1
|
Son YL, Meddle SL, Tobari Y. Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels. Cells 2025; 14:267. [PMID: 39996740 PMCID: PMC11853802 DOI: 10.3390/cells14040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is well-established as a negative regulator of reproductive physiology and behavior across vertebrates, acting on the hypothalamic-pituitary-gonadal (HPG) axis; however, recent data have also demonstrated its involvement in the control of metabolic processes. GnIH neurons and fibers have been identified in hypothalamic regions associated with feeding behavior and energy homeostasis, with GnIH receptors being expressed throughout the hypothalamus. GnIH does not act alone in the hypothalamus, but rather interacts with the melanocortin system, as well as with other neuropeptides. GnIH and its receptors are also expressed in peripheral tissues involved in important metabolic functions. Therefore, the local action of GnIH in peripheral organs, including the pancreas, gastrointestinal tract, gonad, and adipose tissue, is also suggested. This review aims to provide a comprehensive summary of the emerging role of GnIH in metabolic regulation at both the central and peripheral levels.
Collapse
Affiliation(s)
- You Lee Son
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Simone L. Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK;
| | - Yasuko Tobari
- Center for Human and Animal Symbiosis Science, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara 252-5201, Japan;
| |
Collapse
|
2
|
Coutinho EA, Esparza LA, Steffen PH, Liaw R, Bolleddu S, Kauffman AS. Selective depletion of kisspeptin neurons in the hypothalamic arcuate nucleus in early juvenile life reduces pubertal LH secretion and delays puberty onset in mice. FASEB J 2024; 38:e70078. [PMID: 39377760 PMCID: PMC11804785 DOI: 10.1096/fj.202401696r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Puberty is the critical developmental transition to reproductive capability driven by the activation of gonadotropin-releasing hormone (GnRH) neurons. The complex neural mechanisms underlying pubertal activation of GnRH secretion still remain unknown, yet likely include kisspeptin neurons. However, kisspeptin neurons reside in several hypothalamic areas and the specific kisspeptin population timing pubertal onset remains undetermined. To investigate this, we strategically capitalized on the differential ontological expression of the Kiss1 gene in different hypothalamic nuclei to selectively ablate just arcuate kisspeptin neurons (aka KNDy neurons) during the early juvenile period, well before puberty, while sparing RP3V kisspeptin neurons. Both male and female transgenic mice with a majority of their KNDy neurons ablated (KNDyABL) by diphtheria toxin treatment in juvenile life demonstrated significantly delayed puberty onset and lower peripubertal LH secretion than controls. In adulthood, KNDyABL mice demonstrated normal in vivo LH pulse frequency with lower basal and peak LH levels, suggesting that only a small subset of KNDy neurons is sufficient for normal GnRH pulse timing but more KNDy cells are needed to secrete normal LH concentrations. Unlike prior KNDy ablation studies in rats, there was no alteration in the occurrence or magnitude of estradiol-induced LH surges in KNDyABL female mice, indicating that a complete KNDy neuronal population is not essential for normal LH surge generation. This study teases apart the contributions of different kisspeptin neural populations to the control of puberty onset, demonstrating that a majority of KNDy neurons in the arcuate nucleus are necessary for the proper timing of puberty in both sexes.
Collapse
Affiliation(s)
- Eulalia A Coutinho
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Lourdes A Esparza
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Paige H Steffen
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Reanna Liaw
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Shreyana Bolleddu
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Patel AH, Koysombat K, Pierret A, Young M, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential. Ann N Y Acad Sci 2024; 1540:21-46. [PMID: 39287750 DOI: 10.1111/nyas.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Collapse
Affiliation(s)
- Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Chelsea and Westminster Hospital, London, UK
| | - Kanyada Koysombat
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Aureliane Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Megan Young
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
4
|
Sawyer IL, Evans MC, Mamgain A, Decourt C, Iremonger KJ, Anderson GM. Chemogenetic Activation of RFRP Neurons Reduces LH Pulse Frequency in Female but not Male Mice. J Endocr Soc 2024; 8:bvae159. [PMID: 39381686 PMCID: PMC11458915 DOI: 10.1210/jendso/bvae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/10/2024] Open
Abstract
Context The neuropeptide RFRP-3 (RFamide-related peptide-3) is thought to play a role in the negative regulation of fertility. However, the exogenous administration of RFRP-3 yields varying results depending on the dose and route of administration, sex of the subject, and many other variables. Manipulation of in vivo neuronal activity using DREADDs (designer receptor exclusively activated by designer drugs) technology enables investigation of cell type-specific neuronal activation in a manner that better reflects endogenous neuronal activity. Objective To test the effects of RFRP neuronal activation on pulsatile luteinizing hormone (LH) secretion. Methods We generated mice expressing the stimulatory hM3Dq designer receptor exclusively in RFRP cells using 2 different Cre-loxP-mediated approaches: (1) we bred mice to express hM3Dq in all Rfrp-Cre-expressing cells, including some that transiently expressed Rfrp-Cre neonatally (RFRP × hM3Dq mice), and (2) we stereotaxically injected Cre-dependent hM3Dq into the dorsomedial nucleus of RFRP-Cre mice to drive hM3Dq expression exclusively in a subpopulation of adult Rfrp-Cre neurons (RFRP-AAV-hM3Dq mice). We then investigated the effects of acute hM3Dq activation on LH pulse frequency in RFRP × hM3Dq mice, RFRP-AAV-hM3Dq mice, and their respective controls. Results In both female RFRP × hM3Dq and RFRP-AAV-hM3Dq mice, chemogenetic activation of Cre-driven hM3Dq led to a significant 35% to 50% reduction in LH pulse frequency compared with controls, while no differences in pulse amplitude or mean LH concentration were observed. In marked contrast, RFRP activation did not cause any changes to LH pulse dynamics in male mice. Conclusions These data show for the first time that activation of neurons that have expressed Rfrp, or of a subset of adult RFRP neurons, can independently suppress LH pulsatility in female, but not male mice.
Collapse
Affiliation(s)
- India L Sawyer
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Maggie C Evans
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Asha Mamgain
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Caroline Decourt
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology, and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Nechyporenko K, Voliotis M, Li XF, Hollings O, Ivanova D, Walker JJ, O'Byrne KT, Tsaneva-Atanasova K. Neuronal network dynamics in the posterodorsal amygdala: shaping reproductive hormone pulsatility. J R Soc Interface 2024; 21:20240143. [PMID: 39193642 DOI: 10.1098/rsif.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Normal reproductive function and fertility rely on the rhythmic secretion of gonadotropin-releasing hormone (GnRH), which is driven by the hypothalamic GnRH pulse generator. A key regulator of the GnRH pulse generator is the posterodorsal subnucleus of the medial amygdala (MePD), a brain region that is involved in processing external environmental cues, including the effect of stress. However, the neuronal pathways enabling the dynamic, stress-triggered modulation of GnRH secretion remain largely unknown. Here, we employ in silico modelling in order to explore the impact of dynamic inputs on GnRH pulse generator activity. We introduce and analyse a mathematical model representing MePD neuronal circuits composed of GABAergic and glutamatergic neuronal populations, integrating it with our GnRH pulse generator model. Our analysis dissects the influence of excitatory and inhibitory MePD projections' outputs on the GnRH pulse generator's activity and reveals a functionally relevant MePD glutamatergic projection to the GnRH pulse generator, which we probe with in vivo optogenetics. Our study sheds light on how MePD neuronal dynamics affect the GnRH pulse generator activity and offers insights into stress-related dysregulation.
Collapse
Affiliation(s)
- Kateryna Nechyporenko
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Margaritis Voliotis
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Xiao Feng Li
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Owen Hollings
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Deyana Ivanova
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie J Walker
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Kevin T O'Byrne
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| |
Collapse
|
6
|
Agus S, Yavuz Y, Atasoy D, Yilmaz B. Postweaning Social Isolation Alters Puberty Onset by Suppressing Electrical Activity of Arcuate Kisspeptin Neurons. Neuroendocrinology 2024; 114:439-452. [PMID: 38271999 PMCID: PMC11098025 DOI: 10.1159/000535721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Postweaning social isolation (PWSI) in rodents is an advanced psychosocial stress model in early life. Some psychosocial stress, such as restrain and isolation, disrupts reproductive physiology in young and adult periods. Mechanisms of early-life stress effects on central regulation of reproduction need to be elucidated. We have investigated the effects of PWSI on function of arcuate kisspeptin (ARCKISS1) neurons by using electrophysiological techniques combining with monitoring of puberty onset and estrous cycle in male and female Kiss1-Cre mice. METHODS Female mice were monitored for puberty onset with vaginal opening examination during social isolation. After isolation, the estrous cycle of female mice was monitored with vaginal cytology. Anxiety-like behavior of mice was determined by an elevated plus maze test. Effects of PWSI on electrophysiology of ARCKISS1 neurons were investigated by the patch clamp method after intracranial injection of AAV-GFP virus into arcuate nucleus of Kiss1-Cre mice after the isolation period. RESULTS We found that both male and female isolated mice showed anxiety-like behavior. PWSI caused delay in vaginal opening and extension in estrous cycle length. Spontaneous-firing rates of ARCKISS1 neurons were significantly lower in the isolated male and female mice. The peak amplitude of inhibitory postsynaptic currents to ARCKISS1 neurons was higher in the isolated mice, while frequency of excitatory postsynaptic currents was higher in group-housed mice. CONCLUSION These findings demonstrate that PWSI alters pre- and postpubertal reproductive physiology through metabolic and electrophysiological pathways.
Collapse
Affiliation(s)
- Sami Agus
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Yavuz Yavuz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Deniz Atasoy
- University of Iowa, Carver College of Medicine, Department of Neuroscience and Pharmacology, Iowa City, IA, USA
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
7
|
Evans MC, Anderson GM. The Role of RFRP Neurons in the Allostatic Control of Reproductive Function. Int J Mol Sci 2023; 24:15851. [PMID: 37958834 PMCID: PMC10648169 DOI: 10.3390/ijms242115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Reproductive function is critical for species survival; however, it is energetically costly and physically demanding. Reproductive suppression is therefore a physiologically appropriate adaptation to certain ecological, environmental, and/or temporal conditions. This 'allostatic' suppression of fertility enables individuals to accommodate unfavorable reproductive circumstances and safeguard survival. The mechanisms underpinning this reproductive suppression are complex, yet culminate with the reduced secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus, which in turn suppresses gonadotropin release from the pituitary, thereby impairing gonadal function. The focus of this review will be on the role of RFamide-related peptide (RFRP) neurons in different examples of allostatic reproductive suppression. RFRP neurons release the RFRP-3 peptide, which negatively regulates GnRH neurons and thus appears to act as a 'brake' on the neuroendocrine reproductive axis. In a multitude of predictable (e.g., pre-puberty, reproductive senescence, and seasonal or lactational reproductive quiescence) and unpredictable (e.g., metabolic, immune and/or psychosocial stress) situations in which GnRH secretion is suppressed, the RFRP neurons have been suggested to act as modulators. This review examines evidence for and against these roles.
Collapse
Affiliation(s)
| | - Greg M. Anderson
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
8
|
Cutia CA, Leverton LK, Weis KE, Raetzman LT, Christian-Hinman CA. Female-specific pituitary gonadotrope dysregulation in mice with chronic focal epilepsy. Exp Neurol 2023; 364:114389. [PMID: 36990138 PMCID: PMC10149611 DOI: 10.1016/j.expneurol.2023.114389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Gonadotropin hormone release from the anterior pituitary is critical to regulating reproductive endocrine function. Clinical evidence has documented that people with epilepsy display altered levels of gonadotropin hormones, both acutely following seizures and chronically. Despite this relationship, pituitary function remains a largely understudied avenue in preclinical epilepsy research. Recently, we showed that females in the intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy displayed changes in pituitary expression of gonadotropin hormone and gonadotropin-releasing hormone (GnRH) receptor genes. Circulating gonadotropin hormone levels, however, have yet to be measured in an animal model of epilepsy. Here, we evaluated the circulating levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), GnRH receptor (Gnrhr) gene expression, and sensitivity to exogenous GnRH in IHKA males and females. Although no changes in overall dynamics of pulsatile patterns of LH release were found in IHKA mice of either sex, estrus vs. diestrus changes in basal and mean LH levels were larger in IHKA females with prolonged, disrupted estrous cycles. In addition, IHKA females displayed increased pituitary sensitivity to GnRH and higher Gnrhr expression. The hypersensitivity to GnRH was observed on diestrus, but not estrus. Chronic seizure severity was not found to be correlated with LH parameters, and FSH levels were unchanged in IHKA mice. These results indicate that although there are changes in pituitary gene expression and sensitivity to GnRH in IHKA females, there may also be compensatory mechanisms that aid in maintaining gonadotropin release in the state of chronic epilepsy in this model.
Collapse
Affiliation(s)
- Cathryn A Cutia
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Leanna K Leverton
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lori T Raetzman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine A Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
A mammalian gonadotropin-inhibitory hormone homolog RFamide-related peptide 3 regulates pain and anxiety in mice. Cell Tissue Res 2023; 391:159-172. [PMID: 36355189 DOI: 10.1007/s00441-022-03695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Abstract
RFamide-related peptide (RFRP) is a homologous neuropeptide to gonadotropin-inhibitory hormone (GnIH), which is a hypothalamic neuropeptide that negatively regulates the hypothalamic-pituitary-gonadal axis. RFRP/GnIH is thought to be the mediator of stress because various stressors increase RFRP/GnIH mRNA expression and/or RFRP/GnIH neuronal activities. RFRP/GnIH may also directly regulate behavior, because RFRP/GnIH neuronal fibers and RFRP/GnIH receptor are widely expressed in the brain. Here, we create a RFRP/GnIH knockout (GnIH-KO) mice and conduct various behavioral tests. Dense RFRP/GnIH neuronal fibers are located in the limbic system and broad areas in the thalamus, hypothalamus, and midbrain in wild-type mice but not in RFRP/GnIH-KO mice. Spatial working memory is not improved in GnIH-KO mice as shown by Y-maze test. GnIH-KO mice perform intensive wheel running exercise for several hours after light-off. Hot plate test shows that GnIH-KO mice have decreased sensitivity to pain and central administration of RFRP3 to GnIH-KO mice recovers pain sensitivity. Elevated plus maze test shows that GnIH-KO mice have decreased level of anxiety and central administration of RFRP3 to GnIH-KO mice recovers anxiety level. These results indicate that RFRP3 regulates pain and anxiety in mice. RFRP3 may be involved in the negative regulation of spontaneous activity in addition to negatively regulating the reproductive neuroendocrine axis in stressful conditions.
Collapse
|
10
|
Coutinho EA, Esparza LA, Hudson AD, Rizo N, Steffen P, Kauffman AS. Conditional Deletion of KOR (Oprk1) in Kisspeptin Cells Does Not Alter LH Pulses, Puberty, or Fertility in Mice. Endocrinology 2022; 163:6763672. [PMID: 36260530 DOI: 10.1210/endocr/bqac175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Classic pharmacological studies suggested that endogenous dynorphin-KOR signaling is important for reproductive neuroendocrine regulation. With the seminal discovery of an interconnected network of hypothalamic arcuate neurons co-expressing kisspeptin, neurokinin B, and dynorphin (KNDy neurons), the KNDy hypothesis was developed to explain how gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) pulses are generated. Key to this hypothesis is dynorphin released from KNDy neurons acting in a paracrine manner on other KNDy neurons via kappa opioid receptor (KOR) signaling to terminate neural "pulse" events. While in vitro evidence supports this aspect of the KNDy hypothesis, a direct in vivo test of the necessity of KOR signaling in kisspeptin neurons for proper LH secretion has been lacking. We therefore conditionally knocked out KOR selectively from kisspeptin neurons of male and female mice and tested numerous reproductive measures, including in vivo LH pulse secretion. Surprisingly, despite validating successful knockout of KOR in kisspeptin neurons, we found no significant effect of kisspeptin cell-specific deletion of KOR on any measure of puberty, LH pulse parameters, LH surges, follicle-stimulating hormone (FSH) levels, estrous cycles, or fertility. These outcomes suggest that the KNDy hypothesis, while sufficient normally, may not be the only neural mechanism for sculpting GnRH and LH pulses, supported by recent findings in humans and mice. Thus, besides normally acting via KOR in KNDy neurons, endogenous dynorphin and other opioids may, under some conditions, regulate LH and FSH secretion via KOR in non-kisspeptin cells or perhaps via non-KOR pathways. The current models for GnRH and LH pulse generation should be expanded to consider such alternate mechanisms.
Collapse
Affiliation(s)
- Eulalia A Coutinho
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lourdes A Esparza
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexandra D Hudson
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathanael Rizo
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Paige Steffen
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Conde K, Kulyk D, Vanschaik A, Daisey S, Rojas C, Wiersielis K, Yasrebi A, Degroat TJ, Sun Y, Roepke TA. Deletion of Growth Hormone Secretagogue Receptor in Kisspeptin Neurons in Female Mice Blocks Diet-Induced Obesity. Biomolecules 2022; 12:1370. [PMID: 36291579 PMCID: PMC9599822 DOI: 10.3390/biom12101370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 01/19/2023] Open
Abstract
The gut peptide, ghrelin, mediates energy homeostasis and reproduction by acting through its receptor, growth hormone secretagogue receptor (GHSR), expressed in hypothalamic neurons in the arcuate (ARC). We have shown 17β-estradiol (E2) increases Ghsr expression in Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons, enhancing sensitivity to ghrelin. We hypothesized that E2-induced Ghsr expression augments KNDy sensitivity in a fasting state by elevating ghrelin to disrupt energy expenditure in females. We produced a Kiss1-GHSR knockout to determine the role of GHSR in ARC KNDy neurons. We found that changes in ARC gene expression with estradiol benzoate (EB) treatment were abrogated by the deletion of GHSR and ghrelin abolished these differences. We also observed changes in metabolism and fasting glucose levels. Additionally, knockouts were resistant to body weight gain on a high fat diet (HFD). Behaviorally, we found that knockouts on HFD exhibited reduced anxiety-like behavior. Furthermore, knockouts did not refeed to the same extent as controls after a 24 h fast. Finally, in response to cold stress, knockout females had elevated metabolic parameters compared to controls. These data indicate GHSR in Kiss1 neurons modulate ARC gene expression, metabolism, glucose homeostasis, behavior, and thermoregulation, illustrating a novel mechanism for E2 and ghrelin to control Kiss1 neurons.
Collapse
Affiliation(s)
- Kristie Conde
- Graduate Program in Neuroscience, Rutgers University Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Danielle Kulyk
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Allison Vanschaik
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sierra Daisey
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Catherine Rojas
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kimberly Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Thomas J. Degroat
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Troy A. Roepke
- Graduate Program in Neuroscience, Rutgers University Robert Wood Johnson Medical School, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Center for Lipid Research, the Center for Nutrition, Microbiome, and Health, and the New Jersey Institute of Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Gotlieb N, Wilsterman K, Finn SL, Browne MF, Bever SR, Iwakoshi-Ukena E, Ukena K, Bentley GE, Kriegsfeld LJ. Impact of Chronic Prenatal Stress on Maternal Neuroendocrine Function and Embryo and Placenta Development During Early-to-Mid-Pregnancy in Mice. Front Physiol 2022; 13:886298. [PMID: 35770190 PMCID: PMC9234491 DOI: 10.3389/fphys.2022.886298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Psychological stress, both leading up to and during pregnancy, is associated with increased risk for negative pregnancy outcomes. Although the neuroendocrine circuits that link the stress response to reduced sexual motivation and mating are well-described, the specific pathways by which stress negatively impacts gestational outcomes remain unclear. Using a mouse model of chronic psychological stress during pregnancy, we investigated 1) how chronic exposure to stress during gestation impacts maternal reproductive neuroendocrine circuitry, and 2) whether stress alters developmental outcomes for the fetus or placenta by mid-pregnancy. Focusing on the stress-responsive neuropeptide RFRP-3, we identified novel contacts between RFRP-3-immunoreactive (RFRP-3-ir) cells and tuberoinfundibular dopaminergic neurons in the arcuate nucleus, thus providing a potential pathway linking the neuroendocrine stress response directly to pituitary prolactin production and release. However, neither of these cell populations nor circulating levels of pituitary hormones were affected by chronic stress. Conversely, circulating levels of steroid hormones relevant to gestational outcomes (progesterone and corticosterone) were altered in chronically-stressed dams across gestation, and those dams were qualitatively more likely to experience delays in fetal development. Together, these findings suggest that, up until at least mid-pregnancy, mothers appear to be relatively resilient to the effects of elevated glucocorticoids on reproductive neuroendocrine system function. We conclude that understanding how chronic psychological stress impacts reproductive outcomes will require understanding individual susceptibility and identifying reliable neuroendocrine changes resulting from gestational stress.
Collapse
Affiliation(s)
- Neta Gotlieb
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Kathryn Wilsterman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Biology Department, Colorado State University, Fort Collins, CO, United States
| | - Samantha L. Finn
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Madison F. Browne
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Savannah R. Bever
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kazuyoshi Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - George E. Bentley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Lance J. Kriegsfeld,
| |
Collapse
|
13
|
McCosh RB, O'Bryne KT, Karsch FJ, Breen KM. Regulation of the gonadotropin-releasing hormone neuron during stress. J Neuroendocrinol 2022; 34:e13098. [PMID: 35128742 PMCID: PMC9232848 DOI: 10.1111/jne.13098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
The effect of stress on reproduction and gonadal function has captivated investigators for almost 100 years. Following the identification of gonadotropin-releasing hormone (GnRH) 50 years ago, a niche research field emerged fixated on how stress impairs this central node controlling downstream pituitary and gonadal function. It is now clear that both episodic GnRH secretion in males and females and surge GnRH secretion in females are inhibited during a variety of stress types. There has been considerable advancement in our understanding of numerous stress-related signaling molecules and their ability to impair reproductive neuroendocrine activity during stress. Recently, much attention has turned to the effects of stress on two populations of kisspeptin neurons: the stimulatory afferents to GnRH neurons that regulate pulsatile and surge-type gonadotropin secretion. Indeed, future work is still required to fully construct the neuroanatomical framework underlying stress effects, directly or indirectly, on GnRH neuron function. The present review evaluates and synthesizes evidence related to stress-related signaling molecules acting directly on GnRH neurons. Here, we review the evidence for and against the action of a handful of signaling molecules as inhibitors of GnRH neuron function, including corticotropin-releasing hormone, urocortins, norepinephrine, cortisol/corticosterone, calcitonin gene-related peptide and arginine-phenylalanine-amide-related peptide-3.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, CA, USA
| | - Kevin T O'Bryne
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, UK
| | - Fred J Karsch
- Reproductive Sciences Program and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, CA, USA
| |
Collapse
|
14
|
Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Front Neuroendocrinol 2022; 64:100953. [PMID: 34757094 DOI: 10.1016/j.yfrne.2021.100953] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
Under stressful condition, reproductive function is impaired due to the activation of various components of the hypothalamic-pituitaryadrenal (HPA) axis, which can suppress the activity of the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. A hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH) is a key negative regulator of reproduction that governs the HPG axis. Converging lines of evidence have suggested that different stress types and their duration, such as physical or psychological, and acute or chronic, can modulate the GnIH system. To clarify the sensitivity and reactivity of the GnIH system in response to stress, we summarize and critically review the available studies that investigated the effects of various stressors, such as restraint, nutritional/metabolic and social stress, on GnIH expression and/or its neuronal activity leading to altered HPG action. In this review, we focus on GnIH as the potential novel mediator responsible for stress-induced reproductive dysfunction.
Collapse
|
15
|
McCarthy EA, Dischino D, Maguire C, Leon S, Talbi R, Cheung E, Schteingart CD, Rivière PJM, Reed SD, Steiner RA, Navarro VM. Inhibiting Kiss1 Neurons With Kappa Opioid Receptor Agonists to Treat Polycystic Ovary Syndrome and Vasomotor Symptoms. J Clin Endocrinol Metab 2022; 107:e328-e347. [PMID: 34387319 PMCID: PMC8684497 DOI: 10.1210/clinem/dgab602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Recent evidence suggests that vasomotor symptoms (VMS) or hot flashes in the postmenopausal reproductive state and polycystic ovary syndrome (PCOS) in the premenopausal reproductive state emanate from the hyperactivity of Kiss1 neurons in the hypothalamic infundibular/arcuate nucleus (KNDy neurons). OBJECTIVE We demonstrate in 2 murine models simulating menopause and PCOS that a peripherally restricted kappa receptor agonist (PRKA) inhibits hyperactive KNDy neurons (accessible from outside the blood-brain barrier) and impedes their downstream effects. DESIGN Case/control. SETTING Academic medical center. PARTICIPANTS Mice. INTERVENTIONS Administration of peripherally restricted kappa receptor agonists and frequent blood sampling to determine hormone release and body temperature. MAIN OUTCOME MEASURES LH pulse parameters and body temperature. RESULTS First, chronic administration of a PRKA to bilaterally ovariectomized mice with experimentally induced hyperactivity of KNDy neurons reduces the animals' elevated body temperature, mean plasma LH level, and mean peak LH per pulse. Second, chronic administration of a PRKA to a murine model of PCOS, having elevated plasma testosterone levels and irregular ovarian cycles, suppresses circulating levels of LH and testosterone and restores normal ovarian cyclicity. CONCLUSION The inhibition of kisspeptin neuronal activity by activation of kappa receptors shows promise as a novel therapeutic approach to treat both VMS and PCOS in humans.
Collapse
Affiliation(s)
- Elizabeth A McCarthy
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Daniel Dischino
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline Maguire
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Leon
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rajae Talbi
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eugene Cheung
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | | | - Susan D Reed
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Robert A Steiner
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98195, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Victor M Navarro
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Program in Neuroscience, Boston, MA 02115, USA
- Correspondence: Victor M. Navarro PhD, Brigham and Women’s Hospital, Division of Endocrinology, Diabetes and Hypertension, 221 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Ivanova D, Li XF, McIntyre C, Liu Y, Kong L, O’Byrne KT. Urocortin3 in the Posterodorsal Medial Amygdala Mediates Stress-induced Suppression of LH Pulsatility in Female Mice. Endocrinology 2021; 162:6383454. [PMID: 34618891 PMCID: PMC8547342 DOI: 10.1210/endocr/bqab206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/09/2023]
Abstract
Psychosocial stress disrupts reproduction and interferes with pulsatile LH secretion. The posterodorsal medial amygdala (MePD) is an upstream modulator of the reproductive axis and stress. Corticotropin-releasing factor type 2 receptors (CRFR2s) are activated in the presence of psychosocial stress together with increased expression of the CRFR2 ligand Urocortin3 (Ucn3) in the MePD of rodents. We investigate whether Ucn3 signalling in the MePD is involved in mediating the suppressive effect of psychosocial stress on LH pulsatility. First, we administered Ucn3 into the MePD and monitored the effect on LH pulses in ovariectomized mice. Next, we delivered Astressin2B, a selective CRFR2 antagonist, intra-MePD in the presence of predator odor, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Subsequently, we virally infected Ucn3-cre-tdTomato mice with inhibitory designer receptor exclusively activated by designer drugs (DREADDs) targeting MePD Ucn3 neurons while exposing mice to TMT or restraint stress and examined the effect on LH pulsatility as well as corticosterone release. Administration of Ucn3 into the MePD dose-dependently inhibited LH pulses and administration of Astressin2B blocked the suppressive effect of TMT on LH pulsatility. Additionally, DREADDs inhibition of MePD Ucn3 neurons blocked TMT and restraint stress-induced inhibition of LH pulses and corticosterone release. These results demonstrate for the first time that Ucn3 neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator and corticosterone secretion. Ucn3 signalling in the MePD plays a role in modulating the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, and this brain locus may represent a nodal center in the interaction between the reproductive and stress axes.
Collapse
Affiliation(s)
- Deyana Ivanova
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
- Correspondence: Deyana Ivanova, PhD, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, 2.92W Hodgkin Building, Guy’s Campus, London SE1 1UL, UK.
| | - Xiao-Feng Li
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Caitlin McIntyre
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
| | - Kevin T O’Byrne
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College, London SE1 1UL, UK
- Correspondence: Kevin T. O’Byrne, Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, 2.92W Hodgkin Building, Guy’s Campus, London SE1 1UL, UK.
| |
Collapse
|
17
|
Mohr MA, Esparza LA, Steffen P, Micevych PE, Kauffman AS. Progesterone Receptors in AVPV Kisspeptin Neurons Are Sufficient for Positive Feedback Induction of the LH Surge. Endocrinology 2021; 162:6348143. [PMID: 34379733 PMCID: PMC8423423 DOI: 10.1210/endocr/bqab161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/19/2022]
Abstract
Kisspeptin, encoded by Kiss1, stimulates gonadotropin-releasing hormone neurons to govern reproduction. In female rodents, estrogen-sensitive kisspeptin neurons in the rostral anteroventral periventricular (AVPV) hypothalamus are thought to mediate estradiol (E2)-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. AVPV kisspeptin neurons coexpress estrogen and progesterone receptors (PGRs) and are activated during the LH surge. While E2 effects on kisspeptin neurons have been well studied, progesterone's regulation of kisspeptin neurons is less understood. Using transgenic mice lacking PGR exclusively in kisspeptin cells (termed KissPRKOs), we previously demonstrated that progesterone action specifically in kisspeptin cells is essential for ovulation and normal fertility. Unlike control females, KissPRKO females did not generate proper LH surges, indicating that PGR signaling in kisspeptin cells is required for positive feedback. However, because PGR was knocked out from all kisspeptin neurons in the brain, that study was unable to determine the specific kisspeptin population mediating PGR action on the LH surge. Here, we used targeted Cre-mediated adeno-associated virus (AAV) technology to reintroduce PGR selectively into AVPV kisspeptin neurons of adult KissPRKO females, and tested whether this rescues occurrence of the LH surge. We found that targeted upregulation of PGR in kisspeptin neurons exclusively in the AVPV is sufficient to restore proper E2-induced LH surges in KissPRKO females, suggesting that this specific kisspeptin population is a key target of the necessary progesterone action for the surge. These findings further highlight the critical importance of progesterone signaling, along with E2 signaling, in the positive feedback induction of LH surges and ovulation.
Collapse
Affiliation(s)
- Margaret A Mohr
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, Los Angeles, CA 90095, USA
| | - Lourdes A Esparza
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paige Steffen
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: Dr. Alexander S. Kauffman, Department of OBGYN and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, #0674, La Jolla, CA 92093, USA. E-mail:
| |
Collapse
|
18
|
Voigt C, Bennett NC. Gene expression pattern of Kisspeptin and RFamide-related peptide (Rfrp) in the male Damaraland mole-rat hypothalamus. J Chem Neuroanat 2021; 118:102039. [PMID: 34655735 DOI: 10.1016/j.jchemneu.2021.102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/10/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
Damaraland mole-rats (Fukomys damarensis) are cooperatively breeding, subterranean mammals, which exhibit high reproductive skew. Reproduction is monopolized by the dominant female of the group, while subordinates are anovulatory. Similarly, male subordinates within the colony show no sexual behaviour although they have functional gonads and do not differ from reproductive males in circulating levels of pituitary hormones and testosterone. However, reproductive status affects the neuroendocrine phenotype of males with breeders possessing increased mRNA expression of androgen and progesterone receptors compared to non-breeders in several forebrain regions implicated in the regulation of reproductive behaviour. The RFamide peptides kisspeptin and RFRP-3, encoded by the Kiss1 and Rfrp gene, are considered potent regulators of gonadotropin release. In females, reproductive inhibition is associated with reduced Kiss1 expression within the arcuate nucleus (ARC) and increased Rfrp expression in the anterior hypothalamus. To assess whether differential gene expression of Kiss1 and Rfrp underlies the difference in reproductive behaviour of males, we studied the expression of both genes by means of in situ hybridisation in wild-caught male Damaraland mole-rats with different reproductive status. The distribution of Kiss1 and Rfrp within the hypothalamus was found to be similar to females. Quantification of the Kiss1 hybridisation signal revealed no significant differences in relation to reproductive status. However, there was a significant positive correlation between testis mass and the number of Kiss1-expressing cells in the ARC and the mRNA content per cell, respectively. Analysis of the Rfrp hybridisation signal along the rostro-caudal extent of the hypothalamus revealed that non-reproductive males possessed an increased number of Rfrp-expressing cells at the level of the dorsomedial hypothalamic nucleus (DMH) than reproductive males. These data suggest the Kiss1 expression within the ARC is not associated with reproductive quiescence in subordinate males but instead, inhibitory effects may be mediated by Rfrp-expressing cells in the DMH.
Collapse
Affiliation(s)
- Cornelia Voigt
- Department of Zoology and Entomology, University of Pretoria, 0028 Pretoria, South Africa.
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, 0028 Pretoria, South Africa
| |
Collapse
|
19
|
Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol 2021; 63:100928. [PMID: 34171353 PMCID: PMC8605987 DOI: 10.1016/j.yfrne.2021.100928] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/27/2023]
Abstract
Reproduction is controlled by a sequential regulation of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis integrates multiple inputs to maintain proper reproductive functions. It has long been demonstrated that stress alters fertility. Nonetheless, the central mechanisms of how stress interacts with the reproductive system are not fully understood. One of the major pathways that is activated during the stress response is the hypothalamo-pituitary-adrenal (HPA) axis. In this review, we discuss several aspects of the interactions between these two neuroendocrine systems to offer insights to mechanisms of how the HPA and HPG axes interact. We have also included discussions of other systems, for example GABA-producing neurons, where they are informative to the overall picture of stress effects on reproduction.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
20
|
Faykoo-Martinez M, Kalinowski LM, Holmes MM. Neuroendocrine regulation of pubertal suppression in the naked mole-rat: What we know and what comes next. Mol Cell Endocrinol 2021; 534:111360. [PMID: 34116130 DOI: 10.1016/j.mce.2021.111360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023]
Abstract
Puberty is a key developmental milestone that marks an individual's maturation in several ways including, but not limited to, reproductive maturation, changes in behaviors and neural organization. The timing at which puberty occurs is variable both within individuals of the same species and between species. These variations can be aligned with ecological cues that delay or suppress puberty. Naked mole-rats are colony-living rodents where reproduction is restricted to a few animals; all other animals are pubertally-suppressed. Animals removed from suppressive colony cues can reproductively mature, presenting the unique opportunity to study adult-onset puberty. Recently, we found that RFRP-3 administration sustains pubertal delay in naked mole-rats removed from colony. In this review, we explore what is known about regulators that control puberty onset, the role of stress/social status in pubertal timing, the status of knowledge of pubertal suppression in naked mole-rats and what comes next.
Collapse
Affiliation(s)
| | | | - Melissa M Holmes
- Department of Cell and Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| |
Collapse
|
21
|
Nandankar N, Negrón AL, Wolfe A, Levine JE, Radovick S. Deficiency of arcuate nucleus kisspeptin results in postpubertal central hypogonadism. Am J Physiol Endocrinol Metab 2021; 321:E264-E280. [PMID: 34181485 PMCID: PMC8410100 DOI: 10.1152/ajpendo.00088.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 11/25/2022]
Abstract
Kisspeptin (encoded by Kiss1), a neuropeptide critically involved in neuroendocrine regulation of reproduction, is primarily synthesized in two hypothalamic nuclei: the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). AVPV kisspeptin is thought to regulate the estrogen-induced positive feedback control of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH), and the preovulatory LH surge in females. In contrast, ARC kisspeptin neurons, which largely coexpress neurokinin B and dynorphin A (collectively named KNDy neurons), are thought to mediate estrogen-induced negative feedback control of GnRH/LH and be the major regulators of pulsatile GnRH/LH release. However, definitive data to delineate the specific roles of AVPV versus ARC kisspeptin neurons in the control of GnRH/LH release is lacking. Therefore, we generated a novel mouse model targeting deletion of Kiss1 to the ARC nucleus (Pdyn-Cre/Kiss1fl/fl KO) to determine the functional differences between ARC and AVPV kisspeptin neurons on the reproductive axis. The efficacy of the knockout was confirmed at both the mRNA and protein levels. Adult female Pdyn-Cre/Kiss1fl/fl KO mice exhibited persistent diestrus and significantly fewer LH pulses when compared with controls, resulting in arrested folliculogenesis, hypogonadism, and infertility. Pdyn-Cre/Kiss1fl/fl KO males also exhibited disrupted LH pulsatility, hypogonadism, and variable, defective spermatogenesis, and subfertility. The timing of pubertal onset in males and females was equivalent to controls. These findings add to the current body of evidence for the critical role of kisspeptin in ARC KNDy neurons in GnRH/LH pulsatility in both sexes, while directly establishing ARC kisspeptin's role in regulating estrous cyclicity in female mice, and gametogenesis in both sexes, and culminating in disrupted fertility. The Pdyn-Cre/Kiss1fl/fl KO mice present a novel mammalian model of postpubertal central hypogonadism.NEW & NOTEWORTHY We demonstrate through a novel, conditional knockout mouse model of arcuate nucleus (ARC)-specific kisspeptin in the KNDy neuron that ARC kisspeptin is critical for estrous cyclicity in female mice and GnRH/LH pulsatility in both sexes. Our study reveals that ARC kisspeptin is essential for normal gametogenesis, and the loss of ARC kisspeptin results in significant hypogonadism, impacting fertility status. Our findings further confirm that normal puberty occurs despite a loss of ARC kisspeptin.
Collapse
Affiliation(s)
- Nimisha Nandankar
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Ariel L Negrón
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Andrew Wolfe
- Division of Physiological and Pathological Sciences, National Institutes of Health, Bethesda, Maryland
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| | - Sally Radovick
- Department of Pediatrics, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
22
|
Esparza LA, Terasaka T, Lawson MA, Kauffman AS. Androgen Suppresses In Vivo and In Vitro LH Pulse Secretion and Neural Kiss1 and Tac2 Gene Expression in Female Mice. Endocrinology 2020; 161:5930836. [PMID: 33075809 PMCID: PMC7671291 DOI: 10.1210/endocr/bqaa191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Androgens can affect the reproductive axis of both sexes. In healthy women, as in men, elevated exogenous androgens decrease gonad function and lower gonadotropin levels; such circumstances occur with anabolic steroid abuse or in transgender men (genetic XX individuals) taking androgen supplements. The neuroendocrine mechanisms by which endogenous or exogenous androgens regulate gonadotropin release, including aspects of pulsatile luteinizing hormone (LH) secretion, remain unknown. Because animal models are valuable for interrogating neural and pituitary mechanisms, we studied effects of androgens in the normal male physiological range on in vivo LH secretion parameters in female mice and in vitro LH secretion patterns from isolated female pituitaries. We also assessed androgen effects on hypothalamic and gonadotrope gene expression in female mice, which may contribute to altered LH secretion profiles. We used a nonaromatizable androgen, dihydrotestosterone (DHT), to isolate effects occurring specifically via androgen receptor (AR) signaling. Compared with control females, DHT-treated females exhibited markedly reduced in vivo LH pulsatility, with decreases in pulse frequency, amplitude, peak, and basal LH levels. Correlating with reduced LH pulsatility, DHT-treated females also exhibited suppressed arcuate nucleus Kiss1 and Tac2 expression. Separate from these neural effects, we determined in vitro that the female pituitary is directly inhibited by AR signaling, resulting in lower basal LH levels and reduced LH secretory responses to gonadotropin-releasing hormone pulses, along with lower gonadotropin gene expression. Thus, in normal adult females, male levels of androgen acting via AR can strongly inhibit the reproductive axis at both the neural and pituitary levels.
Collapse
Affiliation(s)
- Lourdes A Esparza
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Tomohiro Terasaka
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Mark A Lawson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Alexander S Kauffman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California
- Correspondence: Dr. Alexander S. Kauffman, Department of Obstetrics, Gynecology and Reproductive Sciences, Leichtag Building, Room 3A-15, University of California, San Diego, 9500 Gilman Drive, #0674, La Jolla, CA 92093, USA. E-mail:
| |
Collapse
|
23
|
RFamide-Related Peptide Neurons Modulate Reproductive Function and Stress Responses. J Neurosci 2020; 41:474-488. [PMID: 33219002 DOI: 10.1523/jneurosci.1062-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022] Open
Abstract
RF-amide related peptide 3 (RFRP-3) is a neuropeptide thought to inhibit central regulation of fertility. We investigated whether alterations in RFRP neuronal activity led to changes in puberty onset, fertility, and stress responses, including stress and glucocorticoid-induced suppression of pulsatile luteinizing hormone secretion. We first validated a novel RFRP-Cre mouse line, which we then used in combination with Cre-dependent neuronal ablation and DREADD technology to selectively ablate, stimulate, and inhibit RFRP neurons to interrogate their physiological roles in the regulation of fertility and stress responses. Chronic RFRP neuronal activation delayed male puberty onset and female reproductive cycle progression, but RFRP-activated and ablated mice exhibited apparently normal fertility. When subjected to either restraint- or glucocorticoid-induced stress paradigms. However, we observed a critical sex-specific role for RFRP neurons in mediating acute and chronic stress-induced reproductive suppression. Female mice exhibiting RFRP neuron ablation or silencing did not exhibit the stress-induced suppression in pulsatile luteinizing hormone secretion observed in control mice. Furthermore, RFRP neuronal activation markedly stimulated glucocorticoid secretion, demonstrating a feedback loop whereby stressful stimuli activate RFRP neurons, which in turn further activate the stress axis. These data provide evidence for a neuronal link between the stress and reproductive axes.
Collapse
|
24
|
Phumsatitpong C, De Guzman RM, Zuloaga DG, Moenter SM. A CRH Receptor Type 1 Agonist Increases GABA Transmission to GnRH Neurons in a Circulating-Estradiol-Dependent Manner. Endocrinology 2020; 161:5892962. [PMID: 32798220 PMCID: PMC7547842 DOI: 10.1210/endocr/bqaa140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
GnRH neurons are central regulators of reproduction and respond to factors affecting fertility, such as stress. Corticotropin-releasing hormone (CRH) is released during stress response. In brain slices from unstressed controls, CRH has opposite, estradiol-dependent effects on GnRH neuron firing depending on the CRH receptor activated; activating CRHR-1 stimulates whereas activating CRHR-2 suppresses activity. We investigated possible direct and indirect mechanisms. Mice were ovariectomized and either not treated further (OVX) or given a capsule producing high positive feedback (OVX + E) or low negative feedback (OVX + low E) physiologic circulating estradiol levels. We tested possible direct effects on GnRH neurons by altering voltage-gated potassium currents. Two types of voltage-gated potassium currents (transient IA and sustained IK) were measured; neither CRHR-1 nor CRHR-2 agonists altered potassium current density in GnRH neurons from OVX + E mice. Further, neither CRH nor receptor-specific agonists altered action potential generation in response to current injection in GnRH neurons from OVX + E mice. To test the possible indirect actions, GABAergic postsynaptic currents were monitored. A CRHR-1 agonist increased GABAergic transmission frequency to GnRH neurons from OVX + E, but not OVX, mice, whereas a CRHR-2 agonist had no effect. Finally, we tested if CRH alters the firing rate of arcuate kisspeptin neurons, which provide an important excitatory neuromodulatory input to GnRH neurons. CRH did not acutely alter firing activity of these neurons from OVX, OVX + E or OVX + low E mice. These results suggest CRH increases GnRH neuron activity in an estradiol-dependent manner in part by activating GABAergic afferents. Mechanisms underlying inhibitory effects of CRH remain unknown.
Collapse
Affiliation(s)
| | | | | | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, US
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, US
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, US
- Correspondence: Suzanne M. Moenter; 7725 Med Sci II; 1137 E Catherine St; Ann Arbor, MI 48109-5622. E-mail:
| |
Collapse
|
25
|
Negrón AL, Radovick S. High-Fat Diet Alters LH Secretion and Pulse Frequency in Female Mice in an Estrous Cycle-Dependent Manner. Endocrinology 2020; 161:5897032. [PMID: 32841330 PMCID: PMC7486692 DOI: 10.1210/endocr/bqaa146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
Reproductive fitness in females is susceptible to obesogenic diets. Energy balance and reproduction are tightly regulated, in part, by hypothalamic neurons in the arcuate nucleus (ARC), and high-fat diet (HFD) can steadily increase estradiol levels in rodents. Estradiol regulates the reproductive axis via negative feedback mechanisms in ARC neurons by modulating pulsatile release of the gonadotropin luteinizing hormone (LH). However, it is unclear how the circulating estradiol milieu of adult females interacts with a state of high-caloric fat intake to alter LH pulse dynamics. Here, we used serial tail-tip blood sampling to measure pulsatile LH release at different estrous cycle stages in mice fed a HFD. Starting at 21 days of age, female C57BL/6J mice were freely fed with either regular chow diet (RD) or 60% kcal HFD for 12 weeks. Blood samples were collected once at diestrus, and then again at estrus. LH was measured in 10-minute intervals for 3 hours and analyzed for pulse frequency, amplitude, and mean and basal LH levels. Compared with RD-fed controls, mice fed HFD displayed significantly increased pulse frequency at diestrus, but not at estrus. HFD-fed mice also had lower mean and basal LH levels compared with RD-fed controls, but only during estrus. These data suggest that circulating estradiol can variably contribute to the impact that HFD has on LH pulsatile release and also provide insight into how obesity impacts women's reproductive health when ovarian estradiol levels drastically change, such as during menopause or with hormone replacement therapy.
Collapse
Affiliation(s)
- Ariel L Negrón
- Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Correspondence: Ariel L. Negrón, PhD, Department of Pediatrics, Rutgers–Robert Wood Johnson Medical School, Clinical Academic Building, Room 7110, Lab A, 125 Paterson St., New Brunswick, NJ 08901, USA. E-mail:
| | - Sally Radovick
- Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
26
|
Esparza LA, Schafer D, Ho BS, Thackray VG, Kauffman AS. Hyperactive LH Pulses and Elevated Kisspeptin and NKB Gene Expression in the Arcuate Nucleus of a PCOS Mouse Model. Endocrinology 2020; 161:5730164. [PMID: 32031594 PMCID: PMC7341557 DOI: 10.1210/endocr/bqaa018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/05/2020] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS), a common reproductive disorder in women, is characterized by hyperandrogenemia, chronic anovulation, cystic ovarian follicles, and luteinizing hormone (LH) hyper-pulsatility, but the pathophysiology isn't completely understood. We recently reported a novel mouse model of PCOS using chronic letrozole (LET; aromatase inhibitor). Letrozole-treated females demonstrate multiple PCOS-like phenotypes, including polycystic ovaries, anovulation, and elevated circulating testosterone and LH, assayed in "one-off" measures. However, due to technical limitations, in vivo LH pulsatile secretion, which is elevated in PCOS women, was not previously studied, nor were the possible changes in reproductive neurons. Here, we used recent technical advances to examine in vivo LH pulse dynamics of freely moving LET female mice versus control and ovariectomized (OVX) mice. We also determined whether neural gene expression of important reproductive regulators such as kisspeptin, neurokinin B (NKB), and dynorphin, is altered in LET females. Compared to controls, LET females exhibited very rapid, elevated in vivo LH pulsatility, with increased pulse frequency, amplitude, and basal levels, similar to PCOS women. Letrozole-treated mice also had markedly elevated Kiss1, Tac2, and Pdyn expression and increased Kiss1 neuronal activation in the hypothalamic arcuate nucleus. Notably, the hyperactive LH pulses and increased kisspeptin neuron measures of LET mice were not as elevated as OVX females. Our findings indicate that LET mice, like PCOS women, have markedly elevated LH pulsatility, which likely drives increased androgen secretion. Increased hypothalamic kisspeptin and NKB levels may be fundamental contributors to the hyperactive LH pulse secretion in the LET PCOS-like condition and, perhaps, in PCOS women.
Collapse
Affiliation(s)
- Lourdes A Esparza
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Danielle Schafer
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Brian S Ho
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Varykina G Thackray
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, California
- Correspondence: Dr. Alexander S. Kauffman, Department of Reproductive Medicine, Leichtag Building, Room 3A-15, University of California San Diego, 9500 Gilman Drive #0674, La Jolla, California 92093. E-mail:
| |
Collapse
|
27
|
McCosh RB, Breen KM, Kauffman AS. Neural and endocrine mechanisms underlying stress-induced suppression of pulsatile LH secretion. Mol Cell Endocrinol 2019; 498:110579. [PMID: 31521706 PMCID: PMC6874223 DOI: 10.1016/j.mce.2019.110579] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Stress is well-known to inhibit a variety of reproductive processes, including the suppression of episodic Gonadotropin releasing hormone (GnRH) secretion, typically measured via downstream luteinizing hormone (LH) secretion. Since pulsatile secretion of GnRH and LH are necessary for proper reproductive function in both males and females, and stress is common for both human and animals, understanding the fundamental mechanisms by which stress impairs LH pulses is of critical importance. Activation of the hypothalamic-pituitary-adrenal axis, and its corresponding endocrine factors, is a key feature of the stress response, so dissecting the role of stress hormones, including corticotrophin releasing hormone (CRH) and corticosterone, in the inhibition of LH secretion has been one key research focus. However, some evidence suggests that these stress hormones alone are not sufficient for the full inhibition of LH caused by stress, implicating the additional involvement of other hormonal or neural signaling pathways in this process (including inputs from the brainstem, amygdala, parabrachial nucleus, and dorsomedial nucleus). Moreover, different stress types, such as metabolic stress (hypoglycemia), immune stress, and psychosocial stress, appear to suppress LH secretion via partially unique neural and endocrine pathways. The mechanisms underlying the suppression of LH pulses in these models offer interesting comparisons and contrasts, including the specific roles of amygdaloid nuclei and CRH receptor types. This review focuses on the most recent and emerging insights into endocrine and neural mechanisms responsible for the suppression of pulsatile LH secretion in mammals, and offers insights in important gaps in knowledge.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
| | - Alexander S Kauffman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA.
| |
Collapse
|
28
|
Ubuka T, Tsutsui K. Reproductive neuroendocrinology of mammalian gonadotropin-inhibitory hormone. Reprod Med Biol 2019; 18:225-233. [PMID: 31312100 PMCID: PMC6613023 DOI: 10.1002/rmb2.12272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gonadotropin-inhibitory hormone (GnIH) was discovered in the Japanese quail brain in 2000 as a hypothalamic neuropeptide that suppresses luteinizing hormone release from cultured quail anterior pituitary. METHODS The authors investigated the existence of mammalian orthologous peptides to GnIH and their physiological functions in the following 19 years of research. MAIN FINDINGS Mammals have orthologous peptide to GnIH, often described RFamide-related peptide, expressed in the hypothalamus and gonads. Mammalian GnIH may also suppress gonadotropin synthesis and release by suppressing gonadotropin-releasing hormone (GnRH) synthesis and release in addition to directly suppressing gonadotropin synthesis and release from the pituitary. Mammalian GnIH may also suppress kisspeptin, a stimulator of GnRH, release. Mammalian GnIH is also expressed in the testis and ovary and suppresses gametogenesis and sex steroid production acting in an autocrine/paracrine manner. Thus, mammalian GnIH may act at all levels of the hypothalamic-pituitary-gonadal axis to suppress reproduction. GnIH may be involved in the regulation of puberty, estrous or menstrual cycle, seasonal reproduction, and stress responses. CONCLUSION Studies suggest that mammalian GnIH is an important neuroendocrine suppressor of reproduction in mammals.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life ScienceWaseda UniversityShinjukuJapan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life ScienceWaseda UniversityShinjukuJapan
| |
Collapse
|