1
|
Augustijnen H, Bätscher L, Cesanek M, Chkhartishvili T, Dincă V, Iankoshvili G, Ogawa K, Vila R, Klopfstein S, de Vos JM, Lucek K. A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies. SCIENCE ADVANCES 2024; 10:eadl0989. [PMID: 38630820 PMCID: PMC11023530 DOI: 10.1126/sciadv.adl0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Livio Bätscher
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Martin Cesanek
- Slovak Entomological Society, Slovak Academy of Sciences, Bratislava 1, Slovakia
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, 90570 Oulu, Finland
| | | | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
- Insect Sciences and Creative Entomology Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona, Spain
| | - Seraina Klopfstein
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland
| | - Jurriaan M. de Vos
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Kay Lucek
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
2
|
Traut W, Sahara K, ffrench-Constant RH. Lepidopteran Synteny Units reveal deep chromosomal conservation in butterflies and moths. G3 (BETHESDA, MD.) 2023; 13:jkad134. [PMID: 37310934 PMCID: PMC10411566 DOI: 10.1093/g3journal/jkad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
DNA is compacted into individual particles or chromosomes that form the basic units of inheritance. However, different animals and plants have widely different numbers of chromosomes. This means that we cannot readily tell which chromosomes are related to which. Here, we describe a simple technique that looks at the similarity of genes on each chromosome and thus gives us a true picture of their homology or similarity through evolutionary time. We use this new system to look at the chromosomes of butterflies and moths or Lepidoptera. We term the associated synteny units, Lepidopteran Synteny Units (LSUs). Using a sample of butterfly and moth genomes from across evolutionary time, we show that LSUs form a simple and reliable method of tracing chromosomal homology back through time. Surprisingly, this technique reveals that butterfly and moth chromosomes show conserved blocks dating back to their sister group the Trichoptera. As Lepidoptera have holocentric chromosomes, it will be interesting to see if similar levels of synteny are shown in groups of animals with monocentric chromosomes. The ability to define homology via LSU analysis makes it considerably easier to approach many questions in chromosomal evolution.
Collapse
Affiliation(s)
- Walther Traut
- Institut für Biologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Ken Sahara
- Laboratory of Molecular Entomology, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka 020-8550, Japan
| | | |
Collapse
|
3
|
Hundsdoerfer AK, Schell T, Patzold F, Wright CJ, Yoshido A, Marec F, Daneck H, Winkler S, Greve C, Podsiadlowski L, Hiller M, Pippel M. High-quality haploid genomes corroborate 29 chromosomes and highly conserved synteny of genes in Hyles hawkmoths (Lepidoptera: Sphingidae). BMC Genomics 2023; 24:443. [PMID: 37550607 PMCID: PMC10405479 DOI: 10.1186/s12864-023-09506-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Morphological and traditional genetic studies of the young Pliocene genus Hyles have led to the understanding that despite its importance for taxonomy, phenotypic similarity of wing patterns does not correlate with phylogenetic relationship. To gain insights into various aspects of speciation in the Spurge Hawkmoth (Hyles euphorbiae), we assembled a chromosome-level genome and investigated some of its characteristics. RESULTS The genome of a male H. euphorbiae was sequenced using PacBio and Hi-C data, yielding a 504 Mb assembly (scaffold N50 of 18.2 Mb) with 99.9% of data represented by the 29 largest scaffolds forming the haploid chromosome set. Consistent with this, FISH analysis of the karyotype revealed n = 29 chromosomes and a WZ/ZZ (female/male) sex chromosome system. Estimates of chromosome length based on the karyotype image provided an additional quality metric of assembled chromosome size. Rescaffolding the published male H. vespertilio genome resulted in a high-quality assembly (651 Mb, scaffold N50 of 22 Mb) with 98% of sequence data in the 29 chromosomes. The larger genome size of H. vespertilio (average 1C DNA value of 562 Mb) was accompanied by a proportional increase in repeats from 45% in H. euphorbiae (measured as 472 Mb) to almost 55% in H. vespertilio. Several wing pattern genes were found on the same chromosomes in the two species, with varying amounts and positions of repetitive elements and inversions possibly corrupting their function. CONCLUSIONS Our two-fold comparative genomics approach revealed high gene synteny of the Hyles genomes to other Sphingidae and high correspondence to intact Merian elements, the ancestral linkage groups of Lepidoptera, with the exception of three simple fusion events. We propose a standardized approach for genome taxonomy using nucleotide homology via scaffold chaining as the primary tool combined with Oxford plots based on Merian elements to infer and visualize directionality of chromosomal rearrangements. The identification of wing pattern genes promises future understanding of the evolution of forewing patterns in the genus Hyles, although further sequencing data from more individuals are needed. The genomic data obtained provide additional reliable references for further comparative studies in hawkmoths (Sphingidae).
Collapse
Affiliation(s)
- Anna K Hundsdoerfer
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany.
| | - Tilman Schell
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Franziska Patzold
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany
| | | | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Hana Daneck
- Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, 01109, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - Carola Greve
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Michael Hiller
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt Am Main, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, 751 23, Sweden
| |
Collapse
|
4
|
Pazhenkova EA, Lukhtanov VA. Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. Chromosome Res 2023; 31:16. [PMID: 37300756 DOI: 10.1007/s10577-023-09725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the evolution of many organisms, periods of slow genome reorganization (= chromosomal conservatism) are interrupted by bursts of numerous chromosomal changes (= chromosomal megaevolution). Using comparative analysis of chromosome-level genome assemblies, we investigated these processes in blue butterflies (Lycaenidae). We demonstrate that the phase of chromosome number conservatism is characterized by the stability of most autosomes and dynamic evolution of the sex chromosome Z, resulting in multiple variants of NeoZ chromosomes due to autosome-sex chromosome fusions. In contrast during the phase of rapid chromosomal evolution, the explosive increase in chromosome number occurs mainly through simple chromosomal fissions. We show that chromosomal megaevolution is a highly non-random canalized process, and in two phylogenetically independent Lysandra lineages, the drastic parallel increase in number of fragmented chromosomes was achieved, at least partially, through reuse of the same ancestral chromosomal breakpoints. In species showing chromosome number doubling, we found no blocks of duplicated sequences or duplicated chromosomes, thus refuting the hypothesis of polyploidy. In the studied taxa, long blocks of interstitial telomere sequences (ITSs) consist of (TTAGG)n arrays interspersed with telomere-specific retrotransposons. ITSs are sporadically present in rapidly evolving Lysandra karyotypes, but not in the species with ancestral chromosome number. Therefore, we hypothesize that the transposition of telomeric sequences may be triggers of the rapid chromosome number increase. Finally, we discuss the hypothetical genomic and population mechanisms of chromosomal megaevolution and argue that the disproportionally high evolutionary role of the Z sex chromosome can be additionally reinforced by sex chromosome-autosome fusions and Z-chromosome inversions.
Collapse
Affiliation(s)
- Elena A Pazhenkova
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000, Ljubljana, Slovenia.
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya Nab. 1, 199034, St. Petersburg, Russia.
| |
Collapse
|
5
|
Pazhenkova EA, Lukhtanov VA. Whole-Genome Analysis Reveals the Dynamic Evolution of Holocentric Chromosomes in Satyrine Butterflies. Genes (Basel) 2023; 14:437. [PMID: 36833364 PMCID: PMC9956908 DOI: 10.3390/genes14020437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Butterfly chromosomes are holocentric, i.e., lacking a localized centromere. Potentially, this can lead to rapid karyotypic evolution through chromosome fissions and fusions, since fragmented chromosomes retain kinetic activity, while fused chromosomes are not dicentric. However, the actual mechanisms of butterfly genome evolution are poorly understood. Here, we analyzed chromosome-scale genome assemblies to identify structural rearrangements between karyotypes of satyrine butterfly species. For the species pair Erebia ligea-Maniola jurtina, sharing the ancestral diploid karyotype 2n = 56 + ZW, we demonstrate a high level of chromosomal macrosynteny and nine inversions separating these species. We show that the formation of a karyotype with a low number of chromosomes (2n = 36 + ZW) in Erebia aethiops was based on ten fusions, including one autosome-sex chromosome fusion, resulting in a neo-Z chromosome. We also detected inversions on the Z sex chromosome that were differentially fixed between the species. We conclude that chromosomal evolution is dynamic in the satyrines, even in the lineage that preserves the ancestral chromosome number. We hypothesize that the exceptional role of Z chromosomes in speciation may be further enhanced by inversions and sex chromosome-autosome fusions. We argue that not only fusions/fissions but also inversions are drivers of the holocentromere-mediated mode of chromosomal speciation.
Collapse
Affiliation(s)
- Elena A. Pazhenkova
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|
6
|
Höök L, Näsvall K, Vila R, Wiklund C, Backström N. High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Res 2023; 31:2. [PMID: 36662301 PMCID: PMC9859909 DOI: 10.1007/s10577-023-09713-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023]
Abstract
Karyotypes are generally conserved between closely related species and large chromosome rearrangements typically have negative fitness consequences in heterozygotes, potentially driving speciation. In the order Lepidoptera, most investigated species have the ancestral karyotype and gene synteny is often conserved across deep divergence, although examples of extensive genome reshuffling have recently been demonstrated. The genus Leptidea has an unusual level of chromosome variation and rearranged sex chromosomes, but the extent of restructuring across the rest of the genome is so far unknown. To explore the genomes of the wood white (Leptidea) species complex, we generated eight genome assemblies using a combination of 10X linked reads and HiC data, and improved them using linkage maps for two populations of the common wood white (L. sinapis) with distinct karyotypes. Synteny analysis revealed an extensive amount of rearrangements, both compared to the ancestral karyotype and between the Leptidea species, where only one of the three Z chromosomes was conserved across all comparisons. Most restructuring was explained by fissions and fusions, while translocations appear relatively rare. We further detected several examples of segregating rearrangement polymorphisms supporting a highly dynamic genome evolution in this clade. Fusion breakpoints were enriched for LINEs and LTR elements, which suggests that ectopic recombination might be an important driver in the formation of new chromosomes. Our results show that chromosome count alone may conceal the extent of genome restructuring and we propose that the amount of genome evolution in Lepidoptera might still be underestimated due to lack of taxonomic sampling.
Collapse
Affiliation(s)
- L Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - K Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| | - R Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - C Wiklund
- Department of Zoology, Division of Ecology, Stockholm University, Stockholm, Sweden
| | - N Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| |
Collapse
|
7
|
Guo R, Papanicolaou A, Fritz ML. Validation of reference-assisted assembly using existing and novel Heliothine genomes. Genomics 2022; 114:110441. [PMID: 35931274 DOI: 10.1016/j.ygeno.2022.110441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Chloridea subflexa and Chloridea virescens are a pair of closely related noctuid species exhibiting pheromone-based sexual isolation and divergent host plant preferences. We produced a novel Illumina short read C. subflexa genome assembly and an improved C. virescens genome assembly, which offer opportunities to study the genomic basis for evolutionarily important traits in this lepidopteran family with few genomic resources. We then examined the feasibility of reference-assisted assembly, an approach that leverages existing high quality genomic resources for genome improvement in closely related taxa and applied it to our Heliothine genomes. Our work demonstrates that reference-assisted assembly has the potential to enhance contiguity and completeness of existing insect genomic resources with minimal additional laboratory costs. We conclude by discussing both the potential and pitfalls of reference-assisted assembly according to the intended downstream assembly application.
Collapse
Affiliation(s)
- Rong Guo
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia.
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
8
|
Béliveau C, Gagné P, Picq S, Vernygora O, Keeling CI, Pinkney K, Doucet D, Wen F, Spencer Johnston J, Maaroufi H, Boyle B, Laroche J, Dewar K, Juretic N, Blackburn G, Nisole A, Brunet B, Brandão M, Lumley L, Duan J, Quan G, Lucarotti CJ, Roe AD, Sperling FAH, Levesque RC, Cusson M. The Spruce Budworm Genome: Reconstructing the Evolutionary History of Antifreeze Proteins. Genome Biol Evol 2022; 14:evac087. [PMID: 35668612 PMCID: PMC9210311 DOI: 10.1093/gbe/evac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Insects have developed various adaptations to survive harsh winter conditions. Among freeze-intolerant species, some produce "antifreeze proteins" (AFPs) that bind to nascent ice crystals and inhibit further ice growth. Such is the case of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), a destructive North American conifer pest that can withstand temperatures below -30°C. Despite the potential importance of AFPs in the adaptive diversification of Choristoneura, genomic tools to explore their origins have until now been limited. Here we present a chromosome-scale genome assembly for C. fumiferana, which we used to conduct comparative genomic analyses aimed at reconstructing the evolutionary history of tortricid AFPs. The budworm genome features 16 genes homologous to previously reported C. fumiferana AFPs (CfAFPs), 15 of which map to a single region on chromosome 18. Fourteen of these were also detected in five congeneric species, indicating Choristoneura AFP diversification occurred before the speciation event that led to C. fumiferana. Although budworm AFPs were previously considered unique to the genus Choristoneura, a search for homologs targeting recently sequenced tortricid genomes identified seven CfAFP-like genes in the distantly related Notocelia uddmanniana. High structural similarity between Notocelia and Choristoneura AFPs suggests a common origin, despite the absence of homologs in three related tortricids. Interestingly, one Notocelia AFP formed the C-terminus of a "zonadhesin-like" protein, possibly representing the ancestral condition from which tortricid AFPs evolved. Future work should clarify the evolutionary path of AFPs between Notocelia and Choristoneura and assess the role of the "zonadhesin-like" protein as precursor of tortricid AFPs.
Collapse
Affiliation(s)
- Catherine Béliveau
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Patrick Gagné
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Sandrine Picq
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Oksana Vernygora
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher I Keeling
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, Quebec, Canada
| | - Kristine Pinkney
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Daniel Doucet
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Fayuan Wen
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington DC, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, 2475 College Station, Texas, USA
| | - Halim Maaroufi
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Jérôme Laroche
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Ken Dewar
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - Nikoleta Juretic
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Gwylim Blackburn
- Pacific Forestry Centre, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Audrey Nisole
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Bryan Brunet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Marcelo Brandão
- Laboratório de Biologia Integrativa e Sistêmica - CBMEG/UNICAMP, Campinas, Brazil
| | - Lisa Lumley
- Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Duan
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Guoxing Quan
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | | | - Amanda D Roe
- Great Lakes Forestry Centre, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| | - Michel Cusson
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, Quebec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Ranz JM, González PM, Su RN, Bedford SJ, Abreu-Goodger C, Markow T. Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera. Proc Biol Sci 2022; 289:20212183. [PMID: 35042416 PMCID: PMC8767184 DOI: 10.1098/rspb.2021.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.
Collapse
Affiliation(s)
- José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Pablo M. González
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Ryan N. Su
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Sarah J. Bedford
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Gonzalez de la Rosa PM, Thomson M, Trivedi U, Tracey A, Tandonnet S, Blaxter M. A telomere-to-telomere assembly of Oscheius tipulae and the evolution of rhabditid nematode chromosomes. G3-GENES GENOMES GENETICS 2021; 11:6026964. [PMID: 33561231 PMCID: PMC8022731 DOI: 10.1093/g3journal/jkaa020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Eukaryotic chromosomes have phylogenetic persistence. In many taxa, each chromosome has a single functional centromere with essential roles in spindle attachment and segregation. Fusion and fission can generate chromosomes with no or multiple centromeres, leading to genome instability. Groups with holocentric chromosomes (where centromeric function is distributed along each chromosome) might be expected to show karyotypic instability. This is generally not the case, and in Caenorhabditis elegans, it has been proposed that the role of maintenance of a stable karyotype has been transferred to the meiotic pairing centers, which are found at one end of each chromosome. Here, we explore the phylogenetic stability of nematode chromosomes using a new telomere-to-telomere assembly of the rhabditine nematode Oscheius tipulae generated from nanopore long reads. The 60-Mb O. tipulae genome is resolved into six chromosomal molecules. We find the evidence of specific chromatin diminution at all telomeres. Comparing this chromosomal O. tipulae assembly with chromosomal assemblies of diverse rhabditid nematodes, we identify seven ancestral chromosomal elements (Nigon elements) and present a model for the evolution of nematode chromosomes through rearrangement and fusion of these elements. We identify frequent fusion events involving NigonX, the element associated with the rhabditid X chromosome, and thus sex chromosome-associated gene sets differ markedly between species. Despite the karyotypic stability, gene order within chromosomes defined by Nigon elements is not conserved. Our model for nematode chromosome evolution provides a platform for investigation of the tensions between local genome rearrangement and karyotypic evolution in generating extant genome architectures.
Collapse
Affiliation(s)
| | - Marian Thomson
- Edinburgh Genomics, School of Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Sophie Tandonnet
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
11
|
Cabral-de-Mello DC, Zrzavá M, Kubíčková S, Rendón P, Marec F. The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths. Front Genet 2021; 12:661417. [PMID: 33859676 PMCID: PMC8042265 DOI: 10.3389/fgene.2021.661417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Tandem repeats are important parts of eukaryotic genomes being crucial e.g., for centromere and telomere function and chromatin modulation. In Lepidoptera, knowledge of tandem repeats is very limited despite the growing number of sequenced genomes. Here we introduce seven new satellite DNAs (satDNAs), which more than doubles the number of currently known lepidopteran satDNAs. The satDNAs were identified in genomes of three species of Crambidae moths, namely Ostrinia nubilalis, Cydalima perspectalis, and Diatraea postlineella, using graph-based computational pipeline RepeatExplorer. These repeats varied in their abundance and showed high variability within and between species, although some degree of conservation was noted. The satDNAs showed a scattered distribution, often on both autosomes and sex chromosomes, with the exception of both satellites in D. postlineella, in which the satDNAs were located at a single autosomal locus. Three satDNAs were abundant on the W chromosomes of O. nubilalis and C. perspectalis, thus contributing to their differentiation from the Z chromosomes. To provide background for the in situ localization of the satDNAs, we performed a detailed cytogenetic analysis of the karyotypes of all three species. This comparative analysis revealed differences in chromosome number, number and location of rDNA clusters, and molecular differentiation of sex chromosomes.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Univ Estadual Paulista, Rio Claro, Brazil.,Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Magda Zrzavá
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | - Pedro Rendón
- IAEA-TCLA-Consultant-USDA-APHIS-Moscamed Program Guatemala, Guatemala City, Guatemala
| | - František Marec
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| |
Collapse
|
12
|
Luo M, Finet C, Cong H, Wei HY, Chung H. The evolution of insect metallothioneins. Proc Biol Sci 2020; 287:20202189. [PMID: 33109013 DOI: 10.1098/rspb.2020.2189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metallothioneins (MTs) are a family of cysteine-rich metal-binding proteins that are important in the chelating and detoxification of toxic heavy metals. Until now, the short length and the low sequence complexity of MTs have hindered the inference of robust phylogenies, hampering the study of their evolution. To address this longstanding question, we applied an iterative BLAST search pipeline that allowed us to build a unique dataset of more than 300 MT sequences in insects. By combining phylogenetics and synteny analysis, we reconstructed the evolutionary history of MTs in insects. We show that the MT content in insects has been shaped by lineage-specific tandem duplications from a single ancestral MT. Strikingly, we also uncovered a sixth MT, MtnF, in the model organism Drosophila melanogaster. MtnF evolves faster than other MTs and is characterized by a non-canonical length and higher cysteine content. Our methodological framework not only paves the way for future studies on heavy metal detoxification but can also allow us to identify other previously unidentified genes and other low complexity genomic features.
Collapse
Affiliation(s)
- Mei Luo
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.,College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Cédric Finet
- Yale-NUS College, 16 College Avenue West, Singapore 138527, Republic of Singapore
| | - Haosu Cong
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Hong-Yi Wei
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Rodriguez-Caro L, Fenner J, Benson C, Van Belleghem SM, Counterman BA. Genome Assembly of the Dogface Butterfly Zerene cesonia. Genome Biol Evol 2020; 12:3580-3585. [PMID: 31755926 PMCID: PMC6944212 DOI: 10.1093/gbe/evz254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 02/04/2023] Open
Abstract
Comparisons of high-quality, reference butterfly, and moth genomes have been instrumental to advancing our understanding of how hybridization, and natural selection drive genomic change during the origin of new species and novel traits. Here, we present a genome assembly of the Southern Dogface butterfly, Zerene cesonia (Pieridae) whose brilliant wing colorations have been implicated in developmental plasticity, hybridization, sexual selection, and speciation. We assembled 266,407,278 bp of the Z. cesonia genome, which accounts for 98.3% of the estimated 271 Mb genome size. Using a hybrid approach involving Chicago libraries with Hi-Rise assembly and a diploid Meraculous assembly, the final haploid genome was assembled. In the final assembly, nearly all autosomes and the Z chromosome were assembled into single scaffolds. The largest 29 scaffolds accounted for 91.4% of the genome assembly, with the remaining ∼8% distributed among another 247 scaffolds and overall N50 of 9.2 Mb. Tissue-specific RNA-seq informed annotations identified 16,442 protein-coding genes, which included 93.2% of the arthropod Benchmarking Universal Single-Copy Orthologs (BUSCO). The Z. cesonia genome assembly had ∼9% identified as repetitive elements, with a transposable element landscape rich in helitrons. Similar to other Lepidoptera genomes, Z. cesonia showed a high conservation of chromosomal synteny. The Z. cesonia assembly provides a high-quality reference for studies of chromosomal arrangements in the Pierid family, as well as for population, phylo, and functional genomic studies of adaptation and speciation.
Collapse
Affiliation(s)
- Luis Rodriguez-Caro
- Department of Biological Sciences, Mississippi State University.,Division of Biological Sciences, University of Montana, Missoula, MT
| | - Jennifer Fenner
- Department of Biological Sciences, Mississippi State University
| | - Caleb Benson
- Department of Biological Sciences, Mississippi State University
| | | | | |
Collapse
|
14
|
de Vos JM, Augustijnen H, Bätscher L, Lucek K. Speciation through chromosomal fusion and fission in Lepidoptera. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190539. [PMID: 32654638 DOI: 10.1098/rstb.2019.0539] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Changes in chromosome numbers may strongly affect reproductive barriers, because individuals heterozygous for distinct karyotypes are typically expected to be at least partially sterile or to show reduced recombination. Therefore, several classic speciation models are based on chromosomal changes. One import mechanism generating variation in chromosome numbers is fusion and fission of existing chromosomes, which is particularly likely in species with holocentric chromosomes, i.e. chromosomes that lack a single centromere. Holocentric chromosomes evolved repeatedly across the tree of life, including in Lepidoptera. Although changes in chromosome numbers are hypothesized to be an important driver of the spectacular diversification of Lepidoptera, comparative studies across the order are lacking. We performed the first comprehensive literature survey of karyotypes for Lepidoptera species since the 1970s and tested if, and how, chromosomal variation might affect speciation. Even though a meta-analysis of karyological differences between closely related taxa did not reveal an effect on the degree of reproductive isolation, phylogenetic diversification rate analyses across the 16 best-covered genera indicated a strong, positive association of rates of chromosome number evolution and speciation. These findings suggest a macroevolutionary impact of varying chromosome numbers in Lepidoptera and likely apply to other taxonomic groups, especially to those with holocentric chromosomes. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jurriaan M de Vos
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Livio Bätscher
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Deng Z, Zhang Y, Zhang M, Huang J, Li C, Ni X, Li X. Characterization of the First W-Specific Protein-Coding Gene for Sex Identification in Helicoverpa armigera. Front Genet 2020; 11:649. [PMID: 32636875 PMCID: PMC7317607 DOI: 10.3389/fgene.2020.00649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Helicoverpa armigera is a globally-important crop pest with a WZ (female)/ZZ (male) sex chromosome system. The absence of discernible sexual dimorphism in its egg and larval stages makes it impossible to address any sex-related theoretical and applied questions before pupation unless a W-specific sequence marker is available for sex diagnosis. To this end, we used one pair of morphologically pre-sexed pupae to PCR-screen 17 non-transposon transcripts selected from 4855 W-linked candidate reads identified by mapping a publicly available egg transcriptome of both sexes to the male genome of this species and detected the read SRR1015458.67499 only in the female pupa. Subsequent PCR screenings of this read and the previously reported female-specific RAPD (random amplified polymorphic DNA) marker AF18 with ten more pairs of pre-sexed pupae and different annealing positions and/or temperatures as well as its co-occurrence with the female-specific transcript splicing isoforms of doublesex gene of H. armigera (Hadsx) and amplification and sequencing of their 5′ unknown flanking sequences in three additional pairs of pre-sexed pupae verified that SRR1015458.67499 is a single copy protein-coding gene unique to W chromosome (named GUW1) while AF18 is a multicopy MITE transposon located on various chromosomes. Test application of GUW1 as a marker to sex 30 neonates of H. armigera yielded a female/male ratio of 1.14: 1.00. Both GUW1 and Hadsx splicing isoforms assays revealed that the H. armigera embryo cell line QB-Ha-E-1 is a male cell line. Taken together, GUW1 is not only a reliable DNA marker for sexing all stages of H. armigera and its cell lines, but also represents the first W-specific protein-coding gene in lepidopterans.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yakun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Changyou Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xinzhi Ni
- Agricultural Research Service, U.S. Department of Agriculture, Crop Genetics and Breeding Research Unit, University of Georgia - Tifton Campus, Tifton, GA, United States
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Yoshido A, Šíchová J, Pospíšilová K, Nguyen P, Voleníková A, Šafář J, Provazník J, Vila R, Marec F. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity (Edinb) 2020; 125:138-154. [PMID: 32518391 PMCID: PMC7426936 DOI: 10.1038/s41437-020-0325-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Sex-chromosome systems tend to be highly conserved and knowledge about their evolution typically comes from macroevolutionary inference. Rapidly evolving complex sex-chromosome systems represent a rare opportunity to study the mechanisms of sex-chromosome evolution at unprecedented resolution. Three cryptic species of wood-white butterflies—Leptidea juvernica, L. sinapis and L. reali—have each a unique set of multiple sex-chromosomes with 3–4 W and 3–4 Z chromosomes. Using a transcriptome-based microarray for comparative genomic hybridisation (CGH) and a library of bacterial artificial chromosome (BAC) clones, both developed in L. juvernica, we identified Z-linked Leptidea orthologs of Bombyx mori genes and mapped them by fluorescence in situ hybridisation (FISH) with BAC probes on multiple Z chromosomes. In all three species, we determined synteny blocks of autosomal origin and reconstructed the evolution of multiple sex-chromosomes. In addition, we identified W homologues of Z-linked orthologs and characterised their molecular differentiation. Our results suggest that the multiple sex-chromosome system evolved in a common ancestor as a result of dynamic genome reshuffling through repeated rearrangements between the sex chromosomes and autosomes, including translocations, fusions and fissions. Thus, the initial formation of neo-sex chromosomes could not have played a role in reproductive isolation between these Leptidea species. However, the subsequent species-specific fissions of several neo-sex chromosomes could have contributed to their reproductive isolation. Then, significantly increased numbers of Z-linked genes and independent neo-W chromosome degeneration could accelerate the accumulation of genetic incompatibilities between populations and promote their divergence resulting in speciation.
Collapse
Affiliation(s)
- Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jindra Šíchová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Kristýna Pospíšilová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Anna Voleníková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Jan Provazník
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Pg. Marítim de la Barceloneta 37, 08003, Barcelona, Spain
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
17
|
Xie W, He C, Fei Z, Zhang Y. Chromosome‐level genome assembly of the greenhouse whitefly (
Trialeurodes vaporariorum
Westwood). Mol Ecol Resour 2020; 20:995-1006. [DOI: 10.1111/1755-0998.13159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Wen Xie
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
- Boyce Thompson Institute Ithaca NY USA
| | - Chao He
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Zhangjun Fei
- Boyce Thompson Institute Ithaca NY USA
- USDA‐Agricultural Research Service Robert W. Holley Center for Agriculture and Health Ithaca NY USA
| | - Youjun Zhang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
18
|
Reynolds LA, Hornett EA, Jiggins CD, Hurst GDD. Suppression of Wolbachia-mediated male-killing in the butterfly Hypolimnas bolina involves a single genomic region. PeerJ 2019; 7:e7677. [PMID: 31592190 PMCID: PMC6777490 DOI: 10.7717/peerj.7677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background Sex ratio distorting agents (maternally inherited symbionts and meiotically-driving sex chromosomes) are common in insects. When these agents rise to high frequencies they create strong population sex ratio bias and selection then favours mutations that act to restore the rare sex. Despite this strong selection pressure, the evolution of mutations that suppress sex ratio distorting elements appears to be constrained in many cases, where sex-biased populations persist for many generations. This scenario has been observed in the butterfly Hypolimnas bolina, where Wolbachia-mediated male killing endured for 800–1,000 generations across multiple populations before the evolution of suppression. Here we test the hypothesis that this evolutionary lag is the result of suppression being a multilocus trait requiring multiple mutations. Methods We developed genetic markers, based on conservation of synteny, for each H. bolina chromosome and verified coverage using recombinational mapping. We then used a Wolbachia-infected mapping family to assess each chromosome for the presence of loci required for male survival, as determined by the presence of markers in all surviving sons. Results Informative markers were obtained for each of the 31 chromosomes in H. bolina. The only marker that cosegregated with suppression was located on chromosome 25. A genomic region necessary for suppression has previously been located on this chromosome. We therefore conclude that a single genomic region of the H. bolina genome is necessary for male-killing suppression. Discussion The evolutionary lag observed in our system is not caused by a need for changes at multiple genomic locations. The findings favour hypotheses in which either multiple mutations are required within a single genomic region, or the suppressor mutation is a singularly rare event.
Collapse
Affiliation(s)
- Louise A Reynolds
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Emily A Hornett
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Gypsy moth genome provides insights into flight capability and virus-host interactions. Proc Natl Acad Sci U S A 2019; 116:1669-1678. [PMID: 30642971 DOI: 10.1073/pnas.1818283116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.
Collapse
|
20
|
Cong Q, Li W, Borek D, Otwinowski Z, Grishin NV. The Bear Giant-Skipper genome suggests genetic adaptations to living inside yucca roots. Mol Genet Genomics 2018; 294:211-226. [PMID: 30293092 DOI: 10.1007/s00438-018-1494-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Giant-Skippers (Megathymini) are unusual thick-bodied, moth-like butterflies whose caterpillars feed inside Yucca roots and Agave leaves. Giant-Skippers are attributed to the subfamily Hesperiinae and they are endemic to southern and mostly desert regions of the North American continent. To shed light on the genotypic determinants of their unusual phenotypic traits, we sequenced and annotated a draft genome of the largest Giant-Skipper species, the Bear (Megathymus ursus violae). The Bear skipper genome is the least heterozygous among sequenced Lepidoptera genomes, possibly due to much smaller population size and extensive inbreeding. Their lower heterozygosity helped us to obtain a high-quality genome with an N50 of 4.2 Mbp. The ~ 430 Mb genome encodes about 14000 proteins. Phylogenetic analysis supports placement of Giant-Skippers with Grass-Skippers (Hesperiinae). We find that proteins involved in odorant and taste sensing as well as in oxidative reactions have diverged significantly in Megathymus as compared to Lerema, another Grass-Skipper. In addition, the Giant-Skipper has lost several odorant and gustatory receptors and possesses many fewer (1/3-1/2 of other skippers) anti-oxidative enzymes. Such differences may be related to the unusual life style of Giant-Skippers: they do not feed as adults, and their caterpillars feed inside Yuccas and Agaves, which provide a source of antioxidants such as polyphenols.
Collapse
Affiliation(s)
- Qian Cong
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA
| | - Wenlin Li
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA
| | - Dominika Borek
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA
| | - Zbyszek Otwinowski
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9050, USA. .,Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA.
| |
Collapse
|
21
|
Insights into the Structure of the Spruce Budworm ( Choristoneura fumiferana) Genome, as Revealed by Molecular Cytogenetic Analyses and a High-Density Linkage Map. G3-GENES GENOMES GENETICS 2018; 8:2539-2549. [PMID: 29950429 PMCID: PMC6071596 DOI: 10.1534/g3.118.200263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genome structure characterization can contribute to a better understanding of processes such as adaptation, speciation, and karyotype evolution, and can provide useful information for refining genome assemblies. We studied the genome of an important North American boreal forest pest, the spruce budworm, Choristoneura fumiferana, through a combination of molecular cytogenetic analyses and construction of a high-density linkage map based on single nucleotide polymorphism (SNP) markers obtained through a genotyping-by-sequencing (GBS) approach. Cytogenetic analyses using fluorescence in situ hybridization methods confirmed the haploid chromosome number of n = 30 in both sexes of C. fumiferana and showed, for the first time, that this species has a WZ/ZZ sex chromosome system. Synteny analysis based on a comparison of the Bombyx mori genome and the C. fumiferana linkage map revealed the presence of a neo-Z chromosome in the latter species, as previously reported for other tortricid moths. In this neo-Z chromosome, we detected an ABC transporter C2 (ABCC2) gene that has been associated with insecticide resistance. Sex-linkage of the ABCC2 gene provides a genomic context favorable to selection and rapid spread of resistance against Bacillus thuringiensis serotype kurstaki (Btk), the main insecticide used in Canada to control spruce budworm populations. Ultimately, the linkage map we developed, which comprises 3586 SNP markers distributed over 30 linkage groups for a total length of 1720.41 cM, will be a valuable tool for refining our draft assembly of the spruce budworm genome.
Collapse
|
22
|
Catalán A, Macias-Muñoz A, Briscoe AD. Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Mol Biol Evol 2018; 35:2120-2134. [DOI: 10.1093/molbev/msy111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ana Catalán
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
- Section of Evolutionary Biology, Department of Biology II, Ludwig Maximilians Universität, Planegg-Martinsried, Germany
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
23
|
Gu L, Walters JR, Knipple DC. Conserved Patterns of Sex Chromosome Dosage Compensation in the Lepidoptera (WZ/ZZ): Insights from a Moth Neo-Z Chromosome. Genome Biol Evol 2017; 9:802-816. [PMID: 28338816 PMCID: PMC5381563 DOI: 10.1093/gbe/evx039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Where previously described, patterns of sex chromosome dosage compensation in the Lepidoptera (moths and butterflies) have several unusual characteristics. Other female-heterogametic (ZW/ZZ) species exhibit female Z-linked expression that is reduced compared with autosomal expression and male Z expression. In the Lepidoptera, however, Z expression typically appears balanced between sexes but overall reduced relative to autosomal expression, that is Z ≈ ZZ < AA. This pattern is not easily reconciled with theoretical expectations for the evolution of sex chromosome dosage compensation. Moreover, conflicting results linger due to discrepancies in data analyses and tissues sampled among lepidopterans. To address these issues, we performed RNA-seq to analyze sex chromosome dosage compensation in the codling moth, Cydia pomonella, which is a species from the earliest diverging lepidopteran lineage yet examined for dosage compensation and has a neo-Z chromosome resulting from an ancient Z:autosome fusion. While supported by intraspecific analyses, the Z ≈ ZZ < AA pattern was further evidenced by comparative study using autosomal orthologs of C. pomonella neo-Z genes in outgroup species. In contrast, dosage compensation appears to be absent in reproductive tissues. We thus argue that inclusion of reproductive tissues may explain the incongruence from a prior study on another moth species and that patterns of dosage compensation are likely conserved in the Lepidoptera. Notably, this pattern appears convergent with patterns in eutherian mammals (X ≈ XX < AA). Overall, our results contribute to the notion that the Lepidoptera present challenges both to classical theories regarding the evolution of sex chromosome dosage compensation and the emerging view of the association of dosage compensation with sexual heterogamety.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Entomology, Cornell University, Geneva, NY
| | - James R Walters
- Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS
| | | |
Collapse
|
24
|
Abstract
We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species), in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics.
Collapse
|
25
|
Huylmans AK, Macon A, Vicoso B. Global Dosage Compensation Is Ubiquitous in Lepidoptera, but Counteracted by the Masculinization of the Z Chromosome. Mol Biol Evol 2017; 34:2637-2649. [PMID: 28957502 PMCID: PMC5850747 DOI: 10.1093/molbev/msx190] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera.
Collapse
Affiliation(s)
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
26
|
Vershinina AO, Lukhtanov VA. Evolutionary mechanisms of runaway chromosome number change in Agrodiaetus butterflies. Sci Rep 2017; 7:8199. [PMID: 28811556 PMCID: PMC5557896 DOI: 10.1038/s41598-017-08525-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
Despite predictions of the classic, hybrid-sterility model of chromosomal speciation, some organisms demonstrate high rate of karyotype evolution. This rate is especially impressive in Agrodiaetus butterflies that rapidly evolved the greatest chromosome number diversity known in animal kingdom within a single subgenus. Here we analyzed karyotype evolution in Agrodiaetus using phylogenetic comparative methods. We found that chromosome numbers possess a strong phylogenetic signal. This disproves the chromosome megaevolution model that proposes multiple chromosome rearrangements to accumulate independently in each of closely related species. We found that Brownian motion gives a more adequate description of observed trait changes than Ornstein-Uhlenbeck model. This indicates that chromosome numbers evolve via random walk along branches of the phylogeny. We discovered a correlation between karyotype changes and phylogeny branch lengths. This gradual pattern is inconsistent with the hybrid-sterility model which, due to association of major chromosome changes with cladogenetic events, predicts a high degree of punctualism in karyotype evolution. Thus, low underdominace of chromosomal rearrangements and/or prevalence of the recombination-suppression model over the hybrid-sterility model of chromosome speciation are the most common engines of the runaway chromosome number change observed.
Collapse
Affiliation(s)
- Alisa O Vershinina
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St. Petersburg, Russia.
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 95064, Santa Cruz, CA, USA.
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St. Petersburg, Russia.
- Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia.
| |
Collapse
|
27
|
Davey JW, Barker SL, Rastas PM, Pinharanda A, Martin SH, Durbin R, McMillan WO, Merrill RM, Jiggins CD. No evidence for maintenance of a sympatric Heliconius species barrier by chromosomal inversions. Evol Lett 2017; 1:138-154. [PMID: 30283645 PMCID: PMC6122123 DOI: 10.1002/evl3.12] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Mechanisms that suppress recombination are known to help maintain species barriers by preventing the breakup of coadapted gene combinations. The sympatric butterfly species Heliconius melpomene and Heliconius cydno are separated by many strong barriers, but the species still hybridize infrequently in the wild, and around 40% of the genome is influenced by introgression. We tested the hypothesis that genetic barriers between the species are maintained by inversions or other mechanisms that reduce between-species recombination rate. We constructed fine-scale recombination maps for Panamanian populations of both species and their hybrids to directly measure recombination rate within and between species, and generated long sequence reads to detect inversions. We find no evidence for a systematic reduction in recombination rates in F1 hybrids, and also no evidence for inversions longer than 50 kb that might be involved in generating or maintaining species barriers. This suggests that mechanisms leading to global or local reduction in recombination do not play a significant role in the maintenance of species barriers between H. melpomene and H. cydno.
Collapse
Affiliation(s)
- John W. Davey
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Sarah L. Barker
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Pasi M. Rastas
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Ana Pinharanda
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Simon H. Martin
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
| | - Richard Durbin
- Wellcome Trust Sanger InstituteCambridgeCB10 1SAUnited Kingdom
| | | | - Richard M. Merrill
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|
28
|
Two dopamine D2-like receptor genes from the silkworm (Bombyx mori) and their evolutionary history in metazoan. Sci Rep 2017; 7:6848. [PMID: 28754962 PMCID: PMC5533763 DOI: 10.1038/s41598-017-07055-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/09/2017] [Indexed: 12/25/2022] Open
Abstract
Dopamine is widely distributed in metazoans and is implicated in many physiological functions. Dopaminergic signaling is mediated through two classes of dopamine receptors, D1-like and D2-like. Phylogeny analysis reveals that, the dopamine receptors probably appeared ahead of the cnidarian divergence, two distinct classes of dopamine receptors likely formed prior to the separation of deuterostomes and protostomes, and INDRs probably split from its ancestor before the emergence of nematodes. Two D2-like genes are closely linked on the same scaffold, and the chromosome region around D2-like gene loci show colinearity among different species within Lepidoptera. These indicate two D2-like and their adjunction genes are likely Lepidoptera-specific orthologs, and occur by gene duplication event taken place after Lepidoptera ancestor split from the common ancestor of Lepidoptera and Diptera. In silkworm, two D2-like genes were expressed in examined tissues, and encoded BmDop2R2 having all the features of D2-like receptors and BmDop2R1 being a truncated variant without the region of N-terminal to TM II. Only dopamine distinctly lowered cAMP levels in BmDop2R2-expressing cells, whereas all tested amines for BmDop2R1 had not markedly effect in pharmacological test. These suggest there is functional difference between the two genes, which are likely resulted from subfunctionalization of gene duplication.
Collapse
|
29
|
Almeida BRRD, Milhomem-Paixão SSR, Noronha RCR, Nagamachi CY, Costa MJRD, Pardal PPDO, Coelho JS, Pieczarka JC. Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae). BMC Genet 2017; 18:35. [PMID: 28412934 PMCID: PMC5392961 DOI: 10.1186/s12863-017-0494-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/25/2017] [Indexed: 01/22/2023] Open
Abstract
Background Holocentric chromosomes occur in approximately 750 species of eukaryotes. Among them, the genus Tityus (Scorpiones, Buthidae) has a labile karyotype that shows complex multivalent associations during male meiosis. Thus, taking advantage of the excellent model provided by the Buthidae scorpions, here we analyzed the chromosomal distribution of several repetitive DNA classes on the holocentric chromosomes of different populations of the species Tityus obscurus Gervais, 1843, highlighting their involvement in the karyotypic differences found among them. Results This species shows inter- and intrapopulational karyotype variation, with seven distinct cytotypes: A (2n = 16), B (2n = 14), C (2n = 13), D (2n = 13), E (2n = 12), F (2n = 12) and G (2n = 11). Furthermore, exhibits achiasmatic male meiosis and lacks heteromorphic sex chromosomes. Trivalent and quadrivalent meiotic associations were found in some cytotypes. In them, 45S rDNAs were found in the terminal portions of two pairs, while TTAGG repeats were found only at the end of the chromosomes. In the cytotype A (2n = 16), the U2 snRNA gene mapped to pair 1, while the H3 histone cluster and C0t-1 DNA fraction was terminally distributed on all pairs. Mariner transposons were found throughout the chromosomes, with the exception of one individual of cytotype A (2n = 16), in which it was concentrated in heterochromatic regions. Conclusions Chromosomal variability found in T. obscurus are due to rearrangements of the type fusion/fission and reciprocal translocations in heterozygous. These karyotype differences follow a geographical pattern and may be contributing to reproductive isolation between populations analyzed. Our results also demonstrate high mobility of histone H3 genes. In contrast, other multigene families (45S rDNA and U2 snRNA) have conserved distribution among individuals. The accumulation of repetitive sequences in distal regions of T. obscurus chromosomes, suggests that end of chromosome are not covered by the kinetochore.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Susana Suely Rodrigues Milhomem-Paixão
- Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Valparaíso de Goiás, BR-040, km 6, Avenida Saia Velha, S/N, Área 8, Parque Esplanada V, 72876-601, Valparaíso de Goiás, Goiás, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Marlyson Jeremias Rodrigues da Costa
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil
| | - Pedro Pereira de Oliveira Pardal
- Laboratório de Entomologia Médica e Artrópodes Peçonhentos, Núcleo de Medicina Tropical, Universidade Federal do Pará, Avenida Generalíssimo Deodoro, 92, 66055-240, Belém, Pará, Brazil
| | - Johne Souza Coelho
- Laboratório de Entomologia Médica e Artrópodes Peçonhentos, Núcleo de Medicina Tropical, Universidade Federal do Pará, Avenida Generalíssimo Deodoro, 92, 66055-240, Belém, Pará, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Augusto Corrêa, n°01, Av. Perimetral, s/n. Guamá, 66075-900, Belém, Pará, Brazil.
| |
Collapse
|
30
|
Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Stensmyr MC, Zheng Y, Liu W, Sun H, Xu Y, Luo Y, Kruse A, Yang X, Kontsedalov S, Lebedev G, Fisher TW, Nelson DR, Hunter WB, Brown JK, Jander G, Cilia M, Douglas AE, Ghanim M, Simmons AM, Wintermantel WM, Ling KS, Fei Z. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 2016; 14:110. [PMID: 27974049 PMCID: PMC5157087 DOI: 10.1186/s12915-016-0321-y#article-info] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/28/2016] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. RESULTS We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly expanded in B. tabaci. Other expanded gene families, including cathepsins, large clusters of tandemly duplicated B. tabaci-specific genes, and phosphatidylethanolamine-binding proteins (PEBPs), were found to be associated with virus acquisition and transmission and/or insecticide resistance, likely contributing to the global invasiveness and efficient virus transmission capacity of B. tabaci. The presence of 142 horizontally transferred genes from bacteria or fungi in the B. tabaci genome, including genes encoding hopanoid/sterol synthesis and xenobiotic detoxification enzymes that are not present in other insects, offers novel insights into the unique biological adaptations of this insect such as polyphagy and insecticide resistance. Interestingly, two adjacent bacterial pantothenate biosynthesis genes, panB and panC, have been co-transferred into B. tabaci and fused into a single gene that has acquired introns during its evolution. CONCLUSIONS The B. tabaci genome contains numerous genetic novelties, including expansions in gene families associated with insecticide resistance, detoxification and virus transmission, as well as numerous horizontally transferred genes from bacteria and fungi. We believe these novelties likely have shaped B. tabaci as a highly invasive polyphagous crop pest and efficient vector of plant viruses. The genome serves as a reference for resolving the B. tabaci cryptic species complex, understanding fundamental biological novelties, and providing valuable genetic information to assist the development of novel strategies for controlling whiteflies and the viruses they transmit.
Collapse
Affiliation(s)
- Wenbo Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel K Hasegawa
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Navneet Kaur
- US Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research, Salinas, CA, 93905, USA
| | - Adi Kliot
- Department of Entomology, The Volcani Center, Bet Dagan, 50250, Israel
| | - Patricia Valle Pinheiro
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- EMBRAPA Rice and Beans, Santo Antônio de Goiás, GO, 75375-000, Brazil
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Junbo Luan
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Wenli Liu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Yuan Luo
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Angela Kruse
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaowei Yang
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Galina Lebedev
- Department of Entomology, The Volcani Center, Bet Dagan, 50250, Israel
| | - Tonja W Fisher
- Department of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wayne B Hunter
- US Department of Agriculture-Agricultural Research Service, US Horticultural Laboratory, Fort Pierce, FL, 34945, USA
| | - Judith K Brown
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Michelle Cilia
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Lund University, Lund, SE-223 62, Sweden
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Murad Ghanim
- Department of Entomology, The Volcani Center, Bet Dagan, 50250, Israel
| | - Alvin M Simmons
- US Department of Agriculture-Agricultural Research Service, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - William M Wintermantel
- US Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research, Salinas, CA, 93905, USA.
| | - Kai-Shu Ling
- US Department of Agriculture-Agricultural Research Service, US Vegetable Laboratory, Charleston, SC, 29414, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Stensmyr MC, Zheng Y, Liu W, Sun H, Xu Y, Luo Y, Kruse A, Yang X, Kontsedalov S, Lebedev G, Fisher TW, Nelson DR, Hunter WB, Brown JK, Jander G, Cilia M, Douglas AE, Ghanim M, Simmons AM, Wintermantel WM, Ling KS, Fei Z. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 2016; 14:110. [PMID: 27974049 PMCID: PMC5157087 DOI: 10.1186/s12915-016-0321-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/28/2016] [Indexed: 12/04/2022] Open
Abstract
Background The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. Results We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly expanded in B. tabaci. Other expanded gene families, including cathepsins, large clusters of tandemly duplicated B. tabaci-specific genes, and phosphatidylethanolamine-binding proteins (PEBPs), were found to be associated with virus acquisition and transmission and/or insecticide resistance, likely contributing to the global invasiveness and efficient virus transmission capacity of B. tabaci. The presence of 142 horizontally transferred genes from bacteria or fungi in the B. tabaci genome, including genes encoding hopanoid/sterol synthesis and xenobiotic detoxification enzymes that are not present in other insects, offers novel insights into the unique biological adaptations of this insect such as polyphagy and insecticide resistance. Interestingly, two adjacent bacterial pantothenate biosynthesis genes, panB and panC, have been co-transferred into B. tabaci and fused into a single gene that has acquired introns during its evolution. Conclusions The B. tabaci genome contains numerous genetic novelties, including expansions in gene families associated with insecticide resistance, detoxification and virus transmission, as well as numerous horizontally transferred genes from bacteria and fungi. We believe these novelties likely have shaped B. tabaci as a highly invasive polyphagous crop pest and efficient vector of plant viruses. The genome serves as a reference for resolving the B. tabaci cryptic species complex, understanding fundamental biological novelties, and providing valuable genetic information to assist the development of novel strategies for controlling whiteflies and the viruses they transmit. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0321-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenbo Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel K Hasegawa
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.,US Department of Agriculture-Agricultural Research Service, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - Navneet Kaur
- US Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research, Salinas, CA, 93905, USA
| | - Adi Kliot
- Department of Entomology, The Volcani Center, Bet Dagan, 50250, Israel
| | - Patricia Valle Pinheiro
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.,EMBRAPA Rice and Beans, Santo Antônio de Goiás, GO, 75375-000, Brazil.,Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Junbo Luan
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Wenli Liu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Yuan Luo
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Angela Kruse
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.,Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaowei Yang
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Galina Lebedev
- Department of Entomology, The Volcani Center, Bet Dagan, 50250, Israel
| | - Tonja W Fisher
- Department of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wayne B Hunter
- US Department of Agriculture-Agricultural Research Service, US Horticultural Laboratory, Fort Pierce, FL, 34945, USA
| | - Judith K Brown
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Michelle Cilia
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.,Department of Biology, Lund University, Lund, SE-223 62, Sweden.,US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Murad Ghanim
- Department of Entomology, The Volcani Center, Bet Dagan, 50250, Israel
| | - Alvin M Simmons
- US Department of Agriculture-Agricultural Research Service, US Vegetable Laboratory, Charleston, SC, 29414, USA
| | - William M Wintermantel
- US Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research, Salinas, CA, 93905, USA.
| | - Kai-Shu Ling
- US Department of Agriculture-Agricultural Research Service, US Vegetable Laboratory, Charleston, SC, 29414, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA. .,US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| |
Collapse
|
32
|
Yu QY, Fang SM, Zhang Z, Jiggins CD. The transcriptome response ofHeliconius melpomenelarvae to a novel host plant. Mol Ecol 2016; 25:4850-65. [PMID: 27572947 DOI: 10.1111/mec.13826] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Quan-You Yu
- School of Life Sciences; Chongqing University; Chongqing 401331 China
- Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ UK
| | - Shou-Min Fang
- College of Life Science; China West Normal University; Nanchang 637002 China
| | - Ze Zhang
- School of Life Sciences; Chongqing University; Chongqing 401331 China
| | - Chris D. Jiggins
- Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ UK
| |
Collapse
|
33
|
Woronik A, Wheat CW. Advances in finding Alba: the locus affecting life history and color polymorphism in a Colias butterfly. J Evol Biol 2016; 30:26-39. [PMID: 27541292 DOI: 10.1111/jeb.12967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/22/2016] [Accepted: 08/14/2016] [Indexed: 11/30/2022]
Abstract
Although alternative life-history strategies exist within many populations, very little is known about their genetic basis and mechanistic insight into these traits could greatly advance the understanding of eco-evolutionary dynamics. Many species of butterfly within the genus Colias exhibit a sex-limited wing colour polymorphism, called Alba, which is correlated with an alternative life-history strategy. Here, we have taken the first steps in localizing the region carrying Alba in Colias croceus, a species with no genomic resources, by generating whole genome sequence of a single Alba mother and two sequencing pools, one for her Alba and another for her orange, offspring. These data were used in a bulk-segregant analysis wherein SNPs fulfilling the Mendelian inheritance expectations of Alba were identified. Then, using the conserved synteny in Lepidoptera, the Alba locus was assigned to chromosome 15 in Bombyx mori. We then identified candidate regions within the chromosome by investigating the distribution of Alba SNPs along the chromosome and the difference in nucleotide diversity in exons between the two pools. A region spanning ~ 5.7 Mbp at the 5' end of the chromosome was identified as likely to contain the Alba locus. These insights set the stage for more detailed genomic scans and mapping of the Alba phenotype, and demonstrate an efficient use of genomic resources in a novel species.
Collapse
Affiliation(s)
- A Woronik
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - C W Wheat
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
34
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, et alKanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Show More Authors] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
35
|
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 2016; 200:1-19. [PMID: 25953905 DOI: 10.1534/genetics.114.172387] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation.
Collapse
|
36
|
Gleason JM, Zhou Y, Hackett JL, Harris BR, Greenfield MD. Development of a Genomic Resource and Quantitative Trait Loci Mapping of Male Calling Traits in the Lesser Wax Moth, Achroia grisella. PLoS One 2016; 11:e0147014. [PMID: 26807910 PMCID: PMC4726463 DOI: 10.1371/journal.pone.0147014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/28/2015] [Indexed: 01/26/2023] Open
Abstract
In the study of sexual selection among insects, the Lesser Waxmoth, Achroia grisella (Lepidoptera: Pyralidae), has been one of the more intensively studied species over the past 20 years. Studies have focused on how the male calling song functions in pair formation and on the quantitative genetics of male song characters and female preference for the song. Recent QTL studies have attempted to elucidate the genetic architecture of male song and female preference traits using AFLP markers. We continued these QTL studies using SNP markers derived from an EST library that allowed us to measure both DNA sequence variation and map loci with respect to the lepidopteran genome. We report that the level of sequence variation within A. grisella is typical among other Lepidoptera that have been examined, and that comparison with the Bombyx mori genome shows that macrosynteny is conserved. Our QTL map shows that a QTL for a male song trait, pulse-pair rate, is situated on the Z chromosome, a prediction for sexually selected traits in Lepidoptera. Our findings will be useful for future studies of genetic architecture of this model species and may help identify the genetics associated with the evolution of its novel acoustic communication.
Collapse
Affiliation(s)
- Jennifer M. Gleason
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Yihong Zhou
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Jennifer L. Hackett
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Bethany R. Harris
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Michael D. Greenfield
- Institut de recherche sur la biologie de l'insecte (IRBI), CNRS UMR 7261,Université François Rabelais de Tours, Tours, France
| |
Collapse
|
37
|
Šíchová J, Ohno M, Dincă V, Watanabe M, Sahara K, Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly,Leptidea amurensis. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12756] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jindra Šíchová
- Institute of Entomology; Biology Centre CAS; 370 05 České Budějovice Czech Republic
- Faculty of Science; University of South Bohemia; 370 05 České Budějovice Czech Republic
| | - Mizuki Ohno
- Laboratory of Applied Entomology; Faculty of Agriculture; Iwate University; Morioka 020-8550 Japan
| | - Vlad Dincă
- Biodiversity Institute of Ontario; University of Guelph; Guelph Ontario N1G 2W1 Canada
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu-Fabra); 08003 Barcelona Spain
| | - Michihito Watanabe
- NPO Mt. Fuji Nature Conservation Center; 6603 Funatsu, Fujikawaguchiko-machi Yamanashi 401-0301 Japan
| | - Ken Sahara
- Laboratory of Applied Entomology; Faculty of Agriculture; Iwate University; Morioka 020-8550 Japan
| | - František Marec
- Institute of Entomology; Biology Centre CAS; 370 05 České Budějovice Czech Republic
- Faculty of Science; University of South Bohemia; 370 05 České Budějovice Czech Republic
| |
Collapse
|
38
|
Lee J, Kiuchi T, Kawamoto M, Shimada T, Katsuma S. Identification and functional analysis of a Masculinizer orthologue in Trilocha varians (Lepidoptera: Bombycidae). INSECT MOLECULAR BIOLOGY 2015; 24:561-569. [PMID: 26154510 DOI: 10.1111/imb.12181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We recently showed that the Masculinizer gene (Masc) plays a primary role in sex determination in the lepidopteran model insect Bombyx mori. However, it remains unknown whether this Masc protein-dependent sex determination system is conserved amongst lepidopteran insects or within the family Bombycidae. Here we cloned and characterized a Masc homologue (TvMasc) in Trilocha varians (Lepidoptera: Bombycidae), a species closely related to B. mori. To elucidate the role of TvMasc in the sex determination cascade of T. varians, TvMasc expression was knocked down in early embryos by the injection of small interfering RNAs (siRNAs) that targeted TvMasc mRNAs. Both female- and male-type splice variants of Tvdsx, a doublesex (dsx) homologue in T. varians were observed in control siRNA-injected embryos. By contrast, only female-type splice variants were observed in TvMasc siRNA-injected embryos. These results indicate that the TvMasc protein directly or indirectly regulates the splicing patterns of Tvdsx. Furthermore, we found that male-type splice variants of B. mori dsx (Bmdsx) were produced in TvMasc-overexpressing BmN4 cells. The mRNA level of B. mori Imp, a gene whose product induces male-specific Bmdsx splicing also increased. These results suggest that Masc genes play similar roles in the sex-determination cascade in Bombycidae.
Collapse
Affiliation(s)
- J Lee
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T Kiuchi
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - M Kawamoto
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T Shimada
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - S Katsuma
- Department of Agricultural and Environmental Biology Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Walters JR, Hardcastle TJ, Jiggins CD. Sex Chromosome Dosage Compensation in Heliconius Butterflies: Global yet Still Incomplete? Genome Biol Evol 2015; 7:2545-59. [PMID: 26338190 PMCID: PMC4607515 DOI: 10.1093/gbe/evv156] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The evolution of heterogametic sex chromosomes is often—but not always—accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit “incomplete” sex chromosome dosage compensation. However, recent results suggest that at least some Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Studies in bombycoid moths indicate the presence of a chromosome-wide epigenetic mechanism that effectively balances Z chromosome gene expression between the sexes by reducing Z-linked expression in males. In contrast, strong sex chromosome dosage effects without any reduction in male Z-linked expression were previously reported in a pyralid moth, suggesting a lack of any such dosage compensating mechanism. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that some lepidopteran species possess an epigenetic dosage compensating mechanism that reduces Z chromosome expression in males to levels comparable with females. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5–20% increase in male expression relative to females on the Z chromosome, depending on the tissue. Thus our results in Heliconius reflect a mixture of previous patterns reported for Lepidoptera. In Heliconius, a moderate pattern of incomplete dosage compensation persists apparently despite the presence of an epigenetic dosage compensating mechanism. The chromosomal distributions of sex-biased genes show an excess of male-biased and a dearth of female-biased genes on the Z chromosome relative to autosomes, consistent with predictions of sexually antagonistic evolution.
Collapse
Affiliation(s)
- James R Walters
- Department of Ecology and Evolutionary Biology, University of Kansas
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, United Kingdom
| |
Collapse
|
40
|
A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm. Heredity (Edinb) 2015; 116:75-83. [PMID: 26264548 DOI: 10.1038/hdy.2015.72] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/08/2022] Open
Abstract
A significant feature of the genomes of Lepidoptera, butterflies and moths, is the high conservation of chromosome organization. Recent remarkable progress in genome sequencing of Lepidoptera has revealed that syntenic gene order is extensively conserved across phylogenetically distant species. The ancestral karyotype of Lepidoptera is thought to be n=31; however, that of the most well-studied moth, Bombyx mori, is n=28, and diverse studies suggest that three chromosomal fusion events occurred in this lineage. To identify the boundaries between predicted ancient fusions involving B. mori chromosomes 11, 23 and 24, we constructed fluorescence in situ hybridization (FISH)-based chromosome maps of the European corn borer, Ostrinia nubilalis (n=31). We first determined a 511 Mb genomic sequence of the Asian corn borer, O. furnacalis, a congener of O. nubilalis, and isolated bacterial artificial chromosomes and fosmid clones that were expected to localize in candidate regions for the boundaries using these sequences. Combined with FISH and genetic analysis, we narrowed down the candidate regions to 40 kb-1.5 Mb, in strong agreement with a previous estimate based on the genome of a butterfly, Melitaea cinxia. The significant difference in the lengths of the candidate regions where no functional genes were observed may reflect the evolutionary time after fusion events.
Collapse
|
41
|
Šíchová J, Voleníková A, Dincă V, Nguyen P, Vila R, Sahara K, Marec F. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol Biol 2015; 15:89. [PMID: 25981157 PMCID: PMC4436027 DOI: 10.1186/s12862-015-0375-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/07/2015] [Indexed: 11/26/2022] Open
Abstract
Background Chromosomal rearrangements have the potential to limit the rate and pattern of gene flow within and between species and thus play a direct role in promoting and maintaining speciation. Wood white butterflies of the genus Leptidea are excellent models to study the role of chromosome rearrangements in speciation because they show karyotype variability not only among but also within species. In this work, we investigated genome architecture of three cryptic Leptidea species (L. juvernica, L. sinapis and L. reali) by standard and molecular cytogenetic techniques in order to reveal causes of the karyotype variability. Results Chromosome numbers ranged from 2n = 85 to 91 in L. juvernica and 2n = 69 to 73 in L. sinapis (both from Czech populations) to 2n = 51 to 55 in L. reali (Spanish population). We observed significant differences in chromosome numbers and localization of cytogenetic markers (rDNA and H3 histone genes) within the offspring of individual females. Using FISH with the (TTAGG)n telomeric probe we also documented the presence of multiple chromosome fusions and/or fissions and other complex rearrangements. Thus, the intraspecific karyotype variability is likely due to irregular chromosome segregation of multivalent meiotic configurations. The analysis of female meiotic chromosomes by GISH and CGH revealed multiple sex chromosomes: W1W2W3Z1Z2Z3Z4 in L. juvernica, W1W2W3Z1Z2Z3 in L. sinapis and W1W2W3W4Z1Z2Z3Z4 in L. reali. Conclusions Our results suggest a dynamic karyotype evolution and point to the role of chromosomal rearrangements in the speciation of Leptidea butterflies. Moreover, our study revealed a curious sex determination system with 3–4 W and 3–4 Z chromosomes, which is unique in the Lepidoptera and which could also have played a role in the speciation process of the three Leptidea species. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0375-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jindra Šíchová
- Institute of Entomology, Biology Centre CAS, 370 05, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Anna Voleníková
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Vlad Dincă
- Biodiversity Institute of Ontario, University of Guelph, N1G 2W1, Guelph, ON, Canada. .,Institut de Biologia Evolutiva (CSIC-Universitat Pompeu-Fabra), 08003, Barcelona, Spain.
| | - Petr Nguyen
- Institute of Entomology, Biology Centre CAS, 370 05, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu-Fabra), 08003, Barcelona, Spain.
| | - Ken Sahara
- Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.
| | - František Marec
- Institute of Entomology, Biology Centre CAS, 370 05, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
42
|
Vershinina AO, Anokhin BA, Lukhtanov VA. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers. COMPARATIVE CYTOGENETICS 2015; 9:161-71. [PMID: 26140159 PMCID: PMC4488964 DOI: 10.3897/compcytogen.v9i2.4715] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/20/2015] [Indexed: 05/24/2023]
Abstract
Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little is known about their organization and localization in karyotypes of organisms with holocentric chromosomes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG) n telomeric probes. FISH with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We also demonstrate that Polyommatus species have the classical insect (TTAGG) n telomere organization. This chromosome end protection mechanism probably originated de novo in small chromosomes that evolved via fragmentations.
Collapse
Affiliation(s)
- Alisa O. Vershinina
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia
| | - Boris A. Anokhin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia
| | - Vladimir A. Lukhtanov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia
- Department of Entomology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
43
|
Simon JC, d'Alencon E, Guy E, Jacquin-Joly E, Jaquiery J, Nouhaud P, Peccoud J, Sugio A, Streiff R. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 2015; 14:413-23. [DOI: 10.1093/bfgp/elv015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Wadsworth CB, Li X, Dopman EB. A recombination suppressor contributes to ecological speciation in OSTRINIA moths. Heredity (Edinb) 2015; 114:593-600. [PMID: 25626887 DOI: 10.1038/hdy.2014.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/27/2023] Open
Abstract
Despite unparalleled access to species' genomes in our post-genomic age, we often lack adequate biological explanations for a major hallmark of the speciation process-genetic divergence. In the presence of gene flow, chromosomal rearrangements such as inversions are thought to promote divergence and facilitate speciation by suppressing recombination. Using a combination of genetic crosses, phenotyping of a trait underlying ecological isolation, and population genetic analysis of wild populations, we set out to determine whether evidence supports a role for recombination suppressors during speciation between the Z and E strains of European corn borer moth (Ostrinia nubilalis). Our results are consistent with the presence of an inversion that has contributed to accumulation of ecologically adaptive alleles and genetic differentiation across roughly 20% of the Ostrinia sex chromosome (~4 Mb). Patterns in Ostrinia suggest that chromosomal divergence may involve two separate phases-one driving its transient origin through local adaptation and one determining its stable persistence through differential introgression. As the evolutionary rate of rearrangements in lepidopteran genomes appears to be one of the fastest among eukaryotes, structural mutations may have had a disproportionate role during adaptive divergence and speciation in Ostrinia and in other moths and butterflies.
Collapse
Affiliation(s)
- C B Wadsworth
- Department of Biology, Tufts University, Medford, MA, USA
| | - X Li
- Department of Biology, Tufts University, Medford, MA, USA
| | - E B Dopman
- Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
45
|
Wadsworth CB, Dopman EB. Transcriptome profiling reveals mechanisms for the evolution of insect seasonality. J Exp Biol 2015; 218:3611-22. [DOI: 10.1242/jeb.126136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022]
Abstract
Rapid evolutionary change in seasonal timing can facilitate ecological speciation and resilience to climate warming. However, the molecular mechanisms behind shifts in animal seasonality are still unclear. Evolved differences in seasonality occur in the European corn borer moth (Ostrinia nubilalis), in which early summer emergence in E-strain adults and later summer emergence in Z-strain adults is explained by a shift in the length of the termination phase of larval diapause. Here, we sample from the developmental time course of diapause in both strains and use transcriptome sequencing to profile regulatory and amino acid changes associated with timing divergence. Within a previously defined QTL, we nominate 48 candidate genes including several in the insulin signaling and circadian rhythm pathways. Genome-wide transcriptional activity is negligible during the extended Z-strain termination, whereas shorter E-strain termination is characterized by a rapid burst of regulatory changes involved in resumption of the cell cycle, hormone production, and stress response. Although gene expression during diapause termination in Ostrinia is similar to that found previously in flies, nominated genes for shifts in timing are species-specific. Hence, across distant relatives the evolution of insect seasonality appears to involve unique genetic switches that direct organisms into distinct phases of the diapause pathway through wholesale restructuring of conserved gene regulatory networks
Collapse
Affiliation(s)
- Crista B. Wadsworth
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| |
Collapse
|
46
|
Vershinina AO, Anokhin BA, Lukhtanov VA. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers. COMPARATIVE CYTOGENETICS 2015; 9:161-171. [PMID: 26140159 DOI: 10.3897/compcytogen.v.9i2.4751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/20/2015] [Indexed: 05/21/2023]
Abstract
Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little is known about their organization and localization in karyotypes of organisms with holocentric chromosomes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG) n telomeric probes. FISH with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We also demonstrate that Polyommatus species have the classical insect (TTAGG) n telomere organization. This chromosome end protection mechanism probably originated de novo in small chromosomes that evolved via fragmentations.
Collapse
Affiliation(s)
- Alisa O Vershinina
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia
| | - Boris A Anokhin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia
| | - Vladimir A Lukhtanov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia ; Department of Entomology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
47
|
Hornett EA, Moran B, Reynolds LA, Charlat S, Tazzyman S, Wedell N, Jiggins CD, Hurst GDD. The evolution of sex ratio distorter suppression affects a 25 cM genomic region in the butterfly Hypolimnas bolina. PLoS Genet 2014; 10:e1004822. [PMID: 25474676 PMCID: PMC4256269 DOI: 10.1371/journal.pgen.1004822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
Symbionts that distort their host's sex ratio by favouring the production and survival of females are common in arthropods. Their presence produces intense Fisherian selection to return the sex ratio to parity, typified by the rapid spread of host ‘suppressor’ loci that restore male survival/development. In this study, we investigated the genomic impact of a selective event of this kind in the butterfly Hypolimnas bolina. Through linkage mapping, we first identified a genomic region that was necessary for males to survive Wolbachia-induced male-killing. We then investigated the genomic impact of the rapid spread of suppression, which converted the Samoan population of this butterfly from a 100∶1 female-biased sex ratio in 2001 to a 1∶1 sex ratio by 2006. Models of this process revealed the potential for a chromosome-wide effect. To measure the impact of this episode of selection directly, the pattern of genetic variation before and after the spread of suppression was compared. Changes in allele frequencies were observed over a 25 cM region surrounding the suppressor locus, with a reduction in overall diversity observed at loci that co-segregate with the suppressor. These changes exceeded those expected from drift and occurred alongside the generation of linkage disequilibrium. The presence of novel allelic variants in 2006 suggests that the suppressor was likely to have been introduced via immigration rather than through de novo mutation. In addition, further sampling in 2010 indicated that many of the introduced variants were lost or had declined in frequency since 2006. We hypothesize that this loss may have resulted from a period of purifying selection, removing deleterious material that introgressed during the initial sweep. Our observations of the impact of suppression of sex ratio distorting activity reveal a very wide genomic imprint, reflecting its status as one of the strongest selective forces in nature. The sex ratio of the offspring produced by an individual can be an evolutionary battleground. In many arthropod species, maternally inherited microbes selectively kill male hosts, and the host may in turn evolve strategies to restore the production or survival of males. When males are rare, the intensity of selection on the host may be extreme. We recently observed one such episode, in which the population sex ratio of the butterfly Hypolimnas bolina shifted from 100 females per male to near parity, through the evolution of a suppressor gene. In our current study, we investigate the hypothesis that the strength of selection in this case was so strong that the genomic impact would go well beyond the suppressor gene itself. After mapping the location of the suppressor within the genome of H. bolina, we examined changes in genetic variation at sites on the same chromosome as the suppressor. We show that a broad region of the genome was affected by the spread of the suppressor. Our data also suggest that the selection may have been sufficiently strong to introduce deleterious material into the population, which was later purged by selection.
Collapse
Affiliation(s)
- Emily A. Hornett
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Bruce Moran
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Louise A. Reynolds
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sylvain Charlat
- Laboratory of Biometry and Evolutionary Biology, CNRS - University Lyon, Villeurbanne, France
| | - Samuel Tazzyman
- Faculty of Life Sciences, University College London, London, United Kingdom
- Theoretical Biology, ETH Zürich, Zürich, Switzerland
| | - Nina Wedell
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Greg D. D. Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
48
|
Ancient homology underlies adaptive mimetic diversity across butterflies. Nat Commun 2014; 5:4817. [PMID: 25198507 PMCID: PMC4183220 DOI: 10.1038/ncomms5817] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 07/28/2014] [Indexed: 12/30/2022] Open
Abstract
Convergent evolution provides a rare, natural experiment with which to test the predictability of adaptation at the molecular level. Little is known about the molecular basis of convergence over macro-evolutionary timescales. Here we use a combination of positional cloning, population genomic resequencing, association mapping and developmental data to demonstrate that positionally orthologous nucleotide variants in the upstream region of the same gene, WntA, are responsible for parallel mimetic variation in two butterfly lineages that diverged >65 million years ago. Furthermore, characterization of spatial patterns of WntA expression during development suggests that alternative regulatory mechanisms underlie wing pattern variation in each system. Taken together, our results reveal a strikingly predictable molecular basis for phenotypic convergence over deep evolutionary time. Little is known about the genetic basis of convergent evolution in deeply diverged species. Here, the authors show that variation in the WntA gene is associated with parallel wing pattern variation in two butterflies that diverged more than 65 million years ago.
Collapse
|
49
|
Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, Välimäki N, Paulin L, Kvist J, Wahlberg N, Tanskanen J, Hornett EA, Ferguson LC, Luo S, Cao Z, de Jong MA, Duplouy A, Smolander OP, Vogel H, McCoy RC, Qian K, Chong WS, Zhang Q, Ahmad F, Haukka JK, Joshi A, Salojärvi J, Wheat CW, Grosse-Wilde E, Hughes D, Katainen R, Pitkänen E, Ylinen J, Waterhouse RM, Turunen M, Vähärautio A, Ojanen SP, Schulman AH, Taipale M, Lawson D, Ukkonen E, Mäkinen V, Goldsmith MR, Holm L, Auvinen P, Frilander MJ, Hanski I. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun 2014; 5:4737. [PMID: 25189940 PMCID: PMC4164777 DOI: 10.1038/ncomms5737] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/17/2014] [Indexed: 12/30/2022] Open
Abstract
Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths. Butterflies and moths (Lepidoptera) vary in chromosome number. Here, the authors sequence the genome of the Glanville fritillary butterfly, Melitaea cinxia, show it has the ancestral lepidopteran karyotype and provide insight into how chromosomal fusions have shaped karyotype evolution in butterflies and moths.
Collapse
Affiliation(s)
- Virpi Ahola
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2]
| | - Rainer Lehtonen
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [3] Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland [4] Center of Excellence in Cancer Genetics, University of Helsinki, FI-00014 Helsinki, Finland [5] [6]
| | - Panu Somervuo
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [3]
| | - Leena Salmela
- Department of Computer Science &Helsinki Institute for Information Technology HIIT, University of Helsinki, FI-00014 Helsinki, Finland
| | - Patrik Koskinen
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pasi Rastas
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Niko Välimäki
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Kvist
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Niklas Wahlberg
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Jaakko Tanskanen
- 1] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [2] Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland
| | - Emily A Hornett
- 1] Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK [2] Department of Biology, Pennsylvania State University, Pennsylvania 16802, USA
| | | | - Shiqi Luo
- College of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Zijuan Cao
- College of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Maaike A de Jong
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Anne Duplouy
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Rajiv C McCoy
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Kui Qian
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Wong Swee Chong
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Qin Zhang
- BioMediTech, University of Tampere, FI-33520 Tampere, Finland
| | - Freed Ahmad
- Department of Information Technology, University of Turku, FI-20014 Turku, Finland
| | - Jani K Haukka
- BioMediTech, University of Tampere, FI-33520 Tampere, Finland
| | - Aruj Joshi
- BioMediTech, University of Tampere, FI-33520 Tampere, Finland
| | - Jarkko Salojärvi
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Daniel Hughes
- 1] European Bioinformatics Institute, Hinxton CB10 1SD, UK [2] Baylor College of Medicine, Human Genome Sequencing Center, Houston, Texas 77030-3411, USA
| | - Riku Katainen
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Esa Pitkänen
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Johannes Ylinen
- Department of Computer Science &Helsinki Institute for Information Technology HIIT, University of Helsinki, FI-00014 Helsinki, Finland
| | - Robert M Waterhouse
- 1] Department of Genetic Medicine and Development, University of Geneva Medical School &Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Mikko Turunen
- Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland
| | - Anna Vähärautio
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Department of Pathology, University of Helsinki, FI-00014 Helsinki, Finland [3] Science for Life Laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183 Stockholm, Sweden
| | - Sami P Ojanen
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alan H Schulman
- 1] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [2] Biotechnology and Food Research, MTT Agrifood Research Finland, FI-31600 Jokioinen, Finland
| | - Minna Taipale
- 1] Genome-Scale Biology Research Program, University of Helsinki, FI-00014 Helsinki, Finland [2] Science for Life Laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183 Stockholm, Sweden
| | - Daniel Lawson
- European Bioinformatics Institute, Hinxton CB10 1SD, UK
| | - Esko Ukkonen
- Department of Computer Science &Helsinki Institute for Information Technology HIIT, University of Helsinki, FI-00014 Helsinki, Finland
| | - Veli Mäkinen
- Department of Computer Science &Helsinki Institute for Information Technology HIIT, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881-0816, USA
| | - Liisa Holm
- 1] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland [2] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [3]
| | - Petri Auvinen
- 1] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [2]
| | - Mikko J Frilander
- 1] Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland [2]
| | - Ilkka Hanski
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
50
|
Salas-Leiva DE, Meerow AW, Francisco-Ortega J, Calonje M, Griffith MP, Stevenson DW, Nakamura K. Conserved genetic regions across angiosperms as tools to develop single-copy nuclear markers in gymnosperms: an example using cycads. Mol Ecol Resour 2014; 14:831-45. [PMID: 24444413 DOI: 10.1111/1755-0998.12228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/28/2023]
Abstract
Several individuals of the Caribbean Zamia clade and other cycad genera were used to identify single-copy nuclear genes for phylogeographic and phylogenetic studies in Cycadales. Two strategies were employed to select target loci: (i) a tblastX search of Arabidopsis conserved ortholog sequence (COS) set and (ii) a tblastX search of Arabidopsis-Populus-Vitis-Oryza Shared Single-Copy genes (APVO SSC) against the EST Zamia databases in GenBank. From the first strategy, 30 loci were selected, and from the second, 16 loci. In both cases, the matching GenBank accessions of Zamia were used as a query for retrieving highly similar sequences from Cycas, Picea, Pinus species or Ginkgo biloba. After retrieving and aligning all the sequences in each locus, intron predictions were completed to assist in primer design. PCR was carried out in three rounds to detect paralogous loci. A total of 29 loci were successfully amplified as a single band of which 20 were likely single-copy loci. These loci showed different diversity and divergence levels. A preliminary screening allowed us to select 8 promising loci (40S, ATG2, BG, GroES, GTP, LiSH, PEX4 and TR) for the Zamia pumila complex and 4 loci (COS26, GroES, GTP and HTS) for all other cycad genera.
Collapse
Affiliation(s)
- Dayana E Salas-Leiva
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA; USDA-ARS-SHRS, National Germplasm Repository, Miami, FL, 33158, USA; Montgomery Botanical Center, Miami, FL, 33156, USA
| | | | | | | | | | | | | |
Collapse
|