1
|
Cisternas‐Fuentes A, Forehand C, Morris K, Busch JW, Koski MH. Drift in small populations predicts mate availability and the breakdown of self-incompatibility in a clonal polyploid. THE NEW PHYTOLOGIST 2025; 245:2268-2278. [PMID: 39716778 PMCID: PMC11798892 DOI: 10.1111/nph.20338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
Mate limitation in small populations can reduce reproductive fitness, hinder population growth, and increase extinction risk. Mate limitation is exacerbated in self-incompatible (SI) taxa, where shared S-alleles further restrict mating. Theory suggests genetic drift as a predictor of mate limitation and the breakdown of SI systems. We tested this prediction by evaluating mate availability and S-allele number in populations of a tetraploid herb with gametophytic SI (GSI) spanning a range of effective population sizes. We performed controlled crosses in 13 populations of Argentina anserina to quantify mate availability and S-allele diversity, which were compared with simulations of tetraploid populations with GSI. We further evaluated mechanisms at the pollen-pistil interface contributing to outcross failure and leakiness in self-recognition. Mate availability declined in small populations, and closely fit tetraploid GSI population genetic models where maternal plants receive pollen with diverse S-alleles generated through tetrasomic inheritance. The failure to arrest self-pollen in the style was common in some populations. Specifically, leaky SI was more common in small populations with low mate availability, where it explained higher seed production in natural populations. The restriction of leaky self-recognition to the smallest populations is consistent with mate limitation as a pressure driving the breakdown of self-incompatibility.
Collapse
Affiliation(s)
- Anita Cisternas‐Fuentes
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónCasilla 160‐CConcepciónChile
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| | - Cameron Forehand
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
- Department of BiologyUniversity of OklahomaNormanOK73019USA
| | - Kate Morris
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| | - Jeremiah W. Busch
- School of Biological SciencesWashington State UniversityPullmanWA99164‐4236USA
| | - Matthew H. Koski
- Department of Biological SciencesClemson UniversityClemsonSC29634USA
| |
Collapse
|
2
|
Bashir MA, Bertamini M, Gottardini E, Grando MS, Faralli M. Olive reproductive biology: implications for yield, compatibility conundrum, and environmental constraints. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4300-4313. [PMID: 38660967 DOI: 10.1093/jxb/erae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Olive (Olea europaea L.) is an important Mediterranean tree species with a longstanding history of cultivation, boasting a diverse array of local cultivars. While traditional olive orchards are valued for their cultural and aesthetic significance, they often face economic sustainability challenges in the modern context. The success of both traditional and newly introduced cultivars (e.g. those obtained by cross-breeding) is hindered by self-incompatibility, a prevalent issue for this species that results in low fruit set when limited genetic diversity is present. Further, biological, environmental, and agronomic factors have been shown to interlink in shaping fertilization patterns, hence impacting on the final yield. Climatic conditions during pollination, such as excessive rainfall or high temperatures, can further exacerbate the problem. In this work, we provide an overview of the various factors that trigger the phenomenon of suboptimal fruit set in olive trees. This work provides a comprehensive understanding of the interplay among these factors, shedding light on potential mechanisms and pathways that contribute to the observed outcomes in the context of self-incompatibility in olive.
Collapse
Affiliation(s)
- Muhammad Ajmal Bashir
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Massimo Bertamini
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Elena Gottardini
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Maria Stella Grando
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Michele Faralli
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| |
Collapse
|
3
|
Chandler EK, Travers SE. Intraspecific variation in responses to extreme and moderate temperature stress in the wild species, Solanum carolinense (Solanaceae). AOB PLANTS 2024; 16:plae030. [PMID: 39011499 PMCID: PMC11247528 DOI: 10.1093/aobpla/plae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
Adaptation or acclimation to local temperature regimes has often been used as a proxy for predicting how plant populations will respond to impending novel conditions driven by human-caused climate change. To understand how plants may successfully respond to increasing air temperatures (extreme and moderate) in the future, we explored how temperature tolerance traits differ in populations of Solanum carolinense from northern (MN) and southern (TX) regions of the continental USA in a two-experiment study. In the first experiment, we compared the heat and cold tolerance in vegetative (sporophyte) and reproductive (male gametophyte) traits. In the second experiment, we studied if long-term heat influences plant development by examining how development in moderate heat affected reproductive structures and reproductive success. We found that temperature sensitivity differed between southern populations, which regularly experience extreme heat, and northern populations which do not. In contrast to our expectations, northern populations appeared more heat-tolerant than southern populations for vegetative traits such as chlorophyll stability and reproductive traits such as pollen germination. Our results are consistent with a heat-avoidance, rather than tolerance mechanism to mitigate extreme heat during pollen germination. In the second experiment, plants developing under the moderate heat treatment had significantly smaller reproductive structures and reduced seed production (27% fewer seeds on average than in the control treatment). Reproductive structures that developed in moderate heat were also reduced in size, particularly in the northern populations relative to populations from the south. We conclude that rising temperatures have the potential to incur substantial negative consequences for the reproductive success of individuals in this species and that some populations already mitigate stressful temperature conditions through phenotypic plasticity.
Collapse
Affiliation(s)
- Emma K Chandler
- Department of Biological Sciences, North Dakota State University, Dept. 2715, PO Box 6050, Fargo, ND 58108-6050, USA
| | - Steven E Travers
- Department of Biological Sciences, North Dakota State University, Dept. 2715, PO Box 6050, Fargo, ND 58108-6050, USA
| |
Collapse
|
4
|
Li Y, Mamonova E, Köhler N, van Kleunen M, Stift M. Breakdown of self-incompatibility due to genetic interaction between a specific S-allele and an unlinked modifier. Nat Commun 2023; 14:3420. [PMID: 37296115 PMCID: PMC10256779 DOI: 10.1038/s41467-023-38802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Breakdown of self-incompatibility has frequently been attributed to loss-of-function mutations of alleles at the locus responsible for recognition of self-pollen (i.e. the S-locus). However, other potential causes have rarely been tested. Here, we show that self-compatibility of S1S1-homozygotes in selfing populations of the otherwise self-incompatible Arabidopsis lyrata is not due to S-locus mutation. Between-breeding-system cross-progeny are self-compatible if they combine S1 from the self-compatible cross-partner with recessive S1 from the self-incompatible cross-partner, but self-incompatible with dominant S-alleles. Because S1S1 homozygotes in outcrossing populations are self-incompatible, mutation of S1 cannot explain self-compatibility in S1S1 cross-progeny. This supports the hypothesis that an S1-specific modifier unlinked to the S-locus causes self-compatibility by functionally disrupting S1. Self-compatibility in S19S19 homozygotes may also be caused by an S19-specific modifier, but we cannot rule out a loss-of-function mutation of S19. Taken together, our findings indicate that breakdown of self-incompatibility is possible without disruptive mutations at the S-locus.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| | - Ekaterina Mamonova
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Nadja Köhler
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany.
| |
Collapse
|
5
|
Lee S, Enciso-Rodriguez FE, Behling W, Jayakody T, Panicucci K, Zarka D, Nadakuduti SS, Buell CR, Manrique-Carpintero NC, Douches DS. HT-B and S-RNase CRISPR-Cas9 double knockouts show enhanced self-fertility in diploid Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2023; 14:1151347. [PMID: 37324668 PMCID: PMC10264808 DOI: 10.3389/fpls.2023.1151347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
The Gametophytic Self-Incompatibility (GSI) system in diploid potato (Solanum tuberosum L.) poses a substantial barrier in diploid potato breeding by hindering the generation of inbred lines. One solution is gene editing to generate self-compatible diploid potatoes which will allow for the generation of elite inbred lines with fixed favorable alleles and heterotic potential. The S-RNase and HT genes have been shown previously to contribute to GSI in the Solanaceae family and self-compatible S. tuberosum lines have been generated by knocking out S-RNase gene with CRISPR-Cas9 gene editing. This study employed CRISPR-Cas9 to knockout HT-B either individually or in concert with S-RNase in the diploid self-incompatible S. tuberosum clone DRH-195. Using mature seed formation from self-pollinated fruit as the defining characteristic of self-compatibility, HT-B-only knockouts produced little or no seed. In contrast, double knockout lines of HT-B and S-RNase displayed levels of seed production that were up to three times higher than observed in the S-RNase-only knockout, indicating a synergistic effect between HT-B and S-RNase in self-compatibility in diploid potato. This contrasts with compatible cross-pollinations, where S-RNase and HT-B did not have a significant effect on seed set. Contradictory to the traditional GSI model, self-incompatible lines displayed pollen tube growth reaching the ovary, yet ovules failed to develop into seeds indicating a potential late-acting self-incompatibility in DRH-195. Germplasm generated from this study will serve as a valuable resource for diploid potato breeding.
Collapse
Affiliation(s)
- Sarah Lee
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - William Behling
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Thilani Jayakody
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Kaela Panicucci
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Daniel Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - C. Robin Buell
- Department of Crop and Soil Sciences, Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Norma C. Manrique-Carpintero
- Alliance of Bioversity International and The International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Pretz C, Smith SD. How does a self-incompatible individual transition to self-compatibility during its lifetime? AMERICAN JOURNAL OF BOTANY 2023; 110:e16150. [PMID: 36870068 DOI: 10.1002/ajb2.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Chelsea Pretz
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO, 80309, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO, 80309, USA
| |
Collapse
|
7
|
Cisternas-Fuentes A, Dwyer R, Johnson N, Finnell L, Gilman J, Koski MH. Disentangling the components of pollen limitation in a widespread herb with gametophytic self-incompatibility. AMERICAN JOURNAL OF BOTANY 2023; 110:e16122. [PMID: 36571452 DOI: 10.1002/ajb2.16122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
PREMISE Seed production is frequently limited by the receipt of insufficient or low-quality pollen, collectively termed "pollen limitation" (PL). In taxa with gametophytic self-incompatibility (GSI), incompatible pollen can germinate on stigmas but pollen tubes are arrested in styles. This allows for estimates of pollen performance before, during, and after self-recognition, as well as insight into the factors underlying pollen quality limitation in GSI taxa. METHODS We scored pollen performance following self and outcross pollinations in Argentina anserina to identify the location of self-recognition and establish the relationship between pollen tubes and seed production. We then estimated quantity and quality components of PL from >3300 field-collected styles. We combined our results with other studies to test the prediction that low pollen quality, but not quantity, drives higher PL in self-incompatible (SI) taxa than in self-compatible taxa (SC). RESULTS Self and outcross pollen germinated readily on stigmas, but 96% of germinated self-pollen was arrested during early tube elongation. Reproduction in the field was more limited by pollen quality than by quantity, and pollen failure near the location of self-recognition was a stronger barrier to fertilization than pollen germination. Across 26 taxa, SI species experienced stronger pollen quality, but not quantity, limitation than SC species. CONCLUSIONS Evaluating pollen performance at multiple points within pistils can elucidate potential causes of pollen quality limitation. The receipt of incompatible pollen inhibits fertilization success more than insufficient pollen receipt or poor pollen germination in A. anserina. Likewise, pollen quality limitation drives high overall PL in other SI taxa.
Collapse
Affiliation(s)
- Anita Cisternas-Fuentes
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina, 29634, USA
| | - Roslynn Dwyer
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina, 29634, USA
| | - Nicole Johnson
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina, 29634, USA
| | - Lindsay Finnell
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina, 29634, USA
| | - Jeffrey Gilman
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina, 29634, USA
| | - Matthew H Koski
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina, 29634, USA
| |
Collapse
|
8
|
Nihranz CT, Helms AM, Tooker JF, Mescher MC, De Moraes CM, Stephenson AG. Adverse effects of inbreeding on the transgenerational expression of herbivore-induced defense traits in Solanum carolinense. PLoS One 2022; 17:e0274920. [PMID: 36282832 PMCID: PMC9595541 DOI: 10.1371/journal.pone.0274920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
In addition to directly inducing physical and chemical defenses, herbivory experienced by plants in one generation can influence the expression of defensive traits in offspring. Plant defense phenotypes can be compromised by inbreeding, and there is some evidence that such adverse effects can extend to the transgenerational expression of induced resistance. We explored how the inbreeding status of maternal Solanum carolinense plants influenced the transgenerational effects of herbivory on the defensive traits and herbivore resistance of offspring. Manduca sexta caterpillars were used to damage inbred and outbred S. carolinense maternal plants and cross pollinations were performed to produced seeds from herbivore-damaged and undamaged, inbred and outbred maternal plants. Seeds were grown in the greenhouse to assess offspring defense-related traits (i.e., leaf trichomes, internode spines, volatile organic compounds) and resistance to herbivores. We found that feeding by M. sexta caterpillars on maternal plants had a positive influence on trichome and spine production in offspring and that caterpillar development on offspring of herbivore-damaged maternal plants was delayed relative to that on offspring of undamaged plants. Offspring of inbred maternal plants had reduced spine production, compared to those of outbred maternal plants, and caterpillars performed better on the offspring of inbred plants. Both herbivory and inbreeding in the maternal generation altered volatile emissions of offspring. In general, maternal plant inbreeding dampened transgenerational effects of herbivory on offspring defensive traits and herbivore resistance. Taken together, this study demonstrates that inducible defenses in S. carolinense can persist across generations and that inbreeding compromises transgenerational resistance in S. carolinense.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anjel M. Helms
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mark C. Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
9
|
Broz AK, Miller CM, Baek YS, Tovar-Méndez A, Acosta-Quezada PG, Riofrío-Cuenca TE, Rusch DB, Bedinger PA. S-RNase Alleles Associated With Self-Compatibility in the Tomato Clade: Structure, Origins, and Expression Plasticity. Front Genet 2021; 12:780793. [PMID: 34938321 PMCID: PMC8685505 DOI: 10.3389/fgene.2021.780793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The self-incompatibility (SI) system in the Solanaceae is comprised of cytotoxic pistil S-RNases which are countered by S-locus F-box (SLF) resistance factors found in pollen. Under this barrier-resistance architecture, mating system transitions from SI to self-compatibility (SC) typically result from loss-of-function mutations in genes encoding pistil SI factors such as S-RNase. However, the nature of these mutations is often not well characterized. Here we use a combination of S-RNase sequence analysis, transcript profiling, protein expression and reproductive phenotyping to better understand different mechanisms that result in loss of S-RNase function. Our analysis focuses on 12 S-RNase alleles identified in SC species and populations across the tomato clade. In six cases, the reason for gene dysfunction due to mutations is evident. The six other alleles potentially encode functional S-RNase proteins but are typically transcriptionally silenced. We identified three S-RNase alleles which are transcriptionally silenced under some conditions but actively expressed in others. In one case, expression of the S-RNase is associated with SI. In another case, S-RNase expression does not lead to SI, but instead confers a reproductive barrier against pollen tubes from other tomato species. In the third case, expression of S-RNase does not affect self, interspecific or inter-population reproductive barriers. Our results indicate that S-RNase expression is more dynamic than previously thought, and that changes in expression can impact different reproductive barriers within or between natural populations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Christopher M Miller
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | | | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
10
|
Kariyat RR, Bentley TG, Nihranz CT, Stephenson AG, De Moraes CM, Mescher MC. Inbreeding in Solanum carolinense alters floral attractants and rewards and adversely affects pollinator visitation. AMERICAN JOURNAL OF BOTANY 2021; 108:74-82. [PMID: 33450062 DOI: 10.1002/ajb2.1594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/17/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Inbreeding depression is well documented in flowering plants and adversely affects a wide range of fitness-related traits. Recent work has begun to explore the effects of inbreeding on ecological interactions among plants and other organisms, including insect herbivores and pathogens. However, the effects of inbreeding on floral traits, floral scents, and pollinator visitation are less well studied. METHODS Using inbred and outbred maternal families of horsenettle (Solanum carolinense, Solanaceae), we examined the effects of inbreeding on traits associated with pollinator attraction and floral rewards. Specifically, we measured corolla size, counted pollen grains per flower, and analyzed floral volatile emissions via gas chromatography and mass spectrometry. We also examined pollinator visitation to experimental arrays of flowering inbred and outbred plants under field conditions. RESULTS Compared to those of outbred plants, flowers of inbred plants exhibited reduced corolla size and pollen production, as well as significantly reduced emission of the two most abundant volatile compounds in the floral blend. Furthermore, bumblebees-the main pollinators of horsenettle-discriminated against inbred flowers in the field: bees were more likely to make initial visits to flowers on outbred plants, visited outbred flowers more often overall, and spent more time on outbred flowers. CONCLUSIONS These results show that inbreeding can (1) alter floral traits that are known to mediate pollinator attraction; (2) reduce the production of floral rewards (pollen is the sole reward in horsenettle); and (3) adversely affect pollinator visitation under field conditions.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology and School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Thomas G Bentley
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Chad T Nihranz
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Andrew G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| |
Collapse
|
11
|
Tayal M, Chavana J, Kariyat RR. Efficiency of using electric toothbrush as an alternative to a tuning fork for artificial buzz pollination is independent of instrument buzzing frequency. BMC Ecol 2020; 20:8. [PMID: 32039719 PMCID: PMC7008546 DOI: 10.1186/s12898-020-00278-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breeding programs and research activities where artificial buzz-pollinations are required to have primarily relied upon using tuning forks, and bumble bees. However, these methods can be expensive, unreliable, and inefficient. To find an alternative, we tested the efficiency of pollen collection using electric toothbrushes and compared it with tuning forks at three vibration frequencies-low, medium, and high and two extraction times at 3 s and 16 s- from two buzz-pollinated species (Solanum lycopersicum and Solanum elaeagnifolium). RESULTS Our results show that species, and extraction time significantly influenced pollen extraction, while there were no significant differences for the different vibration frequencies and more importantly, the use of a toothbrush over tuning fork. More pollen was extracted from S. elaeagnifolium when compared to S. lycopersicum, and at longer buzzing time regardless of the instrument used. CONCLUSIONS Our results suggest that electric toothbrushes can be a viable and inexpensive alternative to tuning forks, and regardless of the instrument used and buzzing frequency, length of buzzing time is also critical in pollen extraction.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Jesus Chavana
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Rupesh R Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA.
| |
Collapse
|
12
|
Nihranz CT, Walker WS, Brown SJ, Mescher MC, De Moraes CM, Stephenson AG. Transgenerational impacts of herbivory and inbreeding on reproductive output in Solanum carolinense. AMERICAN JOURNAL OF BOTANY 2020; 107:286-297. [PMID: 31944272 PMCID: PMC7064912 DOI: 10.1002/ajb2.1402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinense offspring. METHODS Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbred S. carolinense maternal plants. Cross-pollinations were performed by hand to produce seed from herbivore-damaged outbred plants, herbivore-damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions. RESULTS We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore-damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions. CONCLUSIONS This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - William S. Walker
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Steven J. Brown
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Mark C. Mescher
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Andrew G. Stephenson
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
13
|
Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09997-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Alagna F, Caceres ME, Pandolfi S, Collani S, Mousavi S, Mariotti R, Cultrera NGM, Baldoni L, Barcaccia G. The Paradox of Self-Fertile Varieties in the Context of Self-Incompatible Genotypes in Olive. FRONTIERS IN PLANT SCIENCE 2019; 10:725. [PMID: 31293602 PMCID: PMC6606695 DOI: 10.3389/fpls.2019.00725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/16/2019] [Indexed: 05/09/2023]
Abstract
Olive, representing one of the most important fruit crops of the Mediterranean area, is characterized by a general low fruit yield, due to numerous constraints, including alternate bearing, low flower viability, male-sterility, inter-incompatibility, and self-incompatibility (SI). Early efforts to clarify the genetic control of SI in olive gave conflicting results, and only recently, the genetic control of SI has been disclosed, revealing that olive possesses an unconventional homomorphic sporophytic diallelic system of SI, dissimilar from other described plants. This system, characterized by the presence of two SI groups, prevents self-fertilization and regulates inter-compatibility between cultivars, such that cultivars bearing the same incompatibility group are incompatible. Despite the presence of a functional SI, some varieties, in particular conditions, are able to set seeds following self-fertilization, a mechanism known as pseudo-self-compatibility (PSC), as widely reported in previous literature. Here, we summarize the results of previous works on SI in olive, particularly focusing on the occurrence of self-fertility, and offer a new perspective in view of the recent elucidation of the genetic architecture of the SI system in olive. Recent advances in research aimed at unraveling the molecular bases of SI and its breakdown in olive are also presented. The clarification of these mechanisms may have a huge impact on orchard management and will provide fundamental information for the future of olive breeding programs.
Collapse
Affiliation(s)
- F. Alagna
- Dipartimento Tecnologie Energetiche (DTE), Centro Ricerche Trisaia, ENEA Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile, Rotondella, Italy
| | - M. E. Caceres
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - S. Pandolfi
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - S. Collani
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - S. Mousavi
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - R. Mariotti
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - N. G. M. Cultrera
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - L. Baldoni
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
- *Correspondence: L. Baldoni,
| | - G. Barcaccia
- Laboratorio di Genomica, Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro, Italy
| |
Collapse
|
15
|
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches D. Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9. FRONTIERS IN PLANT SCIENCE 2019; 10:376. [PMID: 31001300 PMCID: PMC6454193 DOI: 10.3389/fpls.2019.00376] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/12/2019] [Indexed: 05/19/2023]
Abstract
Potato breeding can be redirected to a diploid inbred/F1 hybrid variety breeding strategy if self-compatibility can be introduced into diploid germplasm. However, the majority of diploid potato clones (Solanum spp.) possess gametophytic self-incompatibility that is primarily controlled by a single multiallelic locus called the S-locus which is composed of tightly linked genes, S-RNase (S-locus RNase) and multiple SLFs (S-locus F-box proteins), which are expressed in the style and pollen, respectively. Using S-RNase genes known to function in the Solanaceae gametophytic SI mechanism, we identified S-RNase alleles with flower-specific expression in two diploid self-incompatible potato lines using genome resequencing data. Consistent with the location of the S-locus in potato, we genetically mapped the S-RNase gene using a segregating population to a region of low recombination within the pericentromere of chromosome 1. To generate self-compatible diploid potato lines, a dual single-guide RNA (sgRNA) strategy was used to target conserved exonic regions of the S-RNase gene and generate targeted knockouts (KOs) using a Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (Cas9) approach. Self-compatibility was achieved in nine S-RNase KO T0 lines which contained bi-allelic and homozygous deletions/insertions in both genotypes, transmitting self compatibility to T1 progeny. This study demonstrates an efficient approach to achieve stable, consistent self-compatibility through S-RNase KO for use in diploid potato breeding approaches.
Collapse
Affiliation(s)
- Felix Enciso-Rodriguez
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- AgBioResearch, Michigan State University, East Lansing, MI, United States
- *Correspondence: David Douches,
| |
Collapse
|
16
|
Kariyat RR, Hardison SB, Ryan AB, Stephenson AG, De Moraes CM, Mescher MC. Leaf trichomes affect caterpillar feeding in an instar-specific manner. Commun Integr Biol 2018; 11:1-6. [PMID: 30214672 PMCID: PMC6132425 DOI: 10.1080/19420889.2018.1486653] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Leaf trichomes play well-established roles in defense against insect herbivores, both as a physical barrier that impedes herbivore movement and by mediating chemical defenses. However, little work has examined how different trichome types influence herbivory by herbivores at different stages of development. We examined whether caterpillar instar and trichome type (glandular or non-glandular) affected the ability of the specialist herbivore caterpillar Manduca sexta to initiate feeding on 11 Solanaceous species exhibiting variation in the density and type of leaf trichomes. Our results suggest that non-glandular trichomes are far more effective than glandular trichomes in deterring the initiation of feeding by first- and second-instar caterpillars. Meanwhile, neither glandular nor non-glandular trichomes significantly affected the ability of third-instar caterpillars to commence feeding. These findings suggest that while non-glandular trichomes deter feeding initiation by early instar caterpillars, the contribution of both trichomes on later instars may depend on effects after feeding initiation.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | | | - Aisling B Ryan
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Andrew G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm TJA, Arens P, Voorrips RE, Maliepaard C, Neu E, Linde M, Le Paslier MC, Bérard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders MJM, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. NATURE PLANTS 2018; 4:473-484. [PMID: 29892093 DOI: 10.1101/254102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/01/2018] [Indexed: 05/27/2023]
Abstract
Rose is the world's most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line ('HapOB') from Rosa chinensis 'Old Blush' and generated a rose genome assembly anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 contigs). The length of 512 Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.
Collapse
Affiliation(s)
- L Hibrand Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Ruttink
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - L Hamama
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - I Kirov
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
- Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - D Lakhwani
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - N N Zhou
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - P M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - N Daccord
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - L Leus
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - D Schulz
- Leibniz Universität, Hannover, Germany
| | - H Van de Geest
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - T Hesselink
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - K Van Laere
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - K Debray
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Balzergue
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Thouroude
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - A Chastellier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - J Jeauffre
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - L Voisine
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Gaillard
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T J A Borm
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - P Arens
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - R E Voorrips
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - C Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - E Neu
- Leibniz Universität, Hannover, Germany
| | - M Linde
- Leibniz Universität, Hannover, Germany
| | - M C Le Paslier
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - A Bérard
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - R Bounon
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - J Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - N Choisne
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | - H Quesneville
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | - K Kawamura
- Osaka Institute of Technology, Osaka, Japan
| | - S Aubourg
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Sakr
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - M J M Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - E Schijlen
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - E Bucher
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Debener
- Leibniz Universität, Hannover, Germany
| | - J De Riek
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - F Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France.
| |
Collapse
|
18
|
Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm TJA, Arens P, Voorrips RE, Maliepaard C, Neu E, Linde M, Le Paslier MC, Bérard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders MJM, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. NATURE PLANTS 2018; 4:473-484. [PMID: 29892093 PMCID: PMC6786968 DOI: 10.1038/s41477-018-0166-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/01/2018] [Indexed: 05/18/2023]
Abstract
Rose is the world's most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line ('HapOB') from Rosa chinensis 'Old Blush' and generated a rose genome assembly anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 contigs). The length of 512 Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.
Collapse
Affiliation(s)
- L Hibrand Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Ruttink
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - L Hamama
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - I Kirov
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
- Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - D Lakhwani
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - N N Zhou
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - P M Bourke
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - N Daccord
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - L Leus
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - D Schulz
- Leibniz Universität, Hannover, Germany
| | - H Van de Geest
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - T Hesselink
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - K Van Laere
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - K Debray
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Balzergue
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Thouroude
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - A Chastellier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - J Jeauffre
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - L Voisine
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Gaillard
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T J A Borm
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - P Arens
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - R E Voorrips
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - C Maliepaard
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - E Neu
- Leibniz Universität, Hannover, Germany
| | - M Linde
- Leibniz Universität, Hannover, Germany
| | - M C Le Paslier
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - A Bérard
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - R Bounon
- INRA, US 1279 EPGV, Université Paris-Saclay, Evry, France
| | - J Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - N Choisne
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | - H Quesneville
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | - K Kawamura
- Osaka Institute of Technology, Osaka, Japan
| | - S Aubourg
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - S Sakr
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - M J M Smulders
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - E Schijlen
- Wageningen University & Research, Business Unit Bioscience, Wageningen, The Netherlands
| | - E Bucher
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - T Debener
- Leibniz Universität, Hannover, Germany
| | - J De Riek
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, Melle, Belgium
| | - F Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France.
| |
Collapse
|
19
|
Koseva B, Crawford DJ, Brown K, Mort ME, Kelly JK. The genetic breakdown of sporophytic self-incompatibility in Tolpis coronopifolia (Asteraceae). THE NEW PHYTOLOGIST 2017; 216:1256-1267. [PMID: 28892151 PMCID: PMC5675808 DOI: 10.1111/nph.14759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 05/31/2023]
Abstract
Angiosperm diversity has been shaped by mating system evolution, with the most common transition from outcrossing to self-fertilizing. To investigate the genetic basis of this transition, we performed crosses between two species endemic to the Canary Islands, the self-compatible (SC) species Tolpis coronopifolia and its self-incompatible (SI) relative Tolpis santosii. We scored self-compatibility as self-seed set of recombinant plants within two F2 populations. To map and genetically characterize the breakdown of SI, we built a draft genome sequence of T. coronopifolia, genotyped F2 plants using multiplexed shotgun genotyping (MSG), and located MSG markers to the genome sequence. We identified a single quantitative trait locus (QTL) that explains nearly all variation in self-seed set in both F2 populations. To identify putative causal genetic variants within the QTL, we performed transcriptome sequencing on mature floral tissue from both SI and SC species, constructed a transcriptome for each species, and then located each predicted transcript to the T. coronopifolia genome sequence. We annotated each predicted gene within the QTL and found two strong candidates for SI breakdown. Each gene has a coding sequence insertion/deletion mutation within the SC species that produces a truncated protein. Homologs of each gene have been implicated in pollen development, pollen germination, and pollen tube growth in other species.
Collapse
Affiliation(s)
- Boryana Koseva
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Daniel J. Crawford
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Keely Brown
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Mark E. Mort
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
| |
Collapse
|
20
|
Kariyat RR, Smith JD, Stephenson AG, De Moraes CM, Mescher MC. Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proc Biol Sci 2017; 284:20162323. [PMID: 28228510 PMCID: PMC5326521 DOI: 10.1098/rspb.2016.2323] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/02/2017] [Indexed: 01/15/2023] Open
Abstract
Plant trichomes constitute a first line of defence against insect herbivores. The pre- and post-ingestive defensive functions of glandular trichomes are well documented and include direct toxicity, adhesion, antinutrition and defence gene induction. By contrast, the defensive functions of non-glandular trichomes are less well characterized, although these structures are thought to serve as physical barriers that impede herbivore feeding and movement. We experimentally varied the density of stellate non-glandular trichomes in several ways to explore their pre- and post-ingestive effects on herbivores. Larvae of Manduca sexta (Sphingidae) initiated feeding faster and gained more weight on Solanum carolinense (Solanaceae) leaves having lower trichome densities (or experimentally removed trichomes) than on leaves having higher trichome densities. Adding trichomes to artificial diet also deterred feeding and adversely affected caterpillar growth relative to controls. Scanning electron and light microscopy revealed that the ingestion of stellate trichomes by M. sexta caterpillars caused extensive damage to the peritrophic membrane, a gut lining that is essential to digestion and pathogen isolation. These findings suggest that, in addition to acting as a physical barrier to deter feeding, trichomes can inhibit caterpillar growth and development via post-ingestive effects.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zurich, Switzerland
| | - Jason D Smith
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Andrew G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zurich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Baldwin SJ, Schoen DJ. Genetic variation for pseudo-self-compatibility in self-incompatible populations of Leavenworthia alabamica (Brassicaceae). THE NEW PHYTOLOGIST 2017; 213:430-439. [PMID: 27448252 DOI: 10.1111/nph.14109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 05/24/2023]
Abstract
Self-incompatibility (SI) promotes outcrossing, but transitions to self-compatibility (SC) are frequent. Population genetic theory describing the breakdown of SI to SC suggests that, under most conditions, populations should be composed of either SI or SC individuals. Under a narrow range of conditions, theory suggests that SI may persist alongside reduced expression of SI (pseudo-SI, PSI) in mixed-mating populations. We studied genetic variation for PSI segregating in four SI populations of Leavenworthia alabamica by measurement of the heritability of pollen tube number after self-pollination. We tested for the role of the S-locus in this variation by sequencing seven S-alleles from plants with high pseudo-SC (PSC) and testing for the co-segregation of these alleles with PSC. We found a continuous distribution of PSC in all populations and 90% of plants exhibited PSC. The heritability ranged from 0.39 to 0.57. All seven S-alleles from plants with high PSC exhibited trans-specific polymorphism, and no stop codons were observed within the c. 600-bp region sequenced. One of these S-alleles was directly associated with the inheritance of PSC. We conclude that heritable variation in PSC is largely a result of genetic variation in the signaling cascade downstream of the S-locus reaction, together with the presence of one leaky S-allele.
Collapse
Affiliation(s)
- Sarah J Baldwin
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Daniel J Schoen
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
22
|
Razanajatovo M, Maurel N, Dawson W, Essl F, Kreft H, Pergl J, Pyšek P, Weigelt P, Winter M, van Kleunen M. Plants capable of selfing are more likely to become naturalized. Nat Commun 2016; 7:13313. [PMID: 27796365 PMCID: PMC5095580 DOI: 10.1038/ncomms13313] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Many plant species have established self-sustaining populations outside their natural range because of human activities. Plants with selfing ability should be more likely to establish outside their historical range because they can reproduce from a single individual when mates or pollinators are not available. Here, we compile a global breeding-system database of 1,752 angiosperm species and use phylogenetic generalized linear models and path analyses to test relationships between selfing ability, life history, native range size and global naturalization status. Selfing ability is associated with annual or biennial life history and a large native range, which both positively correlate with the probability of naturalization. Path analysis suggests that a high selfing ability directly increases the number of regions where a species is naturalized. Our results provide robust evidence across flowering plants at the global scale that high selfing ability fosters alien plant naturalization both directly and indirectly.
Collapse
Affiliation(s)
- Mialy Razanajatovo
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz D-78457, Germany
| | - Noëlie Maurel
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz D-78457, Germany
| | - Wayne Dawson
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Franz Essl
- Division of Conservation, Vegetation and Landscape Ecology, University of Vienna, Wien 1030, Austria
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Büsgenweg 1, Göttingen D-37077, Germany
| | - Jan Pergl
- Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, Průhonice, CZ-25243, Czech Republic
| | - Petr Pyšek
- Institute of Botany, Department of Invasion Ecology, The Czech Academy of Sciences, Průhonice, CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Büsgenweg 1, Göttingen D-37077, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz D-78457, Germany
| |
Collapse
|
23
|
Anderson GJ, Anderson MKJ, Patel N. The ecology, evolution, and biogeography of dioecy in the genus Solanum: with paradigms from the strong dioecy in Solanum polygamum, to the unsuspected and cryptic dioecy in Solanum conocarpum. AMERICAN JOURNAL OF BOTANY 2015; 102:471-486. [PMID: 25784480 DOI: 10.3732/ajb.1400486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Island plants are over-exploited and "under-explored." Understanding the reproductive biology of plants, especially rare species, is fundamental to clarifying their evolution, estimating potential for change, and for creating effective conservation plans. Clarification of sexual systems like dioecy, and unusual manifestations of it in specific studies within Solanum, helps elucidate evolutionary patterns and genetic and ecological control of sex expression.• METHODS Studies of reproductive systems of two Caribbean endemics, S. polygamum and S. conocarpum, combined multifaceted analyses of field populations and of multiple generations of greenhouse plants.• KEY RESULTS The dioecy in both species is, like that in other solanums, largely cryptic, although the gender of S. polygamum flowers is obvious. The rare S. conocarpum is recognized as dioecious; floral gender is not obvious. Variation in sex expression facilitated experiments and promoted hypotheses on control and significance of morphological features and sex expression.• CONCLUSIONS Confirmed dioecy in at least 15 solanums is distributed across the genus, with perhaps 6 independent origins, and with crypticity in the form of morphologically hermaphroditic, but functionally unisexual, flowers characterizing all species. Dioecy is not more strongly associated with islands. Inaperturate pollen in pistillate flowers characterizes almost all, but not the two dioecious species studied herein. Dioecy in both species indicates leakiness (rare hermaphroditic flowers on male plants) that helps explain island colonization and radiation. Leakiness allowed confirmation-usually impossible for dioecious species-of self-compatibility for S. polygamum, and thus support for the hypothesis that dioecy evolved to promote outcrossing.
Collapse
Affiliation(s)
- Gregory J Anderson
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06268-3043 USA
| | - Mona K J Anderson
- Linguistics, University of Connecticut, Storrs, Connecticut 06268-1145 USA
| | - Nikisha Patel
- Nikisha Patel, Department of Plant Biology, 111 Jeffords Hall, 63 Carrigan Drive, University of Vermont, Burlington, Vermont 05405 USA
| |
Collapse
|
24
|
Millner HJ, McCrea AR, Baldwin TC. An investigation of self-incompatibility within the genus Restrepia. AMERICAN JOURNAL OF BOTANY 2015; 102:487-494. [PMID: 25784481 DOI: 10.3732/ajb.1400555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY The genus Restrepia (Orchidaceae) is indigenous to montane rain forests of Central and South America. Recently, as habitat has fragmented and wild populations dwindled, the chances for successful cross-pollination within the genus have been reduced. Since cultivated species of Restrepia have been vegetatively propagated, they remain genetically close to those in the wild, making ex situ collections of the genus useful model populations for investigating breeding systems. Restrepia are found in clade B of the Pleurothallidinae, the only clade in which self-incompatibility (SI) has not yet been confirmed. In the current study, private collections of Restrepia were used to study the operation of SI within the genus to assist future ex situ conservation of this and related genera.• METHODS A variety of self-pollination, intraspecific, and interspecific crosses were performed across the genus, and pollen tube growth was studied.• KEY RESULTS Individual species exhibited varying degrees of SI. Self-pollinations performed across 26 species in the genus produced few viable seeds, with the exception of R. aberrans. Viable "filled" seeds with embryos were shown to require an intraspecific cross. Primary hybrids between species produced >90% seeds with embryos that germinated well.• CONCLUSIONS The type of SI operating within the genus was considered to be best explained by gametophytic self-incompatibility (GSI) with interspecific variation in its phenotypic expression. The implications of these findings are discussed in relation to SI in the Pleurothallidinae and conservation strategies for Restrepia and related genera.
Collapse
Affiliation(s)
- Helen J Millner
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Alison R McCrea
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Timothy C Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| |
Collapse
|
25
|
Portman SL, Kariyat RR, Johnston MA, Stephenson AG, Marden JH. Inbreeding compromises host plant defense gene expression and improves herbivore survival. PLANT SIGNALING & BEHAVIOR 2015; 10:e998548. [PMID: 26039489 PMCID: PMC4623481 DOI: 10.1080/15592324.2014.998548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 05/29/2023]
Abstract
Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants--suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of lipoxygenease-D (LoxD) and 12-oxophytodienoate reductase-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants.
Collapse
Affiliation(s)
- Scott L Portman
- Department of Biology; The Pennsylvania State University; University Park, PA USA
| | - Rupesh R Kariyat
- Department of Environmental Systems Science; ETH Zürich, Zürich, Switzerland
| | - Michelle A Johnston
- Department of Biology; The Pennsylvania State University; University Park, PA USA
| | - Andrew G Stephenson
- Department of Biology; The Pennsylvania State University; University Park, PA USA
| | - James H Marden
- Department of Biology; The Pennsylvania State University; University Park, PA USA
| |
Collapse
|
26
|
Portman SL, Kariyat RR, Johnston MA, Stephenson AG, Marden JH. Cascading effects of host plant inbreeding on the larval growth, muscle molecular composition, and flight capacity of an adult herbivorous insect. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12358] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Scott L. Portman
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - Rupesh R. Kariyat
- Department of Environmental Systems Science ETH Zürich8092 Zürich Switzerland
| | - Michelle A. Johnston
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - Andrew G. Stephenson
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| | - James H. Marden
- Department of Biology The Pennsylvania State University 208 Mueller LaboratoryUniversity Park Pennsylvania 16802 USA
| |
Collapse
|
27
|
Gervais C, Awad DA, Roze D, Castric V, Billiard S. GENETIC ARCHITECTURE OF INBREEDING DEPRESSION AND THE MAINTENANCE OF GAMETOPHYTIC SELF-INCOMPATIBILITY. Evolution 2014; 68:3317-24. [DOI: 10.1111/evo.12495] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Gervais
- UMI 3614; Evolutionary Biology and Ecology of Algae; CNRS; 29680 Roscoff France
- Sorbonne Universités; UPMC University Paris 06 29680 Roscoff France
| | - Diala Abu Awad
- Laboratoire de Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université Lille 1 - Sciences et Technologies; 59655 Villeneuve d'Ascq France
| | - Denis Roze
- UMI 3614; Evolutionary Biology and Ecology of Algae; CNRS; 29680 Roscoff France
- Sorbonne Universités; UPMC University Paris 06 29680 Roscoff France
| | - Vincent Castric
- Laboratoire de Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université Lille 1 - Sciences et Technologies; 59655 Villeneuve d'Ascq France
| | - Sylvain Billiard
- Laboratoire de Génétique et Evolution des Populations Végétales; UMR CNRS 8198; Université Lille 1 - Sciences et Technologies; 59655 Villeneuve d'Ascq France
| |
Collapse
|
28
|
Kariyat RR, Scanlon SR, Moraski RP, Stephenson AG, Mescher MC, De Moraes CM. Plant inbreeding and prior herbivory influence the attraction of caterpillars (Manduca sexta) to odors of the host plant Solanum carolinense (Solanaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:376-80. [PMID: 24509799 DOI: 10.3732/ajb.1300295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PREMISE OF THIS STUDY The mediation of plant-insect interactions by plant odors has been studied extensively, but most previous work has focused on documenting the role of constitutive and herbivore- or pathogen-induced plant volatiles as foraging cues for insect herbivores and their natural enemies. Relatively little work has explored genotypic variation in plant-odor profiles within species, and few studies have addressed the perception and use of olfactory cues by lepidopteran larvae or other herbivores during feeding. METHODS We examined the effects of plant breeding (inbred vs. outbred individuals) and plant exposure to prior herbivory on the preferences of caterpillars (Manduca sexta) for odors of Solanum carolinense in leaf-disc and whole-plant choice assays. KEY RESULTS Second- and third-instar larvae of M. sexta clearly and consistently preferred undamaged over herbivore-damaged plants of both breeding types and also consistently preferred inbred over outbred plants that had the same damage status. Similar preferences were observed even when plants were covered with bridal-veil cloth to mask visual cues, demonstrating that olfactory cues influence larval preferences. CONCLUSIONS The observed preferences are consistent with our previous findings regarding the constitutive and induced volatile profiles of inbred and outbred horsenettle plants and their effects on plant-herbivore interactions. They furthermore correspond to differences in host-plant quality predicted by previous work and, thus, suggest that naive larvae of M. sexta can accurately assess aspects of host-plant quality via olfactory cues perceived at a distance.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | | | | | | | | | | |
Collapse
|
29
|
Kariyat RR, Balogh CM, Moraski RP, De Moraes CM, Mescher MC, Stephenson AG. Constitutive and herbivore-induced structural defenses are compromised by inbreeding in Solanum carolinense (Solanaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:1014-21. [PMID: 23545253 DOI: 10.3732/ajb.1200612] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY A growing number of studies document effects of inbreeding on plant interactions with insect herbivores, including deleterious effects on direct and indirect plant defenses. However, our understanding of the specific mechanisms mediating such effects remains limited. Here we examine how inbreeding affects constitutive and induced expression of structural defenses (spines and trichomes) in common horsenettle, Solanum carolinense. • METHODS Inbred and outbred progeny from nine maternal families of horsenettle were assigned to three treatments: control, Manduca sexta caterpillar damage, or mechanical damage. Numbers of internode spines and the density of abaxial and adaxial trichomes were assessed before and after (21 d) damage treatments. Data on internode length, flowering time, and total flower production was also collected to explore the costs of defense induction. • KEY RESULTS Inbreeding adversely affected constitutive and induced physical/structural defenses: undamaged outbred plants produced more abaxial and adaxial leaf trichomes and internode spines than did inbred plants. Foliar damage by M. sexta larvae also induced more trichomes (on new leaves) and internode spines on outbred plants. Both inbred and outbred plants exposed to mechanical or caterpillar damage had shorter internodes than did control plants, but inbred damaged plants had longer internodes than did outbred damaged plants. Control outbred plants produced significantly more flowers than did control inbred plants or damaged plants of either breeding type. • CONCLUSIONS Constitutive and induced structural defenses in horsenettle were negatively affected by inbreeding. Reduced flower production and internode length on damaged plants compared to controls suggests that defense induction entails significant costs.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802 USA
| | | | | | | | | | | |
Collapse
|
30
|
Kariyat RR, Mauck KE, Balogh CM, Stephenson AG, Mescher MC, De Moraes CM. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths. Proc Biol Sci 2013; 280:20130020. [PMID: 23446531 PMCID: PMC3619486 DOI: 10.1098/rspb.2013.0020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/31/2013] [Indexed: 11/12/2022] Open
Abstract
Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.
Collapse
Affiliation(s)
- Rupesh R. Kariyat
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kerry E. Mauck
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher M. Balogh
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark C. Mescher
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Consuelo M. De Moraes
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Kariyat RR, De Moraes CM, Stephenson AG, Mescher MC. Inbreeding increases susceptibility to powdery mildew (Oidium neolycopersici) infestation in horsenettle (Solanum carolinense L). PLANT SIGNALING & BEHAVIOR 2012; 7:803-6. [PMID: 22751298 PMCID: PMC3583968 DOI: 10.4161/psb.20602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Inbreeding is common in flowering plants, but relatively few studies have examined its effects on interactions between plants and other organisms, such as herbivores and pathogens. In a recent paper, we documented effects of inbreeding depression on plant volatile signaling phenotypes, including elevated constitutive volatile emissions (and consequently greater herbivore recruitment to inbred plants) but reduced emission of key herbivore-induced volatiles that attract predatory and parasitic insects to damaged plants. While the effects of inbreeding on plant-insect interactions have been explored in only a few systems, even less is known about its effects on plant-pathogen interactions. Here we report the effects of inbreeding on horsenettle susceptibility to powdery mildew (Oidium neolycopersici), including more rapid onset of infection in inbred plants, particularly when plants were not previously damaged. These data suggest that inbreeding may increase plant susceptibility to pathogen infection and, therefore, may potentially facilitate pathogen establishment in natural populations.
Collapse
Affiliation(s)
- Rupesh R. Kariyat
- Department of Biology and Intercollege Graduate Program in Plant Biology; The Pennsylvania State University, University Park, PA USA
| | - Consuelo M. De Moraes
- Department of Entomology, The Pennsylvania State University, University Park, PA USA
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA USA
| | - Mark C. Mescher
- Department of Entomology, The Pennsylvania State University, University Park, PA USA
| |
Collapse
|
32
|
Kariyat RR, Mauck KE, De Moraes CM, Stephenson AG, Mescher MC. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L.). Ecol Lett 2012; 15:301-9. [PMID: 22257268 DOI: 10.1111/j.1461-0248.2011.01738.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ecological consequences of inter-individual variation in plant volatile emissions remain largely unexplored. We examined the effects of inbreeding on constitutive and herbivore-induced volatile emissions in horsenettle (Solanum carolinense L.) and on the composition of the insect community attracted to herbivore-damaged and undamaged plants in the field. Inbred plants exhibited higher constitutive emissions, but weaker induction of volatiles following herbivory. Moreover, many individual compounds previously implicated in the recruitment of predators and parasitoids (e.g. terpenes) were induced relatively weakly (or not at all) in inbred plants. In trapping experiments, undamaged inbred plants attracted greater numbers of generalist insect herbivores than undamaged outcrossed plants. But inbred plants recruited fewer herbivore natural enemies (predators and parasitoids) when damaged. Taken together, these findings suggest that inbreeding depression negatively impacts the overall pattern of volatile emissions - increasing the apparency of undamaged plants to herbivores, while reducing the recruitment of predatory insects to herbivore-damaged plants.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kerry E Mauck
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Consuelo M De Moraes
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew G Stephenson
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark C Mescher
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Sakazono S, Hiramatsu M, Huang KL, Huang CL, Okubo H. Phylogenetic Relationship between Degree of Self-compatibility and Floral Traits in Lilium longiflorum Thunb. (Liliaceae). ACTA ACUST UNITED AC 2012. [DOI: 10.2503/jjshs1.81.80] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Inbreeding depression in Solanum carolinense (Solanaceae) under field conditions and implications for mating system evolution. PLoS One 2011; 6:e28459. [PMID: 22174810 PMCID: PMC3236180 DOI: 10.1371/journal.pone.0028459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/08/2011] [Indexed: 11/23/2022] Open
Abstract
The clonal weed Solanum carolinense exhibits plasticity in the strength of its self-incompatibility (SI) system and suffers low levels of inbreeding depression (δ) in the greenhouse. We planted one inbred and one outbred plant from each of eight maternal plants in a ring (replicated twice) and monitored clonal growth, herbivory, and reproduction over two years. Per ramet δ was estimated to be 0.63 in year one and 0.79 in year two, and outbred plants produced 2.5 times more ramets than inbred plants in the spring of year two. Inbred plants also suffered more herbivore damage than outbred plants in both fields, suggesting that inbreeding compromises herbivore resistance. Total per genet δ was 0.85 over the two years, indicating that S. carolinense is unlikely to become completely self-compatible, and suggesting that plasticity in the SI system is part of a stable mixed-mating system permitting self-fertilization when cross pollen limits seed production.
Collapse
|
35
|
Abstract
Self-incompatibility is expressed by nearly one-half of all angiosperms. A large proportion of the remaining species are self-compatible, and they either outcross using various contrivances or self-fertilize to some extent. Because of the common occurrence of populations and individuals with intermediate levels of self-incompatibility, categorization of the expression of self-incompatibility as an approximately binary trait has become controversial. We collect a widely reported index (index of self-incompatibility [ISI]) used to asses the strength and variation of self-incompatibility from over 1200 angiosperm taxa. Its distribution is bimodal and positively associated with outcrossing rate, albeit with a weak relationship within self-compatible taxa. A substantial fraction of species has intermediate mean values of ISI. Their occurrence can be caused by segregating ephemeral self-compatible mutations, averaging artifacts, and experimental biases, in addition to the often invoked stabilizing selection acting on the expression of self-incompatibility. Selection may also generally favor taxa with high ISI values through increased lineage birth and death rates, and it may counter lower level selection advantages within taxa expressing intermediate and low values of ISI. Such a null hypothesis is nearly universally overlooked, despite the fact that it could adequately explain the observed distribution of mating and breeding systems.
Collapse
Affiliation(s)
- Andrew R Raduski
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA.
| | | | | |
Collapse
|
36
|
Paape T, Miyake T, Takebayashi N, Wolf D, Kohn JR. Evolutionary genetics of an S-like polymorphism in Papaveraceae with putative function in self-incompatibility. PLoS One 2011; 6:e23635. [PMID: 21912602 PMCID: PMC3166141 DOI: 10.1371/journal.pone.0023635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/21/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Papaver rhoeas possesses a gametophytic self-incompatibility (SI) system not homologous to any other SI mechanism characterized at the molecular level. Four previously published full length stigmatic S-alleles from the genus Papaver exhibited remarkable sequence divergence, but these studies failed to amplify additional S-alleles despite crossing evidence for more than 60 S-alleles in Papaver rhoeas alone. METHODOLOGY/PRINCIPAL FINDINGS Using RT-PCR we identified 87 unique putative stigmatic S-allele sequences from the Papaveraceae Argemone munita, Papaver mcconnellii, P. nudicuale, Platystemon californicus and Romneya coulteri. Hand pollinations among two full-sib families of both A. munita and P. californicus indicate a strong correlation between the putative S-genotype and observed incompatibility phenotype. However, we also found more than two S-like sequences in some individuals of A. munita and P. californicus, with two products co-segregating in both full-sib families of P. californicus. Pairwise sequence divergence estimates within and among taxa show Papaver stigmatic S-alleles to be the most variable with lower divergence among putative S-alleles from other Papaveraceae. Genealogical analysis indicates little shared ancestral polymorphism among S-like sequences from different genera. Lack of shared ancestral polymorphism could be due to long divergence times among genera studied, reduced levels of balancing selection if some or all S-like sequences do not function in incompatibility, population bottlenecks, or different levels of recombination among taxa. Preliminary estimates of positive selection find many sites under selective constraint with a few undergoing positive selection, suggesting that self-recognition may depend on amino acid substitutions at only a few sites. CONCLUSIONS/SIGNIFICANCE Because of the strong correlation between genotype and SI phenotype, sequences reported here represent either functional stylar S-alleles, tightly linked paralogs of the S-locus or a combination of both. The considerable complexity revealed in this study shows we have much to learn about the evolutionary dynamics of self-incompatibility systems.
Collapse
Affiliation(s)
- Timothy Paape
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, United States of America.
| | | | | | | | | |
Collapse
|
37
|
Miller JS, Kostyun JL. Functional gametophytic self-incompatibility in a peripheral population of Solanum peruvianum (Solanaceae). Heredity (Edinb) 2010; 107:30-9. [PMID: 21119705 DOI: 10.1038/hdy.2010.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transition from self-incompatibility to self-compatibility is a common transition in angiosperms often reported in populations at the edge of species range limits. Geographically distinct populations of wild tomato species (Solanum section Lycopersicon (Solanaceae)) have been described as polymorphic for mating system with both self-incompatible and self-compatible populations. Using controlled pollinations and sequencing of the S-RNase mating system gene, we test the compatibility status of a population of S. peruvianum located near its southern range limit. Pollinations among plants of known genotypes revealed strong self-incompatibility; fruit set following compatible pollinations was significantly higher than following incompatible pollinations for all tested individuals. Sequencing of the S-RNase gene in parents and progeny arrays was also as predicted under self-incompatibility. Molecular variation at the S-RNase locus revealed a diverse set of alleles, and heterozygosity in over 500 genotyped individuals. We used controlled crosses to test the specificity of sequences recovered in this study; in all cases, results were consistent with a unique allelic specificity for each tested sequence, including two alleles sharing 92% amino-acid similarity. Site-specific patterns of selection at the S-RNase gene indicate positive selection in regions of the gene associated with allelic specificity determination and purifying selection in previously characterized conserved regions. Further, there is broad convergence between the present and previous studies in specific amino-acid positions inferred to be evolving under positive selection.
Collapse
Affiliation(s)
- J S Miller
- Department of Biology, Amherst College, MA, USA.
| | | |
Collapse
|
38
|
RUHSAM MARKUS, HOLLINGSWORTH PETERM, SQUIRRELL JANE, ENNOS RICHARDA. Significant differences in outcrossing rate, self-incompatibility, and inbreeding depression between two widely hybridizing species of Geum. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01552.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Roldán JA, Quiroga R, Goldraij A. Molecular and genetic characterization of novel S-RNases from a natural population of Nicotiana alata. PLANT CELL REPORTS 2010; 29:735-46. [PMID: 20443007 DOI: 10.1007/s00299-010-0860-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 05/29/2023]
Abstract
Self-incompatibility in the Solanaceae is mediated by S-RNase alleles expressed in the style, which confer specificity for pollen recognition. Nicotiana alata has been successfully used as an experimental model to elucidate cellular and molecular aspects of S-RNase-based self-incompatibility in Solanaceae. However, S-RNase alleles of this species have not been surveyed from natural populations and consequently the S-haplotype diversity is poorly known. Here the molecular and functional characterization of seven S-RNase candidate sequences, identified from a natural population of N. alata, are reported. Six of these candidates, S ( 5 ), S ( 27 ), S ( 70 ), S ( 75 ), S ( 107 ), and S ( 210 ), showed plant-specific amplification in the natural population and style-specific expression, which increased gradually during bud maturation, consistent with the reported S-RNase expression. In contrast, the S ( 63 ) ribonuclease was present in all plants examined and was ubiquitously expressed in different organs and bud developmental stages. Genetic segregation analysis demonstrated that S ( 27 ), S ( 70 ), S ( 75 ), S ( 107 ), and S ( 210 ) alleles were fully functional novel S-RNases, while S ( 5 ) and S ( 63 ) resulted to be non-S-RNases, although with a clearly distinct pattern of expression. These results reveal the importance of performing functional analysis in studies of S-RNase allelic diversity. Comparative phylogenetic analysis of six species of Solanaceae showed that N. alata S-RNases were included in eight transgeneric S-lineages. Phylogenetic pattern obtained from the inclusion of the novel S-RNase alleles confirms that N. alata represents a broad sample of the allelic variation at the S-locus of the Solanaceae.
Collapse
Affiliation(s)
- Juan A Roldán
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | | | | |
Collapse
|
40
|
Hadj-Arab H, Chèvre AM, Gaude T, Chable V. Variability of the self-incompatibility reaction in Brassica oleracea L. with S 15 haplotype. ACTA ACUST UNITED AC 2009; 23:141-51. [PMID: 20490967 DOI: 10.1007/s00497-009-0119-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
Self-incompatibility (SI) is thought to have played a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In most species, SI is under the control of a complex, multiallelic S-locus. The recognition system is associated with quantitative variations of the strength of the SI reaction; the origin of these variations is still not elucidated. To define the genetic regulations involved, we studied the variability of the SI response in homozygous S 15 S 15 plants in cauliflower. These plants were obtained from a self-progeny of a self-compatible (SC) plant heterozygous for S 15, which was generated after five selfing generations from one strongly self-incompatible initial plant. We found a continuous phenotypic variation for SI response in the offspring plants homozygous for the S 15 haplotype, from the strict SI reaction to self-compatibility, with a great proportion of the plants being partially self-compatible (PSC). Decrease in SI levels was also observed during the life of the flower. The number of pollen tubes passing through the stigma barrier was higher when counted 3 or 5 days after pollination than one day after pollination. Analysis of the expression of the two key genes regulating self-pollen recognition in cauliflower, the S-locus receptor kinase (SRK) and S-locus cysteine-rich (SCR/SP11) genes, revealed that self-compatibility or PSC was associated with decreased SRK or SCR/SP11 expression. Our work shows the particularly high level of phenotypic plasticity of the SI response associated with certain S-haplotypes in cauliflower.
Collapse
Affiliation(s)
- Houria Hadj-Arab
- USTHB FSB Laboratoire de Biologie et Physiologie des Organismes, BP 32 El-Alia, 16111, Alger, Algerie.
| | | | | | | |
Collapse
|
41
|
Mena-Alí JI, Keser LH, Stephenson AG. The effect of sheltered load on reproduction in Solanum carolinense, a species with variable self-incompatibility. ACTA ACUST UNITED AC 2009; 22:63-71. [PMID: 20033457 DOI: 10.1007/s00497-008-0092-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022]
Abstract
In previous studies, we have investigated the strength of self-incompatibility (SI) in Solanum carolinense, a highly successful weed with a fully functional SI system that inhabits early successional and other disturbed habitats. We have found that the SI response in S. carolinense is a plastic trait-its strength being affected by the age of the flowers, and the presence of developing fruits and that there are genetic differences among families in their self-fertility. However, in species with a fully functional SI response, selfing would not be that common. As a result, deleterious recessives scattered though the genome of horsenettle are only occasionally exposed to selection. It has been suggested that deleterious recessives accumulate near S-alleles in strong SI species because the S-locus is located in a non-recombining region of the genome and because strong S-alleles are never in the homozygous state, thus sheltering some of the genetic load near the S-locus from selection. We performed a series of laboratory and greenhouse experiments to determine the extent to which sheltered load adds to the overall magnitude of inbreeding depression in horsenettle. Specifically, we amplified and sequenced the S-alleles from 16 genets collected from a large population in Pennsylvania and performed a series of controlled self-pollinations. We then grew the selfed progeny in the greenhouse; recorded various measures of growth and reproductive output; and amplified and sequenced their S-allele(s). We found that the heterozygous progeny of self-pollinations produce more flowers and have a greater ability to set both self and cross seed than S-homozygous progeny. We also found evidence of variation in the magnitude of load among S-alleles. These results suggest that sheltered load might slow the fixation of weak (partially compatible) S-alleles in this population, thus adding to the maintenance of a mixed mating system rather than leading to the fixation of the selfing alleles.
Collapse
Affiliation(s)
- Jorge I Mena-Alí
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
42
|
Goodwillie C. Transient SI and the dynamics of self-incompatibility alleles: a simulation model and empirical test. Evolution 2008; 62:2105-11. [PMID: 18507744 DOI: 10.1111/j.1558-5646.2008.00429.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stochastic computer simulation model was created to compare the combined effects of selection and genetic drift on the dynamics of S-alleles under full sporophytic self-incompatibility (SI) versus transient SI, a form of partial SI in which flowers become self-compatible as they age. S-alleles were lost more rapidly with transient than with full SI, as is expected with weakened frequency-dependent selection. Based on these results, equilibrium S-allele diversity is expected to be lower with partial SI for populations of comparable size and migration rates. Consistent with model results, a comparison of the proportion of incompatible crosses in full diallel experiments for a fully SI and a transiently SI species in the annual genus Leptosiphon suggests that S-allele diversity is lower in the partially SI species. Results of the simulation model indicate that the transmission advantage of self-fertilization can have complex effects on S-allele dynamics in partial SI systems.
Collapse
Affiliation(s)
- Carol Goodwillie
- Department of Biology, East Carolina University, Howell Science Complex, Greenville, North Carolina 27858, USA.
| |
Collapse
|
43
|
Busch JW, Schoen DJ. The evolution of self-incompatibility when mates are limiting. TRENDS IN PLANT SCIENCE 2008; 13:128-36. [PMID: 18296103 DOI: 10.1016/j.tplants.2008.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 05/23/2023]
Abstract
Self-incompatibility (SI) is a genetic barrier to inbreeding that is broadly distributed in angiosperms. In finite populations of SI plants, the loss of S-allele diversity can limit plant reproduction by reducing the availability of compatible mates. Many studies have shown that small or fragmented plant populations suffer from mate limitation. The advent of molecular typing of S-alleles in many species has paved the way to address quantitatively the importance of mate limitation, and to provide greater insight into why and how SI systems breakdown frequently in nature. In this review, we highlight the ecological factors that contribute to mate limitation in SI taxa, discuss their consequences for the evolution and functioning of SI, and propose new empirical research directions.
Collapse
Affiliation(s)
- Jeremiah W Busch
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC H3A 1B1, Canada.
| | | |
Collapse
|
44
|
Mena-Ali JI, Keser LH, Stephenson AG. Inbreeding depression in Solanum carolinense (Solanaceae), a species with a plastic self-incompatibility response. BMC Evol Biol 2008; 8:10. [PMID: 18199336 PMCID: PMC2244599 DOI: 10.1186/1471-2148-8-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 01/16/2008] [Indexed: 11/29/2022] Open
Abstract
Background Solanum carolinense (horsenettle) is a highly successful weed with a gametophytic self-incompatibility (SI) system. Previous studies reveal that the strength of SI in S. carolinense is a plastic trait, associated with particular S-alleles. The importance of this variation in self-fertility on the ability of horsenettle to found and establish new populations will depend, to a large extent, on the magnitude of inbreeding depression. We performed a series of greenhouse and field experiments to determine the magnitude of inbreeding depression in S. carolinense, whether inbreeding depression varies by family, and whether the estimates of inbreeding depression vary under field and greenhouse conditions. We performed a series of controlled self- and cross-pollinations on 16 genets collected from a large population in Pennsylvania to obtain progeny with different levels of inbreeding. We grew the selfed and outcrossed progeny in the greenhouse and under field conditions and recorded various measures of growth and reproductive output. Results In the greenhouse study we found (1) a reduction in flower, fruit and seed production per fruit in inbred (selfed) progeny when compared to outbred (outcrossed) progeny; (2) a reduction in growth of resprouts obtained from rhizome cuttings of selfed progeny; and (3) an increase in the ability to self-fertilize in the selfed progeny. In the field, we found that (1) outcrossed progeny produced more leaves than their selfed siblings; (2) herbivory seems to add little to inbreeding depression; and (3) outcrossed plants grew faster and were able to set more fruits than selfed plants. Conclusion Solanum carolinense experiences low levels of inbreeding depression under greenhouse conditions and slightly more inbreeding depression under our field conditions. The combined effects of low levels of inbreeding depression and plasticity in the strength of SI suggest that the production of selfed progeny may play an important role in the establishment of new populations of S. carolinense.
Collapse
Affiliation(s)
- Jorge I Mena-Ali
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
45
|
Bomblies K, Weigel D. Arabidopsis: a model genus for speciation. Curr Opin Genet Dev 2007; 17:500-4. [PMID: 18006296 DOI: 10.1016/j.gde.2007.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 12/14/2022]
Abstract
What genetic and epigenetic changes underlie adaptation and divergence? Arabidopsis thaliana and its relatives are increasingly being employed to address such central questions of evolutionary biology. For example, comparative, genomic and classical genetic approaches are revealing mechanisms underlying processes relevant to speciation, including mating system evolution, the effects of ploidy and other chromosomal differences, and the roles that specific genes might play in Dobzhansky-Muller type incompatibilities. The considerable body of knowledge and resources available for A. thaliana and improvements in tools and technology applied to its close relatives are opening doors for combining experimental and comparative analyses to elucidate fundamental mechanisms of evolution.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| | | |
Collapse
|