australia
| | - Emilie Mas
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Box X2214 GPO Perth, Western Australia 6847, Australia
| | - P S Loh
- Department of Anaesthesiology and Intensive Care, University of Malaya, Malaysia
| | - Martyn A French
- UWA Medical School and School of Biomedical Sciences, University of Western Australia, Perth, Australia; Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, Australia
| | - Kwok M Ho
- Department of Intensive Care Medicine, Royal Perth Hospital, Australia; School of Population Health, University of Western Australia, Australia
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Box X2214 GPO Perth, Western Australia 6847, Australia
| | - Tomás B Corcoran
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Box X2214 GPO Perth, Western Australia 6847, Australia; Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Australia
| |
Collapse
|
32
|
Chronic p27 Kip1 Induction by Dexamethasone Causes Senescence Phenotype and Permanent Cell Cycle Blockade in Lung Adenocarcinoma Cells Over-expressing Glucocorticoid Receptor. Sci Rep 2018; 8:16006. [PMID: 30375484 PMCID: PMC6207728 DOI: 10.1038/s41598-018-34475-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022] Open
Abstract
Dexamethasone (Dex), co-administered to lung adenocarcinoma patients with pemetrexed chemotherapy, protects against pemetrexed cytotoxicity by inducing reversible G1 arrest, reflected by the effect of Dex on FLT-PET images of patient tumors. However, perioperative Dex treatment increases survival but the mechanism is unknown. In cells with glucocorticoid receptor-α (GR) expression corresponding to higher clinical tumor levels, Dex-induced growth arrest was followed by marked cell expansion, beta-galactosidase expression and Ki67 negativity, despite variable p53 and K-RAS status. Dex induced a transient early surge in p21Cip1. However, a progressive, irreversible loss of clonogenic growth, whose time of onset was dependent on GR level and Dex dose, was independent of p21Cip1and caused by gradual accumulation of p27Kip1 due to transcriptional activation of p27Kip1 by Dex. This effect was independent of canonical pathways of senescence or p27Kip1 regulation. The in vitro observations were reflected by growth suppression and P27Kip1 induction in GR-overexpressing tumor xenografts compared with isogenic low-GR tumors. Extended Dex treatment induces irreversible cell cycle blockade and a senescence phenotype through chronic activation of the p27Kip1 gene in GR overexpressing lung tumor cell populations and hence could improve outcome of surgery/pemetrexed chemotherapy and sensitize tumors to immunotherapy.
Collapse
|
33
|
Kost BP, Beyer S, Schröder L, Zhou J, Mayr D, Kuhn C, Schulze S, Hofmann S, Mahner S, Jeschke U, Heidegger H. Glucocorticoid receptor in cervical cancer: an immunhistochemical analysis. Arch Gynecol Obstet 2018; 299:203-209. [PMID: 30306311 DOI: 10.1007/s00404-018-4928-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Cervical cancer is one of the most frequent cancers in women worldwide. In most of all cases, a persistent HPV infection is the leading cause. HPV-specific sequences are able to bind glucocorticoid receptor (GR). Dexamethasone can increase the activity of early promoters in HPV16 and HPV18 interfering in transcription control of viral oncogenes. The aim of our study was to evaluate glucocorticoid receptor as transcriptional factor in its active form in the nucleus of in cervical cancer cells and to correlate the results with clinical patient specific parameters. METHODS A total of 250 paraffin-embedded cervical cancer samples obtained from patients having undergone surgery for cervical cancer were used for the study. The expression of GR was immunhistochemical examined and evaluated by a semi-quantitative scoring. SPSS software was used for the statistical evaluation of staining results and survival analysis of patients with cervical cancer. RESULTS GR is frequently expressed in cervical carcinoma tissue in favor of squamous cell carcinoma (SCC). An enhanced expression is correlated with rather small clinical stages. The expression of the GR is correlated with better overall survival and progression-free survival. CONCLUSIONS The glucocorticoid receptor is frequently expressed in cervical carcinoma tissue in favor of squamous cell carcinoma. An enhanced expression is correlated with rather small clinical stages. The expression of the analyzed receptor is correlated with better overall survival. Further studies are needed to determine useful treatment targets for glucocorticoid receptor manipulation.
Collapse
Affiliation(s)
- Bernd Peter Kost
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Lennard Schröder
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Junyan Zhou
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Doris Mayr
- Klinikum Der Universität München, Pathologisches Institut, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sandra Schulze
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Simone Hofmann
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany.
| | - Helene Heidegger
- Department of Obstetrics and Gynecology, LMU Munich, University Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
34
|
The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Aging: Implications in Obesity and Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19072139. [PMID: 30041449 PMCID: PMC6073138 DOI: 10.3390/ijms19072139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022] Open
Abstract
Aging has been associated with a series of pathophysiological processes causing general decline in the overall health of the afflicted population. The cumulative line of evidence suggests an important role of oxidative stress in the development and progression of the aging process and metabolic abnormalities, exacerbating adipocyte dysfunction, cardiovascular diseases, and associated complications at the same time. In recent years, robust have established the implication of Na/K-ATPase signaling in causing oxidative stress and alterations in cellular mechanisms, in addition to its distinct pumping function. Understanding the underlying molecular mechanisms and exploring the possible sources of pro-oxidants may allow for developing therapeutic targets in these processes and formulate novel intervention strategies for patients susceptible to aging and associated complications, such as obesity and cardiovascular disease. The attenuation of oxidative stress with targeted treatment options can improve patient outcomes and significantly reduce economic burden.
Collapse
|
35
|
Clarisse D, Van Wesemael K, Tavernier J, Offner F, Beck IM, De Bosscher K. Effect of combining glucocorticoids with Compound A on glucocorticoid receptor responsiveness in lymphoid malignancies. PLoS One 2018; 13:e0197000. [PMID: 29738549 PMCID: PMC5940183 DOI: 10.1371/journal.pone.0197000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) are a cornerstone in the treatment of lymphoid malignancies such as multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Yet, prolonged GC use is hampered by deleterious GC-related side effects and the emergence of GC resistance. To tackle and overcome these GC-related problems, the applicability of selective glucocorticoid receptor agonists and modulators was studied, in search of fewer side-effects and at least equal therapeutic efficacy as classic GCs. Compound A (CpdA) is a prototypical example of such a selective glucocorticoid receptor modulator and does not support GR-mediated transactivation. Here, we examined whether the combination of CpdA with the classic GC dexamethasone (Dex) may improve GC responsiveness of MM and ALL cell lines. We find that the combination of Dex and CpdA does not substantially enhance GC-mediated cell killing. In line, several apoptosis hallmarks, such as caspase 3/7 activity, PARP cleavage and the levels of cleaved-caspase 3 remain unchanged upon combining Dex with CpdA. Moreover, we monitor no additional inhibition of cell proliferation and the homologous downregulation of GR is not counteracted by the combination of Dex and CpdA. In addition, CpdA is unable to modulate Dex-liganded GR transactivation and transrepression, yet, Dex-mediated transrepression is also aberrant in these lymphoid cell lines. Together, transrepression-favoring compounds, alone or combined with GCs, do not seem a valid strategy in the treatment of lymphoid malignancies.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse M. Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- * E-mail:
| |
Collapse
|
36
|
Ayroldi E, Cannarile L, Delfino DV, Riccardi C. A dual role for glucocorticoid-induced leucine zipper in glucocorticoid function: tumor growth promotion or suppression? Cell Death Dis 2018; 9:463. [PMID: 29695779 PMCID: PMC5916931 DOI: 10.1038/s41419-018-0558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
Glucocorticoids (GCs), important therapeutic tools to treat inflammatory and immunosuppressive diseases, can also be used as part of cancer therapy. In oncology, GCs are used as anticancer drugs for lymphohematopoietic malignancies, while in solid neoplasms primarily to control the side effects of chemo/radiotherapy treatments. The molecular mechanisms underlying the effects of GCs are numerous and often overlapping, but not all have been elucidated. In normal, cancerous, and inflammatory tissues, the response to GCs differs based on the tissue type. The effects of GCs are dependent on several factors: the tumor type, the GC therapy being used, the expression level of the glucocorticoid receptor (GR), and the presence of any other stimuli such as signals from immune cells and the tumor microenvironment. Therefore, GCs may either promote or suppress tumor growth via different molecular mechanisms. Stress exposure results in dysregulation of the hypothalamic-pituitary-adrenal axis with increased levels of endogenous GCs that promote tumorigenesis, confirming the importance of GCs in tumor growth. Most of the effects of GCs are genomic and mediated by the modulation of GR gene transcription. Moreover, among the GR-induced genes, glucocorticoid-induced leucine zipper (GILZ), which was cloned and characterized primarily in our laboratory, mediates many GC anti-inflammatory effects. In this review, we analyzed the possible role for GILZ in the effects GCs have on tumors cells. We also suggest that GILZ, by affecting the immune system, tumor microenvironment, and directly cancer cell biology, has a tumor-promoting function. However, it may also induce apoptosis or decrease the proliferation of cancer cells, thus inhibiting tumor growth. The potential therapeutic implications of GILZ activity on tumor cells are discussed here.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.
| | - Lorenza Cannarile
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Sarjan HN, Yajurvedi HN. Chronic stress induced duration dependent alterations in immune system and their reversibility in rats. Immunol Lett 2018; 197:31-43. [PMID: 29481825 DOI: 10.1016/j.imlet.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/27/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
The objective was to find out whether severity of stress effects on immunity increases with duration of exposure and recovery depends on duration of exposure. Adult male rats (n = 30) were subjected to restraint (1 h) followed by forced swimming exercise (15 min) after a gap of 4 h daily for 2, 4 and 8 weeks and allowed to recover for 6 weeks after each exposure period. Exposure of rats to stress resulted in duration dependent significant decreases in leukocyte count, phagocytic indices of neutrophils, number of bone marrow stem cells and serum levels of IL-12 and increases in apoptotic index of peripheral blood mononuclear cells and serum levels of IL-10. The alterations in counts of neutrophils, total immunoglobulin content, phagocytic index, apoptotic index of peripheral blood mononuclear cells and serum levels of IL-10 returned to control levels in recovery group rats of 2 and 4 weeks exposure but not in that of 8 weeks exposure. However, alterations in number and apoptotic index of bone marrow stem cells returned to control levels in 2, 4 and 8 weeks stress recovery groups. The results for the first time reveal that increase in duration of exposure results in more severe damage in immune system and that shorter the exposure period, faster the recovery. In addition, in vitro study for the first time showed that corticosterone causes apoptosis of peripheral blood mononuclear cells and bone marrow stem cells in dose dependent manner. Hence death of leukocytes and their stem cells is the major cause of stress induced immune dysfunction.
Collapse
Affiliation(s)
- H N Sarjan
- Department of Zoology, University of Mysore, Manasagangotri, Mysore, 570 006, India.
| | - H N Yajurvedi
- Department of Zoology, University of Mysore, Manasagangotri, Mysore, 570 006, India.
| |
Collapse
|
38
|
Clarisse D, Thommis J, Van Wesemael K, Houtman R, Ratman D, Tavernier J, Offner F, Beck I, De Bosscher K. Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies. Oncotarget 2017; 8:109675-109691. [PMID: 29312638 PMCID: PMC5752551 DOI: 10.18632/oncotarget.22764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1α, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - René Houtman
- PamGene International B.V., 's Hertogenbosch, The Netherlands
| | - Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Current/Present address: Roche Global IT Solutions, Roche-Polska, Warsaw, Poland
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
39
|
Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, Dellinger RW. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J Med Chem 2017; 60:9413-9436. [PMID: 28654265 DOI: 10.1021/acs.jmedchem.6b01026] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural polyphenols are organic chemicals which contain phenol units in their structures. They show antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Still, definitively demonstrating the human benefits of isolated polyphenolic compounds (alone or in combination) using modern scientific methodology has proved challenging. The most common discrepancy between experimental and clinical observations is the use of nonphysiologically relevant concentrations of polyphenols in mechanistic studies. Thus, it remains highly controversial how applicable underlying mechanisms are with bioavailable concentrations and biological half-life. The present Perspective analyses proposed antitumor mechanisms, in vivo reported antitumor effects, and possible mechanisms that may explain discrepancies between bioavailability and bioefficacy. Polyphenol metabolism and possible toxic side effects are also considered. Our main conclusion emphasizes that these natural molecules (and their chemical derivatives) indeed can be very useful, not only as cancer chemopreventive agents but also in oncotherapy.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Salvador Mena
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Elena Obrador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Gloria Castellano
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | | |
Collapse
|
40
|
Park OH, Park J, Yu M, An HT, Ko J, Kim YK. Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay. Genes Dev 2017; 30:2093-2105. [PMID: 27798850 PMCID: PMC5066615 DOI: 10.1101/gad.286484.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/08/2016] [Indexed: 11/24/2022]
Abstract
In this study, Park et al. investigated the molecular mechanisms regulating glucocorticoid receptor-mediated mRNA decay (GMD). The authors characterize the molecular details of GMD, identify specific factors required for efficient GMD, and perform RNA sequencing, identifying many endogenous GMD substrates. Glucocorticoid (GC) receptor (GR) has been shown recently to bind a subset of mRNAs and elicit rapid mRNA degradation. However, the molecular details of GR-mediated mRNA decay (GMD) remain unclear. Here, we demonstrate that GMD triggers rapid degradation of target mRNAs in a translation-independent and exon junction complex-independent manner, confirming that GMD is mechanistically distinct from nonsense-mediated mRNA decay (NMD). Efficient GMD requires PNRC2 (proline-rich nuclear receptor coregulatory protein 2) binding, helicase ability, and ATM-mediated phosphorylation of UPF1 (upstream frameshift 1). We also identify two GMD-specific factors: an RNA-binding protein, YBX1 (Y-box-binding protein 1), and an endoribonuclease, HRSP12 (heat-responsive protein 12). In particular, using HRSP12 variants, which are known to disrupt trimerization of HRSP12, we show that HRSP12 plays an essential role in the formation of a functionally active GMD complex. Moreover, we determine the hierarchical recruitment of GMD factors to target mRNAs. Finally, our genome-wide analysis shows that GMD targets a variety of transcripts, implicating roles in a wide range of cellular processes, including immune responses.
Collapse
Affiliation(s)
- Ok Hyun Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joori Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Mira Yu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyoung-Tae An
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
41
|
Chen L, Wolff DW, Xie Y, Lin MF, Tu Y. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5. BMC Cancer 2017; 17:179. [PMID: 28270124 PMCID: PMC5341373 DOI: 10.1186/s12885-017-3153-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. METHODS Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. RESULTS Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block cyproterone acetate-induced CHOP and DR5 up-regulation. More importantly, siRNA silencing of CHOP significantly reduced cyproterone acetate-induced DR5 up-regulation and TRAIL sensitivity in prostate cancer cells. CONCLUSIONS Our study shows a novel effect of cyproterone acetate on apoptosis pathways in prostate cancer cells and raises the possibility that a combination of TRAIL with cyproterone acetate could be a promising strategy for treating castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Linjie Chen
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Dennis W. Wolff
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC USA
| | - Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| |
Collapse
|
42
|
Block TS, Murphy TI, Munster PN, Nguyen DP, Lynch FJ. Glucocorticoid receptor expression in 20 solid tumor types using immunohistochemistry assay. Cancer Manag Res 2017; 9:65-72. [PMID: 28293120 PMCID: PMC5345989 DOI: 10.2147/cmar.s124475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Glucocorticoid receptor (GR) activity plays a role in many aspects of human physiology and may play a crucial role in chemotherapy resistance in a wide variety of solid tumors. A novel immunohistochemistry (IHC) based assay has been previously developed and validated in order to assess GR immunoreactivity in triple-negative breast cancer. The current study investigates the standardized use of this validated assay to assess GR expression in a broad range of solid tumor malignancies. Methods Archived formalin-fixed paraffin-embedded tumor bank samples (n=236) from 20 different solid tumor types were analyzed immunohistochemically. Nuclear staining was reported based on the H-score method using differential intensity scores (0, 1+, 2+, or 3+) with the percent stained (out of at least 100 carcinoma cells) recorded at each intensity. Results GR was expressed in all tumor types that had been evaluated. Renal cell carcinoma, sarcoma, cervical cancer, and melanoma were those with the highest mean H-scores, indicating high levels of GR expression. Colon, endometrial, and gastric cancers had lower GR staining percentages and intensities, resulting in the lowest mean H-scores. Conclusion A validated IHC assay revealed GR immunoreactivity in all solid tumor types studied and allowed for standardized comparison of reactivity among the different malignancies. Impact Baseline expression levels of GR may be a useful biomarker when pharmaceutically targeting GR in research or clinical setting.
Collapse
Affiliation(s)
- Thaddeus S Block
- Corcept Therapeutics, Inc, Menlo Park, CA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | | | - Pamela N Munster
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
43
|
|
44
|
Kiessling S, Beaulieu-Laroche L, Blum ID, Landgraf D, Welsh DK, Storch KF, Labrecque N, Cermakian N. Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol 2017; 15:13. [PMID: 28196531 PMCID: PMC5310078 DOI: 10.1186/s12915-017-0349-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/13/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Circadian clocks control cell cycle factors, and circadian disruption promotes cancer. To address whether enhancing circadian rhythmicity in tumor cells affects cell cycle progression and reduces proliferation, we compared growth and cell cycle events of B16 melanoma cells and tumors with either a functional or dysfunctional clock. RESULTS We found that clock genes were suppressed in B16 cells and tumors, but treatments inducing circadian rhythmicity, such as dexamethasone, forskolin and heat shock, triggered rhythmic clock and cell cycle gene expression, which resulted in fewer cells in S phase and more in G1 phase. Accordingly, B16 proliferation in vitro and tumor growth in vivo was slowed down. Similar effects were observed in human colon carcinoma HCT-116 cells. Notably, the effects of dexamethasone were not due to an increase in apoptosis nor to an enhancement of immune cell recruitment to the tumor. Knocking down the essential clock gene Bmal1 in B16 tumors prevented the effects of dexamethasone on tumor growth and cell cycle events. CONCLUSIONS Here we demonstrated that the effects of dexamethasone on cell cycle and tumor growth are mediated by the tumor-intrinsic circadian clock. Thus, our work reveals that enhancing circadian clock function might represent a novel strategy to control cancer progression.
Collapse
Affiliation(s)
- Silke Kiessling
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Present address: ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | | | - Ian D Blum
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Dominic Landgraf
- Center for Circadian Biology and Department of Psychiatry, University of California, San Diego, CA, 92037, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - David K Welsh
- Center for Circadian Biology and Department of Psychiatry, University of California, San Diego, CA, 92037, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Kai-Florian Storch
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, H1T 2M4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada.
| |
Collapse
|
45
|
Song QQ, Xie WY, Tang YJ, Zhang J, Liu J. Genetic variation in the glucocorticoid pathway involved in interindividual differences in the glucocorticoid treatment. Pharmacogenomics 2017; 18:293-316. [PMID: 28112586 DOI: 10.2217/pgs-2016-0151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) are widely used for treating asthma, rheumatoid arthritis, nephrotic syndrome, acute lymphoblastic leukemia and other autoimmune diseases. However, in a subgroup of patients, failure to respond to GCs is known as GC resistance or GC insensitivity. This represents an important barrier to effective treatment and a clinical problem requiring an urgent solution. Genetic variation in the GC pathway is a significant factor in interindividual differences in GC treatment. This article reviews the pharmacogenetics of GCs in diverse diseases based on the GC pathway.
Collapse
Affiliation(s)
- Qian-Qian Song
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P.R. China
| | - Wan-Ying Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P.R. China
| | - Yong-Jun Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P.R. China
| | - Jun Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| | - Jie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P.R. China
| |
Collapse
|
46
|
Choi JE, Park DM, Chun E, Choi JJ, Seo JH, Kim S, Son J, Do M, Kim SY, Park YC, Jung IC, Jin M. Control of stress-induced depressive disorders by So-ochim-tang-gamibang, a Korean herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:141-150. [PMID: 27988398 DOI: 10.1016/j.jep.2016.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE So-ochim-tang-gamibang (SOCG) is a Korean herbal medicine formula that has been applied to treat depressive moods and depression associated somatoform pain. This decoction consists of Cyperus rotundus L. (Cyperi Rhizoma), Lindera aggregata (Sims) Kosterm. (Linderae Radix), Aquilaria agallochum (Lour.) Roxb. ex Finl. (Aquilariae Resinatum Lignum), Glycyrrhiza uralensis Fisch. (Glycyrrhizae Radix) Platycodon grandiflorum (Jacq.) A. DC. (Platycodi Radix), and Citrus aurantium L. (Aurantii Fructus). The aim of this study is to assess antidepressant-like effects of SOCG and to investigate its possible cellular and molecular mechanisms. MATERIAL AND METHODS Using chronic restraint stress animal model, effects of SOCG on depressive-like behaviors, corticosterone, and hippocampal expressions of a neurotrophic factor and an apoptotic marker, were investigated. Mice were exposed to restraint stress 6h per day over a period of two weeks, and orally administrated either SOCG (30, 100, or 300mg/kg/day). The depressive-like behaviors were analyzed by forced swimming test and open field test. The serum levels of corticosterone were measured by enzyme-linked immunosorbent assay. Expressions of caspase-3 and BDNF in the hippocampus were analyzed by immunofluorescence. Further, effects of SOCG were examined in corticosterone-treated PC12 cells. Cellular toxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. Real-time PCR was applied to investigate the cellular expression levels of Bax, Bcl-2, and BDNF. The levels of caspase-3 and BDNF were examined by Western blotting. RESULTS Administration of SOCG not only reduced immobility time of restraint-stressed mice in a dose-dependent manner, but also significantly increased the distance mice moved and the number of crossings in the open field test. Further, SOCG significantly reduced the serum level of corticosterone and expression of caspase-3, while increased expression of BDNF in vivo. SOCG increased cell viability in corticosterone treated PC12 cells, which was accompanied by decreased caspase-3 expression and the ratio of Bax/Bcl-2 mRNA expression as well as increased BDNF expression in vitro. CONCLUSIONS Taken together, our data suggested that SOCG may have potential as an antidepressant agent controlling depressive behaviors and corticosterone-induced neuronal damage caused by chronic stress.
Collapse
Affiliation(s)
- Jung Eun Choi
- Laboratory of Pharmacology, College of Korean Medicine, Daejeon University, Daejeon 34520, South Korea
| | - Dae-Myung Park
- Department of Neuropsychiatry, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon 35235, South Korea
| | - Eunho Chun
- Laboratory of Pharmacology, College of Korean Medicine, Daejeon University, Daejeon 34520, South Korea
| | - Jeong June Choi
- Laboratory of Molecular Medicine, College of Korean Medicine, Daejeon University, Daejeon 34520, South Korea
| | - Ji Hye Seo
- Laboratory of Molecular Medicine, College of Korean Medicine, Daejeon University, Daejeon 34520, South Korea
| | - Seunghyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, South Korea
| | - Jaemin Son
- Laboratory of Pharmacology, College of Korean Medicine, Daejeon University, Daejeon 34520, South Korea
| | - Moonho Do
- College of Pharmacy, Gachon University, Incheon 21999, South Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21999, South Korea
| | - Yang-Chun Park
- Department of Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 34623, South Korea
| | - In Chul Jung
- Department of Neuropsychiatry, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon 35235, South Korea.
| | - Mirim Jin
- Laboratory of Pharmacology, College of Korean Medicine, Daejeon University, Daejeon 34520, South Korea.
| |
Collapse
|
47
|
Soto-Gamez A, Demaria M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 2017; 22:786-795. [PMID: 28111332 DOI: 10.1016/j.drudis.2017.01.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Organismal aging is a multifactorial process characterized by the onset of degenerative conditions and cancer. One of the key drivers of aging is cellular senescence, a state of irreversible growth arrest induced by many pro-tumorigenic stresses. Senescent cells accumulate late in life and at sites of age-related pathologies, where they contribute to disease onset and progression through complex cell and non-cell autonomous effects. Here, we summarize the mechanisms by which cellular senescence can promote aging, and we offer an extensive description of current potential pharmacological interventions for senescent cells, highlighting limitations and suggesting alternatives.
Collapse
Affiliation(s)
- Abel Soto-Gamez
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marco Demaria
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| |
Collapse
|
48
|
Li Y, Buijs-Gladdines JGCAM, Canté-Barrett K, Stubbs AP, Vroegindeweij EM, Smits WK, van Marion R, Dinjens WNM, Horstmann M, Kuiper RP, Buijsman RC, Zaman GJR, van der Spek PJ, Pieters R, Meijerink JPP. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med 2016; 13:e1002200. [PMID: 27997540 PMCID: PMC5172551 DOI: 10.1371/journal.pmed.1002200] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. METHODS AND FINDINGS We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor's ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. CONCLUSIONS Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome.
Collapse
Affiliation(s)
- Yunlei Li
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Jessica G. C. A. M. Buijs-Gladdines
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Andrew P. Stubbs
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric M. Vroegindeweij
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Willem K. Smits
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald van Marion
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Co-operative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Rob Pieters
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jules P. P. Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Schwann cells: a new player in the tumor microenvironment. Cancer Immunol Immunother 2016; 66:959-968. [PMID: 27885383 DOI: 10.1007/s00262-016-1929-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Cancerous cells must cooperate with the surrounding stroma and non-malignant cells within the microenvironment to support the growth and invasion of the tumor. The nervous system is a component of every organ system of the body, and therefore, is invariably at the front line of the tumor invasion. Due to the complexity of the nervous system physiology, this review separately discusses the contributions of the central and peripheral nervous systems to the tumorigenesis and tumor progression. We further focus the discussion on the evidence that Schwann cells aid in tumor growth and invasion. Schwann cells, a largely unexplored element of the tumor microenvironment, may participate in the creation of tumor-favorable conditions through both bi-directional interaction with cancer cells and the facilitation of the immune-suppressive microenvironment through the mechanism of neural repair and immunomodulation.
Collapse
|
50
|
Kurata M, Rathe SK, Bailey NJ, Aumann NK, Jones JM, Veldhuijzen GW, Moriarity BS, Largaespada DA. Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML. Sci Rep 2016; 6:36199. [PMID: 27808171 PMCID: PMC5093682 DOI: 10.1038/srep36199] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) can display de novo or acquired resistance to cytosine arabinoside (Ara-C), a primary component of induction chemotherapy. To identify genes capable of independently imposing Ara-C resistance, we applied a genome-wide CRISPR library to human U937 cells and exposed to them to Ara-C. Interestingly, all drug resistant clones contained guide RNAs for DCK. To avoid DCK gene modification, gRNA resistant DCK cDNA was created by the introduction of silent mutations. The CRISPR screening was repeated using the gRNA resistant DCK, and loss of SLC29A was identified as also being capable of conveying Ara-C drug resistance. To determine if loss of Dck results in increased sensitivity to other drugs, we conducted a screen of 446 FDA approved drugs using two Dck-defective BXH-2 derived murine AML cell lines and their Ara-C sensitive parental lines. Both cell lines showed an increase in sensitivity to prednisolone. Guide RNA resistant cDNA rescue was a legitimate strategy and multiple DCK or SLC29A deficient human cell clones were established with one clone becoming prednisolone sensitive. Dck-defective leukemic cells may become prednisolone sensitive indicating prednisolone may be an effective adjuvant therapy in some cases of DCK-negative AML.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Clone Cells
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- DNA, Complementary/genetics
- Deoxycytidine Kinase/genetics
- Dexamethasone/pharmacology
- Drug Resistance, Neoplasm/genetics
- Equilibrative Nucleoside Transporter 1/genetics
- Gene Library
- Genetic Loci
- Genetic Testing
- Genome, Human
- Glucocorticoids/pharmacology
- Humans
- Inhibitory Concentration 50
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Mice
- Mutation/genetics
- Prednisolone/pharmacology
- RNA, Guide, CRISPR-Cas Systems/genetics
- Receptors, Glucocorticoid/metabolism
- Reproducibility of Results
- U937 Cells
Collapse
Affiliation(s)
- Morito Kurata
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susan K. Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Natalie K. Aumann
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justine M. Jones
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Branden S. Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|