1
|
Wang Y, Wang X, Wang Z, Chen Z, Liu N. Impact of broader ecological and socio-environmental components on Aedes mosquito population dynamics: a spatial-temporal longitudinal study. PEST MANAGEMENT SCIENCE 2025; 81:755-765. [PMID: 39404136 DOI: 10.1002/ps.8478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The increasing spread of mosquito-borne diseases is a significant problem globally, but mosquito management strategies are less efficient. Therefore, a comprehensive understanding of the population dynamics of Aedes mosquito is essential for improving mosquito management strategies. Constructing a model to understand Aedes mosquito development in response to environmental factors is crucial to addressing these challenges. RESULTS An extensive data set on Aedes spp. mosquito populations was constructed, considering the environmental factors temperature, water vapor pressure, wind speed, daylength, and rainfall. This data set, compiled from mosquito collections over a period of four years across multiple locations in Alabama, USA, facilitated the prediction of mosquito dynamics. The random forest model was used to explain mosquito population changes in response to these factors. These findings indicated that temperature, daylength, and water vapor pressure had the most significant impacts on mosquito population dynamics. The model also allowed predictions of mosquito population changes over time and across different geographic regions, extending beyond Alabama to the southeastern USA. CONCLUSION This study provided valuable insights into the impacts of environmental factors on mosquito populations. This novel approach using machine learning and the random forest model will enable researchers to predict future mosquito populations and contribute to developing more-effective strategies for mosquito management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL, USA
| | - Xin Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL, USA
| | - Zhuonan Wang
- Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Zhou Chen
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL, USA
- Department of Biochemistry & Biophysics, and Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Hansen EM, Bentz BJ, Baggett LS. Evidence for an adult summer diapause in mountain pine beetle (Coleoptera: Curculionidae) that varies geographically and among haplogroups. ENVIRONMENTAL ENTOMOLOGY 2024; 53:837-848. [PMID: 39052937 DOI: 10.1093/ee/nvae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Identifying dormancy traits is important for predicting insect population success, particularly in a changing climate that could disrupt evolved traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is native to North America, is responsible for millions of acres of tree mortality, and is expanding northward in Canada. Research has identified thermal traits important to epidemic-phase ecology that vary among populations. Genomic research identified 3 mountain pine beetle haplogroups representing Pleistocene glacial refugia. Significant variation in generation timing aligning with the haplogroups has been observed. The adult stage was previously identified as the likely cause of differences among populations, although the mechanism(s) remain unclear. We tested for an adult summer diapause that varies among populations from 2 haplogroups, southern Colorado (CO) (central haplogroup) and southern Idaho (ID) (eastern haplogroup) using respirometry and reproduction experiments. Warm temperatures (25 °C) resulted in reduced respiration rates of central haplogroup mountain pine beetle compared to a cool temperature treatment (15 °C), whereas respiration of the eastern haplogroup did not differ between the treatments. Mated pairs of central haplogroup mountain pine beetle reared/held at 15 °C were more likely to be classified with a higher reproductive success rating compared to pairs reared/held at 25 °C. These results support a facultative summer adult diapause in southern CO central haplogroup mountain pine beetle. Manifestation of this diapause was low/absent among adults from the northerly ID location. This diapause likely serves to maintain univoltinism shown to be important for mountain pine beetle epidemic-phase ecology. The variation occurring among haplogroups highlights the long-term, evolved processes driving local adaptations in mountain pine beetle.
Collapse
Affiliation(s)
- E Matthew Hansen
- US Forest Service, Rocky Mountain Research Station, Logan, UT, USA
| | - Barbara J Bentz
- US Forest Service, Rocky Mountain Research Station, Logan, UT, USA
| | - L Scott Baggett
- US Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| |
Collapse
|
3
|
Fishman B, Tauber E. Epigenetics and seasonal timing in animals: a concise review. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:565-574. [PMID: 37695537 PMCID: PMC11226475 DOI: 10.1007/s00359-023-01673-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Seasonal adaptation in animals is a complex process that involves genetic, epigenetic, and environmental factors. The present review explores recent studies on epigenetic mechanisms implicated in seasonal adaptation in animals. The review is divided into three main sections, each focusing on a different epigenetic mechanism: DNA methylation, histone modifications, and non-coding RNA. Additionally, the review delves into the current understanding of how these epigenetic factors contribute to the regulation of circadian and seasonal cycles. Understanding these molecular mechanisms provides the first step in deciphering the complex interplay between genetics, epigenetics, and the environment in driving seasonal adaptation in animals. By exploring these mechanisms, a better understanding of how animals adapt to changing environmental conditions can be achieved.
Collapse
Affiliation(s)
- Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel.
| |
Collapse
|
4
|
Lindestad O, Nylin S, Wheat CW, Gotthard K. Testing for variation in photoperiodic plasticity in a butterfly: Inconsistent effects of circadian genes between geographic scales. Ecol Evol 2024; 14:e11713. [PMID: 38975264 PMCID: PMC11227937 DOI: 10.1002/ece3.11713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
The genetic components of the circadian clock have been implicated as involved in photoperiodic regulation of winter diapause across various insect groups, thereby contributing to adaptation to adverse seasonal conditions. So far, the effects of within-population variation in these genes have not been well explored. Here, we present an experimental test of the effects of within-population variation at two circadian genes, timeless and period, on photoperiodic responses in the butterfly Pararge aegeria. While nonsynonymous candidate SNPs in both of these genes have previously shown to be associated with diapause induction on a between-population level, in the present experiment no such effect was found on a within-population level. In trying to reconcile these results, we examine sequence data, revealing considerable, previously unknown protein-level variation at both timeless and period across Scandinavian populations, including variants unique to the population studied here. Hence, we hypothesize that these variants may counteract the previously observed diapause-averting effect of the candidate SNPs, possibly explaining the difference in results between the experiments. Whatever the cause, these results highlight how the effects of candidate SNPs may sometimes vary across genetic backgrounds, which complicates evolutionary interpretations of geographic patterns of genetic variation.
Collapse
Affiliation(s)
- Olle Lindestad
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Sören Nylin
- Department of ZoologyStockholm UniversityStockholmSweden
| | | | - Karl Gotthard
- Department of ZoologyStockholm UniversityStockholmSweden
- Bolin Centre for Climate ResearchStockholmSweden
| |
Collapse
|
5
|
Wu Y, Broadley HJ, Vieira KA, McCormack JJ, Losch CA, Namgung H, Kim Y, Kim H, McGraw AR, Palmeri MZ, Lee S, Cao L, Wang X, Gould JR. Cryptic genetic diversity and associated ecological differences of Anastatus orientalis, an egg parasitoid of the spotted lanternfly. FRONTIERS IN INSECT SCIENCE 2023; 3:1154651. [PMID: 38469524 PMCID: PMC10926478 DOI: 10.3389/finsc.2023.1154651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 03/13/2024]
Abstract
Anastatus orientalis, native to northern China, is an egg parasitoid wasp of the spotted lanternfly (Lycorma delicatula) and is being tested as a potential biological control agent for invasive L. delicatula in the United States. As a component of these evaluations, live A. orientalis collected from Beijing and Yantai in China were reared in containment in the U.S. These specimens showed different responses in diapause behaviors to rearing conditions used previously by other researchers. To understand the primary mechanism potentially driving discrepancies in important life history traits, we used molecular tools to examine the genetic composition of A. orientalis from China and from South Korea, where the parasitoid has been introduced to aid in the population management of invasive L. delicatula. Molecular analysis of mitochondrial DNA recovered six haplotype groups, which exhibit biased frequency of abundance between collection sites. Some haplotypes are widespread, and others only occur in certain locations. No apparent pattern is observed between wasps collected from different years or emergence seasons. Uncorrected genetic distances between haplotype groups range from 0.44% to 1.44% after controlling for within-group variation. Genetic variance of A. orientalis is characterized by high levels of local diversity that contrasts with a lack of a broad-scale population structure. The introduced Korean population exhibits lower genetic diversity compared to native populations. Additionally, we created iso-female lines for major haplotype groups through laboratory rearing. Differences in diapause behavior were correlated with mitochondrial haplotype. Our results indicate that the observed life history traits in A. orientalis have a genetic base.
Collapse
Affiliation(s)
- Yunke Wu
- Forest Pest Methods Laboratory, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Buzzards Bay, MA, United States
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Hannah J. Broadley
- Forest Pest Methods Laboratory, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Buzzards Bay, MA, United States
| | - Kendra A. Vieira
- Forest Pest Methods Laboratory, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Buzzards Bay, MA, United States
| | - John J. McCormack
- Forest Pest Methods Laboratory, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Buzzards Bay, MA, United States
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, United States
| | - Corrine A. Losch
- Forest Pest Methods Laboratory, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Buzzards Bay, MA, United States
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, United States
| | - Hyeban Namgung
- Department of Biological Science, Kunsan National University, Gunsan, Jeonbuk, Republic of Korea
| | - Yeongmo Kim
- Department of Biological Science, Kunsan National University, Gunsan, Jeonbuk, Republic of Korea
| | - Hyojoong Kim
- Department of Biological Science, Kunsan National University, Gunsan, Jeonbuk, Republic of Korea
| | - Alana R. McGraw
- Forest Pest Methods Laboratory, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Buzzards Bay, MA, United States
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Marjorie Z. Palmeri
- Forest Pest Methods Laboratory, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Buzzards Bay, MA, United States
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, United States
| | - Seunghwan Lee
- Insect Biosystematics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Liangming Cao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiaoyi Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Juli R. Gould
- Forest Pest Methods Laboratory, United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Buzzards Bay, MA, United States
| |
Collapse
|
6
|
Seasonal Adaptation: Geographic Photoperiod-Temperature Patterns Explain Genetic Variation in the Common Vole Tsh Receptor. Genes (Basel) 2023; 14:genes14020292. [PMID: 36833219 PMCID: PMC9957289 DOI: 10.3390/genes14020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The vertebrate photoperiodic neuroendocrine system uses the photoperiod as a proxy to time the annual rhythms in reproduction. The thyrotropin receptor (TSHR) is a key protein in the mammalian seasonal reproduction pathway. Its abundance and function can tune sensitivity to the photoperiod. To investigate seasonal adaptation in mammals, the hinge region and the first part of the transmembrane domain of the Tshr gene were sequenced for 278 common vole (Microtus arvalis) specimens from 15 localities in Western Europe and 28 localities in Eastern Europe. Forty-nine single nucleotide polymorphisms (SNPs; twenty-two intronic and twenty-seven exonic) were found, with a weak or lack of correlation with pairwise geographical distance, latitude, longitude, and altitude. By applying a temperature threshold to the local photoperiod-temperature ellipsoid, we obtained a predicted critical photoperiod (pCPP) as a proxy for the spring onset of local primary food production (grass). The obtained pCPP explains the distribution of the genetic variation in Tshr in Western Europe through highly significant correlations with five intronic and seven exonic SNPs. The relationship between pCPP and SNPs was lacking in Eastern Europe. Thus, Tshr, which plays a pivotal role in the sensitivity of the mammalian photoperiodic neuroendocrine system, was targeted by natural selection in Western European vole populations, resulting in the optimized timing of seasonal reproduction.
Collapse
|
7
|
Lindestad O, Nylin S, Wheat CW, Gotthard K. Local adaptation of life cycles in a butterfly is associated with variation in several circadian clock genes. Mol Ecol 2021; 31:1461-1475. [PMID: 34931388 DOI: 10.1111/mec.16331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Many insects exhibit geographical variation in voltinism, the number of generations produced per year. This includes high-latitude species in previously glaciated areas, meaning that divergent selection on life cycle traits has taken place during or shortly after recent colonization. Here, we use a population genomics approach to compare a set of nine Scandinavian populations of the butterfly Pararge aegeria that differ in life cycle traits (diapause thresholds and voltinism) along both north-south and east-west clines. Using a de novo-assembled genome, we reconstruct colonization histories and demographic relationships. Based on the inferred population structure, we then scan the genome for candidate loci showing signs of divergent selection potentially associated with population differences in life cycle traits. The identified candidate genes include a number of components of the insect circadian clock (timeless, timeless2, period, cryptochrome and clockwork orange). Most notably, the gene timeless, which has previously been experimentally linked to life cycle regulation in P. aegeria, is here found to contain a novel 97-amino acid deletion unique to, and fixed in, a single population. These results add to a growing body of research framing circadian gene variation as a potential mechanism for generating local adaptation of life cycles.
Collapse
Affiliation(s)
- Olle Lindestad
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Pruisscher P, Nylin S, Wheat CW, Gotthard K. A region of the sex chromosome associated with population differences in diapause induction contains highly divergent alleles at clock genes. Evolution 2020; 75:490-500. [PMID: 33340097 PMCID: PMC7986627 DOI: 10.1111/evo.14151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 01/06/2023]
Abstract
Developmental plasticity describes the capacity of individuals with the same genotype to induce permanent change in a phenotype depending on a specific external input. One well‐studied example of adaptive developmental plasticity is the induction of facultative diapause in insects. Studies investigating the inheritance of diapause induction have suggested diverse genetic origins. However, only few studies have performed genome‐wide scans to identify genes affecting the induction decision. Here we compare two populations of the butterfly Pieris napi that differ in the propensity to enter diapause, and despite showing a low genome‐wide divergence, we identify a few genomic regions that show high divergence between populations. We then identified a single genomic region associated with diapause induction by genotyping diapausing and directly developing siblings from backcrosses of these populations. This region is located on the Z chromosome and contained three circadian clock genes, cycle, clock, and period. Additionally, period harbored the largest number of SNPs showing complete fixation between populations. We conclude that the heritable basis of between‐population variation in the plasticity that determines diapause induction resides on the Z chromosome, with the period gene being the prime candidate for the genetic basis of adaptive plasticity.
Collapse
Affiliation(s)
- Peter Pruisscher
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18b, Stockholm, S-106 91, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18b, Stockholm, S-106 91, Sweden
| | - Christopher West Wheat
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18b, Stockholm, S-106 91, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18b, Stockholm, S-106 91, Sweden
| |
Collapse
|
9
|
Powell THQ, Nguyen A, Xia Q, Feder JL, Ragland GJ, Hahn DA. A rapidly evolved shift in life‐history timing during ecological speciation is driven by the transition between developmental phases. J Evol Biol 2020; 33:1371-1386. [DOI: 10.1111/jeb.13676] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Thomas H. Q. Powell
- Entomology and Nematology Department University of Florida Gainesville Florida USA
- Department of Biological Sciences Binghamton University (State University of New York) Binghamton New York USA
| | - Andrew Nguyen
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| | - Qinwen Xia
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| | - Jeffrey L. Feder
- Department of Biological Sciences University of Notre DameNotre Dame Indiana USA
| | - Gregory J. Ragland
- Department of Integrative Biology University of Colorado Denver Denver Colorado USA
| | - Daniel A. Hahn
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| |
Collapse
|
10
|
Czypionka T, Fields PD, Routtu J, van den Berg E, Ebert D, De Meester L. The genetic architecture underlying diapause termination in a planktonic crustacean. Mol Ecol 2019; 28:998-1008. [PMID: 30592346 DOI: 10.1111/mec.15001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023]
Abstract
Diapause is a feature of the life cycle of many invertebrates by which unfavourable environmental conditions can be outlived. The seasonal timing of diapause allows organisms to adapt to seasonal changes in habitat suitability and thus is key to their fitness. In the planktonic crustacean Daphnia, various cues can induce the production of diapause stages that are resistant to heat, drought or freezing and contain one to two embryos in developmental arrest. Daphnia is a keystone species of many freshwater ecosystems, where it acts as the main link between phytoplankton and higher trophic levels. The correct seasonal timing of diapause termination is essential to maintain trophic interactions and is achieved via a genetically based interpretation of environmental cues like photoperiod and temperature. Field monitoring and modelling studies raised concerns on whether populations can advance their seasonal release from diapause to advances in spring phenology under global change, or if a failure to adapt will cause trophic mismatches negatively affecting ecosystem functioning. Our capacity to understand and predict the evolution of diapause timing requires information about the genetic architecture underlying this trait. In this study, we identified eight quantitative trait loci (QTLs) and four epistatic interactions that together explained 66.5% of the variation in diapause termination in Daphnia magna using QTL mapping. Our results suggest that the most significant QTL is modulating diapause termination dependent on photoperiod and is involved in three of the four detected epistatic interactions. Candidate genes at this QTL could be identified through the integration with genome data and included the presynaptic active zone protein bruchpilot. Our findings contribute to understanding the genomic control of seasonal diapause timing in an ecological relevant species.
Collapse
Affiliation(s)
- Till Czypionka
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Jarkko Routtu
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Molecular Ecology, Martin-Luther-Universität, Halle-Wittenberg, Germany
| | - Edwin van den Berg
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Luc De Meester
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Yamaguchi K, Goto SG. Distinct Physiological Mechanisms Induce Latitudinal and Sexual Differences in the Photoperiodic Induction of Diapause in a Fly. J Biol Rhythms 2019; 34:293-306. [PMID: 30966851 DOI: 10.1177/0748730419841931] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many temperate insects enter diapause (dormancy) for overwintering in response to short days (long nights). A latitudinal cline in the critical day lengths for the photoperiodic induction of diapause has been reported in various insect species. However, the physiological mechanisms underlying this cline have remained elusive. We approached this issue in the flesh fly Sarcophaga similis, in which the photoperiodic time measurement system meets the "external coincidence model." In this model, measuring day lengths depends on whether the photoinducible phase (φi), determined by a circadian clock, is exposed to light or not. First, we detected a clear latitudinal cline in the critical day lengths of flies collected from 4 localities at different latitudes. The phase positions of the φi, which can be verified by night interruption photoperiods, also showed a clear latitudinal cline. This result supports the hypothesis that the latitudinal cline in the critical day length is produced by the difference in the phase positions of the φi among different strains. A sexual difference in the critical day length for photoperiodic induction has also been detected in various species. In this study, a sexual difference in the critical day length was observed in the southern strains but there was no sexual difference in the phase positions of the φi. This result indicates that both sexes measure photoperiods in the same manner. Males are less sensitive than females to the light pulse given at the φi, suggesting a quantitative difference in the photoperiodic time measurement and counter systems. This study clearly reveals that distinct mechanisms induce latitudinal and sexual differences in the critical day length for the photoperiodic induction of diapause in a fly.
Collapse
Affiliation(s)
- Koki Yamaguchi
- Graduate School of Science, Osaka City University, Japan
| | - Shin G Goto
- Graduate School of Science, Osaka City University, Japan
| |
Collapse
|
12
|
Bradshaw WE, Holzapfel CM. Natural Variation and Genetics of Photoperiodism in Wyeomyia smithii. ADVANCES IN GENETICS 2017; 99:39-71. [PMID: 29050554 DOI: 10.1016/bs.adgen.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seasonal change in the temperate and polar regions of Earth determines how the world looks around us and, in fact, how we live our day-to-day lives. For biological organisms, seasonal change typically involves complex physiological and metabolic reorganization, the majority of which is regulated by photoperiodism. Photoperiodism is the ability of animals and plants to use day length or night length, resulting in life-historical transformations, including seasonal development, migration, reproduction, and dormancy. Seasonal timing determines not only survival and reproductive success but also the structure and organization of complex communities and, ultimately, the biomes of Earth. Herein, a small mosquito, Wyeomyia smithii, that lives only in the water-filled leaves of a carnivorous plant over a wide geographic range, is used to explore the genetic and evolutionary basis of photoperiodism. Photoperiodism in W. smithii is considered in the context of its historical biogeography in nature to examine the startling finding that recent rapid climate change can drive genetic change in plants and animals at break-neck speed, and to challenge the ponderous 80+ year search for connections between daily and seasonal time-keeping mechanisms. Finally, a model is proposed that reconciles the seemingly disparate 24-h daily clock driven by the invariant rotation of Earth about its axis with the evolutionarily flexible seasonal timer orchestrated by variable seasonality driven by the rotation of Earth about the Sun.
Collapse
Affiliation(s)
- William E Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States.
| | | |
Collapse
|
13
|
Paolucci S, Salis L, Vermeulen CJ, Beukeboom LW, van de Zande L. QTL analysis of the photoperiodic response and clinal distribution ofperiodalleles inNasonia vitripennis. Mol Ecol 2016; 25:4805-17. [DOI: 10.1111/mec.13802] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Paolucci
- Department of Ecology and Evolution; University of Lausanne; UNIL-Sorge CH-1015 Lausanne Switzerland
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Lucia Salis
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Animal Ecology; Netherlands Institute of Ecology (NIOO-KNAW); PO Box 50 6700 AB Wageningen The Netherlands
| | - Cornelis J. Vermeulen
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Pulmonary Diseases; University Medical Center Groningen; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| |
Collapse
|
14
|
Tyukmaeva VI, Veltsos P, Slate J, Gregson E, Kauranen H, Kankare M, Ritchie MG, Butlin RK, Hoikkala A. Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments. Mol Ecol 2015; 24:2809-19. [PMID: 25877951 DOI: 10.1111/mec.13202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Abstract
Seasonally changing environments at high latitudes present great challenges for the reproduction and survival of insects, and photoperiodic cues play an important role in helping them to synchronize their life cycle with prevalent and forthcoming conditions. We have mapped quantitative trait loci (QTL) responsible for the photoperiodic regulation of four life history traits, female reproductive diapause, cold tolerance, egg-to-eclosion development time and juvenile body weight in Drosophila montana strains from different latitudes in Canada and Finland. The F2 progeny of the cross was reared under a single photoperiod (LD cycle 16:8), which the flies from the Canadian population interpret as early summer and the flies from the Finnish population as late summer. The analysis revealed a unique QTL for diapause induction on the X chromosome and several QTL for this and the other measured traits on the 4th chromosome. Flies' cold tolerance, egg-to-eclosion development time and juvenile body weight had several QTL also on the 2nd, 3rd and 5th chromosome, some of the peaks overlapping with each other. These results suggest that while the downstream output of females' photoperiodic diapause response is partly under a different genetic control from that of the other traits in the given day length, all traits also share some QTL, possibly involving genes with pleiotropic effects and/or multiple tightly linked genes. Nonoverlapping QTL detected for some of the traits also suggest that the traits are potentially capable of independent evolution, even though this may be restricted by epistatic interactions and/or correlations and trade-offs between the traits.
Collapse
Affiliation(s)
- Venera I Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, PO Box 35, Jyväskylä, 40014, Finland.,School of Biology, Dyers Brae, University of St Andrews, Greenside Place, St Andrews, Fife, KY16 9TH, UK
| | - Paris Veltsos
- School of Biology, Dyers Brae, University of St Andrews, Greenside Place, St Andrews, Fife, KY16 9TH, UK
| | - Jon Slate
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Emma Gregson
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.,School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, PO Box 35, Jyväskylä, 40014, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, PO Box 35, Jyväskylä, 40014, Finland
| | - Michael G Ritchie
- School of Biology, Dyers Brae, University of St Andrews, Greenside Place, St Andrews, Fife, KY16 9TH, UK
| | - Roger K Butlin
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.,Sven Lovén Centre for Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, SE 452 96, Sweden
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, PO Box 35, Jyväskylä, 40014, Finland
| |
Collapse
|
15
|
Dolezel D. Photoperiodic time measurement in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 7:98-103. [PMID: 32846694 DOI: 10.1016/j.cois.2014.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 06/11/2023]
Abstract
The ratio of day-to-night length, known as the photoperiod, is used by many organisms to predict the oncoming of adverse seasons through the use of a photoperiodic clock system. The molecular and neural architecture of these time-measuring devices is unclear, although some evidence suggests involvement of circadian factors, that is, proteins responsible for daily oscillations. This review summarizes specific difficulties in the research of photoperiodic clocks, highlights recent successful studies, and suggests possible future directions available with emerging technologies.
Collapse
Affiliation(s)
- David Dolezel
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
16
|
Wadsworth CB, Dopman EB. Transcriptome profiling reveals mechanisms for the evolution of insect seasonality. J Exp Biol 2015; 218:3611-22. [DOI: 10.1242/jeb.126136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022]
Abstract
Rapid evolutionary change in seasonal timing can facilitate ecological speciation and resilience to climate warming. However, the molecular mechanisms behind shifts in animal seasonality are still unclear. Evolved differences in seasonality occur in the European corn borer moth (Ostrinia nubilalis), in which early summer emergence in E-strain adults and later summer emergence in Z-strain adults is explained by a shift in the length of the termination phase of larval diapause. Here, we sample from the developmental time course of diapause in both strains and use transcriptome sequencing to profile regulatory and amino acid changes associated with timing divergence. Within a previously defined QTL, we nominate 48 candidate genes including several in the insulin signaling and circadian rhythm pathways. Genome-wide transcriptional activity is negligible during the extended Z-strain termination, whereas shorter E-strain termination is characterized by a rapid burst of regulatory changes involved in resumption of the cell cycle, hormone production, and stress response. Although gene expression during diapause termination in Ostrinia is similar to that found previously in flies, nominated genes for shifts in timing are species-specific. Hence, across distant relatives the evolution of insect seasonality appears to involve unique genetic switches that direct organisms into distinct phases of the diapause pathway through wholesale restructuring of conserved gene regulatory networks
Collapse
Affiliation(s)
- Crista B. Wadsworth
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| |
Collapse
|
17
|
Lehmann P, Piiroinen S, Kankare M, Lyytinen A, Paljakka M, Lindström L. Photoperiodic effects on diapause-associated gene expression trajectories in European Leptinotarsa decemlineata populations. INSECT MOLECULAR BIOLOGY 2014; 23:566-578. [PMID: 24924142 DOI: 10.1111/imb.12104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Behavioural and physiological changes during diapause, an important strategy of insects for surviving harsh seasonal conditions, have been intensively studied. The genetic and molecular mechanisms underpinning diapause development are less well known. We took a candidate gene approach to study prediapause gene expression patterns in the Colorado potato beetle (Leptinotarsa decemlineata), an invasive insect that has rapidly spread northwards to high seasonality environments. Newly eclosed beetles originating from southern (Italy) and northern (Russia) Europe were reared under short- [12 h light (L):12 h dark (D)] and long-day (18L:6D) photoperiods for 10 days. This time period includes the sensitive period for the photoperiodic induction and initiation of diapause. Gene expression trajectories of 12 diapause-related genes (regulatory, metabolic and stress-resistance) were analysed from 0-, 5- and 10-day-old beetles. Gene expression differences increased with age, deviating significantly between populations and photoperiods in 10-day-old beetles. The gene expression profiles, particularly those related to energy metabolism and stress-resistance, indicate that beetles originating from Russia also prepare for diapause under the long-day photoperiod and show qualitative differences in the diapausing phenotype. Our study shows that population-dependent differences seen in behavioural and physiological traits connected with diapause in L. decemlineata are also evident in the expression trajectories of diapause-related genes.
Collapse
Affiliation(s)
- P Lehmann
- Centre of Excellence in Biological Interactions Research, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Diapause, a dominant feature in the life history of many mosquito species, offers a mechanism for bridging unfavorable seasons in both temperate and tropical environments and serves to synchronize development within populations, thus directly affecting disease transmission cycles. The trait appears to have evolved independently numerous times within the Culicidae, as exemplified by the diverse developmental stages of diapause in closely related species. Its impact is pervasive, not only influencing the arrested stage, but also frequently altering physiological processes both before and after diapause. How the diapause response can be molded evolutionarily is critical for understanding potential range expansions of native and newly introduced species. The study of hormonal regulation of mosquito diapause has focused primarily on adult diapause, with little current information available on larval diapause or the intriguing maternal effects that regulate egg diapause. Recent quantitative trait locus, transcriptome, and RNA interference studies hold promise for interpreting the complex suite of genes that subserve the diapause phenotype.
Collapse
Affiliation(s)
- David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio 43210;
| | | |
Collapse
|
19
|
Wadsworth CB, Woods WA, Hahn DA, Dopman EB. One phase of the dormancy developmental pathway is critical for the evolution of insect seasonality. J Evol Biol 2013; 26:2359-68. [DOI: 10.1111/jeb.12227] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 01/04/2023]
Affiliation(s)
| | - W. A. Woods
- Department of Biology; Tufts University; Medford MA USA
| | - D. A. Hahn
- Department of Entomology and Nematology; University of Florida; Gainesville FL USA
| | - E. B. Dopman
- Department of Biology; Tufts University; Medford MA USA
| |
Collapse
|
20
|
Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. Latitudinal clines: an evolutionary view on biological rhythms. Proc Biol Sci 2013; 280:20130433. [PMID: 23825204 PMCID: PMC3712436 DOI: 10.1098/rspb.2013.0433] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/03/2013] [Indexed: 11/12/2022] Open
Abstract
Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms.
Collapse
Affiliation(s)
- Roelof A Hut
- Chronobiology unit, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Roulin AC, Routtu J, Hall MD, Janicke T, Colson I, Haag CR, Ebert D. Local adaptation of sex induction in a facultative sexual crustacean: insights from QTL mapping and natural populations of Daphnia magna. Mol Ecol 2013; 22:3567-79. [PMID: 23786714 DOI: 10.1111/mec.12308] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/12/2013] [Accepted: 02/17/2013] [Indexed: 02/02/2023]
Abstract
Dormancy is a common adaptation in invertebrates to survive harsh conditions. Triggered by environmental cues, populations produce resting eggs that allow them to survive temporally unsuitable conditions. Daphnia magna is a crustacean that reproduces by cyclical parthenogenesis, alternating between the production of asexual offspring and the sexual reproduction of diapausing eggs (ephippia). Prior to ephippia production, males (necessary to ensure ephippia fertilization) are produced parthenogenetically. Both the production of ephippia and the parthenogenetic production of males are induced by environmental factors. Here, we test the hypothesis that the induction of D. magna resting egg production shows a signature of local adaptation. We postulated that Daphnia from permanent ponds would produce fewer ephippia and males than Daphnia from intermittent ponds and that the frequency and season of habitat deterioration would correlate with the timing and amount of male and ephippia production. To test this, we quantified the production of males and ephippia in clonal D. magna populations in several different controlled environments. We found that the production of both ephippia and males varies strongly among populations in a way that suggests local adaptation. By performing quantitative trait locus mapping with parent clones from contrasting pond environments, we identified nonoverlapping genomic regions associated with male and ephippia production. As the traits are influenced by two different genomic regions, and both are necessary for successful resting egg production, we suggest that the genes for their induction co-evolve.
Collapse
Affiliation(s)
- Anne C Roulin
- Department of Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
O'Brien C, Unruh L, Zimmerman C, Bradshaw WE, Holzapfel CM, Cresko WA. Geography of the circadian gene clock and photoperiodic response in western North American populations of the three-spined stickleback Gasterosteus aculeatus. JOURNAL OF FISH BIOLOGY 2013; 82:827-839. [PMID: 23464546 PMCID: PMC4076159 DOI: 10.1111/jfb.12024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
Controlled laboratory experiments were used to show that Oregon and Alaskan three-spined stickleback Gasterosteus aculeatus, collected from locations differing by 18° of latitude, exhibited no significant variation in length of the polyglutamine domain of the clock protein or in photoperiodic response within or between latitudes despite the fact that male and female G. aculeatus are photoperiodic at both latitudes. Hence, caution is urged when interpreting variation in the polyglutamine repeat (PolyQ) domain of the gene clock in the context of seasonal activities or in relationship to photoperiodism along geographical gradients.
Collapse
Affiliation(s)
- C O'Brien
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, OR 97403-5289, USA
| | | | | | | | | | | |
Collapse
|
23
|
Bradshaw WE, Emerson KJ, Catchen JM, Cresko WA, Holzapfel CM. Footprints in time: comparative quantitative trait loci mapping of the pitcher-plant mosquito, Wyeomyia smithii. Proc Biol Sci 2012; 279:4551-8. [PMID: 23015622 DOI: 10.1098/rspb.2012.1917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Identifying regions of the genome contributing to phenotypic evolution often involves genetic mapping of quantitative traits. The focus then turns to identifying regions of 'major' effect, overlooking the observation that traits of ecological or evolutionary relevance usually involve many genes whose individual effects are small but whose cumulative effect is large. Herein, we use the power of fully interfertile natural populations of a single species of mosquito to develop three quantitative trait loci (QTL) maps: one between two post-glacially diverged populations and two between a more ancient and a post-glacial population. All demonstrate that photoperiodic response is genetically a highly complex trait. Furthermore, we show that marker regressions identify apparently 'non-significant' regions of the genome not identified by composite interval mapping, that the perception of the genetic basis of adaptive evolution is crucially dependent upon genetic background and that the genetic basis for adaptive evolution of photoperiodic response is highly variable within contemporary populations as well as between anciently diverged populations.
Collapse
Affiliation(s)
- William E Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | | | | | |
Collapse
|
24
|
Bradshaw WE, Emerson KJ, Holzapfel CM. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii. Heredity (Edinb) 2011; 108:473-9. [PMID: 22072069 DOI: 10.1038/hdy.2011.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The genetic relationship between the daily circadian clock and the seasonal photoperiodic timer remains a subject of intense controversy. In Wyeomyia smithii, the critical photoperiod (an overt expression of the photoperiodic timer) evolves independently of the rhythmic response to the Nanda-Hamner protocol (an overt expression of the daily circadian clock) over a wide geographical range in North America. Herein, we focus on these two processes within a single local population in which there is a negative genetic correlation between them. We show that antagonistic selection against this genetic correlation rapidly breaks it down and, in fact, reverses its sign, showing that the genetic correlation is due primarily to linkage and not to pleiotropy. This rapid reversal of the genetic correlation within a small, single population means that it is difficult to argue that circadian rhythmicity forms the necessary, causal basis for the adaptive divergence of photoperiodic time measurement within populations or for the evolution of photoperiodic time measurement among populations over a broad geographical gradient of seasonal selection.
Collapse
Affiliation(s)
- W E Bradshaw
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | |
Collapse
|
25
|
Hut RA, Beersma DGM. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos Trans R Soc Lond B Biol Sci 2011; 366:2141-54. [PMID: 21690131 PMCID: PMC3130368 DOI: 10.1098/rstb.2010.0409] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a 'clock') that is synchronized ('entrained') to the environmental cycle by receptor mechanisms responding to relevant environmental signals ('Zeitgeber', i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes.
Collapse
Affiliation(s)
- R A Hut
- University of Groningen, Chronobiology Research Unit, Life Science building, Nijenborgh 7, 9747AG Groningen, The Netherlands.
| | | |
Collapse
|
26
|
Koštál V. Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? JOURNAL OF INSECT PHYSIOLOGY 2011; 57:538-556. [PMID: 21029738 DOI: 10.1016/j.jinsphys.2010.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
The photoperiodic calendar is a seasonal time measurement system which allows insects to cope with annual cycles of environmental conditions. Seasonal timing of entry into diapause is the most often studied photoperiodic response of insects. Research on insect photoperiodism has an approximately 80-year-old tradition. Despite that long history, the physiological mechanisms underlying functionality of the photoperiodic calendar remain poorly understood. Thus far, a consensus has not been reached on the role of another time measurement system, the biological circadian clock, in the photoperiodic calendar. Are the two systems physically separated and functionally independent, or do they cooperate, or is it a single system with dual output? The relationship between calendar and clock functions are the focus of this review, with particular emphasis on the potential roles of circadian clock genes, and the circadian clock system as a whole, in the transduction pathway for photoperiodic token stimulus to the overt expression of facultative diapause.
Collapse
Affiliation(s)
- Vladimír Koštál
- Institute of Entomology, Academy of Sciences of the Czech Republic, Department of Ecophysiology, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
27
|
Schiesari L, Kyriacou CP, Costa R. The hormonal and circadian basis for insect photoperiodic timing. FEBS Lett 2011; 585:1450-60. [PMID: 21354417 DOI: 10.1016/j.febslet.2011.02.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/07/2011] [Accepted: 02/21/2011] [Indexed: 01/17/2023]
Abstract
Daylength perception in temperate zones is a critical feature of insect life histories, and leads to developmental changes for resisting unfavourable seasons. The role of the neuroendocrine axis in the photoperiodic response of insects is discussed in relation to the key organs and molecules that are involved. We also discuss the controversial issue of the possible involvement of the circadian clock in photoperiodicity. Drosophila melanogaster has a shallow photoperiodic response that leads to reproductive arrest in adults, yet the unrivalled molecular genetic toolkit available for this model insect should allow the systematic molecular and neurobiological dissection of this complex phenotype.
Collapse
|
28
|
Bradshaw WE, Holzapfel CM. What Season Is It Anyway? Circadian Tracking vs. Photoperiodic Anticipation in Insects. J Biol Rhythms 2010; 25:155-65. [DOI: 10.1177/0748730410365656] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The daily rhythm of 24 h and the annual rhythm of 12 mo constitute the 2 major, highly predictable rhythms of the biosphere. The internal circadian clock enables organisms to track daily changes in their environment; the photoperiodic timer, alone or in concert with a circannual clock, enables organisms to anticipate and prepare in advance for seasonal changes in their environment. The circadian clock entrains to dawn and dusk and tracks light and temperature on a day-to-day basis, while the photoperiodic timer serves as a long-term, physiological go/no-go switch that commits an animal to development, reproduction, dormancy, or migration on a seasonal or even lifetime basis. In 1936, Erwin Bünning proposed that circadian rhythms formed the basis ( Grundlage) for photoperiodic response to day length. Historical inertia generated by correlative evidence from early physiological studies and a proliferating number of descriptive models has resulted in the widespread assumption that the circadian clock constitutes the necessary, causal basis of photoperiodism in general. This historical inertia has also restricted the search for genes involved in insect photoperiodism to genes central to the circadian clock in Drosophila and has led investigators to conclude that any behavior, process, or gene expression that varies with day length represents photoperiodism or a gene involved in photoperiodism. The authors discuss how blinders imposed by the circadian imperative have retarded progress toward identifying the genetic basis of photoperiodism and how the insights gained from geographic variation in photoperiodic response have been used to show the independent evolution of the circadian clock and photoperiodism. When geographic variation is found in circadian genes, the most immediate and parsimonious search for adaptive significance should be in circadian function, not in extrapolation to photoperiodism. Finally, the authors propose that circadian-unbiased, forward genetic approaches should be used to identify genes involved in photoperiodism within extant populations and among populations over evolutionary time.
Collapse
Affiliation(s)
- William E. Bradshaw
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon,
| | | |
Collapse
|
29
|
Bradshaw WE, Holzapfel CM. Light, time, and the physiology of biotic response to rapid climate change in animals. Annu Rev Physiol 2010; 72:147-66. [PMID: 20148671 DOI: 10.1146/annurev-physiol-021909-135837] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Examination of temperate and polar regions of Earth shows that the nonbiological world is exquisitely sensitive to the direct effects of temperature, whereas the biological world is largely organized by light. Herein, we discuss the use of day length by animals at physiological and genetic levels, beginning with a comparative experimental study that shows the preeminent role of light in determining fitness in seasonal environments. Typically, at seasonally appropriate times, light initiates a cascade of physiological events mediating the input and interpretation of day length to the output of specific hormones that ultimately determine whether animals prepare to develop, reproduce, hibernate, enter dormancy, or migrate. The mechanisms that form the basis of seasonal time keeping and their adjustment during climate change are reviewed at the physiological and genetic levels. Future avenues for research are proposed that span basic questions from how animals transition from dependency on tropical cues to temperate cues during range expansions, to more applied questions of species survival and conservation biology during periods of climatic stress.
Collapse
Affiliation(s)
- William E Bradshaw
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403-5289, USA.
| | | |
Collapse
|
30
|
Emerson KJ, Bradshaw WE, Holzapfel CM. Microarrays reveal early transcriptional events during the termination of larval diapause in natural populations of the mosquito, Wyeomyia smithii. PLoS One 2010; 5:e9574. [PMID: 20221437 PMCID: PMC2832704 DOI: 10.1371/journal.pone.0009574] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/14/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mosquito Wyeomyia smithii overwinters in a larval diapause that is initiated, maintained and terminated by day length (photoperiod). We use a forward genetic approach to investigate transcriptional events involved in the termination of diapause following exposure to long-days. METHODS/PRINCIPAL FINDINGS We incorporate a novel approach that compares two populations that differentially respond to a single day length. We identify 30 transcripts associated with differential response to day length. Most genes with a previously annotated function are consistent with their playing a role in the termination of diapause, in downstream developmental events, or in the transition from potentially oxygen-poor to oxygen-rich environments. One gene emerges from three separate forward genetic screens as a leading candidate for a gene contributing to the photoperiodic timing mechanism itself (photoperiodic switch). We name this gene photoperiodic response gene 1 (ppdrg1). WsPpdrg1 is up-regulated under long-day response conditions, is located under a QTL for critical photoperiod and is associated with critical photoperiod after 25 generations of recombination from a cross between extreme phenotypes. CONCLUSIONS Three independent forward genetic approaches identify WsPpdrg1 as a gene either involved in the photoperiodic switch mechanism or very tightly linked to a gene that is. We conclude that continued forward genetic approaches will be central to understanding not only the molecular basis of photoperiodism and diapause, but also the evolutionary potential of temperate and polar animal populations when confronted with rapid climate change.
Collapse
Affiliation(s)
- Kevin J Emerson
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America.
| | | | | |
Collapse
|
31
|
Kawakami Y, Numata H, Ito K, Goto SG. Dominant and recessive inheritance patterns of diapause in the two-spotted spider mite Tetranychus urticae. J Hered 2010; 101:20-5. [PMID: 19846476 DOI: 10.1093/jhered/esp085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the diapause incidence in 3 geographic strains of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Under diapause-inducing conditions of 12:12 light:dark at 15 degrees C, the diapause incidence was nearly 100% in a strain from northern Japan (Sapporo), whereas it was nearly 0% in 2 strains from southern Japan (Itoman and Takanabe). Reciprocal crosses clearly showed that the nondiapause phenotype is inherited in a completely dominant manner, and no maternal effect was detected. Backcrosses to the Itoman and Takanabe strains suggested that dominant nondiapause alleles control the nondiapause phenotype. To clarify the genetic basis of nondiapause in the northern population, we also established a nondiapausing variant ("selected nondiapause" abbreviated as snd) from the Sapporo strain. Crossing experiments revealed that a single recessive allele is responsible for the nondiapause phenotype. Thus, both dominant and recessive inheritance patterns of diapause were detected in the T. urticae populations studied here.
Collapse
Affiliation(s)
- Yuko Kawakami
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | | | | | | |
Collapse
|
32
|
Cortés T, Ortiz-Rivas B, Martínez-Torres D. Identification and characterization of circadian clock genes in the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:123-39. [PMID: 20482645 DOI: 10.1111/j.1365-2583.2009.00931.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The molecular basis of circadian clocks is highly evolutionarily conserved and has been best characterized in Drosophila and mouse. Analysis of the Acyrthosiphon pisum genome revealed the presence of orthologs of the following genes constituting the core of the circadian clock in Drosophila: period (per), timeless (tim), Clock, cycle, vrille, and Pdp1. However, the presence in A. pisum of orthologs of a mammal-type in addition to a Drosophila-type cryptochrome places the putative aphid clockwork closer to the ancestral insect system than to the Drosophila one. Most notably, five of these putative aphid core clock genes are highly divergent and exhibit accelerated rates of change (especially per and tim orthologs) suggesting that the aphid circadian clock has evolved to adapt to (unknown) aphid-specific needs. Additionally, with the exception of jetlag (absent in the aphid) other genes included in the Drosophila circadian clock repertoire were found to be conserved in A. pisum. Expression analysis revealed circadian rhythmicity for some core genes as well as a significant effect of photoperiod in the amplitude of oscillations.
Collapse
Affiliation(s)
- T Cortés
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | | | | |
Collapse
|
33
|
Kostál V, Závodská R, Denlinger D. Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:408-414. [PMID: 19186184 DOI: 10.1016/j.jinsphys.2008.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/16/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
While roles of the clock genes period (per) and timeless (tim) are relatively well understood in relation to circadian clocks, their potential roles in insect photoperiodism remain enigmatic. In this study, the expression of per and tim genes under two contrasting photoperiods is described in the central nervous system of photoperiodically sensitive, newly hatched first instar larvae of the flesh fly, Sarcophaga crassipalpis. Using qPCR, diel oscillations were observed in the mRNA levels of both genes under long-day (15 h light:9h dark, promotes direct development) and short-day conditions (11 h light:13 h dark, induces pupal diapause). Peak per and tim mRNA oscillations were closely associated with the light/dark transition. The conspicuous difference between the two photoperiodic conditions was that the sharp increase in per and tim mRNA abundance occurred during the light phase under long days but during the dark phase under short days. The diel oscillations were, at least in part, driven by an endogenous component, as demonstrated by transferring larvae to continuous darkness. The cells displaying Tim- and Per-like immunoreactivities (Tim- and Per-LIRs) were localized using anti-Drosophila-Per and anti-Chymomyza-Tim antibodies. Per-LIR and Tim-LIR co-localized in three groups of cells in each brain hemisphere. Two other groups, one in the brain hemispheres and the other in the fused ventral nerve ganglion, expressed only the Per-LIR.
Collapse
Affiliation(s)
- Vladimír Kostál
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovská 31, Ceské Budejovice 370 05, Czech Republic.
| | | | | |
Collapse
|
34
|
Emerson KJ, Bradshaw WE, Holzapfel CM. Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends Genet 2009; 25:217-25. [PMID: 19375812 DOI: 10.1016/j.tig.2009.03.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 01/03/2023]
Abstract
Understanding gene interaction and pleiotropy are long-standing goals of developmental and evolutionary biology. We examine the genetic control of diapause in insects and show how the failure to recognize the difference between modular and gene pleiotropy has confounded our understanding of the genetic basis of this important phenotype. This has led to complications in understanding the role of the circadian clock in the control of diapause in Drosophila and other insects. We emphasize three successive modules - each containing functionally related genes - that lead to diapause: photoperiodism, hormonal events and diapause itself. Understanding the genetic basis for environmental control of diapause has wider implications for evolutionary response to rapid climate change and for the opportunity to observe evolutionary change in contemporary time.
Collapse
Affiliation(s)
- Kevin J Emerson
- Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | |
Collapse
|
35
|
Sandrelli F, Costa R, Kyriacou CP, Rosato E. Comparative analysis of circadian clock genes in insects. INSECT MOLECULAR BIOLOGY 2008; 17:447-463. [PMID: 18828836 DOI: 10.1111/j.1365-2583.2008.00832.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
After a slow start, the comparative analysis of clock genes in insects has developed into a mature area of study in recent years. Brain transplant or surgical interventions in larger insects defined much of the early work in this area, before the cloning of clock genes became possible. We discuss the evolution of clock genes, their key sequence differences, and their likely modes of regulation in several different insect orders. We also present their expression patterns in the brain, focusing particularly on Diptera, Lepidoptera, and Orthoptera, the most common non-genetic model insects studied. We also highlight the adaptive involvement of clock molecules in other complex phenotypes which require biological timing, such as social behaviour, diapause and migration.
Collapse
Affiliation(s)
- F Sandrelli
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | | | | |
Collapse
|
36
|
Samis KE, Heath KD, Stinchcombe JR. Discordant longitudinal clines in flowering time and phytochrome C in Arabidopsis thaliana. Evolution 2008; 62:2971-83. [PMID: 18752603 DOI: 10.1111/j.1558-5646.2008.00484.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using seasonal cues to time reproduction appropriately is crucial for many organisms. Plants in particular often use photoperiod to signal the time to transition to flowering. Because seasonality varies latitudinally, adaptation to local climate is expected to result in corresponding clines in photoperiod-related traits. By experimentally manipulating photoperiod cues and measuring the flowering responses and photoperiod plasticity of 138 Eurasian accessions of Arabidopsis thaliana, we detected strong longitudinal but not latitudinal clines in flowering responses. The presence of longitudinal clines suggests that critical photoperiod cues vary among populations occurring at similar latitudes. Haplotypes at PHYC, a locus hypothesized to play a role in adaptation to light cues, were also longitudinally differentiated. Controlling for neutral population structure revealed that PHYC haplotype influenced flowering time; however, the distribution of PHYC haplotypes occurred in the opposite direction to the phenotypic cline, suggesting that loci other than PHYC are responsible for the longitudinal pattern in photoperiod response. Our results provide previously missing empirical support for the importance of PHYC in mediating photoperiod sensitivity in natural populations of A. thaliana. However, they also suggest that other loci and epistatic interactions likely play a role in the determination of flowering time and that the environmental factors influencing photoperiod in plants vary longitudinally as well as latitudinally.
Collapse
Affiliation(s)
- Karen E Samis
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
37
|
Photoperiodic Induction of Diapause Requires Regulated Transcription oftimelessin the Larval Brain ofChymomyza costata. J Biol Rhythms 2008; 23:129-39. [DOI: 10.1177/0748730407313364] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photoperiodic signal stimulates induction of larval diapause in Chymomyza costata. Larvae of NPD strain ( npd-mutants) do not respond to photoperiod. Our previous results indicated that the locus npd could code for the timeless gene and its product might represent a molecular link between circadian and photoperiodic clock systems. Here we present results of tim mRNA (real time-PCR) and TIM protein (immunohistochemistry) analyses in the larval brain. TIM protein was localized in 2 neurons of each brain hemisphere of the 4-d-old 3rd instar wild-type larvae. In a marked contrast, no TIM neurons were detected in the brain of 4-day-old 3rd instar npd -mutant larvae and the level of tim transcripts was approximately 10-fold lower in the NPD than in the wild-type strain. Daily changes in tim expression and TIM presence appeared to be under photoperiodic control in the wild-type larvae. Clear daily oscillations of tim transcription were observed during the development of 3rd instars under the short-day conditions. Daily oscillations were less apparent under the long-day conditions, where a gradual increase of tim transcript abundance appeared as a prevailing trend. Analysis of the genomic structure of tim gene revealed that npd-mutants carry a 1855 bp-long deletion in the 5′-UTR region. This deletion removed the start of transcription and promoter regulatory motifs E-box and TER-box. The authors hypothesize that this mutation was responsible for dramatic reduction of tim transcription rates, disruption of circadian clock function, and disruption of photoperiodic calendar function in npd-mutant larvae of C. costata.
Collapse
|
38
|
Bradshaw WE, Holzapfel CM. Evolution of Animal Photoperiodism. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.37.091305.110115] [Citation(s) in RCA: 367] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- William E. Bradshaw
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403;
| | - Christina M. Holzapfel
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403;
| |
Collapse
|
39
|
Mitchell-Olds T, Willis JH, Goldstein DB. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 2007; 8:845-56. [DOI: 10.1038/nrg2207] [Citation(s) in RCA: 384] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Affiliation(s)
- William Bradshaw
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|