1
|
Monaco CF, Jones CM, Sayles HR, Rudloff B, McFee R, Cupp AS, Davis JS. Luteal fibroblasts produce prostaglandins in response to IL1β in a MAPK-mediated manner. Mol Cell Endocrinol 2025; 596:112420. [PMID: 39577796 DOI: 10.1016/j.mce.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The corpus luteum is a temporary endocrine gland that is crucial for pregnancy, as it produces the progesterone needed to maintain optimal uterine conditions for implantation. In the absence of a conceptus, the corpus luteum becomes non-functional and undergoes rapid tissue remodeling to regress into a fibrotic corpus albicans. Early luteal regression is characterized by increased cytokine release. Because the role of fibroblasts in the bovine corpus luteum remains to be elucidated, the aim of this study was to elucidate the response of bovine luteal fibroblasts to inflammatory cytokines, tumor necrosis factor α (TNFα), and interleukin 1β (IL1β). Both cytokines induced canonical mitogen activated protein kinase (MAPK) signaling in luteal fibroblasts by phosphorylation of ERK1/2, p38 MAPK, and JNK. IL1β elevated expression and phosphorylation of cytosolic phospholipase A2 (cPLA2), an enzyme that mobilizes arachidonic acid for prostanoid synthesis. IL1β also elevated expression of prostaglandin-endoperoxide synthase 2 (PTGS2), another enzyme needed to synthesize prostanoids. IL1β increased PGF2α and PGE2 levels in the culture medium over 20-fold. Inhibition of MAPKs with small-molecule inhibitors abrogated the stimulatory effects of IL1β. IL1β also induced prostaglandin production in steroidogenic cells; however, there was no elevation in cPLA2. Therefore, actions of IL1β differ based on ovarian cell type. All together, we have identified luteal fibroblasts as potential inflammatory mediators during luteal regression.
Collapse
Affiliation(s)
- Corrine F Monaco
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chloe M Jones
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Harlan R Sayles
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brooke Rudloff
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Renee McFee
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA; US Department of Veterans Affairs VA Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Berisha B, Thaqi G, Sinowatz F, Schams D, Rodler D, Pfaffl MW. Prostaglandins as local regulators of ovarian physiology in ruminants. Anat Histol Embryol 2024; 53:e12980. [PMID: 37788129 DOI: 10.1111/ahe.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Prostaglandins are synthesized from arachidonic acid through the catalytic activities of cyclooxygenase, while the production of different prostaglandin types, prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE), are regulated by specific prostaglandin synthases (PGFS and PGES). Prostaglandin ligands (PGF and PGE) bind to specific high-affinity receptors and initiate biologically distinct signalling pathways. In the ovaries, prostaglandins are known to be important endocrine regulators of female reproduction, in addition to maintaining local function through autocrine and/or paracrine effect. Many research groups in different animal species have already identified a variety of factors and molecular mechanisms that are responsible for the regulation of prostaglandin functions. In addition, prostaglandins stimulate their intrafollicular and intraluteal production via the pathway of prostaglandin self-regulation in the ovary. Therefore, the objective of the review article is to discuss recent findings about local regulation patterns of prostaglandin ligands PGF and PGE during different physiological stages of ovarian function in domestic ruminants, especially in bovine. In conclusion, the discussed local regulation mechanisms of prostaglandins in the ovary may stimulate further research activities in different methodological approaches, especially during final follicle maturation and ovulation, as well as corpus luteum formation and function.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
- Academy of Science of Albania, Tirana, Albania
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Granit Thaqi
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Schams
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| |
Collapse
|
3
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
4
|
Monaco CF, Plewes MR, Przygrodzka E, George JW, Qiu F, Xiao P, Wood JR, Cupp AS, Davis JS. Basic fibroblast growth factor induces proliferation and collagen production by fibroblasts derived from the bovine corpus luteum†. Biol Reprod 2023; 109:367-380. [PMID: 37283496 PMCID: PMC10502575 DOI: 10.1093/biolre/ioad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Cyclic regression of the ovarian corpus luteum, the endocrine gland responsible for progesterone production, involves rapid matrix remodeling. Despite fibroblasts in other systems being known for producing and maintaining extracellular matrix, little is known about fibroblasts in the functional or regressing corpus luteum. Vast transcriptomic changes occur in the regressing corpus luteum, among which are reduced levels of vascular endothelial growth factor A (VEGFA) and increased expression of fibroblast growth factor 2 (FGF2) after 4 and 12 h of induced regression, when progesterone is declining and the microvasculature is destabilizing. We hypothesized that FGF2 activates luteal fibroblasts. Analysis of transcriptomic changes during induced luteal regression revealed elevations in markers of fibroblast activation and fibrosis, including fibroblast activation protein (FAP), serpin family E member 1 (SERPINE1), and secreted phosphoprotein 1 (SPP1). To test our hypothesis, we treated bovine luteal fibroblasts with FGF2 to measure downstream signaling, type 1 collagen production, and proliferation. We observed rapid and robust phosphorylation of various signaling pathways involved in proliferation, such as ERK, AKT, and STAT1. From our longer-term treatments, we determined that FGF2 has a concentration-dependent collagen-inducing effect, and that FGF2 acts as a mitogen for luteal fibroblasts. FGF2-induced proliferation was greatly blunted by inhibition of AKT or STAT1 signaling. Our results suggest that luteal fibroblasts are responsive to factors that are released by the regressing bovine corpus luteum, an insight into the contribution of fibroblasts to the microenvironment in the regressing corpus luteum.
Collapse
Affiliation(s)
- Corrine F Monaco
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Plewes
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| | - Emilia Przygrodzka
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peng Xiao
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| |
Collapse
|
5
|
Billhaq DH, Lee S. The Role of the Guanosine Nucleotide-Binding Protein in the Corpus Luteum. Animals (Basel) 2021; 11:1524. [PMID: 34073800 PMCID: PMC8225084 DOI: 10.3390/ani11061524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022] Open
Abstract
The corpus luteum is a temporary endocrine gland in the ovary. In the ovarian cycle, repeated patterns of specific cellular proliferation, differentiation, and transformation occur that accompany the formation and regression of the corpus luteum. Molecular mechanism events in the ovarian microenvironment, such as angiogenesis and apoptosis, are complex. Recently, we focused on the role of RAS protein in the ovarian corpus luteum. RAS protein plays a vital role in the modulation of cell survival, proliferation, and differentiation by molecular pathway signaling. Additionally, reproductive hormones regulate RAS activity in the cellular physiological function of ovarian follicles during pre-ovulatory maturation and ovulation. Thus, we have reviewed the role of RAS protein related to the biological events of the corpus luteum in the ovary.
Collapse
Affiliation(s)
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
6
|
Li H, Chang HM, Shi Z, Leung PCK. The p38 signaling pathway mediates the TGF-β1-induced increase in type I collagen deposition in human granulosa cells. FASEB J 2020; 34:15591-15604. [PMID: 32996643 DOI: 10.1096/fj.202001377r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
Type I collagen, which is mainly composed of collagen type I alpha 1 chain (COL1A1), is the most abundant extracellular matrix (ECM) protein in the mammalian ovary; and the cyclical remodeling of the ECM plays an essential role in the regulation of corpus luteum formation. Our previous studies have demonstrated that TGF-β1 is a potent inhibitor of luteinization in human granulosa-lutein (hGL) cells. Whether TGF-β1 can regulate the expression of COL1A1 during the luteal phase remains to be elucidated. The aim of this study was to investigate the effect of TGF-β1 on the regulation of COL1A1 expression and the underlying molecular mechanisms using an immortalized hGL cell line (SVOG cells) and primary hGL cells (obtained from 20 consenting patients undergoing IVF treatment). The results showed that TGF-β1 significantly upregulated the expression of COL1A1. Using inhibition approaches, including pharmacological inhibition (a specific p38 inhibitor, SB203580, and a specific ERK1/2 inhibitor, U0126) and specific siRNA-mediated knockdown inhibition, we demonstrated that TGF-β1 promoted the expression and production of COL1A1 in hGL cells, most likely via the ALK5-mediated p38 signaling pathway. Our findings provide insights into the molecular mechanisms by which TGF-β1 promotes the deposition of type I collagen during the late follicular phase in humans.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Grazul-Bilska AT, Dorsam ST, Reyaz A, Valkov V, Bass CS, Kaminski SL, Redmer DA. Follicle-stimulating hormone receptors expression in ovine corpora lutea during luteal phase: effect of nutritional plane and follicle-stimulating hormone treatment. Domest Anim Endocrinol 2020; 71:106391. [PMID: 31731250 DOI: 10.1016/j.domaniend.2019.106391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 11/18/2022]
Abstract
Corpus luteum (CL), a transient endocrine gland critical for reproductive cyclicity and pregnancy maintenance, is controlled by numerous regulatory factors. Although LH is widely recognized as the major regulator, other factors may also affect luteal functions. It has been demonstrated that FSH receptors (FSHR) are expressed not only in ovarian follicles but also in other tissues within the reproductive tract, including the CL. To evaluate FSHR expression in nontreated (nonsuperovulated; experiment 1) or FSH-treated (superovulated; experiment 2) sheep fed a control (C; maintenance), excess (O; 2 × C), or restricted (U; 0.6 × C) diet, CL were collected at the early, mid and/or late luteal phases (n = 5-7 per group). Protein and messenger RNA (mRNA) expression of FSHR were detected in the CL from all groups using immunohistochemistry followed by image analysis and quantitative RT-PCR, respectively. Follicle-stimulating hormone receptor was immunolocalized to steroidogenic small and large and nonsteroidogenic luteal cells. In both experiments, FSHR protein expression was not affected by stage of luteal development or diet. In experiment 1, expression of mRNA for all FSHR variants was greater (P <0.02 to 0.0003) at the late phase than mid or early luteal phase, and in experiment 2, it was greater (P < 0.001) at the mid than early luteal phase. Plane of nutrition did not affect FSHR mRNA expression. Comparison of FSH-treated with nontreated ewes demonstrated that FSH increased FSHR protein expression by 1.5- to 2-fold (P < 0.0001) in all groups, and mRNA expression by 7- to 30-fold (P < 0.001) for (1) FSHR-1 in all groups except U at the early luteal phase, (2) FSHR-2 in C, O, and U at the mid-phase, but not early luteal phase, and (3) FSHR-3 in U at the mid-luteal phase. Our data demonstrate that (1) FSHRs are expressed in ovine CL at several stages of luteal development, (2) FSHR protein expression does not change during the luteal phase and is not affected by diet, (3) FSHR mRNA expression not only depends on the stage of the estrous cycle but also not affected by diet in nonsuperovulated or superovulated ewes, and (4) in vivo FSH treatment enhanced FSHR protein and/or mRNA expression in the CL depending on diet and phase of the estrous cycle. Presence of FSHR in the CL indicates a regulatory role of FSH in luteal function in sheep. As very little is known about the possible role of FSH and FSHR in luteal functions, further studies should be undertaken to elucidate the endocrine, molecular, and cellular mechanisms of FSH effects on the CL.
Collapse
Affiliation(s)
- A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA.
| | - S T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - A Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - V Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - C S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - S L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - D A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
8
|
Butler M, Perperidis A, Zahra JLM, Silva N, Averkiou M, Duncan WC, McNeilly A, Sboros V. Differentiation of Vascular Characteristics Using Contrast-Enhanced Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2444-2455. [PMID: 31208880 DOI: 10.1016/j.ultrasmedbio.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 05/09/2023]
Abstract
Ultrasound contrast imaging has been used to assess tumour growth and regression by assessing the flow through the macro- and micro-vasculature. Our aim was to differentiate the blood kinetics of vessels such as veins, arteries and microvasculature within the limits of the spatial resolution of contrast-enhanced ultrasound imaging. The highly vascularised ovine ovary was used as a biological model. Perfusion of the ovary with SonoVue was recorded with a Philips iU22 scanner in contrast imaging mode. One ewe was treated with prostaglandin to induce vascular regression. Time-intensity curves (TIC) for different regions of interest were obtained, a lognormal model was fitted and flow parameters calculated. Parametric maps of the whole imaging plane were generated for 2 × 2 pixel regions of interest. Further analysis of TICs from selected locations helped specify parameters associated with differentiation into four categories of vessels (arteries, veins, medium-sized vessels and micro-vessels). Time-dependent parameters were associated with large veins, whereas intensity-dependent parameters were associated with large arteries. Further development may enable automation of the technique as an efficient way of monitoring vessel distributions in a clinical setting using currently available scanners.
Collapse
Affiliation(s)
- Mairead Butler
- Heriot-Watt University, Institute of Biochemistry, Biological Physics and Bio Engineering, Riccarton, Edinburgh, UK.
| | - Antonios Perperidis
- Heriot-Watt University, Institute of Signals, Sensors and Systems, Riccarton, Edinburgh, UK
| | | | - Nadia Silva
- Centre for Marine Sciences, University of Algarve Faro, Portugal
| | - Michalakis Averkiou
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - W Colin Duncan
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Alan McNeilly
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Vassilis Sboros
- Heriot-Watt University, Institute of Biochemistry, Biological Physics and Bio Engineering, Riccarton, Edinburgh, UK
| |
Collapse
|
9
|
Gram A, Redmer DA, Kowalewski MP, Dorsam ST, Valkov V, Warang P, Reyaz A, Bass CS, Kaminski SL, Grazul-Bilska AT. Angiopoietin expression in ovine corpora lutea during the luteal phase: Effects of nutrition, arginine and follicle stimulating hormone. Gen Comp Endocrinol 2018; 269:131-140. [PMID: 30195024 DOI: 10.1016/j.ygcen.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate angiopoietin (ANGPT) 1 and 2, and tyrosine-protein kinase receptor 2 (TIE2) expression in the corpora lutea (CL) of FSH-treated, or non-treated sheep administered arginine (Arg) or vehicle (saline, Sal), and fed a control (C), excess (O) or restricted (U) diet. Ewes from each dietary group were treated with Arg or Sal (experiment 1), and with FSH (experiment 2). Luteal tissues were collected at the early-, mid- and/or late-luteal phases of the estrous cycle. Protein and mRNA expression was determined using immunohistochemistry followed by image analysis, and quantitative RT-PCR, respectively. The results demonstrated that ANGPT1 and TIE2 proteins were localized to luteal capillaries and endothelial cells of larger blood vessels, and ANGPT2 was localized to tunica media of larger blood vessels. TIE2 protein was also present in luteal cells. In experiment 1, ANGPT1 protein expression was greater in O than C during early- and mid-luteal phases, and was greatest during late-luteal phase, less at the mid- and least at the early-luteal phase; 2) TIE2 protein expression was greatest at the mid-, less at the early- and least at the late-luteal phase; 3) ANGPT1 and 2 mRNA expression was greater at the mid- and late- than the early-luteal phase, and TIE2 mRNA expression was greatest at the late-, less at the mid- and least at the early-luteal phase. The ANGPT1/2 ratio was less at the early- than mid- or late-luteal phases. In experiment 2, ANGPT1 protein expression was greater in O during the mid-luteal phase than in other groups, and was greater at the mid- than early-luteal phase. TIE2 protein expression was highest at the mid-, less at the early- and least during the late-luteal phase. ANGPT1 and 2, and TIE2 mRNA expression was higher at the mid- than the early-luteal phase. During mid-luteal phase, ANGPT1 mRNA expression was greater in C than O and U, ANGPT2 was greatest in C, less in O and least in U, and TIE2 mRNA expression was greater in C than O and U. The ANGPT1/2 ratio was higher in U than in any other group. Comparison of FSH vs. Sal treatment effects (experiment 2 vs. experiment 1) demonstrated that FSH affected ANGPT1 and/or -2, and TIE2 protein and mRNA expression depending on luteal phase and/or diet. Thus, expression of ANGPTs and TIE2 in the CL changes during the luteal lifespan, indicating their involvement in luteal vascular formation, stabilization and degradation. Moreover, this study has demonstrated that plane of nutrition and/or FSH treatment affect the ANGPT system, and may alter luteal vascularity and luteal function in sheep.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Dale A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sheri T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Veselina Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Prajakta Warang
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Arshi Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Casie S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Samantha L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
10
|
Kraisoon A, Redmer DA, Bass CS, Navanukraw C, Dorsam ST, Valkov V, Reyaz A, Grazul-Bilska AT. Corpora lutea in superovulated ewes fed different planes of nutrition. Domest Anim Endocrinol 2018; 62:16-23. [PMID: 28886590 DOI: 10.1016/j.domaniend.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023]
Abstract
The corpus luteum (CL) is an ovarian structure which is critical for the maintenance of reproductive cyclicity and pregnancy support. Diet and/or diet components may affect some luteal functions. FSH is widely used to induce multiple follicle development and superovulation. We hypothesized that FSH would affect luteal function in ewes fed different nutritional planes. Therefore, the aim of this study was to determine if FSH-treatment affects (1) ovulation rate; (2) CL weight; (3) cell proliferation; (4) vascularity; (5) expression of endothelial nitric oxide (eNOS) and soluble guanylate cyclase (sGC) proteins; and (6) luteal and serum progesterone (P4) concentration in control (C), overfed (O), and underfed (U) ewes at the early- and mid-luteal phases. In addition, data generated from this study were compared to data obtained from nonsuperovulated sheep and described by Bass et al. Ewes were categorized by weight and randomly assigned into nutrition groups: C (2.14 Mcal/kg; n = 11), O (2xC; n = 12), and U (0.6xC; n = 11). Nutritional treatment was initiated 60 d prior to day 0 of the estrous cycle. Ewes were injected with FSH on day 13-15 of the first estrous cycle, and blood samples and ovaries were collected at early- and mid-luteal phases of the second estrous cycle. The number of CL/ewe was determined, and CL was dissected and weighed. CL was fixed for evaluation of expression of Ki67 (a proliferating cell marker), CD31 (an endothelial cell marker), and eNOS and sGC proteins using immunohistochemistry and image analysis. From day 0 until tissue collection, C maintained, O gained, and U lost body weight. The CL number was greater (P < 0.03) in C and O than U. Weights of CL, cell proliferation, vascularity, and eNOS but not sGC expression were greater (P < 0.001), and serum, but not luteal tissue, P4 concentrations tended to be greater (P = 0.09) at the early- than mid-luteal phase. Comparisons of CL measurements demonstrated greater (P < 0.01) cell proliferation and serum P4 concentration, but less vascularity at the early and mid-luteal phases, and less CL weight at the mid-luteal phase in superovulated than nonsuperovulated ewes; however, concentration of P4 in luteal tissues was similar in both groups. Thus, in superovulated ewes, luteal cell proliferation and vascularity, expression of eNOS, and serum P4 concentration depend on the stage of luteal development, but not diet. Comparison to control ewes demonstrated several differences and some similarities in luteal functions after FSH-induced superovulation.
Collapse
Affiliation(s)
- A Kraisoon
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - D A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - C S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - C Navanukraw
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand; Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Khon Kaen University, Khon Kaen, Thailand
| | - S T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - V Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - A Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
11
|
Bass CS, Redmer DA, Kaminski SL, Grazul-Bilska AT. Luteal function during the estrous cycle in arginine-treated ewes fed different planes of nutrition. Reproduction 2017; 153:253-265. [DOI: 10.1530/rep-16-0526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
Functions of corpus luteum (CL) are influenced by numerous factors including hormones, growth and angiogenic factors, nutritional plane and dietary supplements such as arginine (Arg), a semi-essential amino acid and precursor for proteins, polyamines and nitric oxide (NO). The aim of this study was to determine if Arg supplementation to ewes fed different planes of nutrition influences: (1) progesterone (P4) concentrations in serum and luteal tissue, (2) luteal vascularity, cell proliferation, endothelial NO synthase (eNOS) and receptor (R) soluble guanylate cyclase β protein and mRNA expression and (3) luteal mRNA expression for selected angiogenic factors during the estrous cycle. Ewes (n = 111) were categorized by weight and randomly assigned to one of three nutritional planes: maintenance control (C), overfed (2× C) and underfed (0.6× C) beginning 60 days prior to onset of estrus. After estrus synchronization, ewes from each nutritional plane were assigned randomly to one of two treatments: Arg or saline. Serum and CL were collected at the early, mid and late luteal phases. The results demonstrated that: (1) nutritional plane affected ovulation rates, luteal vascularity, cell proliferation andNOS3,GUCY1B3, vascular endothelial growth factor (VEGF) andVEGFR2mRNA expression, (2) Arg affected luteal vascularity, cell proliferation andNOS3,GUCY1B3,VEGFandVEGFR2mRNA expression and (3) luteal vascularity, cell proliferation and the VEGF and NO systems depend on the stage of the estrous cycle. These data indicate that plane of nutrition and/or Arg supplementation can alter vascularization and expression of selected angiogenic factors in luteal tissue during the estrous cycle in sheep.
Collapse
|
12
|
Mishra SR, Parmar MS, Yadav VP, Reshma R, Bharati J, Bharti MK, Paul A, Chouhan VS, Taru Sharma G, Singh G, Sarkar M. Expression and localization of angiopoietin family in corpus luteum during different stages of oestrous cycle and modulatory role of angiopoietins on steroidogenesis, angiogenesis and survivability of cultured buffalo luteal cells. Reprod Domest Anim 2016; 51:855-869. [DOI: 10.1111/rda.12739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Affiliation(s)
- SR Mishra
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - MS Parmar
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - VP Yadav
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - R Reshma
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - J Bharati
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - MK Bharti
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - A Paul
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - VS Chouhan
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - G Taru Sharma
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - G Singh
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| | - M Sarkar
- Physiology & Climatology Division; Indian Veterinary Research Institute; Izatnagar Bareilly Uttar Pradesh India
| |
Collapse
|
13
|
Khanthusaeng V, Thammasiri J, Bass CS, Navanukraw C, Borowicz P, Redmer DA, Grazul-Bilska AT. Lipid droplets in cultured luteal cells in non-pregnant sheep fed different planes of nutrition. Acta Histochem 2016; 118:553-559. [PMID: 27388430 DOI: 10.1016/j.acthis.2016.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Accumulation of lipid droplets (LD) in luteal cells likely is important for energy storage and steroidogenesis in the highly metabolically active corpus luteum (CL). The objective of this study was to determine the effect of plane of nutrition on progesterone (P4) secretion, and lipid droplet number and size in cultured ovine luteal cells. Ewes were randomly assigned to one of three nutritional groups: control (C; 100% NRC requirements, n=9), overfed (O; 2×C, n=12), or underfed (U; 0.6×C, n=10). Superovulation was induced by follicle stimulating hormone injections. At the early and mid-luteal phases of the estrous cycle, CL were dissected from ovaries, and luteal cells isolated enzymatically. Luteal cells were incubated overnight in medium containing serum in chamber slides. Media were then changed to serum-free and after 24h incubation, media were collected for P4 analysis, and cells were fixed in formalin and stained with BODIPY followed by DAPI staining. Z-stacks of optical sections of large and small luteal cells (LLC and SLC, respectively) were obtained using a laser-scanning microscope. Rendered 3D images of individual LLC and SLC were analyzed for cell volume, and total and individual LD volume, number and percentage of cellular volume occupied by LD by using Imaris software. Concentrations of P4 in serum and media were greater (P<0.05) at the mid than early-luteal phase, and were not affected by nutritional plane. LD total volume and number were greater (P<0.001) in LLC than SLC; however, mean volume of individual LD was greater (P<0.02) in SLC than LLC. In LLC, total LD volume was greater (P<0.02) in O than C and U ewes. In SLC, total LD volume and number was greater (P<0.003) at the mid than early-luteal phase, and percentage of cell volume occupied by LD was greater (P<0.002) in U than C and O ewes. These data demonstrate that both stage of luteal development and nutritional plane affect selected LD measurements and thus may affect luteal functions. Furthermore, these data confirm that LD dynamics differ among parenchymal steroidogenic luteal cell types.
Collapse
|
14
|
Positive and negative gestational handling influences placental traits and mother-offspring behavior in dairy goats. Physiol Behav 2016; 157:129-38. [DOI: 10.1016/j.physbeh.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/17/2015] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
|
15
|
Sboros V. The ovine corpus luteum angiogenesis model: a tool for developing imaging technology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4280-2. [PMID: 25570938 DOI: 10.1109/embc.2014.6944570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Robust tools for the quantitation of perfusion are not fully developed using contrast enhanced ultrasound (CEUS). The ovine corpus luteum (CL) is a transient gland in the ovary that is formed to produce the hormone progesterone essential for maintenance of pregnancy. Importantly, it has a dense microvascular network with predictable and well-regulated angiogenic mechanisms. In a number of different experiments it was shown that this property may be used to investigate and refine imaging methodology. Using a Philips iU22 ultrasound scanner (Philips Medical Systems Corp, Seattle, WA) in contrast imaging mode it was shown that a highly controlled experiment may produce high levels of reproducibility in the transit of contrast with standard uncertainty below 10%. Also, compartmental kinetics models were tested. The use of prostaglandin F2alpha promotes an intense anti-angiogenesis, allowing monitoring with CEUS prior to and following the demise of the CL microvasculature within 24 hours. Finally, the robust angiogenic property of the CL during the oestrous cycle allows further refinement of CEUS in vivo. In conclusion, the CL offers an attractive changing vascular bed for assessing existing and developing new clinically relevant perfusion imaging methodology.
Collapse
|
16
|
The corpora lutea proangiogenic state of VEGF system components is turned to antiangiogenic at the later phase of the oestrous cycle in cows. Animal 2015; 9:301-7. [DOI: 10.1017/s1751731114002274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Zamberlam G, Sahmi F, Price CA. Nitric oxide synthase activity is critical for the preovulatory epidermal growth factor-like cascade induced by luteinizing hormone in bovine granulosa cells. Free Radic Biol Med 2014; 74:237-44. [PMID: 24992832 DOI: 10.1016/j.freeradbiomed.2014.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 01/22/2023]
Abstract
In rabbits and rodents, nitric oxide (NO) is generally considered to be critical for ovulation. In monovulatory species, however, the importance of NO has not been determined, nor is it clear where in the preovulatory cascade NO may act. The objectives of this study were (1) to determine if nitric oxide synthase (NOS) enzymes are regulated by luteinizing hormone (LH) and (2) to determine if and where endogenous NO is critical for expression of genes essential for the ovulatory cascade in bovine granulosa cells in serum-free culture. Time- and dose-response experiments demonstrated that LH had a significant stimulatory effect on endothelial NOS (NOS3) mRNA abundance, but in a prostaglandin-dependent manner. NO production was stimulated by LH before a detectable increase in NOS3 mRNA levels was observed. Pretreatment of cells with the NOS inhibitor L-NAME blocked the effect of LH on the epidermal growth factor (EGF)-like ligands epiregulin and amphiregulin, as well as prostaglandin-endoperoxide synthase-2 mRNA abundance and protein levels. Similarly, EGF treatment increased mRNA encoding epiregulin, amphiregulin, and the early response gene EGR1, and this was inhibited by pretreatment with L-NAME. Interestingly, pretreatment with L-NAME had no effect on either ERK1/2 or AKT activation. Taken together, these results suggest that endogenous NOS activity is critical for the LH-induced ovulatory cascade in granulosa cells of a monotocous species and acts downstream of EGF receptor activation but upstream of the EGF-like ligands.
Collapse
Affiliation(s)
- Gustavo Zamberlam
- Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Fatiha Sahmi
- Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Christopher A Price
- Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 7C6, Canada.
| |
Collapse
|
18
|
Weems YS, Ma Y, Ford SP, Nett TM, Vann RC, Lewis AW, Neuendorff DA, Welsh TH, Randel RD, Weems CW. Effects of intraluteal implants of prostaglandin E1 or E2 on angiogenic growth factors in luteal tissue of Angus and Brahman cows. Theriogenology 2014; 82:1224-30. [PMID: 25219846 DOI: 10.1016/j.theriogenology.2014.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
Previously, it was reported that intraluteal implants containing prostaglandin E1 or E2 (PGE1 and PGE2) in Angus or Brahman cows prevented luteolysis by preventing loss of mRNA expression for luteal LH receptors and luteal unoccupied and occupied LH receptors. In addition, intraluteal implants containing PGE1 or PGE2 upregulated mRNA expression for FP prostanoid receptors and downregulated mRNA expression for EP2 and EP4 prostanoid receptors. Luteal weight during the estrous cycle of Brahman cows was reported to be lesser than that of Angus cows but not during pregnancy. The objective of this experiment was to determine whether intraluteal implants containing PGE1 or PGE2 alter vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), angiopoietin-1 (ANG-1), and angiopoietin-2 (ANG-2) protein in Brahman or Angus cows. On Day 13 of the estrous cycle, Angus cows received no intraluteal implant and corpora lutea were retrieved, or Angus and Brahman cows received intraluteal silastic implants containing vehicle, PGE1, or PGE2 on Day 13 and corpora lutea were retrieved on Day 19. Corpora lutea slices were analyzed for VEGF, FGF-2, ANG-1, and ANG-2 angiogenic proteins via Western blot. Day-13 Angus cow luteal tissue served as preluteolytic controls. Data for VEGF were not affected (P > 0.05) by day, breed, or treatment. PGE1 or PGE2 increased (P < 0.05) FGF-2 in luteal tissue of Angus cows compared with Day-13 and Day-19 Angus controls but decreased (P < 0.05) FGF-2 in luteal tissue of Brahman cows when compared w Day-13 or Day-19 Angus controls. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-1 in Angus luteal tissue when compared with Day-13 or Day-19 controls, but ANG-1 was decreased (P < 0.05) by PGE1 or PGE2 in Brahman cows when compared with Day-19 Brahman controls. ANG-2 was increased (P < 0.05) on Day 19 in Angus Vehicle controls when compared with Day-13 Angus controls, which was prevented (P < 0.05) by PGE1 but not by PGE2 in Angus cows. There was no effect (P > 0.05) of PGE1 or PGE2 on ANG-2 in Brahman cows. PGE1 or PGE2 may alter cow luteal FGF-2, ANG-1, or ANG-2 but not VEGF to prevent luteolysis; however, species or breed differences may exist.
Collapse
Affiliation(s)
- Yoshie S Weems
- Department of HNFAS, University of Hawaii, Honolulu, Hawaii, USA
| | - Yan Ma
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Stephen P Ford
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Terry M Nett
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rhonda C Vann
- Department of Animal Science, Mississippi State University, Brown Loam, Mississippi, USA
| | - Andrew W Lewis
- Texas AgriLife Research, Texas A&M University System, Overton, Texas, USA
| | - Don A Neuendorff
- Texas AgriLife Research, Texas A&M University System, Overton, Texas, USA
| | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Ronald D Randel
- Texas AgriLife Research, Texas A&M University System, Overton, Texas, USA
| | - Charles W Weems
- Department of HNFAS, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
19
|
Grazul-Bilska AT, Borowicz PP, Reynolds LP, Redmer DA. Vascular perfusion with fluorescent labeled lectin to study ovarian functions. Acta Histochem 2013; 115:893-8. [PMID: 23622682 DOI: 10.1016/j.acthis.2013.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022]
Abstract
The aim of this study was to optimize a method to visualize tissue vascularity by perfusing the local vascular bed with a fluorescently labeled lectin, combined with immunofluorescent labeling of selected vascular/tissue markers. Ovaries with the pedicle were obtained from adult non-pregnant ewes. Immediately after collection, the ovarian artery was perfused with phosphate buffered saline (PBS) to remove blood cells, followed by perfusion with PBS containing fluorescently labeled Griffonia (Bandeiraea) simplicifolia (BS1) lectin. Then, half of ovary was fixed in formalin and another half in Carnoy's fixative. BS1 was detected in blood vessels in ovaries fixed in formalin, but not in Carnoy's fixative. Formalin fixed tissue was used for immunofluorescence staining of two markers of tissue function and/or structure, Ki67 and smooth muscle cell actin (SMCA). Ki67 was detected in granulosa and theca cells, luteal and stromal tissue, and a portion of Ki67 staining was co-localized with blood vessels. SMCA was detected in pericytes within the capillary system, in blood vessels in all ovarian compartments, and in the stroma. Thus, blood vessel perfusion with fluorescently labeled lectin combined with immunohistochemistry, microscopy, and imaging techniques provide an excellent tool to study angiogenesis, vascular architecture, and organ structures and function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | | | | | | |
Collapse
|
20
|
Korzekwa AJ, Lukasik K, Pilawski W, Piotrowska-Tomala KK, Jaroszewski JJ, Yoshioka S, Okuda K, Skarzynski DJ. Influence of prostaglandin F₂α analogues on the secretory function of bovine luteal cells and ovarian arterial contractility in vitro. Vet J 2013; 199:131-7. [PMID: 24268486 DOI: 10.1016/j.tvjl.2013.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
Abstract
Although prostaglandin (PG) F2α analogues are routinely used for oestrus synchronisation in cattle, their effects on the function of the bovine corpus luteum (CL), and on ovarian arterial contractility, may not reflect the physiological effects of endogenous PGF2α. In the first of two related experiments, the effects of different analogues of PGF2α (aPGF2α) on the secretory function and apoptosis of cultured bovine cells of the CL were assessed. Enzymatically-isolated bovine luteal cells (from between days 8 and 12 of the oestrous cycle), were stimulated for 24h with naturally-occurring PGF2α or aPGF2α (dinoprost, cloprostenol or luprostiol). Secretion of progesterone (P4) was determined and cellular [Ca(2+)]i mobilisation, as well as cell viability and apoptosis were measured. Naturally-occurring PGF2α and dinoprost stimulated P4 secretion (P<0.05), whereas cloprostenol and luprostiol did not influence P4 synthesis. The greatest cytotoxic and pro-apoptotic effects were observed in the luprostiol-treated cells, at 37.3% and 202%, respectively (P<0.001). The greatest effect on [Ca(2+)]i mobilisation in luteal cells was observed post-luprostiol treatment (200%; P<0.001). In a second experiment, the influence of naturally-occurring PGF2α and aPGF2α on ovarian arterial contraction in vitro, were examined. No differences in the effects of dinoprost or naturally-occurring PGF2α were found across the studied parameters. The effects of cloprostenol and luprostiol on luteal cell death, in addition to their effects on ovarian arterial contractility, were much greater than those produced by treatment with naturally-occurring PGF2α.
Collapse
Affiliation(s)
- A J Korzekwa
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - K Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 1-1-1, Okayama 700-8530, Japan
| | - W Pilawski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - K K Piotrowska-Tomala
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - J J Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - S Yoshioka
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 1-1-1, Okayama 700-8530, Japan
| | - K Okuda
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 1-1-1, Okayama 700-8530, Japan
| | - D J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland.
| |
Collapse
|
21
|
EL-Sherry TM, Senosy W, Mahmoud GB, Wasfy SI. Effect of dinoprost and cloprostenol on serum nitric oxide and corpus luteum blood flow during luteolysis in ewes. Theriogenology 2013; 80:513-8. [DOI: 10.1016/j.theriogenology.2013.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/24/2022]
|
22
|
Cytokines and angiogenesis in the corpus luteum. Mediators Inflamm 2013; 2013:420186. [PMID: 23840095 PMCID: PMC3693155 DOI: 10.1155/2013/420186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/24/2022] Open
Abstract
In adults, physiological angiogenesis is a rare event, with few exceptions as the vasculogenesis needed for tissue growth and function in female reproductive organs. Particularly in the corpus luteum (CL), regulation of angiogenic process seems to be tightly controlled by opposite actions resultant from the balance between pro- and antiangiogenic factors. It is the extremely rapid sequence of events that determines the dramatic changes on vascular and nonvascular structures, qualifying the CL as a great model for angiogenesis studies. Using the mare CL as a model, reports on locally produced cytokines, such as tumor necrosis factor α (TNF), interferon gamma (IFNG), or Fas ligand (FASL), pointed out their role on angiogenic activity modulation throughout the luteal phase. Thus, the main purpose of this review is to highlight the interaction between immune, endothelial, and luteal steroidogenic cells, regarding vascular dynamics/changes during establishment and regression of the equine CL.
Collapse
|
23
|
Long NM, Tuersunjiang N, George LA, Lemley CO, Ma Y, Murdoch WJ, Nathanielsz PW, Ford SP. Maternal nutrient restriction in the ewe from early to midgestation programs reduced steroidogenic enzyme expression and tended to reduce progesterone content of corpora lutea, as well as circulating progesterone in nonpregnant aged female offspring. Reprod Biol Endocrinol 2013; 11:34. [PMID: 23656912 PMCID: PMC3658881 DOI: 10.1186/1477-7827-11-34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/02/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Previously we reported decreased circulating progesterone and fertility in one and two year old ewes born to undernourished mothers. This study was designed to investigate if this reduction in progesterone persisted into old age, and if it did, what mechanisms are involved. METHODS Ewes were fed a nutrient restricted (NR, 50% of NRC recommendations) or control (C, 100% of NRC) diets from day 28 to 78 of gestation, then all were fed to requirements through parturition and weaning. Female offspring (4 per treatment group) were maintained as a group and fed to requirements from weaning until assigned to this study at 6 years of age. Ewes were synchronized for estrus (day 0) and blood samples were collected daily from day 0 to day 11 before necropsy on day 12. Blood serum and luteal tissue were assayed for progesterone concentrations by validated radioimmunoassay. RESULTS Circulation progesterone concentrations tended to be lower (P = 0.06) in NR than C offspring from day 0 to 11 of the estrous cycle. While total luteal weight was similar across groups, total progesterone content also tended to be reduced (P = 0.07) in luteal tissue of NR than C offspring. Activity of hepatic progesterone catabolizing enzymes and selected angiogenic factors in luteal tissue were similar between groups. Messenger RNA expression of steroidogenic enzymes StAR and P450scc were reduced (P < 0.05), while protein expression of StAR tended to be reduced (P < 0.07) and P450scc was reduced (P < 0.05) in luteal tissue of NR versus C offspring. CONCLUSIONS There appears to be no difference in hepatic steroid catabolism that could have led to the decreased serum progesterone. However, these data are consistent with the programming of decreased steroidogenic enzyme expression in CL of NR offspring, leading to reduced synthesis and secretion of progesterone.
Collapse
Affiliation(s)
- Nathan M Long
- The Center for the Study of Fetal Programming, Laramie, WY 82071, USA
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Nuermaimaiti Tuersunjiang
- The Center for the Study of Fetal Programming, Laramie, WY 82071, USA
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Lindsey A George
- The Center for the Study of Fetal Programming, Laramie, WY 82071, USA
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Yan Ma
- The Center for the Study of Fetal Programming, Laramie, WY 82071, USA
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - William J Murdoch
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Peter W Nathanielsz
- The Center for the Study of Fetal Programming, Laramie, WY 82071, USA
- Department of Obstetrics and Gynecology, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | - Stephen P Ford
- The Center for the Study of Fetal Programming, Laramie, WY 82071, USA
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
24
|
Yunusova RD, Neville TL, Vonnahme KA, Hammer CJ, Reed JJ, Taylor JB, Redmer DA, Reynolds LP, Caton JS. Impacts of maternal selenium supply and nutritional plane on visceral tissues and intestinal biology in 180-day-old offspring in sheep1. J Anim Sci 2013; 91:2229-42. [DOI: 10.2527/jas.2012-5134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- R. D. Yunusova
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - T. L. Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - K. A. Vonnahme
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - C. J. Hammer
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. J. Reed
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. B. Taylor
- ARS-USDA, U.S. Sheep Experiment Station, Dubois, ID 83423
| | - D. A. Redmer
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - L. P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| |
Collapse
|
25
|
Bollwein H, Lüttgenau J, Herzog K. Bovine luteal blood flow: basic mechanism and clinical relevance. Reprod Fertil Dev 2013; 25:71-9. [DOI: 10.1071/rd12278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The introduction of transrectal colour Doppler sonography (CDS) has allowed the evaluation of luteal blood flow (LBF) in cows. Because appropriate angiogenesis plays a decisive role in the functioning of the corpus luteum (CL), studies on LBF may provide valuable information about the physiology and pathophysiology of the CL. Studies on cyclic cows have shown that progesterone concentrations in blood plasma can be more reliably predicted by LBF than by luteal size (LS), especially during the regression phase of the CL. In contrast with non-pregnant cows, a significant increase in LBF is seen in pregnant cows during the third week after insemination. However, because there are high interindividual variations in LBF between animals, LBF is not useful for the early diagnosis of pregnancy. Determination of LBF is more sensitive than LS for detecting the effects of acute systemic inflammation and exogenous hormones on the CL. Cows with low progesterone levels have smaller CL during the mid-luteal phase, but LBF related to LS did not differ between cows with low and high progesterone levels. In conclusion, LBF determined by CDS provides additional information about luteal function compared with LS and plasma progesterone concentrations, but its role concerning fertility in the cow is yet to be clarified.
Collapse
|
26
|
Guo B, Zhang XM, Li SJ, Tian XC, Wang ST, Li DD, Liu DF, Yue ZP. Expression and regulation of ang-2 in murine ovaries during sexual maturation and development of corpus luteum. Mol Biol 2012. [DOI: 10.1134/s0026893312060076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Maroni D, Davis JS. Transforming growth factor Beta 1 stimulates profibrotic activities of luteal fibroblasts in cows. Biol Reprod 2012; 87:127. [PMID: 22811573 PMCID: PMC5597442 DOI: 10.1095/biolreprod.112.100735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Luteolysis is characterized by angioregression, luteal cell apoptosis, and remodeling of the extracellular matrix characterized by deposition of collagen 1. Transforming growth factor beta 1 (TGFB1) is a potent mediator of wound healing and fibrotic processes through stimulation of the synthesis of extracellular matrix components. We hypothesized that TGFB1 stimulates profibrotic activities of luteal fibroblasts. We examined the actions of TGFB1 on luteal fibroblast proliferation, extracellular matrix production, floating gel contraction, and chemotaxis. Fibroblasts were isolated from the bovine corpus luteum. Western blot analysis showed that luteal fibroblasts expressed collagen 1 and prolyl 4-hydroxylase but did not express markers of endothelial or steroidogenic cells. Treatment of fibroblasts with TGFB1 stimulated the phosphorylation of SMAD2 and SMAD3. [3H]thymidine incorporation studies showed that TGFB1 caused concentration-dependent reductions in DNA synthesis in luteal fibroblasts and significantly (P < 0.05) reduced the proliferative effect of FGF2 and fetal calf serum. However, TGFB1 did not reduce the viability of luteal fibroblasts. Treatment of luteal fibroblasts with TGFB1 induced the expression of laminin, collagen 1, and matrix metalloproteinase 1 as determined by Western blot analysis and gelatin zymography of conditioned medium. TGFB1 increased the chemotaxis of luteal fibroblasts toward fibronectin in a transwell system. Furthermore, TGFB1 increased the fibroblast-mediated contraction of floating bovine collagen 1 gels. These results suggest that TGFB1 contributes to the structural regression of the corpus luteum by stimulating luteal fibroblasts to remodel and contract the extracellular matrix.
Collapse
Affiliation(s)
- Dulce Maroni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | | |
Collapse
|
28
|
Ilse BR, O'Neil MR, Lardy GP, Reynolds LP, Vonnahme KA. Impacts of linseed meal and estradiol-17β on cellularity, angiogenic and vasoactive factor mRNA expression, and vascularity of the uterus in ovariectomized ewes. CANADIAN JOURNAL OF ANIMAL SCIENCE 2012. [DOI: 10.4141/cjas2011-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ilse, B. R., O'Neil, M. R., Lardy, G. P., Reynolds, L. P. and Vonnahme, K. A. 2012. Impacts of linseed meal and estradiol-17β on cellularity, angiogenic and vasoactive factor mRNA expression, and vascularity of the uterus in ovariectomized ewes. Can. J. Anim. Sci. 92: 297–306. The objective of the current study was to determine the estrogenic potential of the phytoestrogen secoisolariciresinol diglycoside (SDG) found in linseed meal (LSM) on uterine cell proliferation, vascularity, and angiogenic factor mRNA expression. Ovariectomized ewes (n=48) were fed a diet containing 12.5% LSM for 0, 1, 7, or 14 d and implanted with estradiol-17β (E2) for 0, 6, or 24 h before tissue collection. There was an interaction of LSM×E2 on uterine mass (grams; P=0.03; percentage change; P<0.003). Uterine mass increased (P≤0.02) after 24 h of E2 exposure on days 1, 7, and 14 of LSM feeding, with the greatest mass occurring in ewes exposed to E2 for 24 h and 1 d LSM feeding. Regardless of days fed LSM, after 24 h of E2 exposure uterine mass was greatest. The greatest percentage increase in uterine mass occurred in ewes exposed to E2 for 24 h and fed 1 d of LSM. Cell proliferation within the uterine luminal epithelium was greatest (P<0.01) with 24 h of E2 exposure compared with 0 h and 6 h. When expressed as the percentage change in uterine cell proliferation, feeding LSM for 14 d negated these effects. Only length of E2 exposure impacted vascularity with capillary number density at 6 h of E2 exposure being greater (P=0.02) than at 24 h. While mRNA expression of several angiogenic factors was influenced by E2, there was a LSM×E2 interaction (P≤0.03) only on vascular endothelial growth factor receptor 2 and fibroblast growth factor receptor 2C. It appears that growth and angiogenesis of E2 sensitive tissues may be influenced by the duration of LSM feeding.
Collapse
Affiliation(s)
- B. R. Ilse
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108, USA
| | - M. R. O'Neil
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108, USA
| | - G. P. Lardy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108, USA
| | - L. P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108, USA
| | - K. A. Vonnahme
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108, USA
| |
Collapse
|
29
|
Shirasuna K, Nitta A, Sineenard J, Shimizu T, Bollwein H, Miyamoto A. Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow. Domest Anim Endocrinol 2012; 43:198-211. [PMID: 22560178 DOI: 10.1016/j.domaniend.2012.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/18/2012] [Accepted: 03/28/2012] [Indexed: 01/05/2023]
Abstract
The bovine corpus luteum (CL) is a unique, transient organ with well-coordinated mechanisms by which its development, maintenance, and regression are effectively controlled. Angiogenic factors, such as vascular endothelial growth factor A and basic fibroblast growth factor, play an essential role in promoting progesterone secretion, cell proliferation, and angiogenesis. These processes are critically regulated, through both angiogenic and immune systems, by the specific immune cells, including macrophages, eosinophils, and neutrophils, that are recruited into the developing CL. The bovine luteolytic cascade appears to be similar to that of general acute inflammation in terms of time-dependent infiltration by immune cells (neutrophils, macrophages, and T lymphocytes) and drastic changes in vascular tonus and blood flow, which are regulated by luteal nitric oxide and the vasoconstrictive factors endothelin-1 and angiotensin II. Over the period of maternal recognition of pregnancy, the maternal immune system should be well controlled to accept the semiallograft fetus. The information on the presence of the developing embryo in the genital tract is suggested to be transmitted to the ovary by both the endocrine system and the circulating immune cells. In the bovine CL, the lymphatic system, but not the blood vascular system, is reconstituted during early pregnancy, and interferon tau from the embryo could trigger this novel phenomenon. Collectively, the angiogenic and vasoactive factors produced by luteal cells and the time-dependently recruited immune cells within the CL and their interactions appear to play critical roles in regulating luteal functions throughout the life span of the CL.
Collapse
Affiliation(s)
- K Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Szczepkowska A, Wąsowska B, Gilun PD, Lagaraine C, Robert V, Dufourny L, Thiéry JC, Skipor J. Pattern of expression of vascular endothelial growth factor and its receptors in the ovine choroid plexus during long and short photoperiods. Cell Tissue Res 2012; 350:157-66. [PMID: 22622803 PMCID: PMC3462986 DOI: 10.1007/s00441-012-1431-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/04/2012] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF-A) plays an important role in maintaining cerebrospinal fluid (CSF) homeostasis and the function of the choroid plexuses (CPs). The objective of the study was to determine the expression of vascular endothelial growth factor (VEGF-A), tyrosine kinase receptors Flt-1 and KDR and KDR co-receptor neuropilin 1 (NRP-1) in ovine CPs during different photoperiods. CPs were collected from the lateral brain ventricles from ovariectomized, estradiol-treated ewes during long day (LD; 16L:8D, n = 5) and short day (SD; 8L:16D, n = 5) photoperiods. We analyzed mRNA expression levels of two VEGF-A isoforms, VEGF-A120 and VEGF-A164 and our results indicate that VEGF-A164 was the predominant isoform. Expression levels of VEGF-A and Flt-1 were similar during the SD and LD photoperiods. There were significant increases in KDR mRNA and protein expression (p < 0.05) and NRP-1 mRNA expression (p < 0.05) during SD. These data show that expression of KDR and its co-receptor NRP-1 are up-regulated by short photoperiod and that this effect is not dependent on ovarian steroids. Our results suggest that the VEGF-A-system may be involved in photoperiodic plasticity of CP capillaries and may therefore be responsible for photoperiodic changes in the CSF turnover rate in ewes.
Collapse
Affiliation(s)
- Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Atli MO, Bender RW, Mehta V, Bastos MR, Luo W, Vezina CM, Wiltbank MC. Patterns of gene expression in the bovine corpus luteum following repeated intrauterine infusions of low doses of prostaglandin F2alpha. Biol Reprod 2012; 86:130. [PMID: 22262696 DOI: 10.1095/biolreprod.111.094870] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Natural luteolysis involves multiple pulses of prostaglandin F2alpha (PGF) released by the nonpregnant uterus. This study investigated expression of 18 genes from five distinct pathways, following multiple low-dose pulses of PGF. Cows on Day 9 of the estrous cycle received four intrauterine infusions of 0.25 ml of phosphate-buffered saline (PBS) or PGF (0.5 mg of PGF in 0.25 ml of PBS) at 6-h intervals. A luteal biopsy sample was collected 30 min after each PBS or PGF infusion. There were four treatment groups: Control (n = 5; 4 PBS infusions), 4XPGF (4 PGF infusions; n = 5), 2XPGF-non-regressed (2 PGF infusions; n = 5; PGF-PBS-PGF-PBS; no regression after treatments), and 2XPGF-regressed (PGF-PBS-PGF-PBS; regression after treatments; n = 5). As expected, the first PGF pulse increased mRNA for the immediate early genes JUN, FOS, NR4A1, and EGR1 but unexpectedly also increased mRNA for steroidogenic (STAR) and angiogenic (VEGFA) pathways. The second PGF pulse induced immediate early genes and genes related to immune system activation (IL1B, FAS, FASLG, IL8). However, mRNA for VEGFA and STAR were decreased by the second PGF infusion. After the third and fourth PGF pulses, a distinctly luteolytic pattern of gene expression was evident, with inhibition of steroidogenic and angiogenic pathways, whereas, there was induction of pathways for immune system activation and production of PGF. The pattern of PGF-induced gene expression was similar in corpus luteum not destined for luteolysis (2X-non-regressed) after the first PGF pulse but was very distinct after the second PGF pulse. Thus, although the initial PGF pulse induced mRNA for many pathways, the second and later pulses of PGF appear to have set the distinct pattern of gene expression that result in luteolysis.
Collapse
Affiliation(s)
- Mehmet O Atli
- Endocrinology-Reproductive Physiology Program and Department of Dairy Science, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Decreasing maternal nutrient intake during the final third of pregnancy in previously overnourished adolescent sheep: effects on maternal nutrient partitioning and feto-placental development. Placenta 2011; 33:114-21. [PMID: 22154692 DOI: 10.1016/j.placenta.2011.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 11/20/2022]
Abstract
When pregnant adolescent sheep are overnourished during pregnancy normal nutrient partitioning priorities to the gravid uterus are altered, leading to impaired placental development and fetal growth restriction. We hypothesized that decreasing dietary intake in overnourished dams during the final third of gestation may reverse this inappropriate nutrient partitioning in favor of the fetus. Adolescent ewes were offered control (C; n = 12) or high (H; n = 20) dietary intakes to induce normal vs. compromised placental development. Ten ewes receiving the H intake were switched to a low intake at d90 of gestation (HL). Between d90 to 130, HL dams lost weight and adiposity, and metabolic hormones and glucose at d130 were less than H and similar to C. In spite of these maternal changes, at d130 fetal bodyweight was equivalent in HL and H groups and ∼20% less than in C. A greater degree of brain sparing was evident in HL fetuses and glucose and insulin concentrations were more perturbed than in H fetuses. Relative to C, placentome weight was reduced by 46 and 32% in H and HL and the fetal:placentome weight ratio was H > HL > C. Placental vascular morphology was largely unaffected by maternal diet during late gestation but mRNA expression of five angiogenic genes was up-regulated in the fetal cotyledon of HL pregnancies, commensurate with blood vessel remodeling. Nevertheless, overfeeding to promote maternal anabolic growth during adolescent pregnancy impairs feto-placental development that cannot be rescued by reducing maternal intake during the final third of gestation.
Collapse
|
33
|
Grazul-Bilska AT, Vonnahme KA, Bilski JJ, Borowczyk E, Soni D, Mikkelson B, Johnson ML, Reynolds LP, Redmer DA, Caton JS. Expression of gap junctional connexin proteins in ovine fetal ovaries: effects of maternal diet. Domest Anim Endocrinol 2011; 41:185-94. [PMID: 21820266 PMCID: PMC3190047 DOI: 10.1016/j.domaniend.2011.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
Abstract
Gap junctions have been implicated in the regulation of cellular metabolism and the coordination of cellular functions during growth and differentiation of organs and tissues, and gap junctions play a major role in direct cell-cell communication. Gap junctional channels and connexin (Cx) proteins have been detected in adult ovaries in several species. Furthermore, it has been shown that several environmental factors, including maternal diet, may affect fetal organ growth and function. To determine whether maternal diet affects expression of Cx26, Cx32, Cx37, and Cx43 in fetal ovaries, sheep were fed a maintenance (M) diet with adequate (A) selenium (Se) or high (H) Se levels from 21 d before breeding to day 132 of pregnancy. From day 50 to 132 of pregnancy (tissue collection day), a portion of the ewes from the ASe and HSe groups was fed a restricted (R; 60% of M) diet. Sections of fetal ovaries were immunostained for the presence of Cxs followed by image analysis. All four Cxs were detected, but the distribution pattern differed. Cx26 was immunolocalized in the oocytes from primordial, primary, secondary, and antral follicles; in granulosa and theca layers of secondary and antral follicles; stroma; and blood vessels. Cx32 was in oocytes, granulosa, and theca cells in a portion of antral follicles; Cx37 was on the borders between oocyte and granulosa/cumulus cells of primordial to antral follicles and in endothelium; and Cx43 was on cellular borders in granulosa and theca layers and between oocyte and granulosa/cumulus cells of primordial to antral follicles. Maternal diet affected Cx26 and Cx43 expression, Cx26 in granulosa layer of antral follicles was decreased (P < 0.01) by HSe in the M and R diets, and Cx43 in granulosa layer of primary and granulosa and theca of antral follicles was increased (P < 0.05) by the M diet with HSe. Thus, Cxs may be differentially involved in regulation of fetal ovarian function in sheep. These data emphasize the importance of maternal diet in fetal growth and development.
Collapse
Affiliation(s)
- A T Grazul-Bilska
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, 58108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vonnahme KA, Wienhold CM, Borowicz PP, Neville TL, Redmer DA, Reynolds LP, Caton JS. Supranutritional selenium increases mammary gland vascularity in postpartum ewe lambs. J Dairy Sci 2011; 94:2850-8. [PMID: 21605755 DOI: 10.3168/jds.2010-3832] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/23/2011] [Indexed: 11/19/2022]
Abstract
Objectives were to determine the effects of maternal dietary supranutritional Se and nutritional plane during gestation on capillary surface density, capillary area density, and angiogenic factor expression in the developing mammary gland of primiparous ewes. Selenium treatments were initiated at breeding [adequate Se (ASe; 9.5 μg/kg of body weight) vs. high Se (HSe; 81.8 μg/kg of body weight)] and nutritional planes at d 50 of gestation [Low, 60%; moderate (Mod), 100%; and High, 140% of requirements). Mammary glands were collected within 24h postpartum. Vascular development was assessed in the glandular portion of the mammary gland. Vascularity was determined for mammary tissue with the following measurements taken: the cross-sectional capillary area density (total capillary area as a proportion of tissue area) and capillary surface density (CSD; total capillary circumference per unit of tissue area). High-Se ewes had greater capillary surface and area densities compared with ASe ewes. A tendency existed for an Se × plane of nutrition interaction for CSD with maternal diet not affecting CSD in HSe ewes, but Low ewes had a decreased CSD compared with Mod ewes, with High being intermediate in ASe ewes. Moreover, HSe-Low and HSe-High ewes had increased CSD compared with ASe-Low and ASe-High, respectively. Although Se status did not influence angiogenic factor mRNA expression, mammary glands from Low ewes tended to have increased VEGF and FLT1 mRNA expression compared with High ewes, with Mod being intermediate. Maternal plane of nutrition did not affect mammary gland glutathione peroxidase activity, but it was increased in HSe compared with ASe ewes. Increased mammary capillary nutrient exchange area may contribute to previously observed changes in colostrum quality.
Collapse
Affiliation(s)
- K A Vonnahme
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo 58108
| | | | | | | | | | | | | |
Collapse
|
35
|
Maroni D, Davis JS. TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum. J Cell Sci 2011; 124:2501-10. [PMID: 21693577 DOI: 10.1242/jcs.084558] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclical formation and regression of the ovarian corpus luteum is required for reproduction. During luteal regression, the microvasculature of the corpus luteum is extensively disrupted. Prostaglandin F2α, a primary signal for luteal regression, induces the expression of transforming growth factor β1 (TGFB1) in the corpus luteum. This study determined the actions of TGFB1 on microvascular endothelial cells isolated from the bovine corpus luteum (CLENDO cells). We hypothesized that TGFB1 participates in the disruption of the microvasculature during luteal regression. TGFB1 activated the canonical SMAD signaling pathway in CLENDO cells. TGFB1 (1 ng/ml) significantly reduced both basal and fetal-calf-serum-stimulated DNA synthesis, without reducing cell viability. TGFB1 also significantly reduced CLENDO cell transwell migration and disrupted the formation of capillary-like structures when CLENDO cells were plated on Matrigel. By contrast, CLENDO cells plated on fibrillar collagen I gels did not form capillary-like structures and TGFB1 induced cell death. Additionally, TGFB1 caused loss of VE-cadherin from cellular junctions and loss of cell-cell contacts, and increased the permeability of confluent CLENDO cell monolayers. These studies demonstrate that TGFB1 acts directly on CLENDO cells to limit endothelial cell function and suggest that TGFB1 might act in the disassembly of capillaries observed during luteal regression.
Collapse
Affiliation(s)
- Dulce Maroni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | | |
Collapse
|
36
|
Lüttgenau J, Ulbrich S, Beindorff N, Honnens A, Herzog K, Bollwein H. Plasma progesterone concentrations in the mid-luteal phase are dependent on luteal size, but independent of luteal blood flow and gene expression in lactating dairy cows. Anim Reprod Sci 2011; 125:20-9. [DOI: 10.1016/j.anireprosci.2011.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 01/10/2011] [Accepted: 02/01/2011] [Indexed: 12/20/2022]
|
37
|
Sboros V, Averkiou M, Lampaskis M, Thomas DH, Silva N, Strouthos C, Docherty J, McNeilly AS. Imaging of the ovine corpus luteum microcirculation with contrast ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:59-68. [PMID: 21144958 DOI: 10.1016/j.ultrasmedbio.2010.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 09/21/2010] [Accepted: 10/09/2010] [Indexed: 05/30/2023]
Abstract
Ultrasound contrast agents have been the subject of microvascular imaging research. The sheep corpus luteum (CL) is a microvascular tissue that provides a natural angiogenic and antiangiogenic process, which changes during the luteal phase of the estrous cycle of the ewe. It can also be controlled and monitored endocrinologically, providing a very attractive in vivo model for the study and development of microvascular measurement. The perfusion of the fully developed CL between days 8 and 12 of the estrous cycle was studied in six ewes. A Philips iU22 ultrasound scanner (Bothell, WA, USA) with the linear array probe L9-3 was used to capture contrast-enhanced images after an intravenous bolus injection of 2.4 mL SonoVue (Bracco S.P.A., Milan, Italy). Time-intensity curves of a region of interest inside the CL were formed from linearized image data. A lagged-normal model to simulate the compartmental kinetics of the microvascular flow was used to fit the data, and the wash-in time was measured. Good contrast enhancement was observed in the CLs of all animals and the wash-in time averaged at 5.5 s with 9% uncertainty. The regression coefficient was highly significant for all fits. These data correlated with stained endothelial area in the histology performed postmortem. Two ewes were injected with prostaglandin F2alpha to induce CL regression, which resulted in an increase of wash-in time after a few hours. The CL of the ewe is thus proposed as an ideal model for the study and development of microvascular measurements using contrast ultrasound. Our initial results demonstrate a highly reproducible model for the study of the microvascular hemodynamics in a range of tissues and organs.
Collapse
Affiliation(s)
- Vassilis Sboros
- Medical Physics and Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Neville TL, Redmer DA, Borowicz PP, Reed JJ, Ward MA, Johnson ML, Taylor JB, Soto-Navarro SA, Vonnahme KA, Reynolds LP, Caton JS. Maternal dietary restriction and selenium supply alters messenger ribonucleic acid expression of angiogenic factors in maternal intestine, mammary gland, and fetal jejunal tissues during late gestation in pregnant ewe lambs1. J Anim Sci 2010; 88:2692-702. [DOI: 10.2527/jas.2009-2706] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Grazul-Bilska AT, Borowicz PP, Johnson ML, Minten MA, Bilski JJ, Wroblewski R, Redmer DA, Reynolds LP. Placental development during early pregnancy in sheep: vascular growth and expression of angiogenic factors in maternal placenta. Reproduction 2010; 140:165-74. [DOI: 10.1530/rep-09-0548] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Placental vascular development (angiogenesis) is critical for placental function and thus for normal embryonic/fetal growth and development. Specific environmental factors or use of assisted reproductive techniques may result in poor placental angiogenesis, which may contribute to embryonic losses and/or fetal growth retardation. Uterine tissues were collected on days 14, 16, 18, 20, 22, 24, 26, 28, and 30 after mating and on day 10 after estrus (nonpregnant controls) to determine vascular development and expression of several factors involved in the regulation of angiogenesis in the endometrium. Compared with controls, several measurements of endometrial vascularity increased (P<0.001) including vascular labeling index (LI; proportion of proliferating cells), the tissue area occupied by capillaries, area per capillary (capillary size), total capillary circumference per unit of tissue area, and expression of factor VIII (marker of endothelial cells), but capillary number decreased (P<0.001). Compared with controls, mRNA for placental growth factor, vascular endothelial growth factor receptors, angiopoietins (ANGPT) 1 and 2, ANGPT receptorTEK, endothelial nitric oxide synthase, and hypoxia-inducible factor 1α increased (P<0.05) during early pregnancy. Vascular LI was positively correlated (P<0.05) with several measurements of vascularity and with mRNA expression of angiogenic factors. These data indicate that endometrial angiogenesis, manifested by increased vascularity and increased expression of several factors involved in the regulation of angiogenesis, is initiated very early in pregnancy. This more complete description of early placental angiogenesis may provide the foundation for determining whether placental vascular development is altered in compromised pregnancies.
Collapse
|
40
|
Cotyledonary responses to maternal selenium and dietary restriction may influence alterations in fetal weight and fetal liver glycogen in sheep. Anim Reprod Sci 2010; 117:216-25. [DOI: 10.1016/j.anireprosci.2009.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/04/2009] [Accepted: 05/11/2009] [Indexed: 11/19/2022]
|
41
|
Berisha B, Meyer HHD, Schams D. Effect of prostaglandin F2 alpha on local luteotropic and angiogenic factors during induced functional luteolysis in the bovine corpus luteum. Biol Reprod 2010; 82:940-7. [PMID: 20056670 DOI: 10.1095/biolreprod.109.076752] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The essential role of endometrial prostaglandin F2 alpha (PTGF) for induction of the corpus luteum (CL) regression is well documented in the cow. However, the acute effects of PTGF on known local luteotropic factors (oxytocin [OXT] and its receptor, insulin-like growth factor [IGF] 1, and progesterone and its receptor), the principal angiogenic factor vascular endothelial growth factor (VEGF) A and the capillary destabilization factor angiopoietin (ANGPT) 2 were not thoroughly studied in detail. The aim of this study was therefore to evaluate the tissue concentration of these factors during PTGF induced luteolysis. In addition the mRNA expression of progesterone receptor (PGR), OXT receptor (OXTR), IGF1, IGFBP1, ANGPT1, and ANGPT2 was determined at different times after PTGF treatment. Cows (n = 5 per group) in the mid-luteal phase (Days 8-12, control group) were injected with the PTGF analog (cloprostenol), and CL were collected by transvaginal ovariectomy at 0.5, 2, 4, 12, 24, 48, and 64 h after injection. The mRNA expression was analyzed by quantitative real-time PCR, and the protein concentration was evaluated by enzyme immunoassay or radioimmunoassay. Progesterone concentrations, as well as mRNA expression of PGR, in CL tissue were significantly down-regulated by 12 h after PTGF. Tissue OXT peptide and OXTR mRNA decreased significantly after 2 h, followed by a continuous decrease of OXT mRNA. IGF1 and VEGFA protein already decreased after 0.5 h. By contrast, the IGFBP1 mRNA was up-regulated significantly after 2 h to a high plateau. ANGPT2 protein and mRNA significantly increased during the first 2 h, followed by a steep decrease after 4 h. The acute decrease of local luteotropic activity and acute changes of ANGPT2 and VEGFA suggest that modulation of vascular stability may be a key component in the cascade of events leading to functional luteolysis.
Collapse
Affiliation(s)
- Bajram Berisha
- Physiology Weihenstephan, Technical University Munich, Freising, Germany.
| | | | | |
Collapse
|
42
|
SHIRASUNA K, ASAHI T, SASAKI M, SHIMIZU T, MIYAMOTO A. Distribution of Arteriolovenous Vessels, Capillaries and eNOS Expression in the Bovine Corpus Luteum During the Estrous Cycle: a Possible Implication of Different Sensitivity by Luteal Phase to PGF2.ALPHA. in the Increase of Luteal Blood Flow. J Reprod Dev 2010; 56:124-30. [DOI: 10.1262/jrd.09-106o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Koumei SHIRASUNA
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Takayuki ASAHI
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Motoki SASAKI
- Department of Basic Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Takashi SHIMIZU
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Akio MIYAMOTO
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
43
|
SHIRASUNA K. Nitric Oxide and Luteal Blood Flow in the Luteolytic Cascade in the Cow. J Reprod Dev 2010; 56:9-14. [DOI: 10.1262/jrd.09-206e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Koumei SHIRASUNA
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
44
|
Lekatz LA, Caton JS, Taylor JB, Reynolds LP, Redmer DA, Vonnahme KA. Maternal selenium supplementation and timing of nutrient restriction in pregnant sheep: effects on maternal endocrine status and placental characteristics. J Anim Sci 2009; 88:955-71. [PMID: 19933425 DOI: 10.2527/jas.2009-2152] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of maternal Se intake and plane of nutrition during midgestation, late gestation, or both on hormone and metabolite concentrations in the dam and on placental characteristics, pregnant ewe lambs (n = 64) were assigned to 1 of 8 treatments arranged in a 2 x 2 x 2 factorial array: Se level [initiated at breeding; adequate (3.05 microg/kg of BW) or high (70.4 microg/kg of BW)] and nutritional level [100% (control) or 60% (restricted) of NRC recommendations] fed at different times of gestation [d 50 to 90 (midgestation) or d 91 to 130 (late gestation)]. The control ewes had a greater (P = 0.01) percentage change in BW from d 50 than restricted ewes during both mid- and late gestation. Although blood urea N was not affected by either Se or nutritional level, restricted ewes had greater (P = 0.01) concentrations of circulating Se on d 66, 78, 106, 120, and 130 of gestation compared with control ewes. Both Se and timing of the nutritional level affected circulating progesterone; however, only nutritional level affected thyroxine and triiodothyronine concentrations in the dam. Nutrient restriction during late gestation decreased (P <or= 0.01) fetal BW and fetal fluid weight compared with the control ewes (3.75 vs. 4.13 +/- 0.10 kg and 1.61 vs. 2.11 +/- 0.11 kg). Although neither Se nor nutritional level affected (P >or= 0.1) placental, caruncular, or cotyledonary weights, cotyledonary cellular proliferation was decreased (P < 0.05) in ewes receiving a high concentration of Se compared with those receiving adequate Se. In addition, either Se or nutritional level affected vascular endothelial growth factor (VEGFA), VEGFA-receptor 1, VEGFA-receptor 2, and NO synthase mRNA abundance in the cotyledonary tissue. In the caruncular tissue, either Se or nutritional level affected VEGFA-receptor 1, placental growth factor, and NO synthase mRNA abundance. Selenium supplementation and the duration or timing of nutrient restriction appear to influence the endocrine and metabolic status of the ewe, which may influence nutrient transport and placental function.
Collapse
Affiliation(s)
- L A Lekatz
- Department of Animal Sciences, North Dakota State University, Center for Nutrition and Pregnancy, Fargo 58108, USA
| | | | | | | | | | | |
Collapse
|
45
|
Miyamoto A, Shirasuna K, Sasahara K. Local regulation of corpus luteum development and regression in the cow: Impact of angiogenic and vasoactive factors. Domest Anim Endocrinol 2009; 37:159-69. [PMID: 19592192 DOI: 10.1016/j.domaniend.2009.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/18/2009] [Accepted: 04/22/2009] [Indexed: 11/23/2022]
Abstract
The corpus luteum (CL) of the estrous cycle in the cow is a dynamic organ which has a life time of approximately 17-18 days. The main function of the CL is to secrete a large amount of progesterone (P) thereby supporting the achievement of pregnancy. As the CL matures, the steroidogenic cells establish contact with many capillaries and the matured CL is composed of many vascular endothelial cells that account for up to 50% of all CL cells. The bovine CL produces several major angiogenic and vasoactive foctors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiopoietin-1 and -2 (ANPT-1 and -2), prostaglandin F(2alpha) (PGF(2alpha)), endothelin-1 (EDN1), angiotensin II (Ang II) and nitric oxide (NO). These factors regulate P secretion directly and/or indirectly within the CL. Moreover, different actions of PGF(2alpha) in the early cycle CL (non-luteolytic) and the mid cycle CL (luteolytic) may provide insight into the luteolysis cascade in the cow. The aim of the present review is to describe the current concepts of the local mechanisms for the cascade of development and regression of the bovine CL as regulated by luteal angiogenic and vasoactive factors.
Collapse
Affiliation(s)
- A Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan.
| | | | | |
Collapse
|
46
|
Lee SH, Acosta TJ, Yoshioka S, Okuda K. Prostaglandin F(2alpha) regulates the nitric oxide generating system in bovine luteal endothelial cells. J Reprod Dev 2009; 55:418-24. [PMID: 19404000 DOI: 10.1262/jrd.20205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to elucidate whether luteolytic prostaglandin F(2alpha) (PGF) plays roles in regulating the nitric oxide (NO) generating system in luteal endothelial cells (LECs). Reverse transcriptase PCR, immunoblotting and immunostaining revealed the presence of PGF receptor mRNA (521 bp) and protein (64 kDa) in cultured LECs obtained from the mid-stage corpus luteum. When cultured LECs were exposed to 0.1 microM-10 microM PGF, NO production was significantly stimulated by PGF at 24 h. When LECs were exposed to 1 microM PGF for 2, 6 and 24 h, PGF did not affect the expressions of endothelial NO synthase (eNOS) mRNA and protein. On the other hand, PGF stimulated the expression of inducible NOS (iNOS) mRNA (P<0.05) and protein (P<0.05) at 2 h, but not at 6 and 24 h. By observing the conversion of [(3)C](L)-arginine to [(3)C](L)-citrulline, we found that PGF stimulated NOS activity in cultured LECs at 2 h (P<0.05). The overall findings indicate that bovine LECs are a target for PGF and that PGF stimulates iNOS expression and NOS activity in bovine LECs. Stimulation of the NO generating system and NOS activity by PGF may result in increasing local NO production followed by luteolysis.
Collapse
Affiliation(s)
- Seung-Hyung Lee
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | |
Collapse
|
47
|
Grazul-Bilska AT, Caton JS, Arndt W, Burchill K, Thorson C, Borowczyk E, Bilski JJ, Redmer DA, Reynolds LP, Vonnahme KA. Cellular proliferation and vascularization in ovine fetal ovaries: effects of undernutrition and selenium in maternal diet. Reproduction 2009; 137:699-707. [DOI: 10.1530/rep-08-0375] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sheep were fed a maintenance (M) diet with adequate (A) Se or high (H) Se concentration from 21 days before breeding to day 135 of pregnancy. From day 50 to day 135 of pregnancy (tissue collection day), a portion of the ewes from ASe and HSe groups were fed restricted (R; 60% of M) diet. Fetal ovarian sections were stained for: 1) the presence of proliferating cell nuclear antigen (a marker of proliferating cells) to determine the proportion of proliferating primordial follicles, or the labeling index (LI; percentage of proliferating cells) for primordial, primary, secondary and antral follicles, stromal tissues, and blood vessels; 2) factor VIII (a marker of endothelial cells) or 3) a presence of apoptotic cells/bodies. The number of proliferating primordial follicles and the LI of primordial follicles was decreased by R and/or HSe diets. The LI was similar for theca and granulosa cells, and for secondary or antral follicles, but was greater in secondary and antral than in primordial and primary follicles. R diet and/or Se affected the LI in all follicle types, in stromal tissues and blood vessels. A dense network of blood vessels was detected in the areas containing secondary to antral follicles, medulla, and hilus, but areas containing primordial follicles were poorly vascularized. The number of apoptotic cells was minimal. These results demonstrate that nutrient restriction and/or Se level in the maternal diet affected cellular proliferation in follicles, blood vessels, and stromal tissues in fetal ovaries. Thus, plane of nutrition and Se in the maternal diet may impact fetal ovarian development and function.
Collapse
|
48
|
Berisha B, Bridger P, Toth A, Kliem H, Meyer HHD, Schams D, Pfarrer C. Expression and localization of gap junctional connexins 26 and 43 in bovine periovulatory follicles and in corpus luteum during different functional stages of oestrous cycle and pregnancy. Reprod Domest Anim 2008; 44:295-302. [PMID: 19032438 DOI: 10.1111/j.1439-0531.2008.01068.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to characterize the regulation of connexins (Cx26 and Cx43) in the bovine ovary (experiment 1-3). Experiment 1: ovaries containing preovulatory follicles or corpora lutea (CL) were collected at 0, 4, 10, 20, 25 (follicles) and 60 h (CL) relative to injection of GnRH. Experiment 2: CL were assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16, >18 (after regression) of oestrous cycle and of early and late pregnancy (<4 and >4 months). Experiment 3: induced luteolysis, cows on days 8-12 were injected with PGF2alpha analogue (Cloprostenol), and CL were collected by transvaginal ovariectomy before and 0.5, 2, 4, 12, 24, 48 and 64 h after PGF2alpha injection. Real-time RT-PCR was applied to investigate mRNA expression and immunofluorescence was utilized for protein localization. Cx26 mRNA increased rapidly 4 h after GnRH injection (during LH surge) and decreased afterwards during the whole experimental period. Cx43 mRNA expression decreased continuously after GnRH application. Cx26 mRNA in CL increased significantly in the second part of oestrous cycle and after regression. In contrast, the highest mRNA expression for Cx43 in CL was detected during the early luteal phase. After induced luteolysis the mRNA expression of Cx26 increased significantly at 24 h. As shown by immunofluorescence, Cx26 was predominantly localized in the connective tissue and blood vessels of bovine CL, whereas Cx43 was present in the luteal cells and blood vessels. This resulted in a strong increase of Cx26 expression during the late luteal phase and after luteal regression. Subsequently, Cx43 expression was distinctly decreased after luteal regression. These data suggest that Cx26 and Cx43 are involved in the local cellular mechanisms participating in tissue remodelling during the critical time around periovulation as well as during CL formation (angiogenesis), function and regression in the bovine ovary.
Collapse
Affiliation(s)
- B Berisha
- Physiology Weihenstephan, Technical University Munich, Weihenstephaner Berg 3, Freising-Weihenstephan, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
O'Neil MR, Lardy GP, Reynolds LP, Caton JS, Vonnahme KA. Impacts of linseed meal and estradiol-17β on mass, cellularity, angiogenic factors, and vascularity of the jejunum1. J Anim Sci 2008; 86:3014-22. [DOI: 10.2527/jas.2008-1086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
50
|
Vonnahme KA, Arndt WJ, Johnson ML, Borowicz PP, Reynolds LP. Effect of morphology on placentome size, vascularity, and vasoreactivity in late pregnant sheep. Biol Reprod 2008; 79:976-82. [PMID: 18685124 DOI: 10.1095/biolreprod.108.070748] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Ovine placentomes vary in shape, with type A placentomes being concave, type D convex, and types B and C intermediate in morphology. It has been speculated that as placentomes advance in type they differ in vascularity and nutrient transport capacity. Our objective was to determine cellularity and vascularity measurements, angiogenic factor expression, and arterial vasoactivity within different morphologic types of placentomes. On Day 130 of gestation, placentomes were collected from multiparous ewes (n = 38) and were evaluated for size, cellularity estimates, angiogenic factor mRNA expression, capillary vascularity (capillary size, capillary surface density [CSD], capillary number density [CND], and capillary area density [CAD]), and vasoreactivity to potassium chloride and angiotensin II. The average weight and size of type A and B placentomes were less (P < 0.01) than those of type C and D placentomes. Placentome morphology did not affect (P > or = 0.24) cotyledonary or caruncular cellularity estimates or percentage of cellular proliferation. Placentome morphology affected (P > or = 0.41) neither caruncular CAD, CND, CSD, or capillary size nor cotyledonary CND, CSD, or capillary size. Cotyledonary CAD was increased (P < 0.01) in type B and D placentomes compared with type A placentomes. Furthermore, placentome type did not affect (P > or = 0.06) angiogenic factor gene expression in the cotyledon or the caruncle. Size, but not morphologic type of placentome, was associated with greater caruncular artery contractility to potassium chloride and angiotensin II (P < 0.01 for both). Placentome size, but not morphologic type, may be important for vascularity and nutrient transfer in the placenta of the pregnant ewe.
Collapse
Affiliation(s)
- K A Vonnahme
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota 58105, USA.
| | | | | | | | | |
Collapse
|