1
|
Leite JSM, Vilas-Boas EA, Takahashi HK, Munhoz AC, Araújo LCC, Carvalho CR, Jr JD, Curi R, Carpinelli AR, Cruzat V. Liver lipid metabolism, oxidative stress, and inflammation in glutamine-supplemented ob/ob mice. J Nutr Biochem 2025; 138:109842. [PMID: 39824260 DOI: 10.1016/j.jnutbio.2025.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Glutamine availability may be reduced in chronic diseases, such as type 2 diabetes mellitus (T2DM)-induced by obesity. Herein, the antioxidant, anti-inflammatory and lipid metabolism effects of chronic oral glutamine supplementation in its free and dipeptide form were assessed in ob/ob mice. Adult male C57BL/6J ob/ob mice were supplemented with L-alanyl-L-glutamine (DIP) or free L-glutamine (GLN) in the drinking water for 40 days, whilst C57BL/6J Wild-type lean (WT) and control ob/ob mice (CTRL) received fresh water only. Plasma and tissue (skeletal muscle and liver) glutamine levels, and insulin resistance parameters (e.g., GTT, ITT, insulin) were determined. Oxidative stress (e.g., GSH system, Nrf2 translocation), inflammatory (e.g., NFkB translocation, TNF-α gene expression) and lipid metabolism parameters (e.g., plasma and liver triglyceride levels, SRBP-1, FAS, ACC, and ChRBP gene expression) were also analyzed. CTRL ob/ob mice showed lower glutamine levels in plasma and tissue, as well as increased insulin resistance and fat in the liver. Conversely, chronic DIP supplementation restored glutamine levels in plasma and tissues, improved glucose homeostasis and reduced plasma and liver lipid levels. Also, Nrf2 restoration, reduced NFkB translocation, and lower TNF-α gene expression was observed in the DIP group. Interestingly, chronic free GLN only increased muscle glutamine stores but reduced overall insulin resistance, and attenuated plasma and liver lipid metabolic biomarkers. The results presented herein indicate that restoration of body glutamine levels reduces oxidative stress and inflammation in obese and T2DM ob/ob mice. This effect attenuated hepatic lipid metabolic changes observed in obesity.
Collapse
Affiliation(s)
- Jaqueline Santos Moreira Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Eloisa Aparecida Vilas-Boas
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Hilton K Takahashi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Ana Cláudia Munhoz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Layanne C C Araújo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Carla Roberta Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Jose Donato Jr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, ICAFE, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil; Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Vinicius Cruzat
- Faculty of Health, Southern Cross University, Gold Coast, Queensland, Australia.
| |
Collapse
|
2
|
Zhang Y, Wei M, Wang X, Xu Y, Zong R, Lin X, Li S, Chen W, Liu Z, Chen Q. Dipeptide alanine-glutamine ameliorates retinal neurodegeneration in an STZ-induced rat model. Front Pharmacol 2024; 15:1490443. [PMID: 39629074 PMCID: PMC11611560 DOI: 10.3389/fphar.2024.1490443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Diabetic retinopathy (DR) is a common complication of diabetes. Retinal neuronal degeneration is an early event in DR, indicated by the declined electroretinogram (ERG). Dipeptide alanine-glutamine (Ala-Gln) is widely used as a nutritional supplement in the clinic and has anti-inflammatory effects on the gastrointestinal system. Studies also reported that glutamine has beneficial effects on diabetes. This study aimed to investigate the possible therapeutic effects of Ala-Gln in diabetic retinal neurodegeneration and to delineate its mechanism of action. Methods The Streptozotocin (STZ)-induced rat model was used as a DR model. ERG was used to measure the neuronal function of the retina. Western blot analysis was performed to test the expression of proteins. Immunofluorescence staining was used for the detection and localization of proteins. Results In diabetic rats, the amplitudes of ERG were declined, while Ala-Gln restored the declined ERG. Retinal levels of inflammatory factors were significantly decreased in Ala-Gln-treated diabetic rats. Ala-Gln mitigated the declined levels of glutamine synthetase and ameliorated the upregulated levels of glial fibrillary acidic protein (GFAP) in diabetic retinas. Moreover, Ala-Gln upregulated the glycolytic enzymes pyruvate kinase isozymes 2 (PKM2), lactate dehydrogenase A (LDHA) and LDHB and stimulated the mTOR signaling pathway in diabetic retinas. The mitochondrial function was improved after the treatment of Ala-Gln in diabetic retinas. Discussion Ala-Gln ameliorates retinal neurodegeneration by reducing inflammation and enhancing glucose metabolism and mitochondrial function in DR. Therefore, manipulation of metabolism by Ala-Gln may be a novel therapeutic avenue for retinal neurodegeneration in DR.
Collapse
Affiliation(s)
- Yuhan Zhang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingyan Wei
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wang
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuan Xu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rongrong Zong
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wensheng Chen
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Ding K, He X, Liang D, Xu L, Xiao B, Hou L, Xue F, Zhou G, Ma L. Alanyl-Glutamine Inhibits the Epithelial-Mesenchymal Transition of Airway Epithelial Cells in Asthmatic Mice via DPP4-SIRT1 Pathway. Int Arch Allergy Immunol 2024; 186:369-386. [PMID: 39510053 DOI: 10.1159/000541681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Alanyl-glutamine (Ala-Gln) is a compound known for its protective effects in various tissue injuries. However, its role in asthma-related lung injuries remains underexplored. This study investigates the mechanisms by which Ala-Gln modulates sDPP4-induced airway epithelial-mesenchymal transition and ovalbumin (OVA)-induced asthma in a mouse model. METHODS An asthma model was established in female C57BL/6 J mice by using OVA. CD4+ T cells and bronchial epithelial cells (BECs) were isolated from the spleen and bronchi of the mice, respectively. Interventions included recombinant sCD26/sDPP4 protein, Ala-Gln, and EX527 (a SIRT1 inhibitor). Flow cytometry was used to assess Th17 and Treg cell populations. Mice were treated with Ala-Gln, EX527, and budesonide (BUD). Histopathological changes in lung tissues were evaluated using hematoxylin-eosin and Masson staining. White blood cell counts were measured with a hematology analyzer. The expression levels of DPP4, IL-17, SIRT1, SMAD2/3, N-cadherin, E-cadherin, MMP9, and α-SMA proteins were analyzed. RESULTS Treatment with recombinant sCD26/sDPP4 resulted in decreased E-cadherin expression in BECs and increased levels of α-SMA, MMP9, and N-cadherin, effects that were mitigated by Ala-Gln. Ala-Gln also prevented the reduction in SIRT1 expression in BECs and the increase in Th17 cell differentiation induced by recombinant sCD26/sDPP4. EX527 administration alongside Ala-Gln reversed these changes and enhanced the phosphorylation of SMAD2/3 through SIRT1 signaling. BUD alone reduced inflammation and fibrosis in bronchial tissue and lowered the Th17/Treg ratio in peribronchial lymph nodes. The therapeutic effect of BUD was further improved with concurrent Ala-Gln treatment. CONCLUSION Ala-Gln can inhibit BEC fibrosis and Th17 cell differentiation mediated by recombinant sCD26/sDPP4 through the SIRT1 pathway. Combined with BUD, Ala-Gln enhanced therapeutic efficacy in OVA-induced asthma in mice, which could offer improved outcomes for asthmatic patients with elevated DPP4 levels.
Collapse
Affiliation(s)
- Kai Ding
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Xiaowen He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Donglu Liang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Lanling Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Bo Xiao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Lixia Hou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Feiqian Xue
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Guiming Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| |
Collapse
|
4
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
6
|
Qin T, Hu S, de Vos P. A composite capsule strategy to support longevity of microencapsulated pancreatic β cells. BIOMATERIALS ADVANCES 2023; 155:213678. [PMID: 37944447 DOI: 10.1016/j.bioadv.2023.213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic islet microencapsulation allows transplantation of insulin producing cells in absence of systemic immunosuppression, but graft survival is still limited. In vivo studies have demonstrated that many islet-cells die in the immediate period after transplantation. Here we test whether intracapsular inclusion of ECM components (collagen IV and RGD) with necrostatin-1 (Nec-1), as well as amino acids (AA) have protective effects on islet survival. Also, the inclusion of pectin was tested as it enhances the mitochondrial health of β-cells. To enhance the longevity of encapsulated islets, we studied the impact of the incorporation of the mentioned components into the alginate-based microcapsules in vitro. The efficacy of the different composite microcapsules on MIN6 β-cell or human islet-cell survival and function, as well as suppression of DAMP-induced immune activation, were determined. Finally, we examined the mitochondrial dynamic genes. This was done in the absence and presence of a cytokine cocktail. Here, we found that composite microcapsules of APENAA improved insulin secretion and enhanced the mitochondrial activity of β-cells. Under cytokine exposure, they prevented the cytokine-induced decrease of mitochondrial activity as well as viability till day 5. The rescuing effects of the composite capsules were accompanied by alleviated mitochondrial dynamic gene expression. The composite capsule strategy of APENAA might support the longevity of microencapsulated β-cells by lowering susceptibility to inflammatory stress. Our data demonstrate that combining strategies to support β-cells by changing the intracapsular microenvironment might be an effective way to preserve islet graft longevity in the immediate period after transplantation.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands.
| | - Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands; Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
7
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
8
|
Abstract
Nutrients can impact and regulate cellular metabolism and cell function which is particularly important for the activation and function of diverse immune subsets. Among the critical nutrients for immune cell function and fate, glutamine is possibly the most widely recognised immunonutrient, playing key roles in TCA cycle, heat shock protein responses and antioxidant systems. In addition, glutamine is also involved with inter-organ ammonia transport, and this is particularly important for not only immune cells, but also to the brain, especially in catabolic situations such as critical care and extenuating exercise. The well characterised fall in blood glutamine availability has been the main reason for studies to investigate the possible effects of glutamine replacement via supplementation but many of the results are in poor agreement. At the same time, a range of complex pathways involved in glutamine metabolism have been revealed via supplementation studies. This article will briefly review the function of glutamine in the immune system, with emphasis on metabolic mechanisms, and the emerging role of glutamine in the brain glutamate/gamma-amino butyric acid cycle. In addition, relevant aspects of glutamine supplementation are discussed.
Collapse
|
9
|
Ex Vivo Evaluation of Glutamine Treatment in Sepsis and Trauma in a Human Peripheral Blood Mononuclear Cells Model. Nutrients 2023; 15:nu15010252. [PMID: 36615909 PMCID: PMC9824313 DOI: 10.3390/nu15010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess the lipopolysaccharide (LPS), or heat shock (HS) induction, and glutamine-modulating effects on heat shock protein-90α (HSP90α) and cytokines in an ex vivo model using peripheral blood mononuclear cells (PBMCs). The PBMCs of patients with septic shock, trauma-related systemic inflammatory response syndrome (SIRS), and healthy subjects were incubated with 1 μg/mL LPS at 43 °C (HS). Glutamine 10 mM was added 1 hour before or after induction or not at all. We measured mRNA HSP90α, monocyte (m) and lymphocyte (l) HSP90α proteins, interleukin (IL)-1b, -6, -8, -10, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) supernatant levels. Heat shock increased the HSP90α mRNA and mHSP90α in all groups (10-fold in sepsis, p < 0.001 and p = 0.047, respectively). LPS induced the mHSP90α and lHSP90α in healthy (p < 0.001) and mHSP90α in SIRS (p = 0.004) but not in sepsis. LPS induced the cytokines at 24 and 48 h in all groups, especially in trauma (p < 0.001); HS only induced the IL-8 in healthy (p = 0.003) and septic subjects (p = 0.05). Glutamine at 10 mM before or after stimulation did not alter any induction effect of LPS or HS on HSP90α mRNA and mHSP90α protein in sepsis. In SIRS, glutamine before LPS decreased the mHSP90α but increased it when given after HS (p = 0.018). Before or after LPS (p = 0.049) and before HS (p = 0.018), glutamine decreased the lHSP90α expression in sepsis but increased it in SIRS when given after HS (p = 0.003). Regarding cytokines, glutamine enhanced the LPS-induced MCP-1 at 48 h in healthy (p = 0.011), SIRS (p < 0.001), and sepsis (p = 0.006). In conclusion, glutamine at 10 mM, before or after LPS and HS, modulates mHSP90α and lHSP90α in sepsis and SIRS differently and unpredictably. Although it does not alter the stimulation effect on interleukins, glutamine enhances the LPS induction effect on supernatant MCP-1 in all groups. Future research should seek to elucidate better the impact of glutamine and temperature modulation on HSP90α and MCP-1 pathways in sepsis and trauma.
Collapse
|
10
|
Hu J, Zheng Y, Ying H, Ma H, Li L, Zhao Y. Alanyl-Glutamine Protects Mice against Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis and Fibrosis by Modulating Oxidative Stress and Inflammation. Nutrients 2022; 14:nu14183796. [PMID: 36145172 PMCID: PMC9503574 DOI: 10.3390/nu14183796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a common chronic liver disease with increasing prevalence rates over years and is associated with hepatic lipid accumulation, liver injury, oxidative stress, hepatic inflammation, and liver fibrosis and lack of approved pharmacological therapy. Alanyl-glutamine (Ala-Gln) is a recognized gut-trophic nutrient that has multiple pharmacological effects in the prevention of inflammation- and oxidative-stress-associated diseases. Nevertheless, whether Ala-Gln has a protective effect on NASH still lacks evidence. The aim of this study is to explore the influence of Ala-Gln on NASH and its underlying mechanisms. Here, C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet to establish the model of NASH, and Ala-Gln at doses of 500 and 1500 mg/kg were intraperitoneally administered to mice along with a MCD diet. The results showed that Ala-Gln treatment significantly attenuated MCD-induced hepatic pathological changes, lowered NAFLD activity score, and reduced plasma alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase (LDH) levels. Ala-Gln dramatically alleviated lipid accumulation in liver through modulating the expression levels of fatty acid translocase (FAT/CD36) and farnesoid X receptor (FXR). In addition, Ala-Gln exerted an anti-oxidant effect by elevating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, Ala-Gln exhibited an anti-inflammatory effect via decreasing the accumulation of activated macrophages and suppressing the production of proinflammatory mediators. Notably, Ala-Gln suppressed the development of liver fibrosis in MCD-diet-fed mice, which may be due to the inhibition of hepatic stellate cells activation. In conclusion, these findings revealed that Ala-Gln prevents the progression of NASH through the modulation of oxidative stress and inflammation and provided the proof that Ala-Gln might be an effective pharmacological agent to treat NASH.
Collapse
Affiliation(s)
- Jiaji Hu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315010, China
| | - Yigang Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Huabin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Correspondence:
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Chen T, Jia F, Yu Y, Zhang W, Wang C, Zhu S, Zhang N, Liu X. Potential Role of Quercetin in Polycystic Ovary Syndrome and Its Complications: A Review. Molecules 2022; 27:molecules27144476. [PMID: 35889348 PMCID: PMC9325244 DOI: 10.3390/molecules27144476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common multisystem disease with reproductive, metabolic and psychological abnormalities. It is characterized by a high prevalence rate in women of childbearing age and highly heterogeneous clinical manifestations, which seriously harm women’s physical and mental health. Quercetin (QUR) is a natural compound of flavonoids found in a variety of foods and medicinal plants. It can intervene with the pathologic process of PCOS from multiple targets and channels and has few adverse reactions. It is mentioned in this review that QUR can improve ovulation disorder, relieve Insulin resistance (IR), reduce androgen, regulate lipid metabolism, regulate gut microbiota and improve vascular endothelial function, which is of great significance in the treatment of PCOS.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fan Jia
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Yu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wufan Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chaoying Wang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shiqin Zhu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nana Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinmin Liu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Correspondence:
| |
Collapse
|
12
|
Alanyl-Glutamine Protects against Lipopolysaccharide-Induced Liver Injury in Mice via Alleviating Oxidative Stress, Inhibiting Inflammation, and Regulating Autophagy. Antioxidants (Basel) 2022; 11:antiox11061070. [PMID: 35739966 PMCID: PMC9220087 DOI: 10.3390/antiox11061070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
Acute liver injury is a worldwide problem with a high rate of morbidity and mortality, and effective pharmacological therapies are still urgently needed. Alanyl-glutamine (Ala-Gln), a dipeptide formed from L-alanine and L-glutamine, is known as a protective compound that is involved in various tissue injuries, but there are limited reports regarding the effects of Ala-Gln in acute liver injury. This present study aimed to investigate the protective effects of Ala-Gln in lipopolysaccharide (LPS)-induced acute liver injury in mice, with a focus on inflammatory responses and oxidative stress. The acute liver injury induced using LPS (50 μg/kg) and D-galactosamine (D-Gal) (400 mg/kg) stimulation in mice was significantly attenuated after Ala-Gln treatment (500 and 1500 mg/kg), as evidenced by reduced plasma alanine transaminase (ALT) (p < 0.01, p < 0.001), aspartate transaminase (AST) (p < 0.05, p < 0.001), and lactate dehydrogenase (LDH) (p < 0.01, p < 0.001) levels, and accompanied by improved histopathological changes. In addition, LPS/D-Gal-induced hepatic apoptosis was also alleviated by Ala-Gln administration, as shown by a greatly decreased ratio of TUNEL-positive hepatocytes, from approximately 10% to 2%, and markedly reduced protein levels of cleaved caspase-3 (p < 0.05, p < 0.001) in liver. Moreover, we found that LPS/D-Gal-triggered oxidative stress was suppressed after Ala-Gln treatment, the effect of which might be dependent on the elevation of SOD and GPX activities, and on GSH levels in liver. Interestingly, we observed that Ala-Gln clearly inhibited LPS/D-Gal exposure-induced macrophage accumulation and the production of proinflammatory factors in the liver. Furthermore, Ala-Gln greatly regulated autophagy in the liver in LPS/D-Gal-treated mice. Using RAW264.7 cells, we confirmed the anti-inflammatory role of Ala-Gln-targeting macrophages.
Collapse
|
13
|
Camastra S, Palumbo M, Santini F. Nutrients handling after bariatric surgery, the role of gastrointestinal adaptation. Eat Weight Disord 2022; 27:449-461. [PMID: 33895917 PMCID: PMC8933374 DOI: 10.1007/s40519-021-01194-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
Bariatric surgery determines a rearrangement of the gastrointestinal tract that influences nutrient handling and plays a role in the metabolic changes observed after surgery. Most of the changes depend on the accelerated gastric emptying observed in Roux-en-Y gastric bypass (RYGB) and, to a lesser extent, in sleeve gastrectomy (SG). The rapid delivery of meal into the jejunum, particularly after RYGB, contributes to the prompt appearance of glucose in peripheral circulation. Glucose increase is the principal determinant of GLP-1 increase with the consequent stimulation of insulin secretion, the latter balanced by a paradoxical glucagon increase that stimulates EGP to prevent hypoglycaemia. Protein digestion and amino acid absorption appear accelerated after RYGB but not after SG. After RYGB, the adaptation of the gut to the new condition participates to the metabolic change. The intestinal transit is delayed, the gut microbioma is changed, the epithelium becomes hypertrophic and increases the expression of glucose transporter and of the number of cell secreting hormones. These changes are not observed after SG. After RYGB-less after SG-bile acids (BA) increase, influencing glucose metabolism probably modulating FXR and TGR5 with an effect on insulin sensitivity. Muscle, hepatic and adipose tissue insulin sensitivity improve, and the gut reinforces the recovery of IS by enhancing glucose uptake and through the effect of the BA. The intestinal changes observed after RYGB result in a light malabsorption of lipid but not of carbohydrate and protein. In conclusion, functional and morphological adaptations of the gut after RYGB and SG activate inter-organs cross-talk that modulates the metabolic changes observed after surgery.Level of evidence Level V, narrative literature review.
Collapse
Affiliation(s)
- Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy. .,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Maria Palumbo
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy
| | - Ferruccio Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Ducloux D, Courivaud C. Prevention of Post-Transplant Diabetes Mellitus: Towards a Personalized Approach. J Pers Med 2022; 12:116. [PMID: 35055431 PMCID: PMC8778007 DOI: 10.3390/jpm12010116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Post-transplant diabetes is a frequent complication after transplantation. Moreover, patients suffering from post-transplant diabetes have increased cardiovascular morbidity and reduced survival. Pathogenesis mainly involves beta-cell dysfunction in presence of insulin resistance. Both pre- and post-transplant risk factors are well-described, and some of them may be corrected or prevented. However, the frequency of post-transplant diabetes has not decreased in recent years. We realized a critical appraisal of preventive measures to reduce post-transplant diabetes.
Collapse
Affiliation(s)
- Didier Ducloux
- CHU Besançon, Department of Nephrology, Dialysis and Renal Transplantation, Federation Hospitalo-Universitaire INCREASE, 25000 Besançon, France;
- UMR RIGHT 1098, INSERM-EFS-UFC, 1 Bd Fleming, 25000 Besançon, France
| | - Cécile Courivaud
- CHU Besançon, Department of Nephrology, Dialysis and Renal Transplantation, Federation Hospitalo-Universitaire INCREASE, 25000 Besançon, France;
- UMR RIGHT 1098, INSERM-EFS-UFC, 1 Bd Fleming, 25000 Besançon, France
| |
Collapse
|
15
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
16
|
Chen Y, Zhang M, Ding X, Yang Y, Chen Y, Zhang Q, Fan Y, Dai Y, Wang J. Mining Anti-Inflammation Molecules From Nippostrongylus brasiliensis-Derived Products Through the Metabolomics Approach. Front Cell Infect Microbiol 2021; 11:781132. [PMID: 34858883 PMCID: PMC8632049 DOI: 10.3389/fcimb.2021.781132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
Hookworm is one type of soil-transmitted helminth, which could exert an anti-inflammatory effect in human or animal host, which provides a beneficial possibility for the discovery of inflammatory-related disease interventions. The identification of hookworm-derived anti-inflammatory molecules is urgently needed for future translational research. The emergence of metabolomics has become a powerful approach to comprehensively characterize metabolic alterations in recent times. Herein, excretory and secretory products (ESPs) were collected from cultured adult worm, while small intestinal contents were obtained from Nippostrongylus brasiliensis (N. brasiliensis, Nb)-infected mice. Through ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) platform, metabolomics analysis was used to explore the identification of anti-inflammatory molecules. Out of 45 differential metabolites that were discovered from ESPs, 10 of them showed potential anti-inflammatory properties, which could be subclassed into amino acids, furanocoumarins, linear diarylheptanoids, gamma butyrolactones, and alpha-keto acids. In terms of intestinal contents that were derived from N. brasiliensis-infected mice, 14 out of 301 differential metabolites were discovered to demonstrate anti-inflammatory effects, with possible subclassification into amino acids, benzylisoquinolines, quaternary ammonium salts, pyrimidines, pregnane steroids, purines, biphenyls, and glycerophosphocholines. Furthermore, nine of the differential metabolites appeared both in ESPs and infected intestinal contents, wherein four were proven to show anti-inflammation properties, namely, L-glutamine, glutamine (Gln), pyruvate, and alanine-Gln (Ala-Gln). In summary, we have provided a method for the identification and analysis of parasite-derived molecules with potential anti-inflammatory properties in the present study. This array of anti-inflammatory metabolites could provide clues for future evaluation and translational study of these anti-inflammatory molecules.
Collapse
Affiliation(s)
- Yuying Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Mingming Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Ding
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yougui Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yujia Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yinwen Fan
- Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Yang Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| |
Collapse
|
17
|
Olaniyi KS, Sabinari IW, Olatunji LA. Oral L-glutamine rescues fructose-induced poor fetal outcome by preventing placental triglyceride and uric acid accumulation in Wistar rats. Heliyon 2020; 6:e05863. [PMID: 33426346 PMCID: PMC7777114 DOI: 10.1016/j.heliyon.2020.e05863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/08/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Metabolic adaptation of pregnant mothers is crucial for placental development and fetal growth/survival. However, evidence exists that indiscriminate consumption of fructose-enriched drink (FED) during pregnancy disrupts maternal-fetal metabolic tolerance with attendant adverse fetal outcomes. Glutamine supplementation (GLN) has been shown to exert a modulatory effect in metabolic disorders. Nevertheless, the effects of GLN on FED-induced poor fetal outcome, and in particular the impacts on placental uric acid/lipid accumulation are unknown. The present study was conducted to test the hypothesis that oral GLN improves fetal outcome by attenuating placental lipid accumulation and uric acid synthesis in pregnant rats exposed to FED. MATERIALS AND METHODS Pregnant Wistar rats (160-180 g) were randomly allotted to control, GLN, FED and FED + GLN groups (6 rats/group). The groups received vehicle by oral gavage, glutamine (1 g/kg) by oral gavage, fructose (10%; w/v) and fructose + glutamine, respectively, through gestation. RESULTS Data showed that FED during pregnancy caused placental inefficiency, reduced fetal growth, and caused insulin resistance with correspondent increase in fasting blood glucose and plasma insulin. FED also resulted in an increased placental triglyceride, total cholesterol and de novo uric acid synthesis by activating adenosine deaminase and xanthine oxidase activities. Moreover, FED during pregnancy led to increased lipid peroxidation, lactate production with correspondent decreased adenosine and glucose-6-phosphate dehydrogenase-dependent antioxidant defense. These alterations were abrogated by GLN supplementation. CONCLUSION These findings implicate that high FED intake during pregnancy causes poor fetal outcome via defective placental uric acid/triglyceride-dependent mechanism. The findings also suggest that oral GLN improves fetal outcome by ameliorating placental defects through suppression of uric acid/triglyceride accumulation.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaiah Woru Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
18
|
Wysham C, Shubrook J. Beta-cell failure in type 2 diabetes: mechanisms, markers, and clinical implications. Postgrad Med 2020; 132:676-686. [PMID: 32543261 DOI: 10.1080/00325481.2020.1771047] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well known that type 2 diabetes mellitus (T2D) is a globally increasing health burden. Despite recent therapeutic advances and the availability of many different classes of antihyperglycemic therapy, a large proportion of people do not achieve glycemic control. A decline in pancreatic beta-cell function has been defined as a key contributing factor to progression of T2D. In fact, a significant proportion of beta-cell secretory capacity is thought to be lost well before the diagnosis of T2D is made. Several models have been proposed to explain the reduction in beta-cell function, including reduced beta-cell number, beta-cell exhaustion, and dedifferentiation or transdifferentiation into other cell types. However, there have been reports that suggest remission of T2D is possible, and it is believed that beta-cell dysfunction may be, in part, reversible. As such, the question of whether beta cells are committed to failure in people with T2D is complex. It is now widely accepted that early restoration of normoglycemia may protect beta-cell function. Key to the successful implementation of this approach in clinical practice is the appropriate assessment of individuals at risk of beta-cell failure, and the early implementation of appropriate treatment options. In this review, we discuss the progression of T2D in the context of beta-cell failure and describe how C-peptide testing can be used to assess beta-cell function in primary care practice. In conclusion, significant beta-cell dysfunction is likely in individuals with certain clinical characteristics of T2D, such as long duration of disease, high glycated hemoglobin (≥9%), and/or long-term use of therapies that continuously stimulate the beta cell. In these people, measurement of beta-cell status could assist with choice of appropriate therapy to delay or potentially reverse beta-cell dysfunction and the progression of T2D.
Collapse
Affiliation(s)
- Carol Wysham
- Department of Diabetes and Endocrinology, Rockwood Diabetes & Endocrinology Clinic , Spokane, WA, USA
| | - Jay Shubrook
- College of Osteopathic Medicine, Touro University California , Vallejo, CA, USA
| |
Collapse
|
19
|
Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR. Cellular Metabolic Profiling of CrFK Cells Infected with Feline Infectious Peritonitis Virus Using Phenotype Microarrays. Pathogens 2020; 9:E412. [PMID: 32466289 PMCID: PMC7281222 DOI: 10.3390/pathogens9050412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis. METHODS The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells. RESULTS The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells. CONCLUSION This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.
Collapse
Affiliation(s)
- Shing Wei Ng
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - Farina Mustaffa Kamal
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (F.M.K.); (A.R.O.)
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (F.M.K.); (A.R.O.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
20
|
Olaniyi KS, Sabinari IW, Olatunji LA. Oral L-glutamine restores adenosine and glutathione content in the skeletal muscle and adipose tissue of insulin-resistant pregnant rats. Nutrition 2020; 77:110789. [PMID: 32428839 DOI: 10.1016/j.nut.2020.110789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Mishandling of lipid and glycogen has been documented as a feature of metabolic tissues in insulin resistance-related disorders. However, reports exist detailing that L-glutamine (GLN) protects non-adipose tissue against the deleterious effects of metabolic disorders. Therefore, we hypothesized that GLN would protect skeletal muscle and adipose tissue against the deleterious effects of lipid and glycogen mishandlings by increasing adenosine and glutathione levels in pregnant rats exposed to fructose (FRU)-enriched drinks. METHODS Pregnant Wistar rats weighing 150 to 180 g were randomly assigned to control, GLN, FRU, and FRU + GLN groups (six rats/group). The groups received vehicle (P.o.), glutamine (1 g/kg), FRU (10%; w/v), and FRU + GLN, respectively, for 19 d. RESULTS Data show that FRU caused insulin resistance with corresponding increased blood glucose, circulating and pancreatic insulin levels, and lipid accumulation and glycogen depletion in skeletal muscle, but glycogen accumulation and a decreased lipid profile in adipose tissue. Adenosine and glutathione content decreased, whereas adenosine deaminase, xanthine oxidase, uric acid, and malondialdehyde concentrations increased in both tissues. In addition, glucose-6-phosphate dehydrogenase activity decreased in skeletal muscle but remained unaltered in adipose tissue. However, supplementation with GLN improved perturbed lipid and glycogen with a corresponding increase in adenosine and glutathione. CONCLUSIONS The present results collectively indicate that lipid and glycogen mishandlings caused by high gestational FRU intake result in the depletion of adenosine and glutathione in skeletal muscle and adipose tissue. These findings also suggest that L-glutamine protects against skeletal muscle and adipose tissue dysmetabolism by enhancing adenosine and glutathione.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaiah Woru Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| |
Collapse
|
21
|
Newsholme P, Keane KN, Carlessi R, Cruzat V. Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. Am J Physiol Cell Physiol 2019; 317:C420-C433. [PMID: 31216193 DOI: 10.1152/ajpcell.00141.2019] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now accepted that nutrient abundance in the blood, especially glucose, leads to the generation of reactive oxygen species (ROS), ultimately leading to increased oxidative stress in a variety of tissues. In the absence of an appropriate compensatory response from antioxidant mechanisms, the cell, or indeed the tissue, becomes overwhelmed by oxidative stress, leading to the activation of intracellular stress-associated pathways. Activation of the same or similar pathways also appears to play a role in mediating insulin resistance, impaired insulin secretion, and late diabetic complications. The ability of antioxidants to protect against the oxidative stress induced by hyperglycemia and elevated free fatty acid (FFA) levels in vitro suggests a causative role of oxidative stress in mediating the latter clinical conditions. In this review, we describe common biochemical processes associated with oxidative stress driven by hyperglycemia and/or elevated FFA and the resulting clinical outcomes: β-cell dysfunction and peripheral tissue insulin resistance.
Collapse
Affiliation(s)
- Philip Newsholme
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Kevin N Keane
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Olaniyi KS, Olatunji LA. Preventive effects of l-glutamine on gestational fructose-induced cardiac hypertrophy: involvement of pyruvate dehydrogenase kinase-4. Appl Physiol Nutr Metab 2019; 44:1345-1354. [PMID: 31082323 DOI: 10.1139/apnm-2018-0754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gestational fructose exposure has detrimental health consequences on both the maternal and fetus or offspring in the early or later life, contributing to epidemic rise in cardiometabolic syndrome including cardiac events. l-Glutamine has been shown to mitigate cardiac metabolic stress. However, the effect of l-glutamine on cardiac hypertrophy induced by gestational fructose exposure is not known. We therefore hypothesized that l-glutamine would prevent gestational fructose-induced cardiac hypertrophy, possibly by suppression of pyruvate dehydrogenase kinase-4 (PDK-4). Pregnant Wistar rats were allotted into the control, l-glutamine, gestational fructose exposure, and gestational fructose exposure plus l-glutamine groups (6 rats in each group). The groups received distilled water (vehicle, per os), 1 g/kg body weight l-glutamine (per os), 10% fructose (w/v) and 10% fructose (w/v) plus 1 g/kg l-glutamine (per os), respectively, daily for 19 days. Data from this study showed that gestational fructose-enriched drink caused cardiac hypertrophy with correspondent body weight gain, glucose dysregulation, increased cardiac PDK-4, triglyceride, glycogen, lactate, and uric acid production. On the other hand, defective glutathione-dependent antioxidant barrier was also observed in pregnant rats taking fructose-enriched drink. However, the gestational fructose-induced cardiac hypertrophy and its correlates were attenuated by l-glutamine. The present results demonstrate that gestational fructose-enriched drink induces cardiac hypertrophy that is accompanied by increased PDK-4. The findings also suggest that the inhibitory effect of l-glutamine on PDK-4 prevents the development of cardiac hypertrophy, thereby implying that PDK-4 may be a potential novel therapeutic intervention for cardiac hypertrophy especially in pregnancy.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.,Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
23
|
Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, Tan B, Zhu G, Deng J, Yin Y. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Adv Nutr 2019; 10:321-330. [PMID: 30753258 PMCID: PMC6416106 DOI: 10.1093/advances/nmy084] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Obesity is a nutritional disorder resulting from a chronic imbalance between energy intake and expenditure. This disease is characterized by inflammation in multiple cell types, including macrophages. M1 macrophage responses are correlated with the progression of obesity or diabetes; therefore, strategies that induce repolarization of macrophages from an M1 to an M2 phenotype may be promising for the prevention of obesity- or diabetes-associated pathology. Glutamine (the most abundant amino acid in the plasma of humans and many other mammals including rats) is effective in inducing polarization of M2 macrophages through the glutamine-UDP-N-acetylglucosamine pathway and α-ketoglutarate produced via glutaminolysis, whereas succinate synthesized via glutamine-dependent anerplerosis or the γ-aminobutyric acid shunt promotes polarization of M1 macrophages. Interestingly, patients with obesity or diabetes show altered glutamine metabolism, including decreases in glutamine and α-ketoglutarate concentrations in serum but increases in succinate concentrations. Thus, manipulation of macrophage polarization through glutamine metabolism may provide a potential target for prevention of obesity- or diabetes-associated pathology.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Academics Working Station at The First Affiliated Hospital, Changsha Medical University, Changsha, China
| |
Collapse
|
24
|
Scutellarin Exerts Hypoglycemic and Renal Protective Effects in db/db Mice via the Nrf2/HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1354345. [PMID: 30881587 PMCID: PMC6387728 DOI: 10.1155/2019/1354345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
This study investigated the hypoglycemic and renal protective effects of scutellarin (SCU) in db/db mice and elucidated the underlying mechanisms. The oral administration of metformin hydrochloride (Met) at 120 mg/kg and SCU at 25, 50, and 100 mg/kg over an eight-week period had hypoglycemic effects, demonstrated by decreases in body weight, blood glucose, food and water intake, and glycated hemoglobin activity and by augmented insulin levels and pyruvate kinase activity in the serum of db/db mice. SCU alleviated dyslipidemia by decreasing the levels of triglycerides and total cholesterol and enhancing the levels of high-density lipoprotein cholesterol in the serum of db/db mice. SCU reversed the overexpression of mRNA of renal damage markers (receptor for advanced glycation end products, neutrophil gelatinase-associated lipocalin, and kidney injury molecule 1), macrophage marker CD11b, and T cell marker CD3 in kidney of db/db mice. Pathological examination confirmed that SCU improved the organ structures of hyperglycemia-damaged livers, kidneys, and pancreas islets. Antibody array assay and enzyme-linked immunosorbent assay were combined to screen and analyze the regulatory effects of SCU on inflammatory factors and oxidative enzymes. SCU exerted anti-inflammatory effects by inhibiting the levels of proinflammatory cytokines (glycogen synthase kinase, intercellular adhesion molecule 2, and interleukin 1β and 2) and promoting anti-inflammatory cytokines (interleukin 4). SCU decreased the reactive oxygen species and malondialdehyde concentrations and increased the activity levels of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) in serum and kidneys. Furthermore, SCU upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which in turn improved heme oxygenase 1 (HO-1), superoxide dismutase 1 and 2, and catalase expression levels in kidneys. The study showed that SCU has at least partial hypoglycemic and renal protective effects in db/db mice, and the mechanism is the modulation of the Nrf2/HO-1 signaling pathway.
Collapse
|
25
|
Inhibition of pyruvate dehydrogenase kinase-4 by l-glutamine protects pregnant rats against fructose-induced obesity and hepatic lipid accumulation. Biomed Pharmacother 2019; 110:59-67. [DOI: 10.1016/j.biopha.2018.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/29/2018] [Accepted: 11/10/2018] [Indexed: 12/13/2022] Open
|
26
|
Rowlands J, Walz N, Rowles JE, Keane KN, Carlessi R, Newsholme P. Method Protocols for Metabolic and Functional Analysis of the BRIN-BD11 β-Cell Line: A Preclinical Model for Type 2 Diabetes. Methods Mol Biol 2019; 1916:329-340. [PMID: 30535710 DOI: 10.1007/978-1-4939-8994-2_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In type 2 diabetes, prolonged dysregulation of signalling and β-cell metabolic control leads to β-cell dysfunction, and is increasingly associated with abnormal metabolic states which disrupt normal cellular physiology. Utilization of appropriate β-cell models enables a systematic approach to understand the impact of perturbations to the biological system. The BRIN-BD11 β-cell line is a useful, pre-clinical cell model for β-cell dysfunction associated with type 2 diabetes, among other metabolic disorders. The present chapter describes detection and analysis of β-cell dysfunction with respect to changes in bioenergetics and metabolism, generation of intracellular reactive oxygen species, and acute and chronic insulin secretion in the BRIN-BD11 cell line.
Collapse
Affiliation(s)
- Jordan Rowlands
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Nikita Walz
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Joanne E Rowles
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Kevin N Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia.
| |
Collapse
|
27
|
Darmaun D, Torres-Santiago L, Mauras N. Glutamine and type 1 diabetes mellitus: is there a role in glycemic control? Curr Opin Clin Nutr Metab Care 2019; 22:91-95. [PMID: 30461450 DOI: 10.1097/mco.0000000000000530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Recent literature suggests dietary glutamine supplementation may lower blood glucose in patients with type 1 diabetes (T1D), who have no residual insulin secretion. The mechanisms and potential relevance to the care of T1D remain unclear. RECENT FINDINGS Glutamine is involved in multiple pathways including gluconeogenesis, lipolysis, antioxidant defense, the production of nitric oxide, the secretion of peptides (e.g., glucagon-like peptide 1, GLP-1), or neuromediators (e.g., [Latin Small Letter Gamma]-aminobutyric acid), all processes that may impact insulin sensitivity and/or glucose homeostasis. The article reviews potential mechanisms and literature evidence suggesting a role in improving glucose tolerance in patients with illness associated with insulin resistance, as well as the preliminary evidence for the increased incidence of postexercise hypoglycemia in T1D after oral glutamine. SUMMARY Further studies are warranted to determine whether the lowering effect of glutamine on blood glucose is sustained over time. If so, long-term randomized trials would be warranted to determine whether there is a role for glutamine as an adjunct dietary supplement to improve glucose control in patients with T1D.
Collapse
Affiliation(s)
- Dominique Darmaun
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
- INRA and University of Nantes, IMAD, CRNH-Ouest, Nantes, France
| | - Lournaris Torres-Santiago
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
| | - Nelly Mauras
- Department of Pediatric Endocrinology and Metabolism, Nemours Children's Health System, Jacksonville, Florida, USA
| |
Collapse
|
28
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018; 10:nu10111564. [PMID: 30360490 PMCID: PMC6266414 DOI: 10.3390/nu10111564] [Citation(s) in RCA: 649] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
- Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
29
|
Negi CK, Jena G. Nrf2, a novel molecular target to reduce type 1 diabetes associated secondary complications: The basic considerations. Eur J Pharmacol 2018; 843:12-26. [PMID: 30359563 DOI: 10.1016/j.ejphar.2018.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress and inflammation are the mediators of diabetes and related secondary complications. Oxidative stress arises because of the excessive production of reactive oxygen species and diminished antioxidant production due to impaired Nrf2 activation, the master regulator of endogenous antioxidant. It has been established from various animal models that the transcription factor Nrf2 provides cytoprotection, ameliorates oxidative stress, inflammation and delays the progression of diabetes and its associated complications. Whereas, deletion of the transcription factor Nrf2 amplifies tissue level pathogenic alterations. In addition, Nrf2 also regulates the expression of numerous cellular defensive genes and protects against oxidative stress-mediated injuries in diabetes. The present review provides an overview on the role of Nrf2 in type 1 diabetes and explores if it could be a potential target for the treatment of diabetes and related complications. Further, the rationality of different agent's intervention has been discussed to mitigate organ damages induced by diabetes.
Collapse
Affiliation(s)
- Chander K Negi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
30
|
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018. [PMID: 30360490 DOI: 10.20944/preprints201809.0459.v1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glutamine is the most abundant and versatile amino acid in the body. In health and disease, the rate of glutamine consumption by immune cells is similar or greater than glucose. For instance, in vitro and in vivo studies have determined that glutamine is an essential nutrient for lymphocyte proliferation and cytokine production, macrophage phagocytic plus secretory activities, and neutrophil bacterial killing. Glutamine release to the circulation and availability is mainly controlled by key metabolic organs, such as the gut, liver, and skeletal muscles. During catabolic/hypercatabolic situations glutamine can become essential for metabolic function, but its availability may be compromised due to the impairment of homeostasis in the inter-tissue metabolism of amino acids. For this reason, glutamine is currently part of clinical nutrition supplementation protocols and/or recommended for immune suppressed individuals. However, in a wide range of catabolic/hypercatabolic situations (e.g., ill/critically ill, post-trauma, sepsis, exhausted athletes), it is currently difficult to determine whether glutamine supplementation (oral/enteral or parenteral) should be recommended based on the amino acid plasma/bloodstream concentration (also known as glutaminemia). Although the beneficial immune-based effects of glutamine supplementation are already established, many questions and evidence for positive in vivo outcomes still remain to be presented. Therefore, this paper provides an integrated review of how glutamine metabolism in key organs is important to cells of the immune system. We also discuss glutamine metabolism and action, and important issues related to the effects of glutamine supplementation in catabolic situations.
Collapse
Affiliation(s)
- Vinicius Cruzat
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia. .,Faculty of Health, Torrens University, Melbourne 3065, Australia.
| | - Marcelo Macedo Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, Avenida Doutor Arnaldo 715, São Paulo 01246-904, Brazil.
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences, Curtin University, Perth 6102, Australia.
| |
Collapse
|
31
|
Rowlands J, Cruzat V, Carlessi R, Newsholme P. Insulin and IGF-1 receptor autocrine loops are not required for Exendin-4 induced changes to pancreatic β-cell bioenergetic parameters and metabolism in BRIN-BD11 cells. Peptides 2018; 100:140-149. [PMID: 29412813 DOI: 10.1016/j.peptides.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/13/2023]
Abstract
Pharmacological long lasting Glucagon-like peptide-1 (GLP-1) analogues, such as Exendin-4, have become widely used diabetes therapies. Chronic GLP-1R stimulation has been linked to β-cell protection and these pro-survival actions of GLP-1 are dependent on the activation of the mammalian target of rapamycin (mTOR) leading to accumulation of Hypoxia inducible factor 1 alpha (HIF-1α). Recent studies from our lab indicate that prolonged GLP-1R stimulation promotes metabolic reprograming of β-cells towards a highly glycolytic phenotype and activation of the mTOR/HIF-1α pathway was required for this action. We hypothesised that GLP-1 induced metabolic changes depend on the activation of mTOR and HIF-1α, in a cascade that occurs after triggering of a potential Insulin-like growth factor 1 receptor (IGF-1R) or the Insulin receptor (IR) autocrine loops. Loss of function of these receptors, through the use of small interfering RNA, or neutralizing antibodies directed towards their products, was undertaken in conjunction with functional assays. Neither of these strategies mitigated the effect of GLP-1 on glucose uptake, protein expression or bioenergetic flux. Our data indicates that activation of IGF-1R and/or the IR autocrine loops resulting in β-cell protection and function, involve mechanisms independent to the enhanced metabolic effects resulting from sustained GLP-1R activation.
Collapse
Affiliation(s)
- Jordan Rowlands
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Bldg 305, Rm 135 - CHIRI, Kent St, Bentley, WA, 6102, Australia.
| | - Vinicius Cruzat
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Bldg 305, Rm 135 - CHIRI, Kent St, Bentley, WA, 6102, Australia.
| | - Rodrigo Carlessi
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Bldg 305, Rm 135 - CHIRI, Kent St, Bentley, WA, 6102, Australia.
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Bldg 305, Rm 135 - CHIRI, Kent St, Bentley, WA, 6102, Australia.
| |
Collapse
|
32
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
33
|
Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2017; 473:4527-4550. [PMID: 27941030 DOI: 10.1042/bcj20160503c] [Citation(s) in RCA: 584] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.
Collapse
|
34
|
Leite JSM, Cruzat VF, Krause M, Homem de Bittencourt PI. Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
White MG, Shaw JAM, Taylor R. Type 2 Diabetes: The Pathologic Basis of Reversible β-Cell Dysfunction. Diabetes Care 2016; 39:2080-2088. [PMID: 27926891 DOI: 10.2337/dc16-0619] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/23/2016] [Indexed: 02/03/2023]
Abstract
The reversible nature of early type 2 diabetes has been demonstrated in in vivo human studies. Recent in vivo and in vitro studies of β-cell biology have established that the β-cell loses differentiated characteristics, including glucose-mediated insulin secretion, under metabolic stress. Critically, the β-cell dedifferentiation produced by long-term excess nutrient supply is reversible. Weight loss in humans permits restoration of first-phase insulin secretion associated with the return to normal of the elevated intrapancreatic triglyceride content. However, in type 2 diabetes of duration greater than 10 years, the cellular changes appear to pass a point of no return. This review summarizes the evidence that early type 2 diabetes can be regarded as a reversible β-cell response to chronic positive calorie balance.
Collapse
Affiliation(s)
- Michael G White
- Regenerative Medicine for Diabetes Group and Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K
| | - James A M Shaw
- Regenerative Medicine for Diabetes Group and Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K
| | - Roy Taylor
- Regenerative Medicine for Diabetes Group and Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, U.K.
| |
Collapse
|
36
|
Regulatory principles in metabolism–then and now. Biochem J 2016; 473:1845-57. [DOI: 10.1042/bcj20160103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
The importance of metabolic pathways for life and the nature of participating reactions have challenged physiologists and biochemists for over a hundred years. Eric Arthur Newsholme contributed many original hypotheses and concepts to the field of metabolic regulation, demonstrating that metabolic pathways have a fundamental thermodynamic structure and that near identical regulatory mechanisms exist in multiple species across the animal kingdom. His work at Oxford University from the 1970s to 1990s was groundbreaking and led to better understanding of development and demise across the lifespan as well as the basis of metabolic disruption responsible for the development of obesity, diabetes and many other conditions. In the present review we describe some of the original work of Eric Newsholme, its relevance to metabolic homoeostasis and disease and application to present state-of-the-art studies, which generate substantial amounts of data that are extremely difficult to interpret without a fundamental understanding of regulatory principles. Eric's work is a classical example of how one can unravel very complex problems by considering regulation from a cell, tissue and whole body perspective, thus bringing together metabolic biochemistry, physiology and pathophysiology, opening new avenues that now drive discovery decades thereafter.
Collapse
|
37
|
Chen Y, Carlessi R, Walz N, Cruzat VF, Keane K, John AN, Jiang FX, Carnagarin R, Dass CR, Newsholme P. Pigment epithelium-derived factor (PEDF) regulates metabolism and insulin secretion from a clonal rat pancreatic beta cell line BRIN-BD11 and mouse islets. Mol Cell Endocrinol 2016; 426:50-60. [PMID: 26868448 DOI: 10.1016/j.mce.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/23/2016] [Accepted: 02/05/2016] [Indexed: 02/05/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional glycoprotein, associated with lipid catabolism and insulin resistance. In the present study, PEDF increased chronic and acute insulin secretion in a clonal rat β-cell line BRIN-BD11, without alteration of glucose consumption. PEDF also stimulated insulin secretion from primary mouse islets. Seahorse flux analysis demonstrated that PEDF did not change mitochondrial respiration and glycolytic function. The cytosolic presence of the putative PEDF receptor - adipose triglyceride lipase (ATGL) - was identified, and ATGL associated stimulation of glycerol release was robustly enhanced by PEDF, while intracellular ATP levels increased. Addition of palmitate or ex vivo stimulation with inflammatory mediators induced β-cell dysfunction, effects not altered by the addition of PEDF. In conclusion, PEDF increased insulin secretion in BRIN-BD11 and islet cells, but had no impact on glucose metabolism. Thus elevated lipolysis and enhanced fatty acid availability may impact insulin secretion following PEDF receptor (ATGL) stimulation.
Collapse
Affiliation(s)
- Younan Chen
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia; Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Rodrigo Carlessi
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Nikita Walz
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Vinicius Fernandes Cruzat
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Kevin Keane
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Abraham N John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Fang-Xu Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Revathy Carnagarin
- School of Pharmacy, CHIRI Biosciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Crispin R Dass
- School of Pharmacy, CHIRI Biosciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, GPO Box U1987, Perth, Western Australia, Australia.
| |
Collapse
|
38
|
Leite JSM, Raizel R, Hypólito TM, Rosa TDS, Cruzat VF, Tirapegui J. l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise. Appl Physiol Nutr Metab 2016; 41:842-849. [PMID: 27447686 DOI: 10.1139/apnm-2016-0049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.
Collapse
Affiliation(s)
- Jaqueline Santos Moreira Leite
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Raquel Raizel
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Thaís Menezes Hypólito
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Thiago Dos Santos Rosa
- b Graduate Program of Physical Education and Health, Catholic University of Brasília, Brasília, CEP 71966-700, Brazil
| | - Vinicius Fernandes Cruzat
- c Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, CEP 05508-000, Brazil
| | - Julio Tirapegui
- a Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| |
Collapse
|
39
|
Oral supplementations with L-glutamine or L-alanyl-L-glutamine do not change metabolic alterations induced by long-term high-fat diet in the B6.129F2/J mouse model of insulin resistance. Mol Cell Biochem 2015; 411:351-62. [PMID: 26530165 DOI: 10.1007/s11010-015-2597-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022]
Abstract
In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.
Collapse
|
40
|
Marino LV, Pathan N, Meyer RW, Wright VJ, Habibi P. An in vitro model to consider the effect of 2 mM glutamine and KNK437 on endotoxin-stimulated release of heat shock protein 70 and inflammatory mediators. Nutrition 2015; 32:375-83. [PMID: 26706024 DOI: 10.1016/j.nut.2015.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/13/2015] [Accepted: 09/13/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Glutamine has been shown to promote the release of heat shock protein 70 (HSP70) both within experimental in vitro models of sepsis and in adults with septic shock. This study aimed to investigate the effects of 2 mM glutamine and an inhibitor of HSP70 (KNK437) on the release of HSP70 and inflammatory mediators in healthy adult volunteers. METHODS An in vitro whole blood endotoxin stimulation assay was used. RESULTS The addition of 2 mM glutamine significantly increased HSP70 levels over time (P < 0.05). HSP70 release had a positive correlation at 4 h with IL-1 β (r = 0.51, P = 0.03) and an inverse correlation with TNF-α (r = -0.56, P = 0.02) and IL-8 levels (r = -0.52, P = 0.03), and there were no significant correlations between HSP70 and IL6 or IL-10 or glutamine. Glutamine supplementation significantly (P < 0.05) attenuated the release of IL-10 at 4 h and IL-8 at 24 h, compared with conditions without glutamine. In endotoxin-stimulated blood there were no significant differences in the release of IL-6, TNF-α, and IL-1 β with glutamine supplementation at 4 and 24 h. However, glutamine supplementation (2 mM) appeared to attenuate the release of inflammatory mediators (IL-1 β, IL-6, TNF-α), although this effect was not statistically significant. The addition of KNK437, a HSP70 inhibitor, significantly diminished HSP70 release, which resulted in lower levels of inflammatory mediators (P < 0.05). CONCLUSION Glutamine supplementation promotes HSP70 release in an experimental model of sepsis. After the addition of KNK437, the effects of glutamine on HSP70 and inflammatory mediator release appear to be lost, suggesting that HSP70 in part orchestrates the inflammatory mediator response to sepsis. The clinical implications require further investigation.
Collapse
Affiliation(s)
- Luise V Marino
- Department of Paediatrics, Imperial College London, London, United Kingdom.
| | - Nazima Pathan
- Department of Paediatrics, School of Clinical Medicine, Cambridge University, Cambridge, United Kingdom
| | - Rosan W Meyer
- Department of Gastroenterology, Great Ormond Street Hospital for Sick Children, London, United Kingdom
| | - Victoria J Wright
- Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Parviz Habibi
- Department of Paediatrics, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Singamsetty S, Shah FA, Guo L, Watanabe Y, McDonald S, Sharma R, Zhang Y, Alonso LC, O'Donnell CP, McVerry BJ. Early initiation of low-level parenteral dextrose induces an accelerated diabetic phenotype in septic C57BL/6J mice. Appl Physiol Nutr Metab 2015; 41:12-9. [PMID: 26624964 DOI: 10.1139/apnm-2015-0213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Development of hyperglycemia during sepsis is associated with increased morbidity and mortality. Nutritional support is common practice in the intensive care unit, but the metabolic effects are not well understood. The purpose of this study is to determine the effect of early low-level calorie provision on the development of hyperglycemia in a clinically relevant murine model of sepsis. C57BL/6J mice underwent femoral arterial and venous catheterization followed by cecal ligation and puncture (CLP) or sham surgery and low-dose intravenous dextrose or saline infusion. Blood glucose, plasma insulin, and cytokines were measured after 24 h. Additional septic mice underwent hyperinsulinemic-euglycemic clamps or received intravenous insulin concurrent with dextrose to determine whole-body insulin sensitivity and test the efficacy of insulin to reverse hyperglycemia. Neither dextrose infusion nor CLP alone induced hyperglycemia. Early initiation of low-level dextrose in septic mice produced a variable glycemic response: 49% maintained euglycemia (blood glucose < 200) and 27% developed severe hyperglycemia (blood glucose ≥ 600). Hyperglycemia was associated with increased inflammation and reduced insulin secretion and sensitivity compared with control mice or CLP mice maintaining euglycemia. Insulin prevented the progression to severe hyperglycemia but was ineffective in reestablishing glycemic control once hyperglycemia had developed. In conclusion, early initiation of clinically relevant low-level dextrose (∼ 20% daily caloric requirements) precipitated hyperglycemia akin to an acute diabetic phenotype in septic mice characterized by decreased insulin sensitivity, decreased insulin secretion, and an increased inflammatory response.
Collapse
Affiliation(s)
- Srikanth Singamsetty
- a Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Faraaz Ali Shah
- a Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lanping Guo
- a Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yoshio Watanabe
- a Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sherie McDonald
- a Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rohit Sharma
- b Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- a Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Laura C Alonso
- b Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Christopher P O'Donnell
- a Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bryan J McVerry
- a Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:181643. [PMID: 26257839 PMCID: PMC4516838 DOI: 10.1155/2015/181643] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation.
Collapse
|
43
|
Araujo de Pina Cabral D, Dantas J, Skärstrand H, Barone B, Carvalho F, Tortora R, Milech A, Vaziri-Sani F, Oliveira JP, Zajdenverg L, Rodacki M. Prospective evaluation of glutamine and phospholipids levels in first degree relatives of patients with Type 1 Diabetes from a multiethnic population. Diabetol Metab Syndr 2015; 7:52. [PMID: 26082806 PMCID: PMC4469243 DOI: 10.1186/s13098-015-0048-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/29/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A dysregulation in the metabolism of lipids may be an early marker of autoimmunity in Type 1 Diabetes (T1D). It would be of general importance to identify metabolic patterns that would predict the risk for T1D later in life. The aim of this study was to perform a prospective evaluation of glutamine and phospholipids levels in Brazilian first degree relatives (FDR) of patients with T1D in a mean interval of 5 years. FINDINGS Brazilian FDR (n = 30) of patients with T1D were evaluated and blood was sampled to measure the levels of glutamine and phospholipids in the fasting serum by quantitative colorimetric method. The tests were repeated after a mean interval of 5 years and compared to a control group (n = 20). The FDR presented lower levels of phospholipids than controls (p = 0.028), but not of glutamine (p = 0.075). Phospholipids levels decreased over time (p = 0.028) in FDR and were associated with Glutamic acid decarboxylase autoantibody (GADA) titers (p = 0.045), autoantibody positivity (p = 0.008) and PTPN22 polymorphisms (p = 0.014). CONCLUSIONS In this Brazilian multiethnic population, there was a significant decrease in phospholipids levels in FDR in patients with T1D during a 5-year prospective follow-up, as well as a significant association between these metabolite, GADA and PTPN22 polymorphisms. For Glutamine no difference was found. These findings suggest that a dysregulation in the metabolism of lipids may precede the onset of the autoimmunity in T1D.
Collapse
Affiliation(s)
- D.B. Araujo de Pina Cabral
- />Department of Nutrology, Federal University of Rio de Janeiro, Avenida Epitácio Pessoa, número 2.990, apto 806, Lagoa, Rio de Janeiro Brazil
| | - J.R. Dantas
- />Department of Nutrology, Federal University of Rio de Janeiro, Avenida Epitácio Pessoa, número 2.990, apto 806, Lagoa, Rio de Janeiro Brazil
| | - H. Skärstrand
- />Department of Clinical Sciences, Lund University, Skåne University Hospital (SUS), Malmö, Sweden
| | - B. Barone
- />Department of Nutrology, Federal University of Rio de Janeiro, Avenida Epitácio Pessoa, número 2.990, apto 806, Lagoa, Rio de Janeiro Brazil
| | - F. Carvalho
- />Biochemistry Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. Tortora
- />Biochemistry Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A. Milech
- />Department of Nutrology, Federal University of Rio de Janeiro, Avenida Epitácio Pessoa, número 2.990, apto 806, Lagoa, Rio de Janeiro Brazil
| | - F. Vaziri-Sani
- />Department of Clinical Sciences, Lund University, Skåne University Hospital (SUS), Malmö, Sweden
| | - J.E. P. Oliveira
- />Department of Nutrology, Federal University of Rio de Janeiro, Avenida Epitácio Pessoa, número 2.990, apto 806, Lagoa, Rio de Janeiro Brazil
| | - L. Zajdenverg
- />Department of Nutrology, Federal University of Rio de Janeiro, Avenida Epitácio Pessoa, número 2.990, apto 806, Lagoa, Rio de Janeiro Brazil
| | - M. Rodacki
- />Department of Nutrology, Federal University of Rio de Janeiro, Avenida Epitácio Pessoa, número 2.990, apto 806, Lagoa, Rio de Janeiro Brazil
| |
Collapse
|