1
|
Ghosh G, Das D, Nandi A, De S, Gangappa SN, Prasad M. Ecdysone regulates phagocytic cell fate of epithelial cells in developing Drosophila eggs. J Cell Biol 2025; 224:e202411073. [PMID: 40434296 PMCID: PMC12118371 DOI: 10.1083/jcb.202411073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/01/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Acquisition of nonprofessional phagocytic cell fate plays an important role in sculpting functional metazoan organs and maintaining overall tissue homeostasis. Though physiologically highly relevant, how the normal epithelial cells acquire phagocytic fate is still mostly unclear. We have employed the Drosophila ovary model to demonstrate that the classical ecdysone signaling in the somatic epithelial follicle cells (AFCs) aids the removal of germline nurse cells (NCs) in late oogenesis. Our live-cell imaging data reveal a novel phenomenon wherein collective behavior of 4-5 AFCs is required for clearing a single NC. By employing classical genetics, molecular biology, and yeast one-hybrid assay, we demonstrate that ecdysone modulates the phagocytic disposition of AFCs at two levels. It regulates the epithelial-mesenchymal transition of the AFCs through Serpent and modulates the phagocytic behavior of the AFCs through Croquemort and Draper. Our data provide unprecedented novel molecular insights into how ecdysone signaling reprograms AFCs toward a phagocytic fate.
Collapse
Affiliation(s)
- Gaurab Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Devyan Das
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Abhrajyoti Nandi
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Souvik De
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Sreeramaiah N. Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| |
Collapse
|
2
|
Basu A, Singh A, Prasad NG. Timing of starvation determines its effects on susceptibility to bacterial infection in female fruit flies independent of host evolutionary history. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104794. [PMID: 40096990 DOI: 10.1016/j.jinsphys.2025.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
An organism's susceptibility to pathogens is contingent on various environmental factors, including the availability of nutrition. Starvation can alter host susceptibility to infections, either directly via depletion of resources essential for proper functioning of the immune system, or indirectly via the various physiological changes it induces within the host body. We tested if the susceptibility of Drosophila melanogaster populations to Enterococcus faecalis infection is interactively affected by (a) whether the hosts are starved before or after the infection, and (b) the evolutionary history of the host. Hosts from laboratory fly populations that have been experimentally evolved to be more resistant to E. faecalis, and their corresponding control populations, were subjected to infection with or without being starved prior to and after being infected. We found that the effect of starvation on susceptibility to E. faecalis changed with the timing of starvation: starvation after infection improved survival of infected hosts, irrespective of how they were treated before infection, while starving only prior to infection (and not after) compromised post-infection survival. The changes in infection susceptibility were uniform in both the evolved and the control populations, suggesting that the effects of starvation are not dependent on pre-existing resistance to the infecting pathogen.
Collapse
Affiliation(s)
- Aabeer Basu
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| | - Aparajita Singh
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Nagaraj Guru Prasad
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
3
|
Balachandra S, Amodeo AA. Bellymount-pulsed tracking: a novel approach for real-time in vivo imaging of Drosophila abdominal tissues. G3 (BETHESDA, MD.) 2025; 15:jkae271. [PMID: 39556480 PMCID: PMC11708215 DOI: 10.1093/g3journal/jkae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Quantitative live imaging is a valuable tool that offers insights into cellular dynamics. However, many fundamental biological processes are incompatible with current live-imaging modalities. Drosophila oogenesis is a well-studied system that has provided molecular insights into a range of cellular and developmental processes. The length of the oogenesis, coupled with the requirement for inputs from multiple tissues, has made long-term culture challenging. Here, we have developed Bellymount-pulsed tracking (Bellymount-PT), which allows continuous, noninvasive live imaging of Drosophila oogenesis inside the female abdomen for up to 16 h. Bellymount-PT improves upon the existing Bellymount technique by adding pulsed anesthesia with periods of feeding that support the long-term survival of flies during imaging. Using Bellymount-PT, we measure key events of oogenesis, including egg chamber growth, yolk uptake, and transfer of specific proteins to the oocyte during nurse cell dumping with high spatiotemporal precision within the abdomen of a live female.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Basu A, Singh A, Sehgal S, Madaan T, Prasad NG. Starvation increases susceptibility to bacterial infection and promotes systemic pathogen proliferation in Drosophila melanogaster females. J Invertebr Pathol 2024; 207:108209. [PMID: 39322010 DOI: 10.1016/j.jip.2024.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Defense against pathogens and parasites requires substantial investment of energy and resources on part of the host. This makes the host immune function dependent on availability and accessibility of resources. A resource deprived host is therefore expected to be more susceptible to infections, although empirical results do not always align with this prediction. Limiting host access to resources can additionally impact within-host pathogen numbers, either directly by altering the amount of resources available to the pathogens for proliferation or indirectly by altering the efficiency of the host immune system. We tested for the effects of host starvation (complete deprivation of resources) on susceptibility to bacterial pathogens, and within-host pathogen proliferation, in Drosophila melanogaster females. Our results show that starvation increases post-infection mortality of the host, but in a pathogen-specific manner. This increase in mortality is always accompanied by increased within-host pathogen proliferation. We therefore propose that starvation compromises host resistance to bacterial infections in Drosophila melanogaster females thereby increasing susceptibility to infections.
Collapse
Affiliation(s)
- Aabeer Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Aparajita Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Suhaas Sehgal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland(2).
| | - Tanvi Madaan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India; Institute of Science and Technology Austria, Klosterneuburg, Austria(2).
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| |
Collapse
|
5
|
Ceretti A, Yang Z, Schneider JE. Metabolic pathways that mediate the effects of food deprivation on reproductive behavior in female Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 2024; 327:R234-R249. [PMID: 38842518 DOI: 10.1152/ajpregu.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
In most species studied, energy deficits inhibit female reproductive behavior, but the location and nature of energy sensors and how they affect behavior are unknown. Progress has been facilitated by using Drosophila melanogaster, a species in which reproduction and food availability are closely linked. Adult males and females were either fed or food deprived (FD) and then tested in an arena with a fed, opposite-sex conspecific with no food in the testing arena. Only FD females (not FD males) significantly decreased their copulation rate and increased their copulation latency, and the effects of FD were prevented in females fed either yeast alone or glucose alone, but not sucralose alone, cholesterol alone, or amino acids alone. It is well-known that high-fat diets inhibit copulation rate in this species, and the effects of FD on copulation rate were mimicked by treatment with an inhibitor of glucose but not free fatty acid oxidation. The availability of oxidizable glucose was a necessary condition for copulation rate in females fed either yeast alone or fed a nutritive fly medium, which suggests that the critical component of yeast for female copulation rate is oxidizable glucose. Thus, female copulation rate in D. melanogaster is sensitive to the availability of oxidizable metabolic fuels, particularly the availability of oxidizable glucose or substrates/byproducts of glycolysis.NEW & NOTEWORTHY Copulation rate was decreased in food-deprived female but not in male adults when tested without food in the testing arena. Copulation rate was 1) maintained by feeding glucose alone, yeast alone, nutritive medium lacking yeast, but not sucralose, amino acids, or cholesterol alone; 2) decreased by inhibition of glycolysis in females fed either nutritive medium or yeast alone; and 3) not affected by inhibition of fatty acid oxidation. Thus, female copulation rate was linked to glycolytic status.
Collapse
Affiliation(s)
- Attilio Ceretti
- Department of Biological SciencesLehigh University, Bethlehem, Pennsylvania, United States
| | - Zimo Yang
- Department of Biological SciencesLehigh University, Bethlehem, Pennsylvania, United States
| | - Jill E Schneider
- Department of Biological SciencesLehigh University, Bethlehem, Pennsylvania, United States
| |
Collapse
|
6
|
Strilbytska O, Yurkevych I, Semaniuk U, Gospodaryov D, Simpson SJ, Lushchak O. Life-History Trade-Offs in Drosophila: Flies Select a Diet to Maximize Reproduction at the Expense of Lifespan. J Gerontol A Biol Sci Med Sci 2024; 79:glae057. [PMID: 38422395 PMCID: PMC11491752 DOI: 10.1093/gerona/glae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 03/02/2024] Open
Abstract
Macronutrient intake impacts physiology, behavior, and gene expression in a wide range of organisms. We used the response surface methodology to compare how life history traits, lifespan, and reproduction differ as a function of protein and carbohydrate intakes under choice and no-choice feeding regimens in the fruit fly, Drosophila melanogaster. We found that when offered a choice of nutritionally complementary foods mated female flies regulated toward a protein to carbohydrate ratio (P:C) that was associated with shortened lifespan and maximal egg production when compared to response surfaces derived from flies fed 1 of a range of fixed diets differing in P:C (no-choice regimen). This difference in lifespan between choice and no-choice feeding was not seen in males or virgin flies, reflecting the fact that increased protein intake is triggered by mating to support egg production. However, whereas in mated females a higher P:C intake was associated with greater egg production under both choice and no-choice feeding, contrary to expectations, choice-fed mated flies laid fewer eggs than no-choice flies on equivalent macronutrient intakes, perhaps reflecting that they had to ingest twice the volume of food to attain an equivalent intake of nutrients than no-choice flies on a diet of equivalent P:C ratio.
Collapse
Affiliation(s)
- Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
7
|
Balachandra S, Amodeo AA. Bellymount-Pulsed Tracking: A Novel Approach for Real-Time In vivo Imaging of Drosophila Abdominal Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587498. [PMID: 38617254 PMCID: PMC11014545 DOI: 10.1101/2024.03.31.587498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Quantitative live imaging is a valuable tool that offers insights into cellular dynamics. However, many fundamental biological processes are incompatible with current live imaging modalities. Drosophila oogenesis is a well-studied system that has provided molecular insights into a range of cellular and developmental processes. The length of the oogenesis coupled with the requirement for inputs from multiple tissues has made long-term culture challenging. Here, we have developed Bellymount-Pulsed Tracking (Bellymount-PT), which allows continuous, non-invasive live imaging of Drosophila oogenesis inside the female abdomen for up to 16 hours. Bellymount-PT improves upon the existing Bellymount technique by adding pulsed anesthesia with periods of feeding that support the long-term survival of flies during imaging. Using Bellymount-PT we measure key events of oogenesis including egg chamber growth, yolk uptake, and transfer of specific proteins to the oocyte during nurse cell dumping with high spatiotemporal precision within the abdomen of a live female.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
8
|
Grmai L, Michaca M, Lackner E, Nampoothiri V P N, Vasudevan D. Integrated stress response signaling acts as a metabolic sensor in fat tissues to regulate oocyte maturation and ovulation. Cell Rep 2024; 43:113863. [PMID: 38457339 PMCID: PMC11077669 DOI: 10.1016/j.celrep.2024.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the integrated stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor that instructs oogenesis. We demonstrate that Atf4 regulates lipase activity to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient-sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat-body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction-directly by impacting yolk lipoprotein production and follicle maturation and systemically by regulating ovulation.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Manuel Michaca
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily Lackner
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Deepika Vasudevan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Lye PY, Shiraki C, Fukushima Y, Takaki K, Liew MWO, Yamamoto M, Wakabayashi K, Mori H, Kotani E. Cytotoxin-mediated silk gland organ dysfunction diverts resources to enhance silkworm fecundity by potentiating nutrient-sensing IIS/TOR pathways. iScience 2024; 27:108853. [PMID: 38303707 PMCID: PMC10830876 DOI: 10.1016/j.isci.2024.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/16/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Energy reserves, primarily stored in the insect's fat body, are essential for physiological processes such as reproduction and cocoon formation. However, whether these processes are mutually constraining is unknown. Here, we showed that cocoon-free silkworms accumulate amino acid constituents of silk proteins in the hemolymph and maintain lipid and sugar reserves in the pupal fat body by repressing the expression of sericin and fibroin genes in the middle and posterior silk glands, respectively, via butterfly pierisin-1A catalytic domain expression. This, in turn, upregulates insulin/insulin-like signaling and target of rapamycin (IIS/TOR) signaling, which enhances vitellogenesis and accelerates ovarian development, thus contributing to increased fecundity. The impacts of semi-starvation on fecundity and egg hatchability were also less pronounced in cocoon-free silkworms compared with wildtype silkworms. These data uncover the resource allocation trade-off between cocoon formation and fecundity and demonstrate that nutritional signaling plays a role in regulating silkworm reproduction.
Collapse
Affiliation(s)
- Ping Ying Lye
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Chika Shiraki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuta Fukushima
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mervyn Wing On Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
10
|
Lu T, Lu Y, Wang L, Liu Z, Miao S, Tai Y, Yang B. The serine/threonine kinase Akt gene affects fecundity by reducing Juvenile hormone synthesis in Liposcelis entomophila (Enderlein). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105583. [PMID: 37945269 DOI: 10.1016/j.pestbp.2023.105583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023]
Abstract
The serine/threonine kinase Akt is an important component of the insulin signalling pathway (ISP) in regulating insect metabolism, growth, and reproduction. The psocid Liposcelis entomophila (Enderlein) is a distasteful stored products pest for its fecundity. However, the molecular mechanism of Akt that controls vitellogenesis and oviposition in L. entomophila remains obscure. In this study, the function of the Akt gene in the female reproduction of L. entomophila (designated as LeAkt) was characterized and investigated. LeAkt contains a 1587 bp open reading frame encoding a 529 amino acid protein that possesses a conserved Pleckstrin Homology domain (PH) and a Ser/Thr-type protein kinase (S_TKc) domain. The mRNA expression of LeAkt was the highest in female adult stages and peaked for 7-day female adults. In female adult tissues, LeAkt was highly expressed in the head and the ovary, indicating that LeAkt was closely correlated with female ovarian development. LeAkt transcription level was significantly suppressed by oral feeding on artificial diets mixed with dsRNA-LeAkt. RNAi-mediated silencing of LeAkt led to a severe inhibition of vitellogenein (Vg) expression and ovarian development, together with lower fecundity and hatchability compared to that of the normal feeding group, suggesting a critical role for LeAkt in L. entomophila reproduction. Further studies revealed that LeAkt silencing significantly decreased the mRNA levels of several signalling and biosynthetic genes in the juvenile hormone (JH) signalling pathway, such as methoprene-tolerant (LeMet), krüppel homolog 1 (LeKr-h1) and JH methyltransferase (LeJHAMT), leading to a severe inhibition of JH biosynthesis in L. entomophila female adults. These results suggested that LeAkt was affecting JH synthesis, thereby influencing Vg synthesis and ultimately L. entomophila reproduction.
Collapse
Affiliation(s)
- Ting Lu
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China; School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China.
| | - Lei Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhipei Liu
- School of Food Science and Technology, The University of New South Wales, Australia
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yajie Tai
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Binbin Yang
- School of Food Science and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
11
|
Roy SD, Nagarajan S, Jalal MS, Basar MA, Duttaroy A. New mutant alleles for Spargel/dPGC-1 highlights the function of Spargel RRM domain in oogenesis and expands the role of Spargel in embryogenesis and intracellular transport. G3 (BETHESDA, MD.) 2023; 13:jkad142. [PMID: 37369430 PMCID: PMC10468312 DOI: 10.1093/g3journal/jkad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/24/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Energy metabolism in vertebrates is controlled by three members of the PGC-1 (PPAR γ- coactivator 1) family, transcriptional coactivators that shape responses to physiological stimuli by interacting with the nuclear receptors and other transcription factors. Multiple evidence now supports that Spargel protein found in insects and ascidians is the ancestral form of vertebrate PGC-1's. Here, we undertook functional analysis of srl gene in Drosophila, asking about the requirement of Spargel per se during embryogenesis and its RNA binding domains. CRISPR- engineered srl gene deletion turned out to be an amorphic allele that is late embryonic/early larval lethal and Spargel protein missing its RNA binding domain (SrlΔRRM) negatively affects female fertility. Overexpression of wild-type Spargel in transgenic flies expedited the growth of egg chambers. On the other hand, oogenesis is blocked in a dominant-negative fashion in the presence of excess Spargel lacking its RRM domains. Finally, we observed aggregation of Notch proteins in egg chambers of srl mutant flies, suggesting that Spargel is involved in intracellular transport of Notch proteins. Taken together, we claim that these new mutant alleles of spargel are emerging powerful tools for revealing new biological functions for Spargel, an essential transcription coactivator in both Drosophila and mammals.
Collapse
Affiliation(s)
- Swagota D Roy
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Sabarish Nagarajan
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Md Shah Jalal
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Md Abul Basar
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Atanu Duttaroy
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| |
Collapse
|
12
|
Bailly TPM, Kohlmeier P, Etienne RS, Wertheim B, Billeter JC. Social modulation of oogenesis and egg laying in Drosophila melanogaster. Curr Biol 2023:S0960-9822(23)00750-9. [PMID: 37369209 DOI: 10.1016/j.cub.2023.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Being part of a group facilitates cooperation between group members but also creates competition for resources. This is a conundrum for gravid females, whose future offspring benefit from being in a group only if there are enough resources relative to group size. Females may therefore be expected to modulate reproductive output depending on social context. In the fruit fly Drosophila melanogaster, females actively attract conspecifics to lay eggs on the same resources, generating groups in which individuals may cooperate or compete. The genetic tractability of this species allows dissecting the mechanisms underlying physiological adaptation to social context. Here, we show that females produce eggs increasingly faster as group size increases. By laying eggs faster when grouped than when isolated, females reduce competition between offspring and increase offspring survival. In addition, grouped females lay eggs during the day, while isolated females lay them at night. We show that responses to the presence of others requires visual input and that flies from any sex, mating status, or species can trigger these responses. The mechanisms of this modulation of egg laying by group is connected to a lifting of the inhibition of light on oogenesis and egg laying, possibly mediated in part by an increase in juvenile hormone activity. Because modulation of reproduction by social context is a hallmark of animals with higher levels of sociality, our findings in a species considered solitary question the validity of this nomenclature and suggest a widespread and profound influence of social context on reproduction.
Collapse
Affiliation(s)
- Tiphaine P M Bailly
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands
| | - Philip Kohlmeier
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands; University of Memphis, Department of Biological Sciences, Memphis, TN 38152-3530, USA
| | - Rampal S Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9474AG Groningen, the Netherlands.
| |
Collapse
|
13
|
Zhang C, Wan B, Jin MR, Wang J, Xin TR, Zou ZW, Xia B. The loss of Halloween gene function seriously affects the development and reproduction of Diaphorina citri (Hemiptera: Liviidae) and increases its susceptibility to pesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105361. [PMID: 36963933 DOI: 10.1016/j.pestbp.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The citrus industry has suffered severe losses as a result of Huanglongbing spread by Diaphorina citri. Controlling the population of D. citri is the key to preventing and controlling the spread of Huanglongbing. Ecdysteroids are key hormones that regulate insect development and reproduction. Therefore, the Halloween gene family involved in the ecdysone synthesis of D. citri is an ideal target for controlling the population growth of this insect. In this study, we successfully cloned four Halloween genes expressed during D. citri development. Silencing of one of the four genes resulted in a significant decrease in 20E titers in nymphs and significant decreases in the developmental, survival and emergence rates. Inhibiting Halloween gene expression in adults impeded the growth of the female ovary, diminished yolk formation, lowered vitellogenin transcription levels, and hence impaired female fecundity. This showed that Halloween genes were required for D. citri development and reproduction. DcCYP315A1 and DcCYP314A1 were highly expressed when D. citri was exposed to thiamethoxam and cypermethrin, and silencing these two genes made D. citri more sensitive to these two pesticides. Inhibition of DcCYP315A1 and DcCYP314A1 expression not only significantly delayed the development and reproduction of D. citri but also increased its susceptibility to pesticides. Therefore, these two genes are more suitable as potential target genes for controlling D. citri.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Wan
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Meng-Ru Jin
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Jing Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Tian-Rong Xin
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhi-Wen Zou
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
14
|
Ali S, Peng J, Liang JF, Huang C, Xie YH, Wang X. Changes in life history parameters and transcriptome profile of Serangium japonicum associated with feeding on natural prey (Bemisia tabaci) and alternate host (Corcyra cephalonica eggs). BMC Genomics 2023; 24:112. [PMID: 36918764 PMCID: PMC10015737 DOI: 10.1186/s12864-023-09182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The mass production of natural predators with prolonged shelf life is a prerequisite for their field application as pest control agents. The traditional methods used for the mass production of Serangium japonicum rely heavily on the consistent supply of natural prey. This study explains the effects of B. tabaci (natural prey) and C. cephalonica eggs (alternative food) on life history and transcriptome profile of S. japanicum. METHODS This study compares the effects of B. tabaci (natural prey) and C. cephalonica eggs (alternative food) on biology, reproduction, and predatory efficacy, and transcriptome profile of S. japanicum. RESULTS This study revealed that S. japonicum was able to successfully complete its life cycle while feeding on B. tabaci (natural prey) and C. cephalonica eggs (alternative food). The C. cephalonica eggs fed S. japonicum individuals had longer developmental period and lower fecundity as compared to those feeding on whitefly but the survival rates (3rd instar nymphs, 4th instar nymphs and pupae) and predatory efficacy of C. cephalonica eggs fed S. japonicum individuals were significantly similar to to those feeding on whitefly.Transcriptome analysis showed that when faced with dietary changes, S. japanicum could successfully feed on C. cephalonica eggs by regulating genes related to nutrient transport, metabolism, and detoxification. Moreover, S. japanicum degraded excess cellular components through ribosomal autophagy and apoptosis, which provided sufficient materials and energy for survival and basic metabolism. CONCLUSION Corcyra cephalonica eggs can be used as an alternate host for the predator, Serangium japonicum, as the survival rates and predatory efficacy of the predator are similar to those feeding on the natural host (B.tabaci). When faced with dietary changes, S. japanicum could successfully feed on C. cephalonica eggs as revealed by upregulation of genes related to nutrient transport, metabolism, and detoxification. These findings are of great significance for studying the functional evolution of S. japonicum in response to dietary changes.
Collapse
Affiliation(s)
- Shaukat Ali
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Plant Protection, South China Agricultural University, 510642, Guangzhou, P. R. China.,Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, 510642, Guangzhou, China
| | - Jing Peng
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Plant Protection, South China Agricultural University, 510642, Guangzhou, P. R. China.,Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, 510642, Guangzhou, China
| | - Jian-Feng Liang
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Plant Protection, South China Agricultural University, 510642, Guangzhou, P. R. China.,Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, 510642, Guangzhou, China
| | - Chuyang Huang
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Plant Protection, South China Agricultural University, 510642, Guangzhou, P. R. China.,Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, 510642, Guangzhou, China
| | - Yong-Hui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, 650021, Kunming, China.
| | - Xingmin Wang
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Plant Protection, South China Agricultural University, 510642, Guangzhou, P. R. China. .,Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
15
|
Nieken KJ, O’Brien K, McDonnell A, Zhaunova L, Ohkura H. A large-scale RNAi screen reveals that mitochondrial function is important for meiotic chromosome organization in oocytes. Chromosoma 2023; 132:1-18. [PMID: 36648541 PMCID: PMC9981535 DOI: 10.1007/s00412-023-00784-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
In prophase of the first meiotic division, chromatin forms a compact spherical cluster called the karyosome within the enlarged oocyte nucleus in Drosophila melanogaster. Similar clustering of chromatin has been widely observed in oocytes in many species including humans. It was previously shown that the proper karyosome formation is required for faithful chromosome segregation, but knowledge about its formation and maintenance is limited. To identify genes involved in karyosome formation, we carried out a large-scale cytological screen using Drosophila melanogaster oocytes. This screen comprised 3916 genes expressed in ovaries, of which 106 genes triggered reproducible karyosome defects upon knockdown. The karyosome defects in 24 out of these 106 genes resulted from activation of the meiotic recombination checkpoint, suggesting possible roles in DNA repair or piRNA processing. The other genes identified in this screen include genes with functions linked to chromatin, nuclear envelope, and actin. We also found that silencing of genes with mitochondrial functions, including electron transport chain components, induced a distinct karyosome defect typically with de-clustered chromosomes located close to the nuclear envelope. Furthermore, mitochondrial dysfunction not only impairs karyosome formation and maintenance, but also delays synaptonemal complex disassembly in cells not destined to become the oocyte. These karyosome defects do not appear to be mediated by apoptosis. This large-scale unbiased study uncovered a set of genes required for karyosome formation and revealed a new link between mitochondrial dysfunction and chromatin organization in oocytes.
Collapse
Affiliation(s)
- Karen Jule Nieken
- grid.4305.20000 0004 1936 7988Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Kathryn O’Brien
- grid.4305.20000 0004 1936 7988Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Alexander McDonnell
- grid.4305.20000 0004 1936 7988Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Liudmila Zhaunova
- grid.4305.20000 0004 1936 7988Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
16
|
Rushby HJ, Andrews ZB, Piper MD, Mirth CK. Ageing impairs protein leveraging in a sex-specific manner in Drosophila melanogaster. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 24:ijms24010007. [PMID: 36613451 PMCID: PMC9819625 DOI: 10.3390/ijms24010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Collapse
|
18
|
Ribeiro Lopes M, Gaget K, Renoz F, Duport G, Balmand S, Charles H, Callaerts P, Calevro F. Bacteriocyte plasticity in pea aphids facing amino acid stress or starvation during development. Front Physiol 2022; 13:982920. [PMID: 36439244 PMCID: PMC9685537 DOI: 10.3389/fphys.2022.982920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
An important contributing factor to the evolutionary success of insects is nutritional association with microbial symbionts, which provide the host insects with nutrients lacking in their unbalanced diets. These symbionts are often compartmentalized in specialized cells of the host, the bacteriocytes. Even though bacteriocytes were first described more than a century ago, few studies have explored their dynamics throughout the insect life cycle and in response to environmental stressors. Here, we use the Buchnera aphidicola/pea aphid symbiotic system to study how bacteriocytes are regulated in response to nutritional stress throughout aphid development. Using artificial diets, we analyzed the effects of depletion or excess of phenylalanine or leucine, two amino acids essential for aphid growth and whose biosynthetic pathways are shared between the host and the symbiont. Bacteriocytes responded dynamically to those treatments, while other tissues showed no obvious morphological change. Amino acid depletion resulted in an increase in bacteriocyte numbers, with the extent of the increase depending on the amino acid, while excess either caused a decrease (for leucine) or an increase (for phenylalanine). Only a limited impact on survival and fecundity was observed, suggesting that the adjustment in bacteriocyte (and symbiont) numbers is sufficient to withstand these nutritional challenges. We also studied the impact of more extreme conditions by exposing aphids to a 24 h starvation period at the beginning of nymphal development. This led to a dramatic drop in aphid survival and fecundity and a significant developmental delay. Again, bacteriocytes responded dynamically, with a considerable decrease in number and size, correlated with a decrease in the number of symbionts, which were prematurely degraded by the lysosomal system. This study shows how bacteriocyte dynamics is integrated in the physiology of insects and highlights the high plasticity of these cells.
Collapse
Affiliation(s)
| | - Karen Gaget
- Université de Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - François Renoz
- Université de Lyon, INSA Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
- UCLouvain, Biodiversity Research Centre, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Gabrielle Duport
- Université de Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Séverine Balmand
- Université de Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Hubert Charles
- Université de Lyon, INSA Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Patrick Callaerts
- KU Leuven, Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, Leuven, Belgium
| | - Federica Calevro
- Université de Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| |
Collapse
|
19
|
Xing S, Deng D, wen W, Peng W. Functional transcriptome analyses of Drosophila suzukii midgut reveal mating-dependent reproductive plasticity in females. BMC Genomics 2022; 23:726. [PMID: 36284272 PMCID: PMC9598023 DOI: 10.1186/s12864-022-08962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect females undergo a huge transition in energy homeostasis after mating to compensate for nutrient investment during reproduction. To manage with this shift in metabolism, mated females experience extensive morphological, behavioral and physiological changes, including increased food intake and altered digestive processes. However, the mechanisms by which the digestive system responds to mating in females remain barely characterized. Here we performed transcriptomic analysis of the main digestive organ, the midgut, to investigate how gene expression varies with female mating status in Drosophila suzukii, a destructive and invasive soft fruit pest. RESULTS We sequenced 15,275 unique genes with an average length of 1,467 bp. In total, 652 differentially expressed genes (DEGs) were detected between virgin and mated D. suzukii female midgut libraries. The DEGs were functionally annotated utilizing the GO and KEGG pathway annotation methods. Our results showed that the major GO terms associated with the DEGs from the virgin versus mated female midgut were largely appointed to the metabolic process, response to stimulus and immune system process. We obtained a mass of protein and lipid metabolism genes which were up-regulated and carbohydrate metabolism and immune-related genes which were down-regulated at different time points after mating in female midgut by qRT-PCR. These changes in metabolism and immunity may help supply the female with the nutrients and energy required to sustain egg production. CONCLUSION Our study characterizes the transcriptional mechanisms driven by mating in the D. suzukii female midgut. Identification and characterization of the DEGs between virgin and mated females midgut will not only be crucial to better understand molecular research related to intestine plasticity during reproduction, but may also provide abundant target genes for the development of effective and ecofriendly pest control strategies against this economically important species.
Collapse
Affiliation(s)
- Shisi Xing
- grid.411427.50000 0001 0089 3695Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, HunanInternational Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 China
| | - Dan Deng
- grid.411427.50000 0001 0089 3695Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, HunanInternational Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 China
| | - Wen wen
- grid.411427.50000 0001 0089 3695Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, HunanInternational Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 China
| | - Wei Peng
- grid.411427.50000 0001 0089 3695Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, HunanInternational Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 China
| |
Collapse
|
20
|
Knapp RA, Norman VC, Rouse JL, Duncan EJ. Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100951. [PMID: 35863739 PMCID: PMC9586883 DOI: 10.1016/j.cois.2022.100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Eusociality is a rare but successful life-history strategy that is defined by the reproductive division of labour. In eusocial species, most females forgo their own reproduction to support that of a dominant female or queen. In many eusocial insects, worker reproduction is inhibited via dominance hierarchies or by pheromones produced by the queen and her brood. Here, we consider whether these cues may act as generic 'environmental signals', similar to temperature or nutrition stress, which induce a state of reproductive dormancy in some solitary insects. We review the recent findings regarding the mechanisms of reproductive dormancy in insects and highlight key gaps in our understanding of how environmental cues inhibit reproduction.
Collapse
Affiliation(s)
- Rosemary A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Victoria C Norman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James L Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
21
|
Steenwinkel TE, Hamre KK, Werner T. The use of non-model Drosophila species to study natural variation in TOR pathway signaling. PLoS One 2022; 17:e0270436. [PMID: 36137094 PMCID: PMC9499319 DOI: 10.1371/journal.pone.0270436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Nutrition and growth are strongly linked, but not much is known about how nutrition leads to growth. To understand the connection between nutrition through the diet, growth, and proliferation, we need to study the phenotypes resulting from the activation and inhibition of central metabolic pathways. One of the most highly conserved metabolic pathways across eukaryotes is the Target of Rapamycin (TOR) pathway, whose primary role is to detect the availability of nutrients and to either induce or halt cellular growth. Here we used the model organism Drosophila melanogaster (D. mel.) and three non-model Drosophila species with different dietary needs, Drosophila guttifera (D. gut.), Drosophila deflecta (D. def.), and Drosophila tripunctata (D. tri.), to study the effects of dietary amino acid availability on fecundity and longevity. In addition, we inhibited the Target of Rapamycin (TOR) pathway, using rapamycin, to test how the inhibition interplays with the nutritional stimuli in these four fruit fly species. We hypothesized that the inhibition of the TOR pathway would reverse the phenotypes observed under conditions of overfeeding. Our results show that female fecundity increased with higher yeast availability in all four species but decreased in response to TOR inhibition. The longevity data were more varied: most species experienced an increase in median lifespan in both genders with an increase in yeast availability, while the lifespan of D. mel. females decreased. When exposed to the TOR inhibitor rapamycin, the life spans of most species decreased, except for D. tri, while we observed a major reduction in fecundity across all species. The obtained data can benefit future studies on the evolution of metabolism by showing the potential of using non-model species to track changes in metabolism. Particularly, our data show the possibility to use relatively closely related Drosophila species to gain insight on the evolution of TOR signaling.
Collapse
Affiliation(s)
- Tessa E. Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Kailee K. Hamre
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
22
|
Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. Int J Mol Sci 2022; 23:ijms23169232. [PMID: 36012497 PMCID: PMC9408901 DOI: 10.3390/ijms23169232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Ecdysteroids are widely investigated for their role during the molting cascade in insects; however, they are also involved in the development of the female reproductive system. Ecdysteroids are synthesized from cholesterol, which is further converted via a series of enzymatic steps into the main molting hormone, 20-hydoxyecdysone. Most of these biosynthetic conversion steps involve the activity of cytochrome P450 (CYP) hydroxylases, which are encoded by the Halloween genes. Three of these genes, spook (spo), phantom (phm) and shade (shd), were previously characterized in the desert locust, Schistocerca gregaria. Based on recent sequencing data, we have now identified the sequences of disembodied (dib) and shadow (sad), for which we also analyzed spatiotemporal expression profiles using qRT-PCR. Furthermore, we investigated the possible role(s) of five different Halloween genes in the oogenesis process by means of RNA interference mediated knockdown experiments. Our results showed that depleting the expression of SchgrSpo, SchgrSad and SchgrShd had a significant impact on oocyte development, oviposition and hatching of the eggs. Moreover, the shape of the growing oocytes, as well as the deposited eggs, was very drastically altered by the experimental treatments. Consequently, it can be proposed that these three enzymes play an important role in oogenesis.
Collapse
|
23
|
Wang X, Billeter JC, Maan ME. Lack of alignment across yeast-dependent life-history traits may limit Drosophila melanogaster dietary specialization. J Evol Biol 2022; 35:1060-1071. [PMID: 35830471 PMCID: PMC9540990 DOI: 10.1111/jeb.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
Heterogeneity in food resources is a major driver of local adaptation and speciation. Dietary specialization typically involves multiple life‐history traits and may thus be limited by the extent to which these traits adapt in concert. Here, we use Drosophila melanogaster, representing an intermediate state in the generalist‐specialist continuum, to explore the scope for dietary specialization. D. melanogaster has a close association with yeast, an essential but heterogeneous food resource. We quantify how different D. melanogaster strains from around the globe respond to different yeast species, across multiple yeast‐dependent life‐history traits including feeding, mating, egg‐laying, egg development and survival. We find that D. melanogaster strains respond to different yeast species in different ways, indicating distinct fly strain–yeast interactions. However, we detect no evidence for trade‐offs: fly performance tends to be positively rather than negatively correlated across yeast species. We also find that the responses to different yeast species are not aligned across traits: different life‐history traits are maximized on different yeast species. Finally, we confirm that D. melanogaster is a resource generalist: it can grow, reproduce and survive on all the yeast species we tested. Together, these findings provide a possible explanation for the limited extent of dietary specialization in D. melanogaster.
Collapse
Affiliation(s)
- Xiaocui Wang
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Aamidor SE, Cardoso-Júnior CAM, Harianto J, Nowell CJ, Cole L, Oldroyd BP, Ronai I. Reproductive plasticity and oogenesis in the queen honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104347. [PMID: 34902433 DOI: 10.1016/j.jinsphys.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
In the honey bee (Apis mellifera), queen and worker castes originate from identical genetic templates but develop into different phenotypes. Queens lay up to 2000 eggs daily whereas workers are sterile in the queen's presence. Periodically queens stop laying: during swarming, when resources are scarce in winter, and when they are confined to a cage by beekeepers. We used confocal microscopy and gene expression assays to investigate the control of oogenesis in the ovaries of honey bee queens that were caged inside and outside the colony. We find evidence that queens use a different combination of 'checkpoints' to regulate oogenesis compared to honey bee workers and other insect species. However, both queen and worker castes likely use the same programmed cell death pathways to terminate oocyte development at their caste-specific checkpoints. Our results also suggest that a key factor driving the termination of oogenesis in queens is nutritional stress. Thus, queens may regulate oogenesis via the same regulatory pathways that were utilised by ancestral solitary species but likely have adjusted physiological checkpoints to suit their highly-derived life history.
Collapse
Affiliation(s)
- Sarah E Aamidor
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia.
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celulare Bioagentes Patogênicos, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Januar Harianto
- School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Louise Cole
- Microbial Imaging Facility, I3 Institute, Faculty of Science, The University of Technology Sydney, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | - Isobel Ronai
- Behaviour and Genetics of Social Insects Laboratory, Ecology and Evolution, School of Life and Environmental Science, Macleay Building A12, University of Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Bordet G, Kotova E, Tulin AV. Poly(ADP-ribosyl)ating pathway regulates development from stem cell niche to longevity control. Life Sci Alliance 2021; 5:5/3/e202101071. [PMID: 34949666 PMCID: PMC8739260 DOI: 10.26508/lsa.202101071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of poly(ADP-ribose) polymerase, the enzyme responsible for the synthesis of homopolymer ADP-ribose chains on nuclear proteins, has been extensively studied over the last decades for its involvement in tumorigenesis processes. However, the regulation of poly(ADP-ribose) glycohydrolase (PARG), the enzyme responsible for removing this posttranslational modification, has attracted little attention. Here we identified that PARG activity is partly regulated by two phosphorylation sites, ph1 and ph2, in Drosophila We showed that the disruption of these sites affects the germline stem-cells maintenance/differentiation balance as well as embryonic and larval development, but also the synchronization of egg production with the availability of a calorically sufficient food source. Moreover, these PARG phosphorylation sites play an essential role in the control of fly survivability from larvae to adults. We also showed that PARG is phosphorylated by casein kinase 2 and that this phosphorylation seems to protect PARG protein against degradation in vivo. Taken together, these results suggest that the regulation of PARG protein activity plays a crucial role in the control of several developmental processes.
Collapse
|
26
|
Xie MH, Zhong YZ, Lin LL, Zhang GL, Su WH, Ni WL, Qu MJ, Chen HL. Effect of Photoperiod on Longevity, Food Consumption, and Reproduction of Holotrichia oblita (Coleoptera: Scarabaeidae). ENVIRONMENTAL ENTOMOLOGY 2021; 50:1151-1157. [PMID: 34240131 DOI: 10.1093/ee/nvab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Holotrichia oblita (Faldermann) (Coleoptera: Scarabaeidae) is a major soil insect pest that damages forest trees, crops, and lawns. Adults of H. oblita fly, forage, and mate at night but remain underground during the day. We studied the effect of photoperiod on H. oblita reproduction. H. oblita females laid more eggs at 8:16 (L:D) h and 0:24 (L:D) h than other photoperiods. As the scotophase increased, the preoviposition period decreased and the oviposition period increased. Female longevity exceeded that of males at all photoperiods, and both males and females at 0:24 (L:D) h had the shortest longevity. The number of eggs laid per female increased with increasing food consumption. Females at 8:16 (L:D) h had the greatest food consumption and laid the most eggs, while females at 24:0 (L:D) h had the lowest food consumption and laid few eggs. The food intake of adults increased gradually and decreased slowly after reaching a peak. Females began to lay eggs when their food consumption reached a maximum. These results indicate that a scotophase is necessary for the reproduction of H. oblita. A long scotophase promotes greater oviposition. The effect of photoperiod on reproduction is affected by food intake.
Collapse
Affiliation(s)
- Ming-Hui Xie
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Yong-Zhi Zhong
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Lu-Lu Lin
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Guang-Ling Zhang
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Wei-Hua Su
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Wan-Li Ni
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Ming-Jing Qu
- Shandong Peanut Research Institute, Qingdao, PR China
| | - Hao-Liang Chen
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| |
Collapse
|
27
|
Kraft LJ, Sit TL, Diepenbrock LM, Ashrafi H, Aryal R, Fernandez GE, Burrack HJ. Detection of Fruit Meals Within Laboratory-Raised and Field-Trapped Adult Drosophila suzukii (Diptera: Drosophilidae) Guts. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.719645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The feeding habits of adult Brachycera are understudied and may provide important context for understanding invasive pest biology, as with the polyphagous small fruit pest Drosophila suzukii. We developed molecular methods to study adult D. suzukii gut content in order to understand its feeding habits. We designed and verified two primer pairs specific for either blueberries or blackberries and used a qPCR melt curve analysis to determine whether we can detect the presence or absence of berry feeding by adult flies. In a laboratory assay, the blueberry fly meal DNA can be detected for longer periods than the blackberry meal DNA. Generally, female gut contents are less variable than male gut contents. We also tested recently emerged flies that were not fed as adults but developed as larvae in either blueberries or blackberries. Some adult flies from each fruit had detectable fruit DNA in their gut, which could be due to pupal meconium feeding after emergence. Next, we aimed to test the primers in the field to develop techniques to track fruit feeding by D. suzukii in its natural field environment. First, to identify the most appropriate collection method, we determined how long we could detect fruit DNA, using previously developed primers within D. suzukii gut preserved in four types of trap fluid in the laboratory. The likelihood of detecting blackberry DNA differed by day, trap fluid, and between sexes. For the blueberry primer, the possibility of detecting blueberry DNA differed by trap fluid only. Based on those results, we used RV antifreeze with a Scentry SWD lure in field trials at two research station locations, one containing blackberries and one with blueberries. We established transects away from each fruit planting and collected up to 120 total flies at each point along transects. There were no significant differences in the number of flies containing berry DNA among collection points along the transect in both locations. These results suggest that adult flies move between crop and non-crop habitats and may not be highly dependent on fruit food resources.
Collapse
|
28
|
Yue L, Guan Z, Zhong M, Zhao L, Pang R, Liu K. Genome-Wide Identification and Characterization of Amino Acid Polyamine Organocation Transporter Family Genes Reveal Their Role in Fecundity Regulation in a Brown Planthopper Species ( Nilaparvata lugens). Front Physiol 2021; 12:708639. [PMID: 34335311 PMCID: PMC8316623 DOI: 10.3389/fphys.2021.708639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera:Delphacidae), is one of the most destructive pests of rice worldwide. As a sap-feeding insect, the BPH is incapable of synthesizing several amino acids which are essential for normal growth and development. Therefore, the insects have to acquire these amino acids from dietary sources or their endosymbionts, in which amino acid transporters (AATs) play a crucial role by enabling the movement of amino acids into and out of insect cells. In this study, a common amino acid transporter gene family of amino acid/polyamine/organocation (APC) was identified in BPHs and analyzed. Based on a homology search and conserved functional domain recognition, 20 putative APC transporters were identified in the BPH genome. Molecular trait analysis showed that the verified BPH APC family members were highly variable in protein features, conserved motif distribution patterns, and exon/intron organization. Phylogenetic analysis of five hemipteran species revealed an evolutionary pattern of interfamily conservation and lineage-specific expansion of this gene family. Moreover, stage- and tissue-specific expression analysis revealed diverse expression patterns in the 20 BPH APC transporter genes. Lastly, a potential BPH fecundity regulatory gene of NlAPC09 was identified and shown to participate in the fecundity regulation through the use of quantitative polymerase chain reaction (qPCR) and RNA inference experiments. Our results provide a basis for further functional investigations of APC transporters in BPH.
Collapse
Affiliation(s)
- Lei Yue
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ziying Guan
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingzhao Zhong
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyao Zhao
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
29
|
Drosophila melanogaster sex peptide regulates mated female midgut morphology and physiology. Proc Natl Acad Sci U S A 2021; 118:2018112118. [PMID: 33443193 DOI: 10.1073/pnas.2018112118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster females experience a large shift in energy homeostasis after mating to compensate for nutrient investment in egg production. To cope with this change in metabolism, mated females undergo widespread physiological and behavioral changes, including increased food intake and altered digestive processes. The mechanisms by which the female digestive system responds to mating remain poorly characterized. Here, we demonstrate that the seminal fluid protein Sex Peptide (SP) is a key modulator of female post-mating midgut growth and gene expression. SP is both necessary and sufficient to trigger post-mating midgut growth in females under normal nutrient conditions, and likely acting via its receptor, Sex Peptide Receptor (SPR). Moreover, SP is responsible for almost the totality of midgut transcriptomic changes following mating, including up-regulation of protein and lipid metabolism genes and down-regulation of carbohydrate metabolism genes. These changes in metabolism may help supply the female with the nutrients required to sustain egg production. Thus, we report a role for SP in altering female physiology to enhance reproductive output: Namely, SP triggers the switch from virgin to mated midgut state.
Collapse
|
30
|
Bajusz C, Kristó I, Abonyi C, Venit T, Vedelek V, Lukácsovich T, Farkas A, Borkúti P, Kovács Z, Bajusz I, Marton A, Vizler C, Lipinszki Z, Sinka R, Percipalle P, Vilmos P. The nuclear activity of the actin-binding Moesin protein is necessary for gene expression in Drosophila. FEBS J 2021; 288:4812-4832. [PMID: 33606336 DOI: 10.1111/febs.15779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Ezrin-Radixin-Moesin (ERM) proteins play an essential role in the cytoplasm by cross-linking actin filaments with plasma membrane proteins. Research has identified the nuclear localization of ERMs, as well as the involvement of a single Drosophila ERM protein, Moesin, in nuclear mRNA exports. However, the question of how important the nuclear activity of ERM proteins are for the life of an organism has so far not been explored. Here, we present the first attempt to reveal the in vivo relevance of nuclear localization of Moesin in Drosophila. With the help of a nuclear export signal, we decreased the amount of Moesin in the nuclei of the animals. Furthermore, we observed various developmental defects, demonstrating the importance of ERM function in the nucleus for the first time. Transcriptome analysis of the mutant flies revealed that the lack of nuclear Moesin function leads to expression changes in nearly 700 genes, among them heat-shock genes. This result together with additional findings revealed that in Drosophila the expression of protein chaperones requires the nuclear functions of Moesin. DATABASE: GEO accession number: GSE155778.
Collapse
Affiliation(s)
- Csaba Bajusz
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Hungary
| | - Ildikó Kristó
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Csilla Abonyi
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Tomáš Venit
- Biology Program, Science Division, New York University Abu Dhabi, UAE
| | | | | | - Attila Farkas
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Péter Borkúti
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Hungary
| | - Zoltán Kovács
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Hungary
| | - Izabella Bajusz
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Annamária Marton
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Csaba Vizler
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- Lendület Laboratory of Cell Cycle Regulation, ELKH, Biological Research Centre, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Hungary
| | - Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, UAE.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Péter Vilmos
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| |
Collapse
|
31
|
Zhu H, Zheng S, Xu J, Wu Q, Song Q, Ge L. The Amino Acid-Mediated TOR Pathway Regulates Reproductive Potential and Population Growth in Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae). Front Physiol 2020; 11:617237. [PMID: 33329069 PMCID: PMC7733968 DOI: 10.3389/fphys.2020.617237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
The predatory mirid bug, Cyrtorhinus lividipennis Reuter, feeds on brown planthopper (BPH) eggs that are deposited on rice and gramineous plants surrounding rice fields. The development and reproduction of C. lividipennis are inhibited by feeding on BPH eggs from gramineous species, and the underlining regulatory mechanism for this phenomenon is unclear. In the present study, HPLC-MS/MS analysis revealed that the concentrations of six amino acids (AAs:Ala, Arg, Ser, Lys, Thr, and Pro) were significantly higher in rice than in five gramineous species. When C. lividipennis fed on gramineous plants with BPH eggs, expression of several genes in the target of rapamycin (TOR) pathway (Rheb, TOR, and S6K) were significantly lower than that in the insects fed on rice plants with BPH eggs. Treatment of C. lividipennis females with rapamycin, dsRheb, dsTOR, or dsS6K caused a decrease in Rheb, TOR, and S6K expression, and these effects were partially rescued by the juvenile hormone (JH) analog, methoprene. Dietary dsTOR treatment significantly influenced a number of physiological parameters and resulted in impaired predatory capacity, fecundity, and population growth. This study indicates that these six AAs play an important role in the mediated-TOR pathway, which in turn regulates vitellogenin (Vg) synthesis, reproduction, and population growth in C. lividipennis.
Collapse
Affiliation(s)
- Haowen Zhu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Sui Zheng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jinming Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qing Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Linquan Ge
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Winbush A, Singh ND. Genomics of Recombination Rate Variation in Temperature-Evolved Drosophila melanogaster Populations. Genome Biol Evol 2020; 13:6008691. [PMID: 33247719 PMCID: PMC7851596 DOI: 10.1093/gbe/evaa252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination is a critical process that ensures proper segregation of chromosome homologs through DNA double-strand break repair mechanisms. Rates of recombination are highly variable among various taxa, within species, and within genomes with far-reaching evolutionary and genomic consequences. The genetic basis of recombination rate variation is therefore crucial in the study of evolutionary biology but remains poorly understood. In this study, we took advantage of a set of experimental temperature-evolved populations of Drosophila melanogaster with heritable differences in recombination rates depending on the temperature regime in which they evolved. We performed whole-genome sequencing and identified several chromosomal regions that appear to be divergent depending on temperature regime. In addition, we identify a set of single-nucleotide polymorphisms and associated genes with significant differences in allele frequency when the different temperature populations are compared. Further refinement of these gene candidates emphasizing those expressed in the ovary and associated with DNA binding reveals numerous potential candidate genes such as Hr38, EcR, and mamo responsible for observed differences in recombination rates in these experimental evolution lines thus providing insight into the genetic basis of recombination rate variation.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Corresponding author: E-mail:
| |
Collapse
|
33
|
A single-cell atlas and lineage analysis of the adult Drosophila ovary. Nat Commun 2020; 11:5628. [PMID: 33159074 PMCID: PMC7648648 DOI: 10.1038/s41467-020-19361-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
The Drosophila ovary is a widely used model for germ cell and somatic tissue biology. Here we use single-cell RNA-sequencing (scRNA-seq) to build a comprehensive cell atlas of the adult Drosophila ovary that contains transcriptional profiles for every major cell type in the ovary, including the germline stem cells and their niche cells, follicle stem cells, and previously undescribed subpopulations of escort cells. In addition, we identify Gal4 lines with specific expression patterns and perform lineage tracing of subpopulations of escort cells and follicle cells. We discover that a distinct subpopulation of escort cells is able to convert to follicle stem cells in response to starvation or upon genetic manipulation, including knockdown of escargot, or overactivation of mTor or Toll signalling.
Collapse
|
34
|
Erickson PA, Weller CA, Song DY, Bangerter AS, Schmidt P, Bergland AO. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet 2020; 16:e1009110. [PMID: 33216740 PMCID: PMC7717581 DOI: 10.1371/journal.pgen.1009110] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.
Collapse
Affiliation(s)
- Priscilla A. Erickson
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cory A. Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Y. Song
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alyssa S. Bangerter
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
35
|
McMullen JG, Peters-Schulze G, Cai J, Patterson AD, Douglas AE. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. ACTA ACUST UNITED AC 2020; 223:223/19/jeb227843. [PMID: 33051361 DOI: 10.1242/jeb.227843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Most research on the impact of the gut microbiome on animal nutrition is designed to identify the effects of single microbial taxa and single metabolites of microbial origin, without considering the potentially complex network of interactions among co-occurring microorganisms. Here, we investigated how different microbial associations and their fermentation products affect host nutrition, using Drosophila melanogaster colonized with three gut microorganisms (the bacteria Acetobacter fabarum and Lactobacillus brevis, and the yeast Hanseniaspora uvarum) in all seven possible combinations. Some microbial effects on host traits could be attributed to single taxa (e.g. yeast-mediated reduction of insect development time), while other effects were sex specific and driven by among-microbe interactions (e.g. male lipid content determined by interactions between the yeast and both bacteria). Parallel analysis of nutritional indices of microbe-free flies administered different microbial fermentation products (acetic acid, acetoin, ethanol and lactic acid) revealed a single consistent effect: that the lipid content of both male and female flies is reduced by acetic acid. This effect was recapitulated in male flies colonized with both yeast and A. fabarum, but not for any microbial treatment in females or males with other microbial complements. These data suggest that the effect of microbial fermentation products on host nutritional status is strongly context dependent, with respect to both the combination of associated microorganisms and host sex. Taken together, our findings demonstrate that among-microbe interactions can play a critically important role in determining the physiological outcome of host-microbiome interactions in Drosophila and, likely, in other animal hosts.
Collapse
Affiliation(s)
- John G McMullen
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA .,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Petruccelli E, Lark A, Mrkvicka JA, Kitamoto T. Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors. J Neurogenet 2020; 34:55-68. [PMID: 31955616 PMCID: PMC7717672 DOI: 10.1080/01677063.2019.1710144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
Abstract
Organisms respond to various environmental stressors by modulating physiology and behavior to maintain homeostasis. Steroids and catecholamines are involved in the highly conserved signaling pathways crucial for mounting molecular and cellular events that ensure immediate or long-term survival under stress conditions. The insect dopamine/ecdysteroid receptor (DopEcR) is a dual G-protein coupled receptor for the catecholamine dopamine and the steroid hormone ecdysone. DopEcR acts in a ligand-dependent manner, mediating dopaminergic signaling and unconventional "nongenomic" ecdysteroid actions through various intracellular signaling pathways. This unique feature of DopEcR raises the interesting possibility that DopEcR may serve as an integrative hub for complex molecular cascades activated under stress conditions. Here, we review previously published studies of Drosophila DopEcR in the context of stress response and also present newly discovered DopEcR loss-of-function phenotypes under different stress conditions. These findings provide corroborating evidence that DopEcR plays vital roles in responses to various stressors, including heat, starvation, alcohol, courtship rejection, and repeated neuronal stimulation in Drosophila. We further discuss what is known about DopEcR in other insects and DopEcR orthologs in mammals, implicating their roles in stress responses. Overall, this review highlights the importance of dual GPCRs for catecholamines and steroids in modulating physiology and behavior under stress conditions. Further multidisciplinary studies of Drosophila DopEcR will contribute to our basic understanding of the functional roles and underlying mechanisms of this class of GPCRs.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Arianna Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - James A Mrkvicka
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Mouawad R, Prasad J, Thorley D, Himadewi P, Kadiyala D, Wilson N, Kapranov P, Arnosti DN. Diversification of Retinoblastoma Protein Function Associated with Cis and Trans Adaptations. Mol Biol Evol 2020; 36:2790-2804. [PMID: 31418797 DOI: 10.1093/molbev/msz187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Retinoblastoma proteins are eukaryotic transcriptional corepressors that play central roles in cell cycle control, among other functions. Although most metazoan genomes encode a single retinoblastoma protein, gene duplications have occurred at least twice: in the vertebrate lineage, leading to Rb, p107, and p130, and in Drosophila, an ancestral Rbf1 gene and a derived Rbf2 gene. Structurally, Rbf1 resembles p107 and p130, and mutation of the gene is lethal. Rbf2 is more divergent and mutation does not lead to lethality. However, the retention of Rbf2 >60 My in Drosophila points to essential functions, which prior cell-based assays have been unable to elucidate. Here, using genomic approaches, we provide new insights on the function of Rbf2. Strikingly, we show that Rbf2 regulates a set of cell growth-related genes and can antagonize Rbf1 on specific genes. These unique properties have important implications for the fly; Rbf2 mutants show reduced egg laying, and lifespan is reduced in females and males. Structural alterations in conserved regions of Rbf2 gene suggest that it was sub- or neofunctionalized to develop specific regulatory specificity and activity. We define cis-regulatory features of Rbf2 target genes that allow preferential repression by this protein, indicating that it is not a weaker version of Rbf1 as previously thought. The specialization of retinoblastoma function in Drosophila may reflect a parallel evolution found in vertebrates, and raises the possibility that cell growth control is equally important to cell cycle function for this conserved family of transcriptional corepressors.
Collapse
Affiliation(s)
- Rima Mouawad
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI
| | - Jaideep Prasad
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Dominic Thorley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Pamela Himadewi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Dhruva Kadiyala
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Nathan Wilson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - David N Arnosti
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| |
Collapse
|
38
|
Dhiman N, Shweta K, Tendulkar S, Deshpande G, Ratnaparkhi GS, Ratnaparkhi A. Drosophila Mon1 constitutes a novel node in the brain-gonad axis that is essential for female germline maturation. Development 2019; 146:146/13/dev166504. [PMID: 31292144 DOI: 10.1242/dev.166504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/23/2019] [Indexed: 01/16/2023]
Abstract
Monensin-sensitive 1 (Mon1) is an endocytic regulator that participates in the conversion of Rab5-positive early endosomes to Rab7-positive late endosomes. In Drosophila, loss of mon1 leads to sterility as the mon1 mutant females have extremely small ovaries with complete absence of late stage egg chambers - a phenotype reminiscent of mutations in the insulin pathway genes. Here, we show that expression of many Drosophila insulin-like peptides (ILPs) is reduced in mon1 mutants and feeding mon1 adults an insulin-rich diet can rescue the ovarian defects. Surprisingly, however, mon1 functions in the tyramine/octopaminergic neurons (OPNs) and not in the ovaries or the insulin-producing cells (IPCs). Consistently, knockdown of mon1 in only the OPNs is sufficient to mimic the ovarian phenotype, while expression of the gene in the OPNs alone can 'rescue' the mutant defect. Last, we have identified ilp3 and ilp5 as critical targets of mon1. This study thus identifies mon1 as a novel molecular player in the brain-gonad axis and underscores the significance of inter-organ systemic communication during development.
Collapse
Affiliation(s)
- Neena Dhiman
- Agarkar Research Institute (ARI), Pune, India.,Indian Institute of Science Education & Research (IISER), Pune, India
| | | | - Shweta Tendulkar
- Indian Institute of Science Education & Research (IISER), Pune, India
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | | | | |
Collapse
|
39
|
Churchill ER, Dytham C, Thom MDF. Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Sci Rep 2019; 9:2167. [PMID: 30770855 PMCID: PMC6377613 DOI: 10.1038/s41598-019-38843-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/10/2019] [Indexed: 02/02/2023] Open
Abstract
Successful reproduction requires the completion of many, often condition-dependent, stages, from mate searching and courtship through to sperm transfer, fertilisation and offspring production. Animals can plastically adjust their investment in each stage according to the physical and social environment, their own condition, their future reproductive potential, and the condition of their partner. Here we manipulate age and condition, through a nutritional challenge early or late in life, of both male and female Drosophila melanogaster and measure the effects on courtship, mating, and fitness when paired with a standardized (unmanipulated) partner. Older males were slower to start courting and mating, and courted at a slower rate, but males were indifferent to female age or condition despite older females laying and hatching fewer eggs. Female condition had a substantial effect on mating acceptance rate, which dropped dramatically after starvation, and particularly recent starvation experience. In contrast, male condition had little effect on any of the components of reproductive performance we measured. Intriguingly, we found no evidence for additive or multiplicative effects of ageing and starvation: the only significant interaction between these variables was on male latency to initiate courtship - older males were slower to start courting unless they had experienced starvation early in life. These results indicate that the immediate costs of mating differ between males and females, and that the sexes differ in their perception of the opportunity cost sustained by refusing a mating opportunity. Our results support the idea that ageing has more wide-ranging impact on reproductive behaviours than does nutritional challenge.
Collapse
Affiliation(s)
- Emily R Churchill
- Department of Biology, University of York, York, YO10 5DD, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Calvin Dytham
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Michael D F Thom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
40
|
Reproductive adaptation in alate adult morphs of the English grain aphid Sitobion avenae under starvation stress. Sci Rep 2019; 9:2023. [PMID: 30765848 PMCID: PMC6375909 DOI: 10.1038/s41598-019-38589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/02/2019] [Indexed: 11/08/2022] Open
Abstract
Adapting their reproductive physiology is a tactic that insects use in responding to conditions of food unavailability. The present study examined the potential effects of starvation periods on the ovarian development and reproduction of alate adult morphs of Sitobion avenae (Fabricius). Morphs both continuously fed and starved aphids contained two telotrophic ovaries, each comprising five ovarioles. As time increase after emergence, the number of offspring produced by the fed aphids increased gradually, whereas the number of embryos in their ovaries decreased gradually. Both the number of mature embryos and the volume of embryos rapidly increased at 24 h after emergence, and then remained at an approximately constant level between 24 and 144 h. Compared to the fed aphids, starved aphids only produced a small number of nymphs, and there was no significant change in the total number of embryos between 24 and 144 h, whereas both the number of mature embryos and volume of embryos increased significantly. Irrespective of starvation period, highly significant relationships between life span and fecundity were found. Adult aphids starved for longer periods presented lower longevity and fecundity, but dead females contained more mature embryos than those starved for shorter periods. These results suggested that, under starvation stress, S. avenae tends to invest in the development of larger embryos at the expense of reducing lifespan and future fecundity. This adaptive reproductive strategy under starvation stress could be one of the factors contributing to the successful establishment of new colonies of alate migratory aphids.
Collapse
|
41
|
Yang D. Carnivory in the larvae of Drosophila melanogaster and other Drosophila species. Sci Rep 2018; 8:15484. [PMID: 30341324 PMCID: PMC6195549 DOI: 10.1038/s41598-018-33906-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/03/2018] [Indexed: 11/29/2022] Open
Abstract
Drosophila melanogaster is widely used as a model organism for biological investigations, and food is a major aspect of its ecology and evolutionary biology. Previous studies have shown that this insect can use fruits, yeasts and insect carcasses as its food sources. In this study, we demonstrate that this species is an omnivore, that its larvae can exploit not only fruits and yeast but also foods of animal origin (FAOs), and that larvae consume adult carcasses regularly. FAO-fed larvae develop into adulthood within a normal developmental time frame without the help of microbes. Yeast foods are better for Drosophila development than are foods of plant origin (FPOs) or FAO because in yeast foods, more eggs complete their life cycle, and the body size of emerged flies is much greater. Flies can use a mixture of yeast-FAO, which significantly boosts female fertility. Larvae digest FAOs externally. Larval D. virilis, D. hydei, and D. simulans are also omnivorous and demonstrate the same feeding habits as larval D. melanogaster. These findings prompt us to reconsider previous conclusions about the original adaptations of D. melanogaster and other Drosophila species and have direct implications for diet-related studies using Drosophila as a model organism.
Collapse
Affiliation(s)
- Daxiang Yang
- Department of Zoology and Animal Physiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
42
|
Jaffe BD, Avanesyan A, Bal HK, Feng Y, Grant J, Grieshop MJ, Lee JC, Liburd OE, Rhodes E, Rodriguez-Saona C, Sial AA, Zhang A, Guédot C. Multistate Comparison of Attractants and the Impact of Fruit Development Stage on Trapping Drosophila suzukii (Diptera: Drosophilidae) in Raspberry and Blueberry. ENVIRONMENTAL ENTOMOLOGY 2018; 47:935-945. [PMID: 29668869 DOI: 10.1093/ee/nvy052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Spotted-wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive pest of soft-skinned fruits across the globe. Effective monitoring is necessary to manage this pest, but suitable attractants are still being identified. In this study, we combined lures with fermenting liquid baits to improve D. suzukii trapping specificity and attractiveness. We also measured the efficiency and specificity of baits/lures during different times of the season; the reproductive status of females among baits/lures; and the effects of locations and crop type on these response variables. We developed a metric that combined mating status and fat content to determine differences in types of females attracted. Lures utilizing yeast and sugar-based volatiles trapped the most D. suzukii. The addition of a commercial lure to yeast and sugar-based lures increased catches in most locations, but was also the least specific to D. suzukii. Apple juice-based chemical lures tended to be most specific to D. suzukii, while lures comprised of a singular attractant tended to trap more D. suzukii with a higher reproductive potential than combinations of attractants. Trap catch and lure specificity was lower during fruit development than fruit ripening. While catch amounts varied by geographic location and crop type, attractants performed similarly relative to each other in each location and crop. Based on the metrics in this study, the yeast and sugar-based attractants were the most effective lures. However, further work is needed to improve early season monitoring, elucidate the effects of physiological status on bait attraction, and understand how abiotic factors influence bait attraction.
Collapse
Affiliation(s)
- Benjamin D Jaffe
- Department of Entomology, University of Wisconsin, Linden Drive, Madison, WI
| | - Alina Avanesyan
- Department of Entomology, University of Wisconsin, Linden Drive, Madison, WI
| | - Harit K Bal
- Department of Entomology, Michigan State University, Center for Integrated Plant Systems, East Lansing, MI
| | - Yan Feng
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, BARC-West, Beltsville, MD
| | - Joshua Grant
- Department of Entomology, University of Georgia, Athens, GA
| | - Matthew J Grieshop
- Department of Entomology, Michigan State University, Center for Integrated Plant Systems, East Lansing, MI
| | - Jana C Lee
- USDA-ARS, Horticultural Crops Research Unit, Corvallis, OR
| | - Oscar E Liburd
- Department of Entomology and Nematology, University of Florida, Natural Area Drive, Gainesville, FL
| | - Elena Rhodes
- Department of Entomology and Nematology, University of Florida, Natural Area Drive, Gainesville, FL
| | | | - Ashfaq A Sial
- Department of Entomology, University of Georgia, Athens, GA
| | - Aijun Zhang
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, BARC-West, Beltsville, MD
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin, Linden Drive, Madison, WI
| |
Collapse
|
43
|
Camus MF, Fowler K, Piper MWD, Reuter M. Sex and genotype effects on nutrient-dependent fitness landscapes in Drosophila melanogaster. Proc Biol Sci 2018; 284:rspb.2017.2237. [PMID: 29263276 DOI: 10.1098/rspb.2017.2237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/27/2017] [Indexed: 11/12/2022] Open
Abstract
The sexes perform different reproductive roles and have evolved sometimes strikingly different phenotypes. One focal point of adaptive divergence occurs in the context of diet and metabolism, and males and females of a range of species have been shown to require different nutrients to maximize their fitness. Biochemical analyses in Drosophila melanogaster have confirmed that dimorphism in dietary requirements is associated with molecular sex differences in metabolite titres. In addition, they also showed significant within-sex genetic variation in the metabolome. To date however, it is unknown whether this metabolic variation translates into differences in reproductive fitness. The answer to this question is crucial to establish whether genetic variation is selectively neutral or indicative of constraints on sex-specific physiological adaptation and optimization. Here we assay genetic variation in consumption and metabolic fitness effects by screening male and female fitness of thirty D. melanogaster genotypes across four protein-to-carbohydrate ratios. In addition to confirming sexual dimorphism in consumption and fitness, we find significant genetic variation in male and female dietary requirements. Importantly, these differences are not explained by feeding responses and probably reflect metabolic variation that, in turn, suggests the presence of genetic constraints on metabolic dimorphism.
Collapse
Affiliation(s)
- M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Kevin Fowler
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthew W D Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
44
|
Martin-Creuzburg D, Massier T, Wacker A. Sex-Specific Differences in Essential Lipid Requirements of Daphnia magna. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
45
|
Camus MF, Huang C, Reuter M, Fowler K. Dietary choices are influenced by genotype, mating status, and sex in Drosophila melanogaster. Ecol Evol 2018; 8:5385-5393. [PMID: 29938060 PMCID: PMC6010745 DOI: 10.1002/ece3.4055] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Mating causes many changes in physiology, behavior, and gene expression in a wide range of organisms. These changes are predicted to be sex specific, influenced by the divergent reproductive roles of the sexes. In female insects, mating is associated with an increase in egg production which requires high levels of nutritional input with direct consequences for the physiological needs of individual females. Consequently, females alter their nutritional acquisition in line with the physiological demands imposed by mating. Although much is known about the female mating-induced nutritional response, far less is known about changes in males. In addition, it is unknown whether variation between genotypes translates into variation in dietary behavioral responses. Here we examine mating-induced shifts in male and female dietary preferences across genotypes of Drosophila melanogaster. We find sex- and genotype-specific effects on both the quantity and quality of the chosen diet. These results contribute to our understanding of sex-specific metabolism and reveal genotypic variation that influences responses to physiological demands.
Collapse
Affiliation(s)
- M. Florencia Camus
- Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Chun‐Cheng Huang
- Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Max Reuter
- Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Kevin Fowler
- Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
46
|
Lirakis M, Dolezal M, Schlötterer C. Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:175-185. [PMID: 29649483 DOI: 10.1016/j.jinsphys.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Organisms regularly encounter unfavorable conditions and the genetic adaptations facilitating survival have been of long-standing interest to evolutionary biologists. Winter is one particularly stressful condition for insects, during which they encounter low temperatures and scarcity of food. Despite dormancy being a well-studied adaptation to facilitate overwintering, there is still considerable controversy about the distribution of dormancy among natural populations and between species in Drosophila. The current definition of dormancy as developmental arrest of oogenesis at the previtellogenic stage (stage 7) distinguishes dormancy from general stress related block of oogenesis at early vitellogenic stages (stages 8 - 9). In an attempt to resolve this, we scrutinized reproductive dormancy in D. melanogaster and D. simulans. We show that dormancy shows the same hallmarks of arrest of oogenesis at stage 9, as described for other stressors and propose a new classification for dormancy. Applying this modified classification, we show that both species express dormancy in cosmopolitan and African populations, further supporting that dormancy uses an ancestral pathway induced by environmental stress. While we found significant differences between individuals and the two Drosophila species in their sensitivity to cold temperature stress, we also noted that extreme temperature stress (8 °C) resulted in very strong dormancy incidence, which strongly reduced the differences seen at less extreme temperatures. We conclude that dormancy in Drosophila should not be considered a special trait, but is better understood as a generic stress response occurring at low temperatures.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria; Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria.
| | - Marlies Dolezal
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
47
|
Billeter JC, Wolfner MF. Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. J Chem Ecol 2018; 44:750-769. [PMID: 29557077 DOI: 10.1007/s10886-018-0947-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 01/05/2023]
Abstract
Chemicals released into the environment by food, predators and conspecifics play critical roles in Drosophila reproduction. Females and males live in an environment full of smells, whose molecules communicate to them the availability of food, potential mates, competitors or predators. Volatile chemicals derived from fruit, yeast growing on the fruit, and flies already present on the fruit attract Drosophila, concentrating flies at food sites, where they will also mate. Species-specific cuticular hydrocarbons displayed on female Drosophila as they mature are sensed by males and act as pheromones to stimulate mating by conspecific males and inhibit heterospecific mating. The pheromonal profile of a female is also responsive to her nutritional environment, providing an honest signal of her fertility potential. After mating, cuticular and semen hydrocarbons transferred by the male change the female's chemical profile. These molecules make the female less attractive to other males, thus protecting her mate's sperm investment. Females have evolved the capacity to counteract this inhibition by ejecting the semen hydrocarbon (along with the rest of the remaining ejaculate) a few hours after mating. Although this ejection can temporarily restore the female's attractiveness, shortly thereafter another male pheromone, a seminal peptide, decreases the female's propensity to re-mate, thus continuing to protect the male's investment. Females use olfaction and taste sensing to select optimal egg-laying sites, integrating cues for the availability of food for her offspring, and the presence of other flies and of harmful species. We argue that taking into account evolutionary considerations such as sexual conflict, and the ecological conditions in which flies live, is helpful in understanding the role of highly species-specific pheromones and blends thereof, as well as an individual's response to the chemical cues in its environment.
Collapse
Affiliation(s)
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
48
|
Stress-induced reproductive arrest in Drosophila occurs through ETH deficiency-mediated suppression of oogenesis and ovulation. BMC Biol 2018; 16:18. [PMID: 29382341 PMCID: PMC5791332 DOI: 10.1186/s12915-018-0484-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Environmental stressors induce changes in endocrine state, leading to energy re-allocation from reproduction to survival. Female Drosophila melanogaster respond to thermal and nutrient stressors by arresting egg production through elevation of the steroid hormone ecdysone. However, the mechanisms through which this reproductive arrest occurs are not well understood. RESULTS Here we report that stress-induced elevation of ecdysone is accompanied by decreased levels of ecdysis triggering hormone (ETH). Depressed levels of circulating ETH lead to attenuated activity of its targets, including juvenile hormone-producing corpus allatum and, as we describe here for the first time, octopaminergic neurons of the oviduct. Elevation of steroid thereby results in arrested oogenesis, reduced octopaminergic input to the reproductive tract, and consequent suppression of ovulation. ETH mitigates heat or nutritional stress-induced attenuation of fecundity, which suggests that its deficiency is critical to reproductive adaptability. CONCLUSIONS Our findings indicate that, as a dual regulator of octopamine and juvenile hormone release, ETH provides a link between stress-induced elevation of ecdysone levels and consequent reduction in fecundity.
Collapse
|
49
|
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory Pathways Controlling Female Insect Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:489-511. [PMID: 29058980 DOI: 10.1146/annurev-ento-020117-043258] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Tusar T Saha
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Alexander S Raikhel
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| |
Collapse
|
50
|
Serizier SB, McCall K. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary. Front Immunol 2017; 8:1642. [PMID: 29238344 PMCID: PMC5712531 DOI: 10.3389/fimmu.2017.01642] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/09/2017] [Indexed: 01/20/2023] Open
Abstract
For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes.
Collapse
Affiliation(s)
- Sandy B Serizier
- Department of Biology, Boston University, Boston, MA, United States.,Graduate Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA, United States
| | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|