1
|
Jeanne F, Pilet S, Klett D, Combarnous Y, Bernay B, Dufour S, Favrel P, Sourdaine P. Characterization of gonadotropins and their receptors in a chondrichthyan, Scyliorhinus canicula, fills a gap in the understanding of their coevolution. Gen Comp Endocrinol 2024; 358:114614. [PMID: 39326529 DOI: 10.1016/j.ygcen.2024.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In Gnathostomes, reproduction is mainly controlled by the hypothalamic-pituitary-gonadal (HPG) axis, with the involvement of the pituitary gonadotropic hormones (GTH), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which activate their cognate receptors, FSHR and LHR, expressed in gonads. Each GTH consists of a common α subunit and of a specific FSHβ or LHβ subunit. Chondrichthyes (holocephalans and elasmobranchs) is a sister group of bony vertebrates. This position is highly favorable for the understanding of the evolution of endocrine regulations of reproduction among gnathostomes. Surprisingly, the characterization of gonadotropins and their receptors is still limited in chondrichthyes. In the present study, GTH and GTHR sequences have been identified from several chondrichthyan genomes, and their primary structures were analyzed relative to human orthologs. 3D models of GTH/GTHR interaction were built, highlighting the importance of the receptor hinge region for ligand recognition. Functional hormone-receptor interactions have been studied in HEK cells using the small-spotted catshark (Scyliorhinus canicula) recombinant proteins and showed that LHR was specifically activated by LH whereas FSHR was activated by both FSH and LH. Expression profiles of GTHs and their receptors were explored by real-time PCR, in situ hybridization and immunohistochemistry during spermatogenesis, along the male genital tract and other tissues, as well as in some female tissues for comparison. Tissue-expression analyses showed that the highest levels were observed for fshr transcripts in testis and ovary and for lhr in specific extragonadal tissues. The two receptors were expressed at all stages of spermatogenesis by both germ cells and somatic cells, including undifferentiated spermatogonia, spermatocytes, spermatids, somatic precursors and Sertoli cells; differentiated Leydig cells being absent in the testis of S. canicula. Receptors were also expressed by the lymphomyeloid epigonal tissue and the testicular tubules. These results, suggest a wide range of gonadotropin-regulated functions in Elasmobranchs, as well as functional redundancy during spermatogenesis. These extended functions are discussed in an evolutionary context in which the specificity of gonadotropin signaling must have contributed to the evolution of gonadal cells' morphology and function.
Collapse
Affiliation(s)
- Fabian Jeanne
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Stanislas Pilet
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Danièle Klett
- INRAE, CNRS, UMR Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France
| | - Yves Combarnous
- INRAE, CNRS, UMR Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France
| | - Benoît Bernay
- Université de Caen Normandie - Plateforme PROTEOGEN, US EMerode, 14032 Caen cedex 5, France
| | - Sylvie Dufour
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Pascal Favrel
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France
| | - Pascal Sourdaine
- Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, 14032 Caen cedex 5, France.
| |
Collapse
|
2
|
Aktaş G, Bertizlioglu M, Yılmaz SA, Kebapcılar AG, Çelik Ç, Seçilmiş Ö. Follicle-Stimulating Hormone Receptor and Estrogen Receptor Gene Polymorphisms in Women With Discordant Follicle-Stimulating Hormone and Anti-Mullerian Hormone Levels. Cureus 2024; 16:e60446. [PMID: 38883018 PMCID: PMC11179686 DOI: 10.7759/cureus.60446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Objective This study aimed to investigate follicle-stimulating hormone receptor (FSHR) polymorphisms (Thr307Ala and Asn680Ser), estrogen receptor 1 (ESR1) polymorphisms (PvuII and XbaI), and ESR2 polymorphisms (RsaI and AluI) in Turkish women with follicle-stimulating hormone (FSH) and anti-Mullerian hormone (AMH) discordance. Method Genotyping was performed in 60 patients aged 21-35 with FSH-AMH discordance and/or low ovarian reserve and 20 age-matched controls with normal FSH and AMH levels. The patients were investigated in four groups of 20 women according to their FSH and AMH levels. Groups 1, 2, 3, and 4 were as follows: normal FSH and low AMH levels, normal AMH and high FSH levels, high FSH and low AMH levels, and normal FSH and AMH levels. Genomic DNA was obtained from 3 cc peripheral blood, and polymorphisms were analyzed using TaqMan genotyping assays. Relations between groups of categorical variables were analyzed with a chi-square test. Differences between the groups were assessed using a student's t-test or Mann-Whitney U test. Results Women with discordant FSH and AMH levels (group 1 and group 2) were not statistically different from women with concordant FSH and AMH levels (group 3 and group 4) in terms of FSHR, ESR1, and ER2 single nucleotide polymorphisms (SNPs). Body mass index (BMI) was statistically significant between groups 1 and 2 as well as groups 2 and 3 (p = 0.004). Conclusions This study showed that FSHR, ESR1, and ESR2 SNPs have not had any effect on AMH-FSH discordance in reproductive age Turkish women.
Collapse
Affiliation(s)
- Görkem Aktaş
- Obstetrics and Gynecology, Dr. Ali Kemal Belviranlı Gynaecology and Children's Hospital, Konya, TUR
| | | | | | | | - Çetin Çelik
- Obstetrics and Gynecology, Selcuk University Medicine, Konya, TUR
| | - Özlem Seçilmiş
- Obstetrics and Gynecology, Selcuk University Medicine, Konya, TUR
| |
Collapse
|
3
|
Park CJ, Minabe S, Hess RA, Lin PCP, Zhou S, Bashir ST, Barakat R, Gal A, Ko CJ. Single neonatal estrogen implant sterilizes female animals by decreasing hypothalamic KISS1 expression. Sci Rep 2023; 13:9627. [PMID: 37316510 DOI: 10.1038/s41598-023-36727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Reproductive sterilization by surgical gonadectomy is strongly advocated to help manage animal populations, especially domesticated pets, and to prevent reproductive behaviors and diseases. This study explored the use of a single-injection method to induce sterility in female animals as an alternative to surgical ovariohysterectomy. The idea was based on our recent finding that repetitive daily injection of estrogen into neonatal rats disrupted hypothalamic expression of Kisspeptin (KISS1), the neuropeptide that triggers and regulates pulsatile secretion of GnRH. Neonatal female rats were dosed with estradiol benzoate (EB) either by daily injections for 11 days or by subcutaneous implantation of an EB-containing silicone capsule designed to release EB over 2-3 weeks. Rats treated by either method did not exhibit estrous cyclicity, were anovulatory, and became infertile. The EB-treated rats had fewer hypothalamic Kisspeptin neurons, but the GnRH-LH axis remained responsive to Kisspeptin stimulation. Because it would be desirable to use a biodegradable carrier that is also easier to handle, an injectable EB carrier was developed from PLGA microspheres to provide pharmacokinetics comparable to the EB-containing silicone capsule. A single neonatal injection of EB-microspheres at an equivalent dosage resulted in sterility in the female rat. In neonatal female Beagle dogs, implantation of an EB-containing silicone capsule also reduced ovarian follicle development and significantly inhibited KISS1 expression in the hypothalamus. None of the treatments produced any concerning health effects, other than infertility. Therefore, further development of this technology for sterilization in domestic female animals, such as dogs and cats is worthy of investigation.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Shiori Minabe
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Epivara, Inc, Champaign, IL, 61820, USA
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | | | - Shah Tauseef Bashir
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
- Epivara, Inc, Champaign, IL, 61820, USA.
| |
Collapse
|
4
|
Cao H, Gao H, Li Z, Peng G, Chen Y, Jin T, Zhu C, Ji H, Dong W. Comparative transcriptome provides insights into differentially expressed genes between testis and ovary of Onychostoma macrolepis in reproduction period. Gen Comp Endocrinol 2022; 326:114066. [PMID: 35644279 DOI: 10.1016/j.ygcen.2022.114066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
The Onychostoma macrolepis (O. macrolepis) is a rare and endangered fishery species inhabiting the river of Qinling Mountains and some flowing freshwaters in China. The declining population of O. macrolepis caused by asynchrony of male and female development prompted us to focus on genetic regulation of its reproduction. In this study, high-throughput RNA-sequencing technology was applied to assemble and annotate the transcriptome of O. macrolepis testis and ovary. The results showed that a number of 338089335 (ovary:163216500, testis:174872835) raw sequences were obtained. After non-redundant analysis, a number of 207826065 (ovary:102334008, testis:105492057) high quality reads were obtained and predicted as unigenes, in which 201,038,682 unigenes were annotated with multiple databases. Taking the ovarian transcriptome as a control, comparative transcriptome analysis showed that 9918 differentially expressed genes (DEGs) up-regulated in the testis and 13,095 DEGs down-regulated. Many DEGs were involved with sex-related GO terms and KEGG pathways, such as oocyte maturation, gonadal development, steroid biosynthesis pathways, MAPK signaling pathway and Wnt signaling pathway. Finally, the expression patterns of 19 unigenes were validated by using quantitative real-time polymerase chain reaction (qRT-PCR). This study illustrates a potential molecular mechanism on the unsynchronized male and female development of the O. macrolepis during the reproduction period in June and provides a theoretical basis for future artificial reproduction.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
5
|
Meng F, Yao H, Li J, Zhuo Y, Yu G, Bu G, Cao X, Du X, Liang Q, Zeng X, Han X. Effects of active immunization against a 13-amino acid receptor-binding epitope of FSHβ on fertility regulation in female mice. Reprod Biol 2022; 22:100669. [PMID: 35772190 DOI: 10.1016/j.repbio.2022.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Follicle-stimulating hormone (FSH) is crucial for ovarian folliculogenesis and thus essential for female fertility. Here, we developed a novel FSH vaccine based on the tandem of a 13-amino acid receptor-binding epitope of FSHβ (FSHβ13AA-T) and used a mouse model to test its efficacy in female fertility regulation. Compared to placebo-immunized controls, FSHβ13AA-T vaccination: induced a marked (P < 0.05) antibody generation; reduced (P < 0.05) serum concentrations of FSH, inhibin B and 17β-estradiol; disrupted (P < 0.05) normal estrous cyclicity; delayed (P = 0.08) establishment of pregnancy; blocked (P < 0.05) folliculogenesis; and reduced (P < 0.05) litter size. Mechanistically, FSH vaccination reduced (P < 0.05) ovarian estrogen production by decreasing Lhcgr, Cyp19a1 and HSD3β1 expression, and suppressed ovarian follicular development by decreasing ovarian Fshr, Inhα, Foxo3a, Bmp15 and Cdh1 expression. Overall, vaccination of female mice with FSHβ13AA-T substantially disrupted FSH-dependent ovarian steroidogenesis and folliculogenesis, and caused subfertility. Therefore, vaccines based on FSHβ13AA-T have potential as anti-fertility/contraceptive agents in females.
Collapse
Affiliation(s)
- Fengyan Meng
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - Huan Yao
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - Jiaxin Li
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guozhi Yu
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - Guixian Bu
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaohan Cao
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - XiaoGang Du
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - Qiuxia Liang
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - Xianyin Zeng
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China
| | - Xingfa Han
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
6
|
Sidhom K, Panchendrabose K, Mann U, Patel P. An update on male infertility and intratesticular testosterone-insight into novel serum biomarkers. Int J Impot Res 2022; 34:673-678. [PMID: 34987179 DOI: 10.1038/s41443-021-00507-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/24/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Intratesticular testosterone is vital for spermatogenesis, male fertility, and virility. Currently the only method to assess levels of intratesticular testosterone is to perform testicular biopsy which is invasive and can lead to several complications. Approaches to assess intratesticular testosterone have been understudied but hold promise as future male contraceptive agents and may grant the ability to monitor patients undergoing hormonal changes from therapeutic and diagnostic perspectives. Previous studies have sought to assess the utility of 17-hydroxyprogesterone (17-OHP) and insulin-like factor 3 (INSL3) as accurate surrogate biomarkers of intratesticular testosterone. The aim of this review is thus to highlight the importance of intratesticular testosterone and the consequent advances that have been made to elucidate the potential of biomarkers for intratesticular testosterone in the context of male infertility.
Collapse
Affiliation(s)
- Karim Sidhom
- Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | - Uday Mann
- Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Section of Urology, University of Manitoba, Winnipeg, MB, Canada
| | - Premal Patel
- Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Section of Urology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
8
|
Li J, Liu Z, Kang T, Li M, Wang D, Cheng CHK. Igf3: a novel player in fish reproduction†. Biol Reprod 2021; 104:1194-1204. [PMID: 33693502 DOI: 10.1093/biolre/ioab042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
As in other vertebrates, fish reproduction is tightly controlled by gonadotropin signaling. One of the most perplexing aspects of gonadotropin action on germ cell biology is the restricted expression of gonadotropin receptors in somatic cells of the gonads. Therefore, the identification of factors conveying the action of gonadotropins on germ cells is particularly important for understanding the mechanism of reproduction. Insulin-like growth factors (Igfs) are recognized as key factors in regulating reproduction by triggering a series of physiological processes in vertebrates. Recently, a novel member of Igfs called Igf3 has been identified in teleost. Different from the conventional Igf1 and Igf2 that are ubiquitously expressed in a majority of tissues, Igf3 is solely or highly expressed in the fish gonads. The role of Igf3 in mediating the action of gonadotropin through Igf type 1 receptor on several aspects of oogenesis and spermatogenesis have been demonstrated in several fish species. In this review, we will summarize existing data on Igf3. This new information obtained from Igf3 provides insight into elucidating the molecular mechanism of fish reproduction, and also highlights the importance of Igf system in mediating the action of gonadotropin signaling on animal reproduction.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
| | - Zhiquan Liu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
| | - Tao Kang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
9
|
Rodrigues P, Limback D, McGinnis L, Marques M, Aibar J, Plancha CE. Germ-Somatic Cell Interactions Are Involved in Establishing the Follicle Reserve in Mammals. Front Cell Dev Biol 2021; 9:674137. [PMID: 34195191 PMCID: PMC8236641 DOI: 10.3389/fcell.2021.674137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Mammalian females are born with a finite reserve of ovarian follicles, the functional units of the ovary. Building an ovarian follicle involves a complex interaction between multiple cell types, of which the oocyte germ cell and the somatic granulosa cells play a major role. Germ–somatic cell interactions are modulated by factors of different cell origins that influence ovarian development. In early development, failure in correct germ–somatic cell communication can cause abnormalities in ovarian development. These abnormalities can lead to deficient oocyte differentiation, to a diminished ovarian follicle reserve, and consequently to early loss of fertility. However, oocyte–granulosa cell communication is also extremely important for the acquisition of oocyte competence until ovulation. In this paper, we will visit the establishment of follicle reserve, with particular emphasis in germ–somatic cell interactions, and their importance for human fertility.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Centro Médico de Assistência à Reprodução (CEMEARE), Lisbon, Portugal.,Escola de Psicologia e Ciências da Vida, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Darlene Limback
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, United States
| | - Lynda McGinnis
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mónica Marques
- Centro Médico de Assistência à Reprodução (CEMEARE), Lisbon, Portugal
| | - Juan Aibar
- Centro Médico de Assistência à Reprodução (CEMEARE), Lisbon, Portugal
| | - Carlos E Plancha
- Centro Médico de Assistência à Reprodução (CEMEARE), Lisbon, Portugal.,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Zheng X, Chen J, Yang Y, Pei X, Ma W, Ma H, Hei C, Cai Y, Zhao C, Wang Y, Chang Q. Exogenous luteinizing hormone promotes ovarian survival and function during cryopreservation and transplantation. Biochem Biophys Res Commun 2020; 526:424-430. [PMID: 32228888 DOI: 10.1016/j.bbrc.2020.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 11/25/2022]
Abstract
Cryopreservation and transplantation of the ovarian tissue is an alternative method by which malignant tumor survivors can recover fertility. Previously, it was reported that follicle stimulating hormone (FSH) promoted the survival and functioning of the ovarian tissue after in vitro cultivation. In this study, the expression of the luteinizing hormone receptor (LHR) was observed on the granule cell membrane after luteinizing hormone (LH) (0.3 IU/mL) was supplied as an exogenous hormone into the cultivation medium during ovarian vitrification in the postnatal period (PND) (1, 7, 14, 21, 28, 42, and 56 days PND). The expression of vascular endothelial growth factor (VEGF) and Connexins (Cx), and the recovery of ovarian functions were then assessed in mice models. The results showed that LH increased the production of normal follicles, and upregulated the expression of VEGF, Cx37, and Cx43 in vitrified ovaries. LH administration also shortened the recovery time of the estrus cycle in mice models. Additionally, no difference was observed in the rate of pregnancy and size of the first litter between the experimental and control groups. In conclusion, LH could promote the survival and functioning of the ovaries by upregulating the expression of VEGF, Cx43, and Cx37 during ovarian cryopreservation and transplantation.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China; Research Institute for Reproductive Medicine and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| | - Jie Chen
- Department of Human Anatomy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Changchun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Yufang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Chengjun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China.
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
11
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
12
|
Liu X, Xiao H, Jie M, Dai S, Wu X, Li M, Wang D. Amh regulate female folliculogenesis and fertility in a dose-dependent manner through Amhr2 in Nile tilapia. Mol Cell Endocrinol 2020; 499:110593. [PMID: 31560938 DOI: 10.1016/j.mce.2019.110593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 10/26/2022]
Abstract
In the present study, Amh was found to be abundantly expressed in the granulosa cells of the primary growth follicles, and Amhr2 in the granulosa cells, oogonia and phase I oocytes in tilapia by immunohistochemistry. In addition, Amh and Amhr2 were also found to be expressed in the brain and pituitary. Heterozygous mutation of either amh or amhr2 resulted in increased primary growth follicles and decreased fertility, and homozygous mutation resulted in hypertrophic ovaries with significantly increased primary follicles and failed transition from primary to vitellogenic follicles. Expression of gnrh3 in the brain, fsh and lh in the pituitary and serum E2 concentration were significantly decreased in both mutants. Significantly increased apoptosis of follicle cells was observed in both mutants. However, administration of E2 failed to rescue the folliculogenesis defects of the mutants. Our results suggested that Amh acts in a dose-dependent manner by binding Amhr2 in tilapia.
Collapse
Affiliation(s)
- Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mimi Jie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Li J, Cheng CHK. Evolution of gonadotropin signaling on gonad development: insights from gene knockout studies in zebrafish. Biol Reprod 2019; 99:686-694. [PMID: 29718109 DOI: 10.1093/biolre/ioy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadal development is precisely regulated by the two gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Much progress on understanding the functions of LH and FSH signaling on gonad development has been achieved in the past decades, mostly from studies in mammals, especially genetic studies in both mouse and human. The functions of both LH and FSH signaling in nonmammalian species are still largely unknown. In recent years, using zebrafish, a teleost phylogenetically distant from mammals, we and others have genetically analyzed the functions of gonadotropins and their receptors through gene knockout studies. In this review, we will summarize the pertinent findings and discuss how the actions of gonadotropin signaling on gonad development have evolved during evolution from fish to mammals.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
14
|
Zhao M, Harris BN, Nguyen CTY, Saltzman W. Effects of single parenthood on mothers' behavior, morphology, and endocrine function in the biparental California mouse. Horm Behav 2019; 114:104536. [PMID: 31153926 DOI: 10.1016/j.yhbeh.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/31/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
Motherhood is energetically costly for mammals and is associated with pronounced changes in mothers' physiology, morphology and behavior. In ~5% of mammals, fathers assist their mates with rearing offspring and can enhance offspring survival and development. Although these beneficial consequences of paternal care can be mediated by direct effects on offspring, they might also be mediated indirectly, through beneficial effects on mothers. We tested the hypothesis that fathers in the monogamous, biparental California mouse (Peromyscus californicus) reduce the burden of parental care on their mates, and therefore, that females rearing offspring with and without assistance from their mates will show differences in endocrinology, morphology and behavior, as well as in the survival and development of their pups. We found that pups' survival and development in the lab did not differ between those raised by a single mother and those reared by both mother and father. Single mothers spent more time in feeding behaviors than paired mothers. Both single and paired mothers had higher lean mass and/or lower fat mass and showed more anxiety-like behavior in open-field tests and tail-suspension tests, compared to non-breeding females. Single mothers had higher body-mass-corrected liver and heart masses, but lower ovarian and uterine masses, than paired mothers and/or non-breeding females. Mass of the gastrointestinal tract did not differ between single and paired mothers, but single mothers had heavier gastrointestinal tract compared to non-breeding females. Single motherhood also induced a flattened diel corticosterone rhythm and a blunted corticosterone response to stress, compared to non-breeding conditions. These findings suggest that the absence of a mate induces morphological and endocrine changes in mothers, which might result from increased energetic demands of pup care and could potentially help maintain normal survival and development of pups.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, United States of America
| | - Catherine T Y Nguyen
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America.
| |
Collapse
|
15
|
Tang H, Chen Y, Wang L, Yin Y, Li G, Guo Y, Liu Y, Lin H, Cheng CHK, Liu X. Fertility impairment with defective spermatogenesis and steroidogenesis in male zebrafish lacking androgen receptor. Biol Reprod 2019; 98:227-238. [PMID: 29228103 DOI: 10.1093/biolre/iox165] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
The pivotal role of androgen receptor (AR) in regulating male fertility has attracted much research attention in the past two decades. Previous studies have shown that total AR knockout would lead to incomplete spermatogenesis and lowered serum testosterone levels in mice, resulting in azoospermia and infertility. However, the precise physiological role of ar in controlling fertility of male fish is still poorly understood. In this study, we have established an ar knockout zebrafish line by transcription activator-like effectors nucleases. Homozygous ar mutant male fish with smaller testis size were found to be infertile when tested by natural mating. Intriguingly, a small amount of mature spermatozoa was observed in the ar mutant fish. These mature spermatozoa could fertilize healthy oocytes, albeit with a lower fertilization rate, by in vitro fertilization. Moreover, the expression levels of most steroidogenic genes in the testes were significantly elevated in the ar mutants. In contrast, the levels of estradiol and 11-ketotestosterone (11-KT) were significantly decreased in the ar mutants, indicating that steroidogenesis was defective in the mutants. Furthermore, the protein level of LHβ in the serum decreased markedly in the ar mutants when compared with wild-type fish, probably due to the positive feedback from the diminished steroid hormone levels.
Collapse
Affiliation(s)
- Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yike Yin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Gaofei Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
The beneficial effect of equine chorionic gonadotropin hormone (eCG) on the in vitro co-culture of bovine spermatogonial stem cell with Sertoli cells. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-02944-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
A review on role of medicinal plants in polycystic ovarian syndrome: Pathophysiology, neuroendocrine signaling, therapeutic status and future prospects. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2018. [DOI: 10.1016/j.mefs.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
18
|
Hung WT, Navakanitworakul R, Khan T, Zhang P, Davis JS, McGinnis LK, Christenson LK. Stage-specific follicular extracellular vesicle uptake and regulation of bovine granulosa cell proliferation. Biol Reprod 2018; 97:644-655. [PMID: 29025042 DOI: 10.1093/biolre/iox106] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/25/2017] [Indexed: 12/24/2022] Open
Abstract
Follicular fluid within ovarian antral follicles contains numerous factors, which influence the development of a healthy oocyte including nucleic acids, steroids, proteins, and extracellular vesicles (EVs). Current evidence indicates that follicular EVs promote changes in cellular gene expression and support cumulus-oocyte complex expansion in vitro. In this study, we found EVs from different sized follicles differentially stimulate granulosa cell proliferation and this could be explained by both the differential contents associated, on or within the vesicles and by the preferential uptake of EVs dependent on follicle size from which they were isolated. Antibody array and inhibitor studies indicated that the Src, PI3K/Akt, and MAPK signaling pathways mediate the stimulatory effects of EVs on granulosa cell proliferation. This study demonstrates for the first time that EVs isolated from follicular fluid are capable of stimulating granulosa cell proliferation and that this stimulatory response is associated with the size of antral follicle from which the EVs originated. The study further also provides the first evidence that vesicles released by small antral follicles are preferentially taken up when compared to those isolated from large follicles, suggesting that vesicular surface proteins change during follicular maturation.
Collapse
Affiliation(s)
- Wei-Ting Hung
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Raphatphorn Navakanitworakul
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Tarique Khan
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Pan Zhang
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Lynda K McGinnis
- Department Obstetrics and Gynecology, University of Southern California, Norris Cancer Center, Los Angeles, California, USA
| | - Lane K Christenson
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
19
|
Salomon AK, Leon K, Campbell MM, Young KA. Folliculogenic factors in photoregressed ovaries: Differences in mRNA expression in early compared to late follicle development. Gen Comp Endocrinol 2018; 260:90-99. [PMID: 29317212 PMCID: PMC5856633 DOI: 10.1016/j.ygcen.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/31/2017] [Accepted: 01/05/2018] [Indexed: 11/26/2022]
Abstract
The early stages of ovarian folliculogenesis generally progress independent of gonadotropins, whereas later stages require signaling initiated by FSH. In Siberian hamsters, cycles of folliculogenesis are mediated by changes in photoperiod which depress the hypothalamic pituitary gonadal axis. Reduced gonadotropins lead to decreases in mature follicle development and ovulation; however, early stages of folliculogenesis have not been explored in regressed ovaries. We hypothesized that intraovarian factors that contribute predominantly to later stages of folliculogenesis would react to changes in photoperiod, whereas factors contributing to earlier stages would not change. To probe if the early stages of folliculogenesis continue in the photoinhibited ovary while late stages decline, we measured the mRNA abundance of factors that interact with FSH signaling (Fshr, Igf1, Cox2) and factors that can function independently of FSH (c-Kit, Kitl, Foxo3, Figla, Nobox, Sohlh1, Lhx8). While plasma FSH, antral follicles, and corpora lutea numbers declined with exposure to inhibitory photoperiod, the numbers of primordial, primary, and secondary follicles did not change. Expression of factors that interact with FSH signaling changed with changes in photoperiod; however, expression of factors that do not interact with FSH were not significantly altered. These results suggest that the photoinhibited ovary is not completely quiescent, as factors important for follicle selection and early follicle growth are still expressed in regressed ovaries. Instead, the lack of gonadotropin support that characterizes the non-breeding season appears to inhibit only final stages of folliculogenesis in Siberian hamsters.
Collapse
Affiliation(s)
- Alexander K Salomon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.
| | - Kathleen Leon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Melissa M Campbell
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.
| |
Collapse
|
20
|
Li N, Liu T, Guo K, Zhu J, Yu G, Wang S, Ye L. Effect of mono-(2-ethylhexyl) phthalate (MEHP) on proliferation of and steroid hormone synthesis in rat ovarian granulosa cells in vitro. J Cell Physiol 2018; 233:3629-3637. [PMID: 29034469 DOI: 10.1002/jcp.26224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/09/2017] [Indexed: 11/06/2022]
Abstract
This study aimed to examine the proliferation of and secretion by rat ovarian granulosa cells (GCs) treated with mono-(2-ethylhexyl) phthalate (MEHP). Ovarian GCs were incubated with MEHP at concentration of 0, 25, 50, 100, and 200 µM for 24 hr. Cell viability was determined using the MTT Cell Proliferation Assay. Progesterone and estradiol production was evaluated by radioimmunoassay (RIA) and the expression of FSHR, PR, and ER was measured by immunocytochemistry. StAR, P450scc, 3β-HSD, 17β-HSD, and P450 arom mRNA levels were determined by RT-PCR. MEHP markedly attenuated proliferation of GCs, increased expression of sex hormone receptors and key enzymes in progesterone production, and stimulated steroid hormone secretion. The result of these analyses demonstrates that MEHP exposure of GCs may have effects on rat ovarian functions.
Collapse
Affiliation(s)
- Na Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
- Department of Disciplines and Research Management, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| | - Te Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Guo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jian Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Guangyan Yu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Shuyue Wang
- Department of Emergency, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Lin Ye
- Department of Disciplines and Research Management, The Second Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
21
|
Tian H, Chen S, Leng Y, Li T, Li Z, Chen H, Zhang Q. Exposure to cadmium during gestation and lactation affects development and function of Leydig cells in male offspring. ENVIRONMENTAL TOXICOLOGY 2018; 33:351-360. [PMID: 29214744 DOI: 10.1002/tox.22522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Toxic effects of maternal exposure to Cadmium (Cd) on Leydig cells of male offspring arises much concern recently, but its toxic effects on the development of Leydig cells and androgen synthesis have not been elucidated. In this study, female rats were exposed to Cd during gestation and lactation, and the development of Leydig cells in the first filial-generation (F1) male rats was investigated. The steroidogenic signaling pathway and biomarkers related to the development of Leydig cells were detected to disclose how maternal Cd-exposure caused reproductive damage. F1 male rats with maternal Cd-exposure gained a low relative weight of testis and declined levels of steroid hormones. Maternal Cd-exposure interrupted the development of Leydig cells with high expression of SRD5α and cell morphology of immature Leydig cells in adulthood, inhibited the activation of cyclic adenosine monophosphate/ protein kinase A signaling pathway and down-regulated the steroidogenic enzymes. These results would help to disclose the origin of male sexual dysfunction in the developmental stages of Leydig cells.
Collapse
Affiliation(s)
- Huajian Tian
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Shaomin Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yang Leng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Teng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Zengli Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
22
|
Leutinizing hormone/choriogonadotropin receptor and follicle stimulating hormone receptor gene variants and risk of recurrent pregnancy loss: A case control study. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
McBride JA, Coward RM. Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use. Asian J Androl 2017; 18:373-80. [PMID: 26908067 PMCID: PMC4854084 DOI: 10.4103/1008-682x.173938] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The use of testosterone replacement therapy (TRT) for hypogonadism continues to rise, particularly in younger men who may wish to remain fertile. Concurrently, awareness of a more pervasive use of anabolic-androgenic steroids (AAS) within the general population has been appreciated. Both TRT and AAS can suppress the hypothalamic-pituitary-gonadal (HPG) axis resulting in diminution of spermatogenesis. Therefore, it is important that clinicians recognize previous TRT or AAS use in patients presenting for infertility treatment. Cessation of TRT or AAS use may result in spontaneous recovery of normal spermatogenesis in a reasonable number of patients if allowed sufficient time for recovery. However, some patients may not recover normal spermatogenesis or tolerate waiting for spontaneous recovery. In such cases, clinicians must be aware of the pathophysiologic derangements of the HPG axis related to TRT or AAS use and the pharmacologic agents available to reverse them. The available agents include injectable gonadotropins, selective estrogen receptor modulators, and aromatase inhibitors, but their off-label use is poorly described in the literature, potentially creating a knowledge gap for the clinician. Reviewing their use clinically for the treatment of hypogonadotropic hypogonadism and other HPG axis abnormalities can familiarize the clinician with the manner in which they can be used to recover spermatogenesis after TRT or AAS use.
Collapse
Affiliation(s)
| | - Robert M Coward
- Department of Urology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7235, USA
| |
Collapse
|
24
|
Crespo D, Assis LHC, Furmanek T, Bogerd J, Schulz RW. Expression profiling identifies Sertoli and Leydig cell genes as Fsh targets in adult zebrafish testis. Mol Cell Endocrinol 2016; 437:237-251. [PMID: 27566230 DOI: 10.1016/j.mce.2016.08.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/27/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
Spermatogonial stem cells are quiescent, undergo self-renewal or differentiating divisions, thereby forming the cellular basis of spermatogenesis. This cellular development is orchestrated by follicle-stimulating hormone (FSH), through the production of Sertoli cell-derived factors, and by Leydig cell-released androgens. Here, we investigate the transcriptional events induced by Fsh in a steroid-independent manner on the restart of zebrafish (Danio rerio) spermatogenesis ex vivo, using testis from adult males where type A spermatogonia were enriched by estrogen treatment in vivo. Under these conditions, RNA sequencing preferentially detected differentially expressed genes in somatic/Sertoli cells. Fsh-stimulated spermatogonial proliferation was accompanied by modulating several signaling systems (i.e. Tgf-β, Hedgehog, Wnt and Notch pathways). In silico protein-protein interaction analysis indicated a role for Hedgehog family members potentially integrating signals from different pathways during fish spermatogenesis. Moreover, Fsh had a marked impact on metabolic genes, such as lactate and fatty acid metabolism, or on Sertoli cell barrier components. Fish Leydig cells express the Fsh receptor and one of the most robust Fsh-responsive genes was insulin-like 3 (insl3), a Leydig cell-derived growth factor. Follow-up work showed that recombinant zebrafish Insl3 mediated pro-differentiation effects of Fsh on spermatogonia in an androgen-independent manner. Our experimental approach allowed focusing on testicular somatic genes in zebrafish and showed that the activity of signaling systems known to be relevant in stem cells was modulated by Fsh, providing promising leads for future work, as exemplified by the studies on Insl3.
Collapse
Affiliation(s)
- Diego Crespo
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Luiz H C Assis
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tomasz Furmanek
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
25
|
Mouse Models for the Study of Synthesis, Secretion, and Action of Pituitary Gonadotropins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:49-84. [PMID: 27697204 DOI: 10.1016/bs.pmbts.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gonadotropins play fundamental roles in reproduction. More than 30years ago, Cga transgenic mice were generated, and more than 20years ago, the phenotypes of Cga null mice were reported. Since then, numerous mouse strains have been generated and characterized to address several questions in reproductive biology involving gonadotropin synthesis, secretion, and action. More recently, extragonadal expression, and in some cases, functions of gonadotropins in nongonadal tissues have been identified. Several genomic and proteomic approaches including novel mouse genome editing tools are available now. It is anticipated that these and other emerging technologies will be useful to build an integrated network of gonadotropin signaling pathways in various tissues. Undoubtedly, research on gonadotropins will continue to provide new knowledge and allow us transcend from benchside to the bedside.
Collapse
|
26
|
Chu L, Li J, Liu Y, Cheng CHK. Gonadotropin Signaling in Zebrafish Ovary and Testis Development: Insights From Gene Knockout Study. Mol Endocrinol 2015; 29:1743-58. [PMID: 26452104 DOI: 10.1210/me.2015-1126] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using the transcription activator-like effectors nucleases-mediated gene knockout technology, we have previously demonstrated that LH signaling is required for oocyte maturation and ovulation but is dispensable for testis development in zebrafish. Here, we have further established the fshb and fshr knockout zebrafish lines. In females, fshb mutant is subfertile, whereas fshr mutant is infertile. Folliculogenesis is partially affected in the fshb mutant but is completely arrested at the primary growth stage in the fshr mutant. In males, fshb and fshr mutant are fertile. The fertilization rate and histological structure of the testis is not affected. However, double knockout of fshb;lhb or fshr;lhr leads to all infertile male offspring. The key steroid hormones and steroidogenic genes are dramatically decreased in double knockout mutant (fshb;lhb and fshr;lhr) but not in single knockout mutant (fshb, lhb, fshr, and lhr) males. Furthermore, we have also demonstrated the constitutive activities of both FSH receptor (FSHR) and LH receptor in zebrafish and the compensatory role of LH by cross-reacting with FSHR in the fshb;lhr double mutant, thus explaining the phenotypic discrepancy observed among the ligand/receptor mutant lines. Taken together, our data established the following models on the roles of gonadotropin signaling in zebrafish gonad development. In females, FSH signaling is mainly responsible for promoting follicular growth, whereas LH signaling is mainly responsible for stimulating oocyte maturation and ovulation. In males, the functions of FSH and LH signaling overlap, and only disruption of both FSH and LH signaling could lead to the infertile phenotype. In the absence of FSH, LH could play a compensatory role by cross-reacting with FSHR in both male and female.
Collapse
Affiliation(s)
- Lianhe Chu
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Jianzhen Li
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Yun Liu
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| | - Christopher H K Cheng
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; and College of Life Sciences (J.L.), Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
27
|
Aherrahrou R, Aherrahrou Z, Erdmann J, Moumni M. Identification of a novel ovine LH-beta promoter region, which dramatically enhances its promoter activity. SPRINGERPLUS 2015; 4:466. [PMID: 26355566 PMCID: PMC4554545 DOI: 10.1186/s40064-015-1182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/24/2015] [Indexed: 11/20/2022]
Abstract
The luteinizing hormone beta subunit (LH-beta) gene plays a critical role in reproduction. In order to characterize and analyze the promoter region of LH-beta in sheep, a genomic library was constructed in phage lambda gt 10 and screened. A novel region of 1,224 bp upstream from the targeted LH-beta gene was identified. Blasting this sequence showed a perfect homology for the first 721 bp sequence with an upstream ovine LH-beta sequence in the database. However, the remaining 5′-503 bp showed no sequence matching. DNA from Moroccan breeds was isolated and the whole region was amplified and confirmed by sequencing. To further confirm the promoter activity of this region, an in vitro analysis using a luciferase assay was carried out. An increase in the promoter activity of the whole region was demonstrated compared to the empty vector. More interestingly, the unpublished region significantly enhanced the promoter activity compared to the known region alone. To predict putative transcription factor binding-sites (TFBSs), an in silico analysis was performed using the TFSEARCH program. The region features many TFBSs and contains two palindrome sequences of 17- and 18-bp. Taken together, a novel region was identified and confirmed in sheep which contained a promoter activity rich with binding sites for a putative regulatory element as shown in silico.
Collapse
Affiliation(s)
- Redouane Aherrahrou
- Institute for Integrative and Experimental Genomics (IIEG), Luebeck University, Luebeck, Maria-Goeppert-Str. 1, 23562 Lübeck, Germany ; Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, BP 11201, 50000 Meknes, Morocco
| | - Zouhair Aherrahrou
- Institute for Integrative and Experimental Genomics (IIEG), Luebeck University, Luebeck, Maria-Goeppert-Str. 1, 23562 Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics (IIEG), Luebeck University, Luebeck, Maria-Goeppert-Str. 1, 23562 Lübeck, Germany
| | - Mohieddine Moumni
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, BP 11201, 50000 Meknes, Morocco
| |
Collapse
|
28
|
Ji X, Li Z, Chen H, Li J, Tian H, Li Z, Gao X, Xiang Q, Su Z, Huang Y, Zhang Q. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals. Toxicology 2015; 334:22-32. [PMID: 25981801 DOI: 10.1016/j.tox.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Heavy metals are common environmental toxicants with adverse effects on steroid biosynthesis. The importance of mitochondria has been recognized in cytotoxic mechanism of heavy metals on Leydig cells these years. But it is still poorly known. Our previous study reported that dihydrolipoamide dehydrogenase (DLD) located on the mitochondria was significantly decreased in Leydig cells exposed to cadmium, which suggested that DLD might be involved in the cytotoxic effects. Therefore, the altered expression of DLD was validated in rats and R2C cells exposed to cadmium, manganese and lead, and the role of DLD in the steroid synthesis pathway cAMP/PKA-ERK1/2 was investigated in this study. With a low expression of DLD, heavy metals dramatically reduced the levels of steroid hormone by inhibiting the activation of cAMP/PKA, PKC signaling pathway and the steroidogenic enzymes StAR, CYP11A1 and 3β-HSD. After knockdown of DLD in R2C cells, progesterone synthesis was reduced by 40%, and the intracellular concentration of cAMP, protein expression of StAR, 3β-HSD, PKA, and the phosphorylation of ERK1/2 were also decreased. These results highlight that DLD is down-regulation and related to steroid biosynthesis in Leyig cells exposed to heavy metals; cAMP/PKA act as downstream effector molecules of DLD, which activate phosphorylation of ERK1/2 to initiate the steroidogenesis.
Collapse
Affiliation(s)
- Xunmin Ji
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhiliang Li
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Junqi Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, 510632, China
| | - Huajian Tian
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zengli Li
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijian Su
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.
| | - Qihao Zhang
- Institute of Biomedicine, and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Wang H, Graham I, Hastings R, Gunewardena S, Brinkmeier ML, Conn PM, Camper SA, Kumar TR. Gonadotrope-specific deletion of Dicer results in severely suppressed gonadotropins and fertility defects. J Biol Chem 2014; 290:2699-714. [PMID: 25525274 DOI: 10.1074/jbc.m114.621565] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pituitary gonadotropins follicle-stimulating hormone and luteinizing hormone are heterodimeric glycoproteins expressed in gonadotropes. They act on gonads and promote their development and functions including steroidogenesis and gametogenesis. Although transcriptional regulation of gonadotropin subunits has been well studied, the post-transcriptional regulation of gonadotropin subunits is not well understood. To test if microRNAs regulate the hormone-specific gonadotropin β subunits in vivo, we deleted Dicer in gonadotropes by a Cre-lox genetic approach. We found that many of the DICER-dependent microRNAs, predicted in silico to bind gonadotropin β subunit mRNAs, were suppressed in purified gonadotropes of mutant mice. Loss of DICER-dependent microRNAs in gonadotropes resulted in profound suppression of gonadotropin-β subunit proteins and, consequently, the heterodimeric hormone secretion. In addition to suppression of basal levels, interestingly, the post-gonadectomy-induced rise in pituitary gonadotropin synthesis and secretion were both abolished in mutants, indicating a defective gonadal negative feedback control. Furthermore, mutants lacking Dicer in gonadotropes displayed severely reduced fertility and were rescued with exogenous hormones confirming that the fertility defects were secondary to suppressed gonadotropins. Our studies reveal that DICER-dependent microRNAs are essential for gonadotropin homeostasis and fertility in mice. Our studies also implicate microRNAs in gonadal feedback control of gonadotropin synthesis and secretion. Thus, DICER-dependent microRNAs confer a new layer of transcriptional and post-transcriptional regulation in gonadotropes to orchestrate the hypothalamus-pituitary-gonadal axis physiology.
Collapse
Affiliation(s)
- Huizhen Wang
- From the Departments of Molecular and Integrative Physiology
| | - Ian Graham
- From the Departments of Molecular and Integrative Physiology
| | - Richard Hastings
- Flow Cytometry Core Laboratory, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | - Michelle L Brinkmeier
- Department of Molecular and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - P Michael Conn
- Departments of Internal Medicine, Cell Biology, and Biochemistry, Texas Tech University, Lubbock, Texas 79430
| | - Sally A Camper
- Department of Molecular and Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, and
| | - T Rajendra Kumar
- From the Departments of Molecular and Integrative Physiology, Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, and
| |
Collapse
|
30
|
Kerimoglu OS, Yılmaz SA, Pekin A, Nergiz S, İncesu F, Dogan NU, Acar H, Celik C. Follicle-stimulating hormone receptor gene polymorphisms in women with endometriosis. Arch Gynecol Obstet 2014; 291:1411-6. [DOI: 10.1007/s00404-014-3562-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 11/25/2014] [Indexed: 11/30/2022]
|
31
|
Chu L, Li J, Liu Y, Hu W, Cheng CHK. Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction. Mol Endocrinol 2014; 28:1785-95. [PMID: 25238195 DOI: 10.1210/me.2014-1061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pivotal role of gonadotropin signaling in regulating gonadal development and functions has attracted much research attention in the past 2 decades. However, the precise physiological role of gonadotropin signaling is still largely unknown in fish. In this study, we have established both LH β-subunit (lhb) and LH receptor (lhr) knockout zebrafish lines by transcription activator-like effector nucleases. Intriguingly, both homozygous lhb and lhr mutant male fish are fertile. The fertilization rate, sperm motility, and histological structure of the testis were not affected in either lhb or lhr mutant males. On the contrary, homozygous lhb mutant females are infertile, whereas homozygous lhr mutant females are fertile. Folliculogenesis was not affected in either lhb or lhr mutants, but oocyte maturation and ovulation were disrupted in lhb mutant, whereas only ovulation was affected in lhr mutant. Differential expression of genes in the ovary involved in steroidogenesis, oocyte maturation, and ovulation was found between the lhb and lhr mutants. These data demonstrate the essential role of LH signaling in oocyte maturation and ovulation, and support the notion that LH acts through the FSH receptor in the absence of LH receptor. Moreover, the defects of lhb mutant could be partially restored by administration of human chorionic gonadotropin. This in vivo evidence in the present study demonstrates, for the first time in any vertebrate species, that LH signaling is indispensable in female reproduction but not in male reproduction. LH signaling is demonstrated to control oocyte maturation and ovulation in the ovary.
Collapse
Affiliation(s)
- Lianhe Chu
- School of Biomedical Sciences (L.C., J.L., Y.L., C.H.K.C.), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; College of Life Sciences (J.L.), Northwest Normal University, Lanzhou, China; and State Key Laboratory of Freshwater Ecology and Biotechnology (W.H.), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
32
|
Ramaswamy S, Weinbauer GF. Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone. SPERMATOGENESIS 2014; 4:e996025. [PMID: 26413400 PMCID: PMC4581062 DOI: 10.1080/21565562.2014.996025] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
Evaluation of testicular functions (production of sperm and androgens) is an important aspect of preclinical safety assessment and testicular toxicity is comparatively far more common than ovarian toxicity. This chapter focuses (1) on the histological sequelae of disturbed reproductive endocrinology in rat, dog and nonhuman primates and (2) provides a review of our current understanding of the roles of gonadotropins and androgens. The response of the rodent testis to endocrine disturbances is clearly different from that of dog and primates with different germ cell types and spermatogenic stages being affected initially and also that the end-stage spermatogenic involution is more pronounced in dog and primates compared to rodents. Luteinizing hormone (LH)/testosterone and follicle-stimulating hormone (FSH) are the pivotal endocrine factors controlling testicular functions. The relative importance of either hormone is somewhat different between rodents and primates. Generally, however, both LH/testosterone and FSH are necessary for quantitatively normal spermatogenesis, at least in non-seasonal species.
Collapse
Affiliation(s)
- Suresh Ramaswamy
- Center for Research in Reproductive Physiology (CRRP); Department of Obstetrics, Gynecology & Reproductive Sciences; University of Pittsburgh School of Medicine; Magee-Womens Research Institute; Pittsburgh, PA USA
| | | |
Collapse
|
33
|
Abel MH, Charlton HM, Huhtaniemi I, Pakarinen P, Kumar TR, Christian HC. An investigation into pituitary gonadotrophic hormone synthesis, secretion, subunit gene expression and cell structure in normal and mutant male mice. J Neuroendocrinol 2013; 25:863-75. [PMID: 23895394 PMCID: PMC5599115 DOI: 10.1111/jne.12081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 01/30/2023]
Abstract
To investigate brain-pituitary-gonadal inter-relationships, we have compared the effects of mutations that perturb the hypothalamic-pituitary-gonadal axis in male mice. Specifically, serum and pituitary gonadotrophin concentrations, gonadotrophin gene expression, and gonadotroph structure and number were measured. Follicle-stimulating hormone (FSH)β knockout (FSHβKO), FSH receptor knockout (FSHRKO), luteinising hormone (LH) receptor knockout (LuRKO), hypogonadal (hpg), testicular feminised (tfm) and gonadectomised mice were compared with control wild-type mice or heterozygotes. Serum levels of LH were similar in FSHβKO, FSHRKO and heterozygote males despite decreased androgen production in KO males. As expected, there was no detectable FSH in the serum or pituitary and an absence of expression of the FSHβ subunit gene in FSHβKO mice. However, there was a significant increase in expression of the common α and LHβ subunit genes in FSHRKO males. The morphology of FSHβKO and FSHRKO gonadotrophs was not significantly different from controls, except that the subpopulation of granules consisting of an electron-dense core and electron-lucent 'halo' was not observed in FSHβKO gonadotrophs and the granules were smaller in diameter. In the gonadotrophin-releasing hormone deficient hpg mouse, gonadotrophin mRNA and hormone levels were significantly lower compared to control mice and gonadotrophs were correspondingly smaller, with less abundant endoplasmic reticulum and reduced secretory granules. In LuRKO, tfm and gonadectomised mice, hyperstimulation of LHβ and FSHβ mRNA and serum protein concentrations was reflected by subcellular changes in gonadotroph morphology, including more dilated rough endoplasmic reticulum and more secretory granules distributed adjacent to the plasma membrane. In summary, major differences in pituitary content and serum concentrations of the gonadotrophins LH and FSH have been found between normal and mutant male mice. These changes are associated with changes in transcriptional activity of the gonadotrophin subunit genes and are reflected by changes in the cellular structure and secretory granule architecture within the gonadotroph cells.
Collapse
Affiliation(s)
- M. H. Abel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - H. M. Charlton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - I. Huhtaniemi
- Department of Physiology, University of Turku, Turku, Finland
| | - P. Pakarinen
- Department of Physiology, University of Turku, Turku, Finland
| | - T. R. Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center,, Kansas City, KS, USA
| | - H. C. Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Sun C, He M, Ko WKW, Wong AOL. Gene expression of luteinizing hormone receptor in carp somatotrophs differentially regulated by local action of gonadotropin and dopamine D1 receptor activation. Mol Cell Endocrinol 2013; 374:22-34. [PMID: 23603402 DOI: 10.1016/j.mce.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 01/25/2023]
Abstract
In grass carp, luteinizing hormone (LH) can act locally within the pituitary to regulate growth hormone expression. To test if LH receptor (LHR) expression in the carp pituitary can also serve as a target of modulation for LH actions, grass carp LHR was cloned and characterized by functional expression. In carp pituitary cells, LHR mRNA (lhr) level could be reduced by LH or human chorionic gonadotropin (hCG) but up-regulated by dopamine treatment. Dopamine-induced lhr expression occurred mainly in carp somatotrophs via the cAMP/PKA pathway coupled to pituitary D1 receptors. This stimulatory effect could be blocked by LHR activation by hCG, presumably through phosphodiesterase III activation. These findings provide evidence that lhr expression in the carp pituitary is under the differential control of LH and dopamine via modification of cAMP-dependent signaling mechanisms, which may play a role in regulating somatotroph responsiveness to the paracrine action of LH in carp species.
Collapse
Affiliation(s)
- Caiyun Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
35
|
Sonawani A, Niazi S, Idicula-Thomas S. In silico study on binding specificity of gonadotropins and their receptors: design of a novel and selective peptidomimetic for human follicle stimulating hormone receptor. PLoS One 2013; 8:e64475. [PMID: 23700481 PMCID: PMC3659097 DOI: 10.1371/journal.pone.0064475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/15/2013] [Indexed: 01/13/2023] Open
Abstract
Gonadotropins bind to specific receptors in spite of sharing a high level of sequence and structural similarity. This specific binding is crucial for maintaining the reproductive health of an organism. In this study, residues that dictate the receptor binding specificity of the gonadotropins (FSH and LH) have been identified using combination of in silico methods. Docking studies (ZDOCK), based on the systematic replacement of these residues, confirmed its importance in receptor binding. An interesting observation is that the relative positioning of the residues conferring binding specificity varied for the gonadotropin-receptor complexes. This spatial difference of the key residues could be exploited for design of specific modulators. Based on the identified residues, we have rationally designed a peptidomimetic (FSHP) that displays good binding affinity and specificity for hFSHR. FSHP was developed by screening 3.9 million compounds using pharmacophore-shape similarity followed by fragment-based approach. It was observed that FSHP and hFSHâ can share the same receptor binding site thereby mimicking the native hFSHR-FSH interactions. FSHP also displayed higher binding affinity to hFSHR as compared to two reported hFSHR antagonists. MD simulation studies on hFSHR-FSHP complex revealed that FSHP is conformationally rigid and the intermolecular interactions are maintained during the course of simulation.
Collapse
Affiliation(s)
- Archana Sonawani
- Biomedical Informatics Center of Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, India
| | - Sarfaraj Niazi
- Biomedical Informatics Center of Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Center of Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, India
- * E-mail:
| |
Collapse
|
36
|
Baudiffier D, Hinfray N, Ravaud C, Creusot N, Chadili E, Porcher JM, Schulz RW, Brion F. Effect of in vivo chronic exposure to clotrimazole on zebrafish testis function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2747-2760. [PMID: 23340899 DOI: 10.1007/s11356-013-1474-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
Clotrimazole is an azole fungicide used as a human pharmaceutical that is known to inhibit cytochrome P450 (CYP) enzymatic activities, including several steroidogenic CYP. In a previous report, we showed that a 7-day exposure to clotrimazole induced the expression of genes related to steroidogenesis in the testes as a compensatory response, involving the activation of the Fsh/Fshr pathway. In this context, the aim of the present study was to assess the effect of an in vivo 21-day chronic exposure to clotrimazole (30-197 μg/L) on zebrafish testis function, i.e., spermatogenesis and androgen release. The experimental design combined (1) gene transcript levels measurements along the brain-pituitary-gonad axis, (2) 11-ketotestosterone (11-KT) quantification in the blood, and (3) histology of the testes, including morphometric analysis. The chronic exposure led to an induction of steroidogenesis-related genes and fshr in the testes as well as fshβ in the pituitary. Moreover, increases of the gonadosomatic index and of the volume proportion of interstitial Leydig cells were observed in clotrimazole-exposed fish. In accordance with these histological observations, the circulating concentration of 11-KT had increased. Morphometric analysis of the testes did not show an effect of clotrimazole on meiotic (spermatocytes) or postmeiotic (spermatids and spermatozoa) stages, but we observed an increase in the number of type A spermatogonia, in agreement with an increase in mRNA levels of piwil1, a specific molecular marker of type A spermatogonia. Our study demonstrated that clotrimazole is able to affect testicular physiology and raised further concern about the impact of clotrimazole on reproduction.
Collapse
Affiliation(s)
- Damien Baudiffier
- Direction des Risques Chroniques, Pôle VIVA, Unité d'écotoxicologie in vitro et in vivo, INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
La Marca A, Papaleo E, Alviggi C, Ruvolo G, De Placido G, Candiani M, Cittadini E, De Michele F, Moriondo V, Catellani V, Volpe A, Simoni M. The combination of genetic variants of the FSHB and FSHR genes affects serum FSH in women of reproductive age. Hum Reprod 2013; 28:1369-74. [DOI: 10.1093/humrep/det061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
Aberrant gene expression and sexually incompatible genomic imprinting in oocytes derived from XY mouse embryonic stem cells in vitro. PLoS One 2013; 8:e58555. [PMID: 23472205 PMCID: PMC3589367 DOI: 10.1371/journal.pone.0058555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) have the potential to differentiate into germ cells (GCs) in vivo and in vitro. Interestingly, XY ESCs can give rise to both male and female GCs in culture, irrespective of the genetic sex. Recent studies showed that ESC-derived primordial GCs contributed to functional gametogenesis in vivo; however, in vitro differentiation techniques have never succeeded in generating mature oocytes from ESCs due to cryptogenic growth arrest during the preantral follicle stages of development. To address this issue, a mouse ESC line, capable of producing follicle-like structures (FLSs) efficiently, was established to investigate their properties using conventional molecular biological methods. The results revealed that the ESC-derived FLSs were morphologically similar to ovarian primary-to-secondary follicles but never formed an antrum; instead, the FLSs eventually underwent abnormal development or cell death in culture, or formed teratomas when transplanted under the kidney capsule in mice. Gene expression analyses demonstrated that the FLSs lacked transcripts for genes essential to late folliculogenesis, including gonadotropin receptors and steroidogenic enzymes, whereas some other genes were overexpressed in FLSs compared to the adult ovary. The E-Cadherin protein, which is involved in cell-to-cell interactions, was also expressed ectopically. Remarkably, it was seen that oocyte-like cells in the FLSs exhibited androgenetic genomic imprinting, which is ordinarily indicative of male GCs. Although the FLSs did not express male GC marker genes, the DNA methyltransferase, Dnmt3L, was expressed at an abnormally high level. Furthermore, the expression of sex determination factors was ambiguous in FLSs as both male and female determinants were expressed weakly. These data suggest that the developmental dysfunction of the ESC-derived FLSs may be attributable to aberrant gene expression and genomic imprinting, possibly associated with uncertain sex determination in culture.
Collapse
|
39
|
Polymorphisms in gonadotropin and gonadotropin receptor genes as markers of ovarian reserve and response in in vitro fertilization. Fertil Steril 2013; 99:970-8.e1. [PMID: 23380184 DOI: 10.1016/j.fertnstert.2013.01.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 11/22/2022]
Abstract
Since gonadotropins are the fundamental hormones that control ovarian activity, genetic polymorphisms may alter gonadal responsiveness to glycoproteins; hence they are important regulators of hormone activity at the target level. The establishment of the pool of primordial follicles takes place during fetal life and is mainly under genetic control. Consequently, single nucleotide polymorphisms (SNPs) in gonadotropins and their receptors do not seem to be associated with any significant modification in the endowment of nongrowing follicles in the ovary. Indeed, the age at menopause, a biological characteristic strongly related to ovarian reserve, as well as markers of functional ovarian reserve such as anti-Müllerian hormone and antral follicle count, are not different in women with different genetic variants. Conversely, some polymorphisms in FSH receptor (FSHR) seem to be associated with modifications in ovarian activity. In particular, studies suggest that the Ser680 genotype for FSHR is a factor of relative resistance to FSH stimulation resulting in slightly higher FSH serum levels, thus leading to a prolonged duration of the menstrual cycle. Moreover, some FSHR gene polymorphisms show a positive association with ovarian response to exogenous gonadotropin administration, hence exhibiting some potential for a pharmacogenetic estimation of the FSH dosage in controlled ovarian stimulation. The study of SNPs of the FSHR gene is an interesting field of research that could provide us with new information about the way each woman responds to exogenous gonadotropin administration during ovulation induction.
Collapse
|
40
|
Sambroni E, Rolland AD, Lareyre JJ, Le Gac F. FSH and LH have common and distinct effects on gene expression in rainbow trout testis. J Mol Endocrinol 2013; 50:1-18. [PMID: 23045716 DOI: 10.1530/jme-12-0197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The general rules established from mammalian species for the regulation of spermatogenesis by gonadotropins may not be fully relevant in fish. Particularly, Fsh is as potent as Lh to stimulate steroidogenesis and the Fsh receptor is expressed in Leydig cells. In seasonal breeders, Fsh is likely the major gonadotropin involved in spermatogenesis onset and Lh is required to support spermatogenesis progression and gamete release. However, the genes that relay the action of Fsh and Lh have been poorly investigated in fish. The present study was aimed at identifying gonadotropin-dependent genes expressed in the testis during fish puberty. We cultured pubertal trout testicular explants for 96 h, with or without gonadotropin, and analyzed transcriptome variations using microarrays. Fsh and Lh had similar effects on a large group of genes while other genes were preferentially regulated by one or the other gonadotropin. We showed that most of the responsive genes were expressed in somatic cells and exhibited relevant patterns during the seasonal reproductive cycle. Some genes preferentially modulated by Lh could be involved in testicular cell fate (pvrl1 and bty) or sperm maturation (ehmt2 and racgap1) and will deserve further examination. Besides Fsh's effects on the steroidogenic pathway, our study demonstrates that Fsh coordinates relevant stimulatory and inhibitory paracrine factors known to regulate early germ cell proliferation and differentiation. Some of these genes belong to major regulatory pathways including the Igf pathway (igf1b/igf3 and igfbp6), the Tgfb pathway (amh, inha, inhba, and fstl3), the Wnt pathway (wisp1), and pleiotrophin (mdka).
Collapse
Affiliation(s)
- Elisabeth Sambroni
- INRA, UR1037, Laboratoire de Physiologie et Génomique des Poissons, Campus de Beaulieu, Testicular Physiology and Puberty, Biosit, Biogenouest, F-35000 Rennes, France
| | | | | | | |
Collapse
|
41
|
Demeestere I, Streiff AK, Suzuki J, Al-Khabouri S, Mahrous E, Tan SL, Clarke HJ. Follicle-Stimulating Hormone Accelerates Mouse Oocyte Development In Vivo1. Biol Reprod 2012; 87:3, 1-11. [DOI: 10.1095/biolreprod.112.099929] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
42
|
Chapin RE, Creasy DM. Assessment of circulating hormones in regulatory toxicity studies II. Male reproductive hormones. Toxicol Pathol 2012; 40:1063-78. [PMID: 22552397 DOI: 10.1177/0192623312443321] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When test article-related testicular toxicity or Leydig cell tumors are identified in nonclinical studies, the measurement of circulating hormones such as luteinizing hormone, follicle-stimulating hormone, inhibin, testosterone, or prolactin is often considered in order to aid mechanistic investigations or to identify potential biomarkers in man. Although some hormone levels are relatively constant, others are subject to wide variability owing to pulsatility of secretion, diurnal rhythms, and stress. To avoid being misled, it is important that this variation is factored into any study design that includes hormone measurements. Since all these possibilities start from the pathologist's reading of the tissue sections, we begin with a review of the morphologic changes that are tied to underlying alterations in hormones. We then provide the reader with basic information and representative hormone data, including coefficients of variation, for the major male reproductive hormones in the three main nonclinical species (rats, dogs, and cynomolgus monkeys). Power and probability tables for rats and dogs allow estimates of the number of animals or samples needed to provide a given likelihood of detecting a hormonal change of a given size. More importantly, we highlight the variability of this process and the real value in readers developing this information at their own site.
Collapse
Affiliation(s)
- Robert E Chapin
- Pfizer Global R&D, Developmental and Reproductive Toxicology Center of Expertise, Groton, CT 06340, USA.
| | | |
Collapse
|
43
|
Lv X, Guo Y, Shi D. Effects of quinestrol on reproductive hormone expression, secretion, and receptor levels in female Mongolian gerbils (Meriones unguiculatus). Theriogenology 2012; 77:1223-31. [DOI: 10.1016/j.theriogenology.2011.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/23/2011] [Accepted: 10/23/2011] [Indexed: 10/14/2022]
|
44
|
Maman E, Yung Y, Kedem A, Yerushalmi GM, Konopnicki S, Cohen B, Dor J, Hourvitz A. High expression of luteinizing hormone receptors messenger RNA by human cumulus granulosa cells is in correlation with decreased fertilization. Fertil Steril 2012; 97:592-8. [PMID: 22260850 DOI: 10.1016/j.fertnstert.2011.12.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To elucidate the LH receptor (LHR) expression patterns in human granulosa cells (GCs) from antral to preovulatory stages, and to investigate a correlation to oocyte function. DESIGN Luteinized preovulatory GCs were obtained from preovulatory follicles aspirated during IVF (≥ 17 mm). The GCs from small- (<10 mm) and medium-sized (10-15 mm) follicles were obtained during in vitro maturation (IVM) procedures. Cumulus GCs were obtained during oocyte denudation for intracytoplasmatic sperm injection (ICSI) procedures (IVF). SETTING Referral center. PATIENT(S) Seventy IVF patients and 20 IVM patients. INTERVENTION(S) GC collection. MAIN OUTCOME MEASURE(S) The LHR expression levels in mural and cumulus GCs of different follicular sizes and their correlation to oocyte outcome. RESULT(S) The LHR expression increased with follicle size and was higher in mural GCs compared with cumulus cells. The LHR expression in cumulus GCs from preovulatory follicles was higher in metaphase II (MII) oocytes than in metaphase I or germinal vesicle oocytes (IVF). Unexpectedly, higher expression of LHR in cumulus GCs of MII oocytes correlated with decreased fertilization rates. CONCLUSION(S) The LHR expression in small follicles obtained in IVM suggests a role for hCG administration during IVM procedures. Overexpression of LHR in cumulus GCs of MII oocytes may signal malfunction of oocytes and low fertilization capacity.
Collapse
Affiliation(s)
- Ettie Maman
- IVF Unit and Fertility Research Laboratory, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
During the last two decades a large number of genetically modified mouse lines with altered gonadotropin action have been generated. These mouse lines fall into three categories: the lack-of-function mice, gain-of-function mice, and the mice generated by breeding the abovementioned lines with other disease model lines. The mouse strains lacking gonadotropin action have elucidated the necessity of the pituitary hormones in pubertal development and function of gonads, and revealed the processes from the original genetic defect to the pathological phenotype such as hypo- or hypergonadotropic hypogonadism. Conversely, the strains of the second group depict consequences of chronic gonadotropin action. The lines vary from those expressing constitutively active receptors and those secreting follicle-stimulating hormone (FSH) with slowly increasing amounts to those producing human choriogonadotropin (hCG), amount of which corresponds to 2000-fold luteinizing hormone (LH)/hCG biological activity. Accordingly, the phenotypes diverge from mild anomalies and enhanced fertility to disrupted gametogenesis, but eventually chronic, enhanced and non-pulsatile action of both FSH and LH leads to female and male infertility and/or hyper- and neoplasias in most of the gonadotropin gain-of-function mice. Elevated gonadotropin levels also alter the function of several extra-gonadal tissues either directly or indirectly via increased sex steroid production. These effects include promotion of tumorigenesis in tissues such as the pituitary, mammary and adrenal glands. Finally, the crossbreedings of the current mouse strains with other disease models are likely to uncover the contribution of gonadotropins in novel biological systems, as exemplified by the recent crossbreed of LHCG receptor deficient mice with Alzheimer disease mice.
Collapse
Affiliation(s)
- Hellevi Peltoketo
- Institute of Reproductive and Developmental Biology, Imperial College London, DuCane Road, London, W12 0NN, UK.
| | | | | |
Collapse
|
46
|
Taru Sharma G, Dubey PK, Sai Kumar G. Localization and Expression of Follicle-Stimulating Hormone Receptor Gene in Buffalo (Bubalus bubalis) Pre-Antral Follicles. Reprod Domest Anim 2011; 46:114-20. [DOI: 10.1111/j.1439-0531.2010.01604.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Dai L, Zhao Y, Zhang G, Zhao R, Jiang H, Ma T, Gao Y, Yuan B, Xu Y, Yu W, Zhao Z, Zhang J. Molecular cloning and sequence analysis of follicle-stimulating hormone beta polypeptide precursor cDNA from the bovine pituitary gland. GENETICS AND MOLECULAR RESEARCH 2011; 10:1504-13. [DOI: 10.4238/vol10-3gmr997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Zama AM, Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front Neuroendocrinol 2010; 31:420-39. [PMID: 20609371 PMCID: PMC3009556 DOI: 10.1016/j.yfrne.2010.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/16/2010] [Accepted: 06/25/2010] [Indexed: 01/16/2023]
Abstract
The link between in utero and neonatal exposure to environmental toxicants, such as endocrine-disrupting chemicals (EDCs) and adult female reproductive disorders is well established in both epidemiological and animal studies. Recent studies examining the epigenetic mechanisms involved in mediating the effects of EDCs on female reproduction are gathering momentum. In this review, we describe the developmental processes that are susceptible to EDC exposures in female reproductive system, with a special emphasis on the ovary. We discuss studies with select EDCs that have been shown to have physiological and correlated epigenetic effects in the ovary, neuroendocrine system, and uterus. Importantly, EDCs that can directly target the ovary can alter epigenetic mechanisms in the oocyte, leading to transgenerational epigenetic effects. The potential mechanisms involved in such effects are also discussed.
Collapse
Affiliation(s)
- Aparna Mahakali Zama
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA
| | | |
Collapse
|
49
|
Ho CC, Bernard DJ. Bone morphogenetic protein 2 acts via inhibitor of DNA binding proteins to synergistically regulate follicle-stimulating hormone beta transcription with activin A. Endocrinology 2010; 151:3445-53. [PMID: 20463050 DOI: 10.1210/en.2010-0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that bone morphogenetic proteins (BMPs) 2 and 4 can stimulate FSHbeta-subunit (Fshb) transcription alone and in synergy with activins. We further showed that BMP2 signals via the BMP type IA receptor (or activin receptor-like kinase 3) to mediate its effects. However, the intracellular mechanisms through which BMP2 regulates Fshb are unknown. In the current study, we used cDNA microarray analyses (and validation by real-time quantitative RT-PCR) to identify BMP2 target genes in the murine gonadotrope cell line, LbetaT2. Short-interfering RNA-mediated knockdown, overexpression, and coimmunoprecipitation experiments were used to examine the potential functional roles of selected gene products. Quantitative RT-PCR analysis largely confirmed the results of the array analyses, and inhibitors of DNA binding 1, 2, and 3 (Id1, Id2, and Id3) were selected for functional analyses. Knockdown of endogenous Id2 or Id3, but not Id1, diminished the synergistic effects of BMP2 and activin A on Fshb transcription. Overexpression of Id1, Id2, or Id3 alone had no effect, but all three potentiated activin A or mothers against decapentaplegic homolog (SMAD)3 induction of Fshb transcription. Though the precise mechanism through which Ids produce their effects are not yet known, we observed physical interactions between Id1, Id2, or Id3 and SMAD3. Collectively, the data suggest that BMP2 synergistically regulates Fshb transcription with activins, at least in part, through the combined actions of Ids 2 or 3 and SMAD3.
Collapse
Affiliation(s)
- Catherine C Ho
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
50
|
García-López A, de Jonge H, Nóbrega RH, de Waal PP, van Dijk W, Hemrika W, Taranger GL, Bogerd J, Schulz RW. Studies in zebrafish reveal unusual cellular expression patterns of gonadotropin receptor messenger ribonucleic acids in the testis and unexpected functional differentiation of the gonadotropins. Endocrinology 2010; 151:2349-60. [PMID: 20308533 PMCID: PMC2869266 DOI: 10.1210/en.2009-1227] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aimed to improve, using the zebrafish model, our understanding of the distinct roles of pituitary gonadotropins FSH and LH in regulating testis functions in teleost fish. We report, for the first time in a vertebrate species, that zebrafish Leydig cells as well as Sertoli cells express the mRNAs for both gonadotropin receptors (fshr and lhcgr). Although Leydig cell fshr expression has been reported in other piscine species and may be a common feature of teleost fish, Sertoli cell lhcgr expression has not been reported previously and might be related to the undifferentiated gonochoristic mode of gonadal sex differentiation in zebrafish. Both recombinant zebrafish (rzf) gonadotropins (i.e. rzfLH and rzfFSH) stimulated androgen release in vitro and in vivo, with rzfFSH being significantly more potent than rzfLH. Forskolin-induced adenylate cyclase activation mimicked, whereas the protein kinase A inhibitor H-89 significantly reduced, the gonadotropin-stimulated androgen release. Therefore, we conclude that both FSH receptor and LH/choriogonadotropin receptor signaling are predominantly mediated through the cAMP/protein kinase A pathway to promote steroid production. Despite this similarity, other downstream mechanisms seem to differ. For example, rzfFSH up-regulated the testicular mRNA levels of a number of steroidogenesis-related genes both in vitro and in vivo, whereas rzfLH or human chorionic gonadotropin did not. Although not fully understood at present, these differences could explain the capacity of FSH to support both steroidogenesis and spermatogenesis on a long-term basis, whereas LH-stimulated steroidogenesis might be a more acute process, possibly restricted to periods during which peak steroid levels are required.
Collapse
Affiliation(s)
- Angel García-López
- Department of Biology, Division of Endocrinology and Metabolism, Utrecht University, Faculty of Science, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|