1
|
Overduin TS, Page AJ, Young RL, Gatford KL. Adaptations in Gastrointestinal Nutrient Absorption and its Determinants During Pregnancy in Monogastric Mammals: A Scoping Review. Nutr Rev 2025; 83:e1172-e1196. [PMID: 38926118 DOI: 10.1093/nutrit/nuae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
CONTEXT Pregnancy increases nutrient demand, but how nutrient uptake and its determinants adapt to facilitate this is unclear. OBJECTIVE This review aimed to identify and characterize evidence and evidence gaps regarding changes in gastrointestinal nutrient absorption and its determinants during pregnancy in monogastric mammals. DATA SOURCES A scoping review of peer-reviewed sources was conducted across PubMed, Scopus, Web of Science, Embase, and ProQuest (theses and dissertations) databases. DATA EXTRACTION Data extracted included species, pregnancy stages and outcomes. Where sufficient data for a given outcome was available, relative values were summarized graphically or in tables, to allow comparison across pregnancy stages and/or small intestine regions. Searches identified 26 855 sources, of which only 159 were eligible. Mechanistic studies were largely restricted to rodents, and most compared non- and late-pregnant groups, with fewer studies including early- or mid-pregnant groups. DATA ANALYSIS During pregnancy, there is some evidence for greater capacity for glucose uptake but unchanged amino acid uptake, and good evidence for increased uptake of calcium, iron, and zinc, and slower gastrointestinal passage of nutrients. The available evidence indicates that acute glucose uptake, gastric emptying, and the activities of sucrase, maltase, and lactase do not change during pregnancy. Gaps in the knowledge include the effects of pregnancy on uptake of specific amino acids, lipids, and most minerals and vitamins. CONCLUSION The results indicate that the gastrointestinal tract adapts during pregnancy to facilitate increased nutrient absorption. Additional data is required in order to assess the underlying mechanisms for and impacts on the absorption of many nutrients, as well as to determine the timing of these adaptations.
Collapse
Affiliation(s)
- Teunis Sebastian Overduin
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Richard L Young
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kathryn L Gatford
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Marchiori GN, Eynard AR, Soria EA. Essential Fatty Acids along the Women’s Life Cycle and Promotion of a
Well-balanced Metabolism. CURRENT WOMENS HEALTH REVIEWS 2024; 20. [DOI: 10.2174/0115734048247312230929092327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Linoleic acid (ω-6 LA) and α-linolenic acid (ω-3 ALA) are essential fatty acids (EFA)
for human beings. They must be consumed through diet and then extensively metabolized, a process that plays a fundamental role in health and eventually in disease prevention. Given the numerous changes depending on age and sex, EFA metabolic adaptations require further investigations
along the women’s life cycle, from onset to decline of the reproductive age. Thus, this review explains women’s life cycle stages and their involvement in diet intake, digestion and absorption,
the role of microbiota, metabolism, bioavailability, and EFA fate and major metabolites. This
knowledge is crucial to promoting lipid homeostasis according to female physiology through well-directed health strategies. Concerning this, the promotion of breastfeeding, nutrition, and physical activity is cardinal to counteract ALA deficiency, LA/ALA imbalance, and the release of unhealthy derivatives. These perturbations arise after menopause that compromise both lipogenic
and lipolytic pathways. The close interplay of diet, age, female organism, and microbiota also
plays a central role in regulating lipid metabolism. Consequently, future studies are encouraged to
propose efficient interventions for each stage of women's cycle. In this sense, plant-derived foods
and products are promising to be included in women’s nutrition to improve EFA metabolism.
Collapse
Affiliation(s)
- Georgina N. Marchiori
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología,
Instituto de Biología Celular. Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
- Universidad
Nacional de Córdoba, Facultad de Ciencias Médicas, Escuela de Nutrición. Bv. de la Reforma, Ciudad Universitaria,
5014, Córdoba, Argentina
| | - Aldo R. Eynard
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología,
Instituto de Biología Celular. Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA.
Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
| | - Elio A. Soria
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Cátedra de Biología Celular, Histología y Embriología,
Instituto de Biología Celular. Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, INICSA.
Bv. de la Reforma, Ciudad Universitaria, 5014, Córdoba, Argentina
| |
Collapse
|
3
|
Gupta D, Burstein AW, Shankar K, Varshney S, Singh O, Osborne-Lawrence S, Richard CP, Zigman JM. Impact of Ghrelin on Islet Size in Nonpregnant and Pregnant Female Mice. Endocrinology 2024; 165:bqae048. [PMID: 38626085 PMCID: PMC11075791 DOI: 10.1210/endocr/bqae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Reducing ghrelin by ghrelin gene knockout (GKO), ghrelin-cell ablation, or high-fat diet feeding increases islet size and β-cell mass in male mice. Here we determined if reducing ghrelin also enlarges islets in females and if pregnancy-associated changes in islet size are related to reduced ghrelin. Islet size and β-cell mass were larger (P = .057 for β-cell mass) in female GKO mice. Pregnancy was associated with reduced ghrelin and increased liver-expressed antimicrobial peptide-2 (LEAP2; a ghrelin receptor antagonist) in wild-type mice. Ghrelin deletion and pregnancy each increased islet size (by ∼19.9-30.2% and ∼34.9-46.4%, respectively), percentage of large islets (>25 µm2×103, by ∼21.8-42% and ∼21.2-41.2%, respectively), and β-cell mass (by ∼15.7-23.8% and ∼65.2-76.8%, respectively). Neither islet cross-sectional area, β-cell cross-sectional area, nor β-cell mass correlated with plasma ghrelin, although all positively correlated with LEAP2 (P = .081 for islet cross-sectional area). In ad lib-fed mice, there was an effect of pregnancy, but not ghrelin deletion, to change (raise) plasma insulin without impacting blood glucose. Similarly, there was an effect of pregnancy, but not ghrelin deletion, to change (lower) blood glucose area under the curve during a glucose tolerance test. Thus, genetic deletion of ghrelin increases islet size and β-cell cross-sectional area in female mice, similar to males. Yet, despite pregnancy-associated reductions in ghrelin, other factors appear to govern islet enlargement and changes to insulin sensitivity and glucose tolerance in the setting of pregnancy. In the case of islet size and β-cell mass, one of those factors may be the pregnancy-associated increase in LEAP2.
Collapse
Affiliation(s)
- Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Avi W Burstein
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Endocrinology & Metabolism, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Qiao L, Lu C, Zang T, Dzyuba B, Shao J. Maternal GLP-1 receptor activation inhibits fetal growth. Am J Physiol Endocrinol Metab 2024; 326:E268-E276. [PMID: 38197791 PMCID: PMC11193516 DOI: 10.1152/ajpendo.00361.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Glucagon-like peptide 1 (GLP-1) regulates food intake, insulin production, and metabolism. Our recent study demonstrated that pancreatic α-cells-secreted (intraislet) GLP-1 effectively promotes maternal insulin secretion and metabolic adaptation during pregnancy. However, the role of circulating GLP-1 in maternal energy metabolism remains largely unknown. Our study aims to investigate systemic GLP-1 response to pregnancy and its regulatory effect on fetal growth. Using C57BL/6 mice, we observed a gradual decline in maternal blood GLP-1 concentrations. Subsequent administration of the GLP-1 receptor agonist semaglutide (Sem) to dams in late pregnancy revealed a modest decrease in maternal food intake during initial treatment. At the same time, no significant alterations were observed in maternal body weight or fat mass. Notably, Sem-treated dams exhibited a significant decrease in fetal body weight, which persisted even following the restoration of maternal blood glucose levels. Despite no observable change in placental weight, a marked reduction in the placenta labyrinth area from Sem-treated dams was evident. Our investigation further demonstrated a substantial decrease in the expression levels of various pivotal nutrient transporters within the placenta, including glucose transporter one and sodium-neutral amino acid transporter one, after Sem treatment. In addition, Sem injection led to a notable reduction in the capillary area, number, and surface densities within the labyrinth. These findings underscore the crucial role of modulating circulating GLP-1 levels in maternal adaptation, emphasizing the inhibitory effects of excessive GLP-1 receptor activation on both placental development and fetal growth.NEW & NOTEWORTHY Our study reveals a progressive decline in maternal blood glucagon-like peptide 1 (GLP-1) concentration. GLP-1 receptor agonist injection in late pregnancy significantly reduced fetal body weight, even after restoration of maternal blood glucose concentration. GLP-1 receptor activation significantly reduced the placental labyrinth area, expression of some nutrient transporters, and capillary development. Our study indicates that reducing maternal blood GLP-1 levels is a physiological adaptation process that benefits placental development and fetal growth.
Collapse
Affiliation(s)
- Liping Qiao
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| | - Cindy Lu
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| | - Tianyi Zang
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| | - Brianna Dzyuba
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| | - Jianhua Shao
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
5
|
Clarke GS, Li H, Ladyman SR, Young RL, Gatford KL, Page AJ. Effect of pregnancy on the expression of nutrient-sensors and satiety hormones in mice. Peptides 2024; 172:171114. [PMID: 37926186 DOI: 10.1016/j.peptides.2023.171114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Small intestinal satiation pathways involve nutrient-induced stimulation of chemoreceptors leading to release of satiety hormones from intestinal enteroendocrine cells (ECCs). Whether adaptations in these pathways contribute to increased maternal food intake during pregnancy is unknown. To determine the expression of intestinal nutrient-sensors and satiety hormone transcripts and proteins across pregnancy in mice. Female C57BL/6J mice (10-12 weeks old) were randomized to mating and then tissue collection at early- (6.5 d), mid- (12.5 d) or late-pregnancy (17.5 d), or to an unmated age matched control group. Relative transcript expression of intestinal fatty acid, peptide and amino acid and carbohydrate chemoreceptors, as well as gut hormones was determined across pregnancy. The density of G-protein coupled receptor 93 (GPR93), free fatty acid receptor (FFAR) 4, cholecystokinin (CCK) and glucagon-like peptide1 (GLP-1) immunopositive cells was then compared between non-pregnant and late-pregnant mice. Duodenal GPR93 expression was lower in late pregnant than non-pregnant mice (P < 0.05). Ileal FFAR1 expression was higher at mid- than at early- or late-pregnancy. Ileal FFAR2 expression was higher at mid-pregnancy than in early pregnancy. Although FFAR4 expression was consistently lower in late-pregnant than non-pregnant mice (P < 0.001), the density of FFAR4 immunopositive cells was higher in the jejunum of late-pregnant than non-pregnant mice. A subset of protein and fatty acid chemoreceptor transcripts undergo region-specific change during murine pregnancy, which could augment hormone release and contribute to increased food intake. Further investigations are needed to determine the functional relevance of these changes.
Collapse
Affiliation(s)
- Georgia S Clarke
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Hui Li
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard L Young
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Kathryn L Gatford
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia.
| |
Collapse
|
6
|
Cruz KLO, Salla DH, Oliveira MP, Silva LE, Vedova LMD, Mendes TF, Bressan CBC, Silva MR, Santos SML, Soares HJ, Mendes RL, Vernke CN, Silva MG, Laurentino AOM, Medeiros FD, Vilela TC, Lemos I, Bitencourt RM, Réus GZ, Streck EL, Mello AH, Rezin GT. Energy metabolism and behavioral parameters in female mice subjected to obesity and offspring deprivation stress. Behav Brain Res 2023; 451:114526. [PMID: 37271313 DOI: 10.1016/j.bbr.2023.114526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the behavioral and energy metabolism parameters in female mice subjected to obesity and offspring deprivation (OD) stress. Eighty female Swiss mice, 40 days old, were weighed and divided into two groups: Control group (control diet, n = 40) and Obese group (high-fat diet, n = 40), for induction of the animal model of obesity, the protocol was based on the consumption of a high-fat diet and lasted 8 weeks. Subsequently, the females were subjected to pregnancy, after the birth of the offspring, were divided again into the following groups (n = 20): Control non-deprived (ND), Control + OD, Obese ND, and Obese + OD, for induction of the stress protocol by OD. After the offspring were 21 days old, weaning was performed and the dams were subjected to behavioral tests. The animals were humanely sacrificed, the brain was removed, and brain structures were isolated to assess energy metabolism. Both obesity and OD led to anhedonia in the dams. It was shown that the structures most affected by obesity and OD are the hypothalamus and hippocampus, as evidenced by the mitochondrial dysfunction found in these structures. When analyzing the groups separately, it was observed that OD led to more pronounced mitochondrial damage; however, the association of obesity with OD, as well as obesity alone, also generated damage. Thus, it is concluded that obesity and OD lead to anhedonia in animals and to mitochondrial dysfunction in the hypothalamus and hippocampus, which may lead to losses in feeding control and cognition of the dams.
Collapse
Affiliation(s)
- Kenia L O Cruz
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Daniele H Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Larissa E Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil.
| | - Larissa M D Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Talita F Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Catarina B C Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariella R Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Sheila M L Santos
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Hevylin J Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Rayane L Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Camila N Vernke
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Marina G Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Ana O M Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabiana D Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Rafael M Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, Brazil
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Aline H Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gislaine T Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| |
Collapse
|
7
|
Homeida AM, Homeida MA, Al-Suhaimi EA. Circadian hormone secretion of enteroendocrine cells: implication on pregnancy status. Front Endocrinol (Lausanne) 2023; 14:1106382. [PMID: 37234809 PMCID: PMC10206244 DOI: 10.3389/fendo.2023.1106382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
The timing of food intake is a key cue for circadian rhythms in humans and animals. In response to food intake, gut hormones called incretin are produced by intestinal enteroendocrine cells in a circadian rhythm that stimulates insulin secretion and regulates body weight and energy expenditure. Pregnancy is associated with the expansion of β cells, the risk of gestational diabetes mellitus, and excessive weight gain. The timing of food intake is a good way to address metabolic complications during pregnancy. The current review focuses on the circadian rhythms and biological actions of enteroendocrine hormones and their associations with pregnancy status, specifically topics like food intake and gut circadian rhythms, the circadian secretion of enteroendocrine peptides, and the effects of these factors during pregnancy.
Collapse
Affiliation(s)
- Abdelgadir M. Homeida
- Department of Environmental Health Research, Institute of Research and Medical Consultations Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed A. Homeida
- UH Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Ebtesam A. Al-Suhaimi
- Department of Environmental Health Research, Institute of Research and Medical Consultations Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Qin L, Luo Y, Chang H, Zhang H, Zhu Z, Du Y, Liu K, Wu H. The association between serum orexin-A levels and sleep quality in pregnant women. Sleep Med 2023; 101:93-98. [PMID: 36368074 DOI: 10.1016/j.sleep.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE/BACKGROUND Orexin has been shown to regulate the sleep-wake cycle, and it may play a major role in the pathogenesis of sleep disorders; however, its role in sleep disorders in pregnant women remains unclear. We aimed to assess the relationship between serum orexin-A (OXA) levels and sleep quality in pregnant women. PATIENTS/METHODS This study comprised 214 enrolled pregnant women (poor sleep quality, n = 125; no poor sleep quality, n = 89). We assessed participants' sleep quality and depression and anxiety levels. OXA levels were measured using enzyme-linked immunosorbent assay. RESULTS Women in the poor sleep quality group showed higher serum OXA levels (0.33[0.3] vs. 0.27[0.11], P < 0.001) than those in the no poor sleep quality group. Binary regression analysis showed that the higher the OXA levels (odds ratio [OR] 1.385, 95% CI [confidence interval] 1.160-1.655) and Zung Self-Rating Anxiety Scale scores (OR 1.073, 95% CI 1.009-1.140), the greater the risk of sleep quality in pregnant women. First-trimester OXA levels differed significantly from those in the second and third trimesters (P < 0.05). CONCLUSION Serum OXA levels were higher in pregnant women with poor sleep quality than in those without poor sleep quality. OXA levels were also higher in the second and third trimesters than in the first trimester.
Collapse
Affiliation(s)
- Liwei Qin
- Department of Nursing, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Yanyan Luo
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China.
| | - Hongjuan Chang
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| | - Hongxing Zhang
- School of Psychology, Xinxiang Medical University, Xingxiang, 453003, China
| | - Zhiling Zhu
- Department of Nursing, Xinxiang Central Hospital, Xinxiang, 453000, China
| | - Yishen Du
- Department of Nursing, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Kaili Liu
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| | - Huimin Wu
- School of Nursing, Xinxiang Medical University, Xingxiang, 453003, China
| |
Collapse
|
9
|
Burgos-Gamez X, Morales-Castillo P, Fernandez-Mejia C. Maternal adaptations of the pancreas and glucose homeostasis in lactation and after lactation. Mol Cell Endocrinol 2023; 559:111778. [PMID: 36162635 DOI: 10.1016/j.mce.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
During lactation, the maternal physiology adapts to bear the nutritional requirements of the offspring. The exocrine and endocrine pancreas are central to nutrient handling, promoting digestion and metabolism. In concert with prolactin, insulin is a determinant factor for milk synthesis. The investigation of the pancreas during lactation has been scattered over several periods. The investigations that laid the foundation of lactating pancreatic physiology and glucose homeostasis were conducted in the decades of 1970-1980. With the development of molecular biology, newer studies have revealed the molecular mechanisms involved in the endocrine pancreas during breastfeeding. There has been a surge of information recently about unexpected changes in the pancreas at the end of the lactation period and after weaning. In this review, we aim to gather information on the changes in the pancreas and glucose homeostasis during and after lactation and discuss the outcomes derived from the current discoveries.
Collapse
Affiliation(s)
- Xadeni Burgos-Gamez
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Paulina Morales-Castillo
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico.
| |
Collapse
|
10
|
Taylor VJ. Lactation from the inside out: Maternal homeorhetic gastrointestinal adaptations regulating energy and nutrient flow into milk production. Mol Cell Endocrinol 2023; 559:111797. [PMID: 36243202 DOI: 10.1016/j.mce.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Lactation invokes homeorhetic processes to ramp up and supply milk synthesis components to fulfil nutritional, immunological and microbiological requirements of developing offspring, overseen by complex neuroendocrine networks. The maternal gut meets these intense metabolic demands, supported by hyperphagia and rapid adjustments to process larger food quantities. Enteroplasticity describes an inherent ability of the gastrointestinal tract to harness metabolic and structural adaptations that increase nutrient absorption. Most shifts in response to increased demands are transitory and by secreting milk, the continuous energetic drain out of the maternal body avoids development of pathological metabolic diseases. Lactation has various positive benefits for long-term maternal health but many females do not lactate for long post pregnancy and younger women are increasingly pre-disposed to excessive body mass and/or metabolic complications prior to reproducing. Inadvertently invoking intestinal adaptations to harvest and store excess nutrients has negative health implications with increased risks for both mother and offspring.
Collapse
Affiliation(s)
- Vicky J Taylor
- School of Life, Health and Chemical Sciences (LHCS), Faculty of Science, Technology, Engineering and Mathematics (STEM), The Open University, United Kingdom.
| |
Collapse
|
11
|
Bai M, Chen M, Zeng Q, Lu S, Li P, Ma Z, Lin N, Zheng C, Zhou H, Zeng S, Sun D, Jiang H. Up‐regulation of hepatic CD36 by increased corticosterone/cortisol levels via GR leads to lipid accumulation in liver and hypertriglyceridaemia during pregnancy. Br J Pharmacol 2022; 179:4440-4456. [PMID: 35491243 DOI: 10.1111/bph.15863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Mengru Bai
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Mingyang Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Qingquan Zeng
- Women's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Shuanghui Lu
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Ping Li
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Zhiyuan Ma
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Nengming Lin
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Caihong Zheng
- Women's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Hui Zhou
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Su Zeng
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| | - Dongli Sun
- Women's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Huidi Jiang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| |
Collapse
|
12
|
Wellman M, Budin R, Woodside B, Abizaid A. Energetic demands of lactation produce an increase in the expression of growth hormone secretagogue receptor in the hypothalamus and ventral tegmental area of the rat despite a reduction in circulating ghrelin. J Neuroendocrinol 2022; 34:e13126. [PMID: 35365872 DOI: 10.1111/jne.13126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Lactating rats show changes in the secretion of hormones and brain signals that promote hyperphagia and facilitate the production of milk. Little is known, however, about the role of ghrelin in the mechanisms sustaining lactational hyperphagia. Here, we used Wistar female rats that underwent surgery to sever the galactophores to prevent milk delivery (GC rats) and decrease the energetic drain of milk delivery. We compared plasma acyl-ghrelin concentrations and growth hormone secretagogue receptor (GHSR) mRNA expression in different brain regions of GC rats with those of sham operated lactating and nonlactating rats. Additional lactating and nonlactating rats were implanted with cannulae aimed at the lateral ventricles and were used to compare feeding responses to central ghrelin or GHSR antagonist infusions to those of nonlactating rats receiving similar infusions on day 14-16 postpartum (pp). Results show lower plasma acyl-ghrelin concentrations on day 15 pp sham operated lactating rats compared to GC or nonlactating rats. These changes occur in association with increased GHSR mRNA expression in the hypothalamic arcuate nucleus (ARC) and ventral tegmental area (VTA) of sham operated lactating rats. Despite lactational hyperphagia, infusions of ghrelin (0.25 or 1 μg) resulted in similar increases in food intake in lactating and nonlactating rats. In addition, infusions of the GHSR antagonist JMV3002 (4 μg in 1 μl of vehicle) produced greater suppression of food intake in lactating rats than in nonlactating rats. These data suggest that, despite lower plasma ghrelin, the energetic drain of lactation increases sensitivity to the orexigenic effects of ghrelin in brain regions important for food intake and energy balance, and these events are associated with lactational hyperphagia.
Collapse
Affiliation(s)
- Martin Wellman
- Neuroscience Department, Carleton University, Ottawa, Ontario, Canada
| | - Radek Budin
- Centre for Studies in Behavioural Neurobiology, Psychology Department, Concordia University, Montreal, Quebec, Canada
| | - Barbara Woodside
- Centre for Studies in Behavioural Neurobiology, Psychology Department, Concordia University, Montreal, Quebec, Canada
| | - Alfonso Abizaid
- Neuroscience Department, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Yeo E, Brubaker PL, Sloboda DM. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J Endocrinol 2022; 253:R1-R19. [PMID: 35099411 PMCID: PMC8942339 DOI: 10.1530/joe-21-0354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes. Recent data suggest that the maternal gut microbiota may play a role in these adaptations, but changes to maternal gut physiology and the underlying intestinal mechanisms remain unclear. In this review, we discuss selective aspects of intestinal physiology including the role of the incretin hormone, glucagon-like peptide 1 (GLP-1), and the role of the maternal gut microbiome in the maternal metabolic adaptations to pregnancy. Specifically, we discuss how bacterial components and metabolites could mediate the effects of the microbiota on host physiology, including nutrient absorption and GLP-1 secretion and action, and whether these mechanisms may change maternal insulin sensitivity and secretion during pregnancy. Finally, we discuss how these pathways could be altered in disease states during pregnancy including maternal obesity and diabetes.
Collapse
Affiliation(s)
- Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Overduin TS, Page AJ, Young RL, Gatford KL. Adaptations in gastrointestinal nutrient absorption and its determinants during pregnancy in monogastric mammals: a scoping review protocol. JBI Evid Synth 2022; 20:640-646. [PMID: 35165214 DOI: 10.11124/jbies-21-00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this review is to characterize the current state of literature and knowledge regarding adaptations of gastrointestinal nutrient absorption, and the determinants of this absorption during pregnancy in monogastric mammals. INTRODUCTION Energy demands increase significantly during pregnancy due to the metabolic demands associated with placental and fetal growth, and the deposition of fat stores that support postnatal lactation. Previous studies have examined anatomical changes within the small intestine, but have focused on specific pregnancy stages or specific regions of the small intestine. Importantly, little is known about changes in nutrient absorption during pregnancy, and the underlying mechanisms that lead to these changes. An understanding of these adaptations will inform research to improve pregnancy outcomes for both mothers and newborns in the future. INCLUSION CRITERIA This review will include primary literature that describes gastrointestinal nutrient absorption and/or its determinants during pregnancy in monogastric mammals, including humans and rodents. Only data for normal pregnancies will be included, and models of pathology and illness will be excluded. Studies must include comparisons between pregnant animals at known stages of pregnancy, and non-pregnant controls, or compare animals at different stages of pregnancy. METHODS The following databases will be searched for literature on this topic: PubMed, Scopus, Web of Science, Embase, MEDLINE, and ProQuest Dissertations and Theses. Evidence screening and selection will be carried out independently by two reviewers, and conflicts will be resolved through discussion with additional members of the review team. Data will be extracted and presented in tables and/or figures, together with a narrative summary.
Collapse
Affiliation(s)
- Teunis Sebastian Overduin
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Amanda J Page
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Richard L Young
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Kathryn L Gatford
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
15
|
Clarke GS, Gatford KL, Young RL, Grattan DR, Ladyman SR, Page AJ. Maternal adaptations to food intake across pregnancy: Central and peripheral mechanisms. Obesity (Silver Spring) 2021; 29:1813-1824. [PMID: 34623766 DOI: 10.1002/oby.23224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/17/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
A sufficient and balanced maternal diet is critical to meet the nutritional demands of the developing fetus and to facilitate deposition of fat reserves for lactation. Multiple adaptations occur to meet these energy requirements, including reductions in energy expenditure and increases in maternal food intake. The central nervous system plays a vital role in the regulation of food intake and energy homeostasis and responds to multiple metabolic and nutrient cues, including those arising from the gastrointestinal tract. This review describes the nutrient requirements of pregnancy and the impact of over- and undernutrition on the risk of pregnancy complications and adult disease in progeny. The central and peripheral regulation of food intake is then discussed, with particular emphasis on the adaptations that occur during pregnancy and the mechanisms that drive these changes, including the possible role of the pregnancy-associated hormones progesterone, estrogen, prolactin, and growth hormone. We identify the need for deeper mechanistic understanding of maternal adaptations, in particular, changes in gut-brain axis satiety signaling. Improved understanding of food intake regulation during pregnancy will provide a basis to inform strategies that prevent maternal under- or overnutrition, improve fetal health, and reduce the long-term health and economic burden for mothers and offspring.
Collapse
Affiliation(s)
- Georgia S Clarke
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Richard L Young
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Intestinal Nutrient Sensing Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
17
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
18
|
Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metab 2021; 33:1279-1292. [PMID: 34139200 PMCID: PMC8612010 DOI: 10.1016/j.cmet.2021.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
There has been rapid growth in the use of Drosophila and other invertebrate systems to dissect mechanisms governing metabolism. New assays and approaches to physiology have aligned with superlative genetic tools in fruit flies to provide a powerful platform for posing new questions, or dissecting classical problems in metabolism and disease genetics. In multiple examples, these discoveries exploit experimental advantages as-yet unavailable in mammalian systems. Here, we illustrate how fly studies have addressed long-standing questions in three broad areas-inter-organ signaling through hormonal or neural mechanisms governing metabolism, intestinal interoception and feeding, and the cellular and signaling basis of sexually dimorphic metabolism and physiology-and how these findings relate to human (patho)physiology. The imaginative application of integrative physiology and related approaches in flies to questions in metabolism is expanding, and will be an engine of discovery, revealing paradigmatic features of metabolism underlying human diseases and physiological equipoise in health.
Collapse
Affiliation(s)
- Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Deborah D Tsao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
19
|
Hadjieconomou D, King G, Gaspar P, Mineo A, Blackie L, Ameku T, Studd C, de Mendoza A, Diao F, White BH, Brown AEX, Plaçais PY, Préat T, Miguel-Aliaga I. Enteric neurons increase maternal food intake during reproduction. Nature 2020; 587:455-459. [PMID: 33116314 PMCID: PMC7610780 DOI: 10.1038/s41586-020-2866-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.
Collapse
Affiliation(s)
- Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - George King
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Pedro Gaspar
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Alessandro Mineo
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Laura Blackie
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Tomotsune Ameku
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Chris Studd
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - André E X Brown
- MRC London Institute of Medical Sciences, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Préat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
20
|
Fandiño J, Toba L, González-Matías LC, Diz-Chaves Y, Mallo F. Perinatal Undernutrition, Metabolic Hormones, and Lung Development. Nutrients 2019; 11:nu11122870. [PMID: 31771174 PMCID: PMC6950278 DOI: 10.3390/nu11122870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Maternal and perinatal undernutrition affects the lung development of litters and it may produce long-lasting alterations in respiratory health. This can be demonstrated using animal models and epidemiological studies. During pregnancy, maternal diet controls lung development by direct and indirect mechanisms. For sure, food intake and caloric restriction directly influence the whole body maturation and the lung. In addition, the maternal food intake during pregnancy controls mother, placenta, and fetal endocrine systems that regulate nutrient uptake and distribution to the fetus and pulmonary tissue development. There are several hormones involved in metabolic regulations, which may play an essential role in lung development during pregnancy. This review focuses on the effect of metabolic hormones in lung development and in how undernutrition alters the hormonal environment during pregnancy to disrupt normal lung maturation. We explore the role of GLP-1, ghrelin, and leptin, and also retinoids and cholecalciferol as hormones synthetized from diet precursors. Finally, we also address how metabolic hormones altered during pregnancy may affect lung pathophysiology in the adulthood.
Collapse
|