1
|
Rezende WS, Neto AM, Corbi JJ, Corbi PP, de Paiva REF, Bergamini FRG. Coordination Compounds as Antivirals against Neglected Tropical Diseases. ChemMedChem 2025; 20:e202400799. [PMID: 39591549 DOI: 10.1002/cmdc.202400799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Neglected tropical viral diseases are a burden to social and economic welfare being responsible for higher pathogen-related mortality rates and chronic debilitating patient conditions. Climatic changes have widened up the infectibility ratio of such diseases, with autochthonous transmission in formerly temperate-to-cold environments. The slow-paced development of potential vaccines followed by the inexistence of antiviral drugs for such diseases considerably worsens the situation. Coordination compounds are a class of molecules that have been extensively explored as antiviral drugs for viruses such as poliovirus, HIV and, more recently, SARS-CoV-2, figuring as potential molecules to be explored and capitalized as antivirals against neglected viral strains. In this review the current efforts from the inorganic medicinal chemistry to address viral neglected tropical diseases, with emphasis to coordination compounds, is presented. Since many of neglected viruses are also arthropod-borne viruses, relying on a vector for transmission, coordination entities able to mitigate vectors are also presented as a parallel strategy to prevent and control such diseases.
Collapse
Affiliation(s)
- Wallace S Rezende
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Antonio Marçal Neto
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Juliano J Corbi
- Department of Hydraulics and Sanitation, University of São Paulo-USP, 13566-590, São Carlos, São Paulo, Brazil
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
| | - Raphael E F de Paiva
- Donostia International Physics Center-DIPC, Paseo Manuel de Lardizabal, 4 Donostia, Euskadi, Gipuzkoa, 20018, Spain
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
2
|
de Almeida MT, Merighi DGS, Visnardi AB, Boneto Gonçalves CA, Amorim VMDF, Ferrari ASDA, de Souza AS, Guzzo CR. Latin America's Dengue Outbreak Poses a Global Health Threat. Viruses 2025; 17:57. [PMID: 39861846 PMCID: PMC11768874 DOI: 10.3390/v17010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of Aedes albopictus mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change. Additionally, global travel accelerates the cross-border spread of mosquito-borne diseases. DENV manifests clinically in a spectrum from asymptomatic cases to severe conditions like dengue hemorrhagic fever and dengue shock syndrome, influenced by viral serotype and host factors. In 2024, Brazil experienced a fourfold increase in dengue cases compared to 2023, accompanied by higher mortality. Conventional control measures, such as vector control, community engagement, and vaccination, proved insufficient as climate change exacerbated mosquito proliferation, challenging containment efforts. In this regard, our review analyzes prevention measures and therapeutic protocols during the outbreak while addressing DENV transmission dynamics, clinical presentations, and epidemiological shifts. It also evaluates diagnostic strategies combining clinical assessment with serological and molecular testing, providing information to improve diagnostic and preventive measures. The global expansion of dengue-endemic regions, including outbreaks in Europe, highlights the urgent need for enhanced surveillance, proactive interventions, and international collaboration to mitigate the growing threat of Dengue and other arboviruses like West Nile, Zika, Chikungunya, Oropouche, and Yellow Fever viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (M.T.d.A.); (D.G.S.M.); (C.A.B.G.); (A.S.d.A.F.)
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (M.T.d.A.); (D.G.S.M.); (C.A.B.G.); (A.S.d.A.F.)
| |
Collapse
|
3
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
4
|
Alarcón-Elbal PM, Suárez-Balseiro C, De Souza C, Soriano-López A, Riggio-Olivares G. History of research on Aedes albopictus (Diptera: Culicidae) in Europe: approaching the world's most invasive mosquito species from a bibliometric perspective. Parasitol Res 2024; 123:130. [PMID: 38340244 DOI: 10.1007/s00436-024-08137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The Asian tiger mosquito, Aedes albopictus (Skuse), is an invasive species native to Southeast Asia. This insect, which is an important vector of arbovirus such as dengue, Zika, and chikungunya, has spread rapidly to several parts of the world over the last few decades. This study employed a bibliometric approach to explore, for the first time, Ae. albopictus research activity and output in Europe. We used the Web of Science Core Collection data source to characterize the current scientific research. A total of 903 publications from 1973 to 2022 were retrieved. We also provided a comprehensive analysis by year of publication; distribution by most productive European countries, institutions, and authors; collaboration networks; research topics; most productive journals; and most cited publications. Results showed a notable increase in the number of studies after the chikungunya virus outbreak in Northeast Italy in 2007. More than 60% of these publications across the entire European continent originated from France and Italy. Research output related to 'population and community ecology' topics was significantly high. The most common type of collaboration was national, which occurred between institutions in the same European country. By providing an overview of Ae. albopictus research in Europe, this work contributes to upcoming debates, decision-making, planning on research and development, and public health strategies on the continent and worldwide.
Collapse
Affiliation(s)
- Pedro María Alarcón-Elbal
- Department of Animal Production and Health, Facultad de Veterinaria, Veterinary Public Health and Food Science and Technology (PASAPTA), Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - Carlos Suárez-Balseiro
- College of Communication and Information, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico.
| | - Cláudia De Souza
- College of Communication and Information, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | - Ashley Soriano-López
- School of Medicine, Universidad Iberoamericana (UNIBE), Santo Domingo, Dominican Republic
| | - Giovanna Riggio-Olivares
- Learning and Research Resources Centre, Universidad Iberoamericana (UNIBE), Santo Domingo, Dominican Republic
| |
Collapse
|
5
|
Li M, Kandul NP, Sun R, Yang T, Benetta ED, Brogan DJ, Antoshechkin I, Sánchez C HM, Zhan Y, DeBeaubien NA, Loh YM, Su MP, Montell C, Marshall JM, Akbari OS. Targeting sex determination to suppress mosquito populations. eLife 2024; 12:RP90199. [PMID: 38289340 PMCID: PMC10945564 DOI: 10.7554/elife.90199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Each year, hundreds of millions of people are infected with arboviruses such as dengue, yellow fever, chikungunya, and Zika, which are all primarily spread by the notorious mosquito Aedes aegypti. Traditional control measures have proven insufficient, necessitating innovations. In response, here we generate a next-generation CRISPR-based precision-guided sterile insect technique (pgSIT) for Ae. aegypti that disrupts genes essential for sex determination and fertility, producing predominantly sterile males that can be deployed at any life stage. Using mathematical models and empirical testing, we demonstrate that released pgSIT males can effectively compete with, suppress, and eliminate caged mosquito populations. This versatile species-specific platform has the potential for field deployment to effectively control wild populations of disease vectors.
Collapse
Affiliation(s)
- Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, BerkeleyBerkeleyUnited States
| | - Nikolay P Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ruichen Sun
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ting Yang
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elena D Benetta
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, BerkeleyBerkeleyUnited States
| | - Daniel J Brogan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, BerkeleyBerkeleyUnited States
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of TechnologyPasadenaUnited States
| | - Héctor M Sánchez C
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, BerkeleyBerkeleyUnited States
| | - Yinpeng Zhan
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research, Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Nicolas A DeBeaubien
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research, Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - YuMin M Loh
- Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Matthew P Su
- Graduate School of Science, Nagoya UniversityNagoyaJapan
- Institute for Advanced Research, Nagoya UniversityNagoyaJapan
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research, Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - John M Marshall
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
6
|
Estevez-Castro CF, Rodrigues MF, Babarit A, Ferreira FV, de Andrade EG, Marois E, Cogni R, Aguiar ERGR, Marques JT, Olmo RP. Neofunctionalization driven by positive selection led to the retention of the loqs2 gene encoding an Aedes specific dsRNA binding protein. BMC Biol 2024; 22:14. [PMID: 38273313 PMCID: PMC10809485 DOI: 10.1186/s12915-024-01821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Mosquito borne viruses, such as dengue, Zika, yellow fever and Chikungunya, cause millions of infections every year. These viruses are mostly transmitted by two urban-adapted mosquito species, Aedes aegypti and Aedes albopictus. Although mechanistic understanding remains largely unknown, Aedes mosquitoes may have unique adaptations that lower the impact of viral infection. Recently, we reported the identification of an Aedes specific double-stranded RNA binding protein (dsRBP), named Loqs2, that is involved in the control of infection by dengue and Zika viruses in mosquitoes. Preliminary analyses suggested that the loqs2 gene is a paralog of loquacious (loqs) and r2d2, two co-factors of the RNA interference (RNAi) pathway, a major antiviral mechanism in insects. RESULTS Here we analyzed the origin and evolution of loqs2. Our data suggest that loqs2 originated from two independent duplications of the first double-stranded RNA binding domain of loqs that occurred before the origin of the Aedes Stegomyia subgenus, around 31 million years ago. We show that the loqs2 gene is evolving under relaxed purifying selection at a faster pace than loqs, with evidence of neofunctionalization driven by positive selection. Accordingly, we observed that Loqs2 is localized mainly in the nucleus, different from R2D2 and both isoforms of Loqs that are cytoplasmic. In contrast to r2d2 and loqs, loqs2 expression is stage- and tissue-specific, restricted mostly to reproductive tissues in adult Ae. aegypti and Ae. albopictus. Transgenic mosquitoes engineered to express loqs2 ubiquitously undergo developmental arrest at larval stages that correlates with massive dysregulation of gene expression without major effects on microRNAs or other endogenous small RNAs, classically associated with RNA interference. CONCLUSIONS Our results uncover the peculiar origin and neofunctionalization of loqs2 driven by positive selection. This study shows an example of unique adaptations in Aedes mosquitoes that could ultimately help explain their effectiveness as virus vectors.
Collapse
Affiliation(s)
- Carlos F Estevez-Castro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403-5289, USA
| | - Antinéa Babarit
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Flávia V Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Elisa G de Andrade
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Eric Marois
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, 45662-900, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
- CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
7
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Li M, Kandul NP, Sun R, Yang T, Benetta ED, Brogan DJ, Antoshechkin I, Sánchez C. HM, Zhan Y, DeBeaubien NA, Loh YM, Su MP, Montell C, Marshall JM, Akbari OS. Targeting Sex Determination to Suppress Mosquito Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537404. [PMID: 37131747 PMCID: PMC10153225 DOI: 10.1101/2023.04.18.537404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Each year, hundreds of millions of people are infected with arboviruses such as dengue, yellow fever, chikungunya, and Zika, which are all primarily spread by the notorious mosquito Aedes aegypti. Traditional control measures have proven insufficient, necessitating innovations. In response, here we generate a next generation CRISPR-based precision-guided sterile insect technique (pgSIT) for Aedes aegypti that disrupts genes essential for sex determination and fertility, producing predominantly sterile males that can be deployed at any life stage. Using mathematical models and empirical testing, we demonstrate that released pgSIT males can effectively compete with, suppress, and eliminate caged mosquito populations. This versatile species-specific platform has the potential for field deployment to effectively control wild populations of disease vectors.
Collapse
Affiliation(s)
- Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nikolay P. Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruichen Sun
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Yang
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elena D. Benetta
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel J. Brogan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA 91125, USA
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Yinpeng Zhan
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nicolas A. DeBeaubien
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - John M. Marshall
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, Berkeley, CA 94720, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Akbari O, Li M, Kandul N, Sun R, Yang T, Dalla Benetta E, Brogan D, Antoshechkin I, Sánchez C H, Zhan YP, DeBeaubien N, Loh Y, Su M, Montell C, Marshall J. Targeting Sex Determination to Suppress Mosquito Populations. RESEARCH SQUARE 2023:rs.3.rs-2834069. [PMID: 37162925 PMCID: PMC10168471 DOI: 10.21203/rs.3.rs-2834069/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Each year, hundreds of millions of people are infected with arboviruses such as dengue, yellow fever, chikungunya, and Zika, which are all primarily spread by the notorious mosquito Aedes aegypti. Traditional control measures have proven insuficient, necessitating innovations. In response, here we generate a next generation CRISPR-based precision-guided sterile insect technique (pgSIT) for Aedes aegypti that disrupts genes essential for sex determination and fertility, producing predominantly sterile males that can be deployed at any life stage. Using mathematical models and empirical testing, we demonstrate that released pgSIT males can effectively compete with, suppress, and eliminate caged mosquito populations. This versatile species-specific platform has the potential for field deployment to control wild populations, safely curtailing disease transmission.
Collapse
Affiliation(s)
- Omar Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California
| | - Ming Li
- University of California, San Diego
| | | | | | | | | | | | | | - Héctor Sánchez C
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley
| | - Yin Peng Zhan
- Institute of Biophysics, Chinese Academy of Sciences
| | | | | | | | | | | |
Collapse
|
10
|
Transcriptome Analysis of Response to Zika Virus Infection in Two Aedes albopictus Strains with Different Vector Competence. Int J Mol Sci 2023; 24:ijms24054257. [PMID: 36901688 PMCID: PMC10002152 DOI: 10.3390/ijms24054257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Zika virus (ZIKV), which is mainly transmitted by Aedes albopictus in temperate zones, can causes serious neurological disorders. However, the molecular mechanisms that influence the vector competence of Ae. albopictus for ZIKV are poorly understood. In this study, the vector competence of Ae. albopictus mosquitoes from Jinghong (JH) and Guangzhou (GZ) Cities of China were evaluated, and transcripts in the midgut and salivary gland tissues were sequenced on 10 days post-infection. The results showed that both Ae. albopictus JH and GZ strains were susceptible to ZIKV, but the GZ strain was more competent. The categories and functions of differentially expressed genes (DEGs) in response to ZIKV infection were quite different between tissues and strains. Through a bioinformatics analysis, a total of 59 DEGs that may affect vector competence were screened-among which, cytochrome P450 304a1 (CYP304a1) was the only gene significantly downregulated in both tissues of two strains. However, CYP304a1 did not influence ZIKV infection and replication in Ae. albopictus under the conditions set in this study. Our results demonstrated that the different vector competence of Ae. albopictus for ZIKV may be determined by the transcripts in the midgut and salivary gland, which will contribute to understanding ZIKV-mosquito interactions and develop arbovirus disease prevention strategies.
Collapse
|
11
|
Belavilas-Trovas A, Gregoriou ME, Tastsoglou S, Soukia O, Giakountis A, Mathiopoulos K. A species-specific lncRNA modulates the reproductive ability of the asian tiger mosquito. Front Bioeng Biotechnol 2022; 10:885767. [PMID: 36091452 PMCID: PMC9448860 DOI: 10.3389/fbioe.2022.885767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Long non-coding RNA (lncRNA) research has emerged as an independent scientific field in recent years. Despite their association with critical cellular and metabolic processes in plenty of organisms, lncRNAs are still a largely unexplored area in mosquito research. We propose that they could serve as exceptional tools for pest management due to unique features they possess. These include low inter-species sequence conservation and high tissue specificity. In the present study, we investigated the role of ovary-specific lncRNAs in the reproductive ability of the Asian tiger mosquito, Aedes albopictus. Through the analysis of transcriptomic data, we identified several lncRNAs that were differentially expressed upon blood feeding; we called these genes Norma (NOn-coding RNA in Mosquito ovAries). We observed that silencing some of these Normas resulted in significant impact on mosquito fecundity and fertility. We further focused on Norma3 whose silencing resulted in 43% oviposition reduction, in smaller ovaries and 53% hatching reduction of the laid eggs, compared to anti-GFP controls. Moreover, a significant downregulation of 2 mucins withing a neighboring (∼100 Kb) mucin cluster was observed in smaller anti-Norma3 ovaries, indicating a potential mechanism of in-cis regulation between Norma3 and the mucins. Our work constitutes the first experimental proof-of-evidence connecting lncRNAs with mosquito reproduction and opens a novel path for pest management.
Collapse
Affiliation(s)
- Alexandros Belavilas-Trovas
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Maria-Eleni Gregoriou
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Olga Soukia
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Antonis Giakountis
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Kostas Mathiopoulos
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
- *Correspondence: Kostas Mathiopoulos,
| |
Collapse
|
12
|
Wang F, Li S, Wang TY, Lopez GA, Antoshechkin I, Chou TF. P97/VCP ATPase inhibitors can rescue p97 mutation-linked motor neuron degeneration. Brain Commun 2022; 4:fcac176. [PMID: 35865348 PMCID: PMC9294923 DOI: 10.1093/braincomms/fcac176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/11/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in p97/VCP cause two motor neuron diseases: inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia and familial amyotrophic lateral sclerosis. How p97 mutations lead to motor neuron degeneration is, however, unknown. Here we used patient-derived induced pluripotent stem cells to generate p97 mutant motor neurons. We reduced the genetic background variation by comparing mutant motor neurons to its isogenic wild type lines. Proteomic analysis reveals that p97R155H/+ motor neurons upregulate several cell cycle proteins at Day 14, but this effect diminishes by Day 20. Molecular changes linked to delayed cell cycle exit are observed in p97 mutant motor neurons. We also find that two p97 inhibitors, CB-5083 and NMS-873, restore some dysregulated protein levels. In addition, two p97 inhibitors and a food and drug administration-approved cyclin-dependent kinase 4/6 inhibitor, Abemaciclib, can rescue motor neuron death. Overall, we successfully used iPSC-derived motor neurons, identified dysregulated proteome and transcriptome and showed that p97 inhibitors rescue phenotypes in this disease model.
Collapse
Affiliation(s)
- F Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - S Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - T Y Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - G A Lopez
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - I Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - T F Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Kelley M, Uhran M, Herbert C, Yoshida G, Watts ER, Limbach PA, Benoit JB. Abundances of transfer RNA modifications and transcriptional levels of tRNA-modifying enzymes are sex-associated in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103741. [PMID: 35181477 PMCID: PMC9034435 DOI: 10.1016/j.ibmb.2022.103741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 06/03/2023]
Abstract
As carriers of multiple human diseases, understanding the mechanisms behind mosquito reproduction may have implications for remediation strategies. Transfer RNA (tRNA) acts as the adapter molecule of amino acids and are key components in protein synthesis. A critical factor in the function of tRNAs is chemical modifications which contribute to codon-anticodon interactions. Here, we provide an assessment of tRNA modifications between sexes for three mosquito species and examine the correlation of transcript levels underlying key proteins involved in tRNA modification. Thirty-three tRNA modifications were detected among mosquito species and most of these modifications are higher in females compared to males for three mosquito species. Analysis of previous male and female RNA-seq datasets indicated a similar increase in transcript levels of tRNA-modifying enzymes in females among six mosquito species, supporting our observed female enrichment of tRNA modifications. Tissues-specific expressional studies revealed higher transcript levels for tRNA-modifying enzymes in the ovaries for Aedes aegypti, but not male reproductive tissues. These studies suggest that tRNA modifications may be critical to reproduction in mosquitoes, representing a potential novel target for control through suppression of fecundity.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA.
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Emmarie R Watts
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Patrick A Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA.
| |
Collapse
|
14
|
Martynova T, Kamanda P, Sim C. Transcriptome profiling reveals sex-specific gene expressions in pupal and adult stages of the mosquito Culex pipiens. INSECT MOLECULAR BIOLOGY 2022; 31:24-32. [PMID: 34460975 PMCID: PMC9190208 DOI: 10.1111/imb.12735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 05/03/2023]
Abstract
Understanding the development process of male and female mosquitoes provides important basic information for sterile insect release programmes and is important for improving other vector control strategies. However, little is known about the molecular mechanisms that distinguish male from female-specific developmental processes in this species. We used IlluminaRNA-seq to identify sex-specific genes during pupal and adult stages. One hundred and forty-seven genes were expressed only in pupal males, 56 genes were expressed in adult males and another 82 genes were commonly expressed in both male samples. In addition, 26 genes were expressed only in the pupal females, 163 genes were found in the adult females and only one gene was expressed in both female samples. A further quantitative real-time PCR validation of selected genes from the RNA sequencing (RNA-seq) analysis confirmed upregulation of those genes in a sex-specific manner, including: fibrinogen and fibronectin, a zinc finger protein, phospholipase A(2) and a serine protein for female pupae; venom allergen 3, a perlecan, testis-specific serine/threonine-protein kinase 1, testis-specific serine/threonine-protein kinase 6 and cytochrome c-2 for male pupae; a salivary protein, D7 protein precursor, trypsin 7 precursor, D7 protein and nanos for female adults; and tetraspanin F139, cytosol aminopeptidase, testis-specific serine/threonine-protein kinase 1, a testis-specific serine/threonine-protein kinase 6 and a C-type lectin for male adults. These findings provide insight into the development and physiology of Culex mosquitoes, which will help in the development of more effective control methods for these disease vectors.
Collapse
|
15
|
Li M, Yang T, Bui M, Gamez S, Wise T, Kandul NP, Liu J, Alcantara L, Lee H, Edula JR, Raban R, Zhan Y, Wang Y, DeBeaubien N, Chen J, Sánchez C HM, Bennett JB, Antoshechkin I, Montell C, Marshall JM, Akbari OS. Suppressing mosquito populations with precision guided sterile males. Nat Commun 2021; 12:5374. [PMID: 34508072 PMCID: PMC8433431 DOI: 10.1038/s41467-021-25421-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
The mosquito Aedes aegypti is the principal vector for arboviruses including dengue/yellow fever, chikungunya, and Zika virus, infecting hundreds of millions of people annually. Unfortunately, traditional control methodologies are insufficient, so innovative control methods are needed. To complement existing measures, here we develop a molecular genetic control system termed precision-guided sterile insect technique (pgSIT) in Aedes aegypti. PgSIT uses a simple CRISPR-based approach to generate flightless females and sterile males that are deployable at any life stage. Supported by mathematical models, we empirically demonstrate that released pgSIT males can compete, suppress, and even eliminate mosquito populations. This platform technology could be used in the field, and adapted to many vectors, for controlling wild populations to curtail disease in a safe, confinable, and reversible manner. A. aegypti is the principal vector for arboviruses that impact on human health and wellbeing. Here the authors use precision guided sterile insect technique—pgSIT—to suppress or eliminate mosquito populations in multigeneration cage experiments.
Collapse
Affiliation(s)
- Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Michelle Bui
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Tyler Wise
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nikolay P Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Lenissa Alcantara
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Haena Lee
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Jyotheeswara R Edula
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.,Tata Institute for Genetics and Society, La Jolla, CA, USA.,Tata Institute for Genetics and Society (TIGS), TIGS Center at inStem, GKVK Campus, Bangalore, Karnataka, India
| | - Robyn Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Yinpeng Zhan
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Yijin Wang
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Nick DeBeaubien
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Jieyan Chen
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Héctor M Sánchez C
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Jared B Bennett
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, USA.,Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - John M Marshall
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA. .,Tata Institute for Genetics and Society, La Jolla, CA, USA.
| |
Collapse
|
16
|
Parry R, James ME, Asgari S. Uncovering the Worldwide Diversity and Evolution of the Virome of the Mosquitoes Aedes aegypti and Aedes albopictus. Microorganisms 2021; 9:1653. [PMID: 34442732 PMCID: PMC8398489 DOI: 10.3390/microorganisms9081653] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the Asian tiger mosquito, are the most significant vectors of dengue, Zika, and Chikungunya viruses globally. Studies examining host factors that control arbovirus transmission demonstrate that insect-specific viruses (ISVs) can modulate mosquitoes' susceptibility to arbovirus infection in both in vivo and in vitro co-infection models. While research is ongoing to implicate individual ISVs as proviral or antiviral factors, we have a limited understanding of the composition and diversity of the Aedes virome. To address this gap, we used a meta-analysis approach to uncover virome diversity by analysing ~3000 available RNA sequencing libraries representing a worldwide geographic range for both mosquitoes. We identified ten novel viruses and previously characterised viruses, including mononegaviruses, orthomyxoviruses, negeviruses, and a novel bi-segmented negev-like group. Phylogenetic analysis suggests close relatedness to mosquito viruses implying likely insect host range except for one arbovirus, the multi-segmented Jingmen tick virus (Flaviviridae) in an Italian colony of Ae. albopictus. Individual mosquito transcriptomes revealed remarkable inter-host variation of ISVs within individuals from the same colony and heterogeneity between different laboratory strains. Additionally, we identified striking virus diversity in Wolbachia infected Aedes cell lines. This study expands our understanding of the virome of these important vectors. It provides a resource for further assessing the ecology, evolution, and interaction of ISVs with their mosquito hosts and the arboviruses they transmit.
Collapse
Affiliation(s)
- Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maddie E James
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (M.E.J.); (S.A.)
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (M.E.J.); (S.A.)
| |
Collapse
|
17
|
Nag DK, Dieme C, Lapierre P, Lasek-Nesselquist E, Kramer LD. RNA-Seq analysis of blood meal induced gene-expression changes in Aedes aegypti ovaries. BMC Genomics 2021; 22:396. [PMID: 34044772 PMCID: PMC8161926 DOI: 10.1186/s12864-021-07551-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
Background Transmission of pathogens by vector mosquitoes is intrinsically linked with mosquito’s reproductive strategy because anautogenous mosquitoes require vertebrate blood to develop a batch of eggs. Each cycle of egg maturation is tightly linked with the intake of a fresh blood meal for most species. Mosquitoes that acquire pathogens during the first blood feeding can transmit the pathogens to susceptible hosts during subsequent blood feeding and also vertically to the next generation via infected eggs. Large-scale gene-expression changes occur following each blood meal in various tissues, including ovaries. Here we analyzed mosquito ovary transcriptome following a blood meal at three different time points to investigate blood-meal induced changes in gene expression in mosquito ovaries. Results We collected ovaries from Aedes aegypti that received a sugar meal or a blood meal on days 3, 10 and 20 post blood meal for transcriptome analysis. Over 4000 genes responded differentially following ingestion of a blood meal on day 3, and 660 and 780 genes on days 10 and 20, respectively. Proteins encoded by differentially expressed genes (DEGs) on day 3 include odorant binding proteins (OBPs), defense-specific proteins, and cytochrome P450 detoxification enzymes. In addition, we identified 580 long non-coding RNAs that are differentially expressed at three time points. Gene ontology analysis indicated that genes involved in peptidase activity, oxidoreductase activity, extracellular space, and hydrolase activity, among others were enriched on day 3. Although most of the DEGs returned to the nonsignificant level compared to the sugar-fed mosquito ovaries following oviposition on days 10 and 20, there remained differences in the gene expression pattern in sugar-fed and blood-fed mosquitoes. Conclusions Enrichment of OBPs following blood meal ingestion suggests that these genes may have other functions besides being part of the olfactory system. The enrichment of immune-specific genes and cytochrome P450 genes indicates that ovaries become well prepared to protect their germ line from any pathogens that may accompany the blood meal or from environmental contamination during oviposition, and to deal with the detrimental effects of toxic metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07551-z.
Collapse
Affiliation(s)
- Dilip K Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA.
| | - Constentin Dieme
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
| | - Pascal Lapierre
- Bioinformatics Core, Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY, 12208, USA
| | - Erica Lasek-Nesselquist
- Bioinformatics Core, Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY, 12208, USA.,Department of Biomedical Sciences, State University of New York, School of Public Health, Albany, NY, 12208, USA
| | - Laura D Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA.,Department of Biomedical Sciences, State University of New York, School of Public Health, Albany, NY, 12208, USA
| |
Collapse
|
18
|
Ma Q, Srivastav SP, Gamez S, Dayama G, Feitosa-Suntheimer F, Patterson EI, Johnson RM, Matson EM, Gold AS, Brackney DE, Connor JH, Colpitts TM, Hughes GL, Rasgon JL, Nolan T, Akbari OS, Lau NC. A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Res 2021; 31:512-528. [PMID: 33419731 PMCID: PMC7919454 DOI: 10.1101/gr.265157.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.
Collapse
Affiliation(s)
- Qicheng Ma
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Satyam P Srivastav
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Gargi Dayama
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Edward I Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Rebecca M Johnson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Erik M Matson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alexander S Gold
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Douglas E Brackney
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - John H Connor
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Tonya M Colpitts
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Nolan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Boston University Genome Science Institute and the National Emerging Infectious Disease Laboratory, Boston, Massachusetts 02118, USA
| |
Collapse
|
19
|
Azlan A, Obeidat SM, Theva Das K, Yunus MA, Azzam G. Genome-wide identification of Aedes albopictus long noncoding RNAs and their association with dengue and Zika virus infection. PLoS Negl Trop Dis 2021; 15:e0008351. [PMID: 33481791 PMCID: PMC7872224 DOI: 10.1371/journal.pntd.0008351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 02/09/2021] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is an important vector that transmits arboviruses such as dengue (DENV), Zika (ZIKV) and Chikungunya virus (CHIKV). Long noncoding RNAs (lncRNAs) are known to regulate various biological processes. Knowledge on Ae. albopictus lncRNAs and their functional role in virus-host interactions are still limited. Here, we identified and characterized the lncRNAs in the genome of an arbovirus vector, Ae. albopictus, and evaluated their potential involvement in DENV and ZIKV infection. We used 148 public datasets, and identified a total of 10, 867 novel lncRNA transcripts, of which 5,809, 4,139, and 919 were intergenic, intronic and antisense respectively. The Ae. albopictus lncRNAs shared many characteristics with other species such as short length, low GC content, and low sequence conservation. RNA-sequencing of Ae. albopictus cells infected with DENV and ZIKV showed that the expression of lncRNAs was altered upon virus infection. Target prediction analysis revealed that Ae. albopictus lncRNAs may regulate the expression of genes involved in immunity and other metabolic and cellular processes. To verify the role of lncRNAs in virus infection, we generated mutations in lncRNA loci using CRISPR-Cas9, and discovered that two lncRNA loci mutations, namely XLOC_029733 (novel lncRNA transcript id: lncRNA_27639.2) and LOC115270134 (known lncRNA transcript id: XR_003899061.1) resulted in enhancement of DENV and ZIKV replication. The results presented here provide an important foundation for future studies of lncRNAs and their relationship with virus infection in Ae. albopictus. Ae. albopictus is an important vector of arboviruses such as dengue and Zika viruses. Studies on virus-host interaction at gene expression and molecular level are crucial especially in devising methods to inhibit virus replication in Aedes mosquitoes. Previous reports have shown that, besides protein-coding genes, noncoding RNAs such as lncRNAs are also involved in virus-host interaction. In this study, we report a comprehensive catalog of novel lncRNA transcripts in the genome of Ae. albopictus. We also show that the expression of lncRNAs was altered upon infection with dengue and Zika. Additionally, depletion of certain lncRNAs resulted in increased replication of dengue and Zika; hence, suggesting potential association of lncRNAs in virus infection. Results of this study provide a new avenue to the investigation of mosquito-virus interactions, especially in the aspect of noncoding genes.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sattam M. Obeidat
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Kumitaa Theva Das
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Muhammad Amir Yunus
- Infectomics Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- * E-mail:
| |
Collapse
|
20
|
Gamez S, Srivastav S, Akbari OS, Lau NC. Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells 2020; 9:E2180. [PMID: 32992598 PMCID: PMC7601171 DOI: 10.3390/cells9102180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Animals face the dual threat of virus infections hijacking cellular function and transposons proliferating in germline genomes. For insects, the deeply conserved RNA interference (RNAi) pathways and other chromatin regulators provide an important line of defense against both viruses and transposons. For example, this innate immune system displays adaptiveness to new invasions by generating cognate small RNAs for targeting gene silencing measures against the viral and genomic intruders. However, within the Dipteran clade of insects, Drosophilid fruit flies and Culicids mosquitoes have evolved several unique mechanistic aspects of their RNAi defenses to combat invading transposons and viruses, with the Piwi-piRNA arm of the RNAi pathways showing the greatest degree of novel evolution. Whereas central features of Piwi-piRNA pathways are conserved between Drosophilids and Culicids, multiple lineage-specific innovations have arisen that may reflect distinct genome composition differences and specific ecological and physiological features dividing these two branches of Dipterans. This perspective review focuses on the most recent findings illuminating the Piwi/piRNA pathway distinctions between fruit flies and mosquitoes, and raises open questions that need to be addressed in order to ameliorate human diseases caused by pathogenic viruses that mosquitoes transmit as vectors.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA;
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Nelson C. Lau
- Department of Biochemistry and Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
21
|
Palatini U, Masri RA, Cosme LV, Koren S, Thibaud-Nissen F, Biedler JK, Krsticevic F, Johnston JS, Halbach R, Crawford JE, Antoshechkin I, Failloux AB, Pischedda E, Marconcini M, Ghurye J, Rhie A, Sharma A, Karagodin DA, Jenrette J, Gamez S, Miesen P, Masterson P, Caccone A, Sharakhova MV, Tu Z, Papathanos PA, Van Rij RP, Akbari OS, Powell J, Phillippy AM, Bonizzoni M. Improved reference genome of the arboviral vector Aedes albopictus. Genome Biol 2020; 21:215. [PMID: 32847630 PMCID: PMC7448346 DOI: 10.1186/s13059-020-02141-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae. albopictus genome is essential to develop new approaches that involve genetic manipulation of mosquitoes. RESULTS We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of the Ae. albopictus genome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. CONCLUSION The AalbF2 genome assembly represents the most up-to-date collective knowledge of the Ae. albopictus genome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures.
Collapse
Affiliation(s)
- Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Reem A Masri
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Luciano V Cosme
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511-8934, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892-2152, MD, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - James K Biedler
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Flavia Krsticevic
- Department of Entomology, Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Rebecca Halbach
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Anna-Bella Failloux
- Department of Virology, Arbovirus and Insect Vectors Units, Institut Pasteur, Paris, 75015, France
| | - Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Jay Ghurye
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892-2152, MD, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892-2152, MD, USA
| | - Atashi Sharma
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Dmitry A Karagodin
- Laboratory of Evolutionary Genomics of Insects, The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Jeremy Jenrette
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Stephanie Gamez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511-8934, USA
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
- Laboratory of Evolutionary Genomics of Insects, The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, 634041, Russia
| | - Zhijian Tu
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, Blacksburg, VA, 24061, USA
| | - Philippos A Papathanos
- Department of Entomology, Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Ronald P Van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Omar S Akbari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | - Jeffrey Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511-8934, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, 20892-2152, MD, USA
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy.
| |
Collapse
|
22
|
Abstract
CRISPR-Cas genome editing technologies have revolutionized the fields of functional genetics and genome engineering, but with the recent discovery and optimization of RNA-targeting Cas ribonucleases, we may soon see a similar revolution in the study of RNA function and transcriptome engineering. However, to date, successful proof of principle for Cas ribonuclease RNA targeting in eukaryotic systems has been limited. Only recently has successful modification of RNA expression by a Cas ribonuclease been demonstrated in animal embryos. This previous work, however, did not evaluate endogenous expression of Cas ribonucleases and only focused on function in early developmental stages. A more comprehensive evaluation of this technology is needed to assess its potential impact. Here we report on our efforts to develop a programmable platform for RNA targeting using a Cas ribonuclease, CasRx, in the model organism Drosophila melanogaster. By genetically encoding CasRx in flies, we demonstrate moderate transcript targeting of known phenotypic genes in addition to unexpected toxicity and lethality. We also report on the off-target effects following on-target transcript cleavage by CasRx. Taken together, our results present the current state and limitations of a genetically encoded programmable RNA-targeting Cas system in Drosophila melanogaster, paving the way for future optimization of the system.
Collapse
Affiliation(s)
- Anna B. Buchman
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Dan J. Brogan
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Ruichen Sun
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Ting Yang
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Patrick D. Hsu
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|