1
|
Tang C, Tamura-Nakano M, Kobayakawa K, Ozawa T, Onojima T, Kajitani R, Itoh T, Tachibana K. A single gene determines allorecognition in hydrozoan jellyfish Cladonema radiatum inbred lines. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1002-1020. [PMID: 38973306 DOI: 10.1002/jez.2853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Allorecognition-the ability of an organism to discriminate between self and nonself-is crucial to colonial marine animals to avoid invasion by other individuals in the same habitat. The cnidarian hydroid Hydractinia has long been a major research model in studying invertebrate allorecognition, establishing a rich knowledge foundation. In this study, we introduce a new cnidarian model Cladonema radiatum (C. radiatum). C. radiatum is a hydroid jellyfish which also forms polyp colonies interconnected with stolons. Allorecognition responses-fusion or regression of stolons-are observed when stolons encounter each other. By transmission electron microscopy, we observe rapid tissue remodeling contributing to gastrovascular system connection in fusion. Meanwhile, rejection responses are regulated by reconstruction of the chitinous exoskeleton perisarc, and induction of necrotic and autophagic cellular responses at cells in contact with the opponent. Genetic analysis identifies allorecognition genes: six Alr genes located on the putative allorecognition complex and four immunoglobulin superfamily genes on a separate genome region. C. radiatum allorecognition genes show notable conservation with the Hydractinia Alr family. Remarkedly, stolon encounter assays of inbred lines reveal that genotypes of Alr1 solely determine allorecognition outcomes in C. radiatum.
Collapse
Affiliation(s)
- Crystal Tang
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Miwa Tamura-Nakano
- Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenta Kobayakawa
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takuto Ozawa
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takao Onojima
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Kazunori Tachibana
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
A family of unusual immunoglobulin superfamily genes in an invertebrate histocompatibility complex. Proc Natl Acad Sci U S A 2022; 119:e2207374119. [PMID: 36161920 PMCID: PMC9546547 DOI: 10.1073/pnas.2207374119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.
Collapse
|
3
|
Rodriguez-Valbuena H, Gonzalez-Muñoz A, Cadavid LF. Multiple Alr genes exhibit allorecognition-associated variation in the colonial cnidarian Hydractinia. Immunogenetics 2022; 74:559-581. [PMID: 35761101 DOI: 10.1007/s00251-022-01268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
The genetics of allorecognition has been studied extensively in inbred lines of Hydractinia symbiolongicarpus, in which genetic control is attributed mainly to the highly polymorphic loci allorecognition 1 (Alr1) and allorecognition 2 (Alr2), located within the Allorecognition Complex (ARC). While allelic variation at Alr1 and Alr2 can predict the phenotypes in inbred lines, these two loci do not entirely predict the allorecognition phenotypes in wild-type colonies and their progeny, suggesting the presence of additional uncharacterized genes that are involved in the regulation of allorecognition in this species. Comparative genomics analyses were used to identify coding sequence differences from assembled chromosomal intervals of the ARC and from genomic scaffold sequences between two incompatible H. symbiolongicarpus siblings from a backcross population. New immunoglobulin superfamily (Igsf) genes are reported for the ARC, where five of these genes are closely related to the Alr1 and Alr2 genes, suggesting the presence of multiple Alr-like genes within this complex. Complementary DNA sequence evidence revealed that the allelic polymorphism of eight Igsf genes is associated with allorecognition phenotypes in a backcross population of H. symbiolongicarpus, yet that association was not found between parental colonies and their offspring. Alternative splicing was found as a mechanism that contributes to the variability of these genes by changing putative activating receptors to inhibitory receptors or generating secreted isoforms of allorecognition proteins. Our findings demonstrate that allorecognition in H. symbiolongicarpus is a multigenic phenomenon controlled by genetic variation in at least eight genes in the ARC complex.
Collapse
Affiliation(s)
- Henry Rodriguez-Valbuena
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia.
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Andrea Gonzalez-Muñoz
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Luis F Cadavid
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Al-Moussawy M, Abdelsamed HA, Lakkis FG. Immunoglobulin-like receptors and the generation of innate immune memory. Immunogenetics 2022; 74:179-195. [PMID: 35034136 PMCID: PMC10074160 DOI: 10.1007/s00251-021-01240-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022]
Abstract
Host immunity is classically divided into "innate" and "adaptive." While the former has always been regarded as the first, rapid, and antigen-nonspecific reaction to invading pathogens, the latter represents the more sophisticated and antigen-specific response that has the potential to persist and generate memory. Recent work however has challenged this dogma, where murine studies have successfully demonstrated the ability of innate immune cells (monocytes and macrophages) to acquire antigen-specific memory to allogeneic major histocompatibility complex (MHC) molecules. The immunoreceptors so far identified that mediate innate immune memory are the paired immunoglobulin-like receptors (PIRs) in mice, which are orthologous to human leukocyte immunoglobulin-like receptors (LILRs). These receptor families are mainly expressed by the myelomonocytic cell lineage, suggesting an important role in the innate immune response. In this review, we will discuss the role of immunoglobulin-like receptors in the development of innate immune memory across species.
Collapse
Affiliation(s)
- Mouhamad Al-Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
| | - Fadi G Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, USA. .,Department of Medicine, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
5
|
Nicotra ML. The Hydractinia allorecognition system. Immunogenetics 2021; 74:27-34. [PMID: 34773127 DOI: 10.1007/s00251-021-01233-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Hydractinia symbiolongicarpus is a colonial hydroid and a long-standing model system for the study of invertebrate allorecognition. The Hydractinia allorecognition system allows colonies to discriminate between their own tissues and those of unrelated conspecifics that co-occur with them on the same substrate. This recognition mediates spatial competition and mitigates the risk of stem cell parasitism. Here, I review how we have come to our current understanding of the molecular basis of allorecognition in Hydractinia. To date, two allodeterminants have been identified, called Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which occupy a genomic region called the allorecognition complex (ARC). Both genes encode highly polymorphic cell surface proteins that are capable of homophilic binding, which is thought to be the mechanism of self/non-self discrimination. Here, I review how we have come to our current understanding of Alr1 and Alr2. Although both are members of the immunoglobulin superfamily, their evolutionary origins remain unknown. Moreover, existing data suggest that the ARC may be home to a family of Alr-like genes, and I speculate on their potential functions.
Collapse
Affiliation(s)
- Matthew L Nicotra
- Departments of Surgery and Immunology, Center for Evolutionary Biology and Medicine, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Huene AL, Chen T, Nicotra ML. New binding specificities evolve via point mutation in an invertebrate allorecognition gene. iScience 2021; 24:102811. [PMID: 34296075 PMCID: PMC8282982 DOI: 10.1016/j.isci.2021.102811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Many organisms use genetic self-recognition systems to distinguish themselves from conspecifics. In the cnidarian, Hydractinia symbiolongicarpus, self-recognition is partially controlled by allorecognition 2 (Alr2). Alr2 encodes a highly polymorphic transmembrane protein that discriminates self from nonself by binding in trans to other Alr2 proteins with identical or similar sequences. Here, we focused on the N-terminal domain of Alr2, which can determine its binding specificity. We pair ancestral sequence reconstruction and experimental assays to show that amino acid substitutions can create sequences with novel binding specificities either directly (via one mutation) or via sequential mutations and intermediates with relaxed specificities. We also show that one side of the domain has experienced positive selection and likely forms the binding interface. Our results provide direct evidence that point mutations can generate Alr2 proteins with novel binding specificities. This provides a plausible mechanism for the generation and maintenance of functional variation in nature.
Collapse
Affiliation(s)
- Aidan L. Huene
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Traci Chen
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
Cell Communication-mediated Nonself-Recognition and -Intolerance in Representative Species of the Animal Kingdom. J Mol Evol 2020; 88:482-500. [PMID: 32572694 DOI: 10.1007/s00239-020-09955-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/07/2020] [Indexed: 12/27/2022]
Abstract
Why has histo-incompatibility arisen in evolution and can cause self-intolerance? Compatible/incompatible reactions following natural contacts between genetically-different (allogeneic) colonies of marine organisms have inspired the conception that self-nonself discrimination has developed to reduce invasion threats by migratory foreign germ/somatic stem cells, in extreme cases resulting in conquest of the whole body by a foreign genome. Two prominent model species for allogeneic discrimination are the marine invertebrates Hydractinia (Cnidaria) and Botryllus (Ascidiacea). In Hydractinia, self-nonself recognition is based on polymorphic surface markers encoded by two genes (alr1, alr2), with self recognition enabled by homophilic binding of identical ALR molecules. Variable expression patterns of alr alleles presumably account for the first paradigm of autoaggression in an invertebrate. In Botryllus, self-nonself recognition is controlled by a single polymorphic gene locus (BHF) with hundreds of codominantly expressed alleles. Fusion occurs when both partners share at least one BHF allele while rejection develops when no allele is shared. Molecules involved in allorecognition frequently contain immunoglobulin or Ig-like motifs, case-by-case supplemented by additional molecules enabling homophilic interaction, while the mechanisms applied to destroy allogeneic grafts or neighbors include taxon-specific tools besides common facilities of natural immunity. The review encompasses comparison with allorecognition in mammals based on MHC-polymorphism in transplantation and following feto-maternal cell trafficking.
Collapse
|
8
|
Casso M, Tagliapietra D, Turon X, Pascual M. High fusibility and chimera prevalence in an invasive colonial ascidian. Sci Rep 2019; 9:15673. [PMID: 31666562 PMCID: PMC6821838 DOI: 10.1038/s41598-019-51950-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022] Open
Abstract
The formation of chimeric entities through colony fusion has been hypothesized to favour colonisation success and resilience in modular organisms. In particular, it can play an important role in promoting the invasiveness of introduced species. We studied prevalence of chimerism and performed fusion experiments in Mediterranean populations of the worldwide invasive colonial ascidian Didemnum vexillum. We analysed single zooids by whole genome amplification and genotyping-by-sequencing and obtained genotypic information for more than 2,000 loci per individual. In the prevalence study, we analysed nine colonies and identified that 44% of them were chimeric, composed of 2–3 different genotypes. In the fusion experiment 15 intra- and 30 intercolony pairs were assayed but one or both fragments regressed and died in ~45% of the pairs. Among those that survived for the length of the experiment (30 d), 100% isogeneic and 31% allogeneic pairs fused. Fusion was unlinked to global genetic relatedness since the genetic distance between fused or non-fused intercolony pairs did not differ significantly. We could not detect any locus directly involved in allorecognition, but we cannot preclude the existence of a histocompatibility mechanism. We conclude that chimerism occurs frequently in D. vexillum and may be an important factor to enhance genetic diversity and promote its successful expansion.
Collapse
Affiliation(s)
- Maria Casso
- Center for Advanced Studies of Blanes (CEAB, CSIC), Catalonia, Spain.,Department of Genetics, Microbiology and Statistics, and IRBio, University of Barcelona, Catalonia, Spain
| | - Davide Tagliapietra
- CNR - National Research Council of Italy, ISMAR - Institute of Marine Sciences, Venice, Italy
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB, CSIC), Catalonia, Spain
| | - Marta Pascual
- Department of Genetics, Microbiology and Statistics, and IRBio, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Grice LF, Gauthier ME, Roper KE, Fernàndez-Busquets X, Degnan SM, Degnan BM. Origin and Evolution of the Sponge Aggregation Factor Gene Family. Mol Biol Evol 2017; 34:1083-1099. [PMID: 28104746 PMCID: PMC5400394 DOI: 10.1093/molbev/msx058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although discriminating self from nonself is a cardinal animal trait, metazoan allorecognition genes do not appear to be homologous. Here, we characterize the Aggregation Factor (AF) gene family, which encodes putative allorecognition factors in the demosponge Amphimedon queenslandica, and trace its evolution across 24 sponge (Porifera) species. The AF locus in Amphimedon is comprised of a cluster of five similar genes that encode Calx-beta and Von Willebrand domains and a newly defined Wreath domain, and are highly polymorphic. Further AF variance appears to be generated through individualistic patterns of RNA editing. The AF gene family varies between poriferans, with protein sequences and domains diagnostic of the AF family being present in Amphimedon and other demosponges, but absent from other sponge classes. Within the demosponges, AFs vary widely with no two species having the same AF repertoire or domain organization. The evolution of AFs suggests that their diversification occurs via high allelism, and the continual and rapid gain, loss and shuffling of domains over evolutionary time. Given the marked differences in metazoan allorecognition genes, we propose the rapid evolution of AFs in sponges provides a model for understanding the extensive diversification of self-nonself recognition systems in the animal kingdom.
Collapse
Affiliation(s)
- Laura F. Grice
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Marie E.A. Gauthier
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kathrein E. Roper
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Barcelona Institute for Global Health, ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Cadavid LF. RESOLUCIÓN DE CONFLICTOS AL INTERIOR DEL ORGANISMO: EL PAPEL DEL SISTEMA INMUNE. ACTA BIOLÓGICA COLOMBIANA 2016. [DOI: 10.15446/abc.v21n1supl.50973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>El sistema inmune de los animales está constituido por una gran variedad de células y moléculas que colectivamente reconocen, neutralizan y eliminan potenciales agentes nocivos, tanto bióticos como abióticos. El estudio del sistema inmune ha estado tradicionalmente sesgado hacía algunas especies de importancia médica o económica, a expensas de la gran mayoría de especies que constituyen la diversidad animal. Con la actual facilidad de secuenciar genomas y transcriptomas, se ha abierto la posibilidad de estudiar los sistemas inmunes de muy variados grupos animales. Uno de estos grupos es los cnidarios, que incluye a los corales, anémonas y medusas, en los que el estudio del sistema inmune ha probado ser de gran utilidad para entender dos tipos de conflictos de relevancia en la supervivencia de estos organismos. El primero es la respuesta de los corales a enfermedades de carácter infeccioso y el segundo hace referencia a las reacciones de histocompatibilidad que median la competencia intraespecífica por el espacio habitable. Este artículo de reflexión trata en detalle el papel del sistema inmune de los cnidarios en la resolución de estos conflictos.</p><p> </p><p>Abstract</p><p>The immune system of animals is constituted by a large diversity of cells and molecules that collectively recognize, neutralize, and eliminate potential damaging agents, both biotic and abiotic. The study of the immune system has been traditionally biased towards some species with medical or economic importance, at the expense of the vast majority of species that constitute the animal diversity. With the current possibility of easily sequencing genomes and transcriptomes, there is an opportunity to study the immune systems of a wide variety of animal groups. One of these groups is the cnidarians, which include corals, anemones and jellyfishes, in which the study of the immune system has proved useful to understand two types of conflicts that are relevant for the survival of these organisms. The first one is the response of corals to diseases of infectious nature and the second relates to histocompatibility reactions, which mediate intraspecific competitions for habitable space. This article details the role of the cnidarian immune system to mediate the resolution of these two conflicts.</p><p> </p>
Collapse
|
11
|
Allorecognition proteins in an invertebrate exhibit homophilic interactions. Curr Biol 2015; 25:2845-2850. [PMID: 26455308 DOI: 10.1016/j.cub.2015.09.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 11/21/2022]
Abstract
Sessile colonial invertebrates-animals such as sponges, corals, bryozoans, and ascidians-can distinguish between their own tissues and those of conspecifics upon contact [1]. This ability, called allorecognition, mediates spatial competition and can prevent stem cell parasitism by ensuring that colonies only fuse with self or close kin. In every taxon studied to date, allorecognition is controlled by one or more highly polymorphic genes [2-8]. However, in no case is it understood how the proteins encoded by these genes discriminate self from non-self. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two highly polymorphic allorecognition genes, Alr1 and Alr2 [3, 5, 9-12]. Sequence variation at each gene predicts allorecognition in laboratory strains such that colonies reject if they do not share a common allele at either locus, fuse temporarily if they share an allele at only one locus, or fuse permanently if they share an allele at both genes [5, 9]. Here, we show that the gene products of Alr1 and Alr2 (Alr1 and Alr2) are self-ligands with extraordinary specificity. Using an in vitro cell aggregation assay, we found that Alr1 and Alr2 bind to themselves homophilically across opposing cell membranes. For both proteins, each isoform bound only to itself or to an isoform of nearly identical sequence. These results provide a mechanistic explanation for the exquisite specificity of Hydractinia allorecognition. Our results also indicate that hydroids have evolved a molecular strategy of self-recognition that is unique among characterized allorecognition systems within and outside invertebrates.
Collapse
|
12
|
Buss LW, Anderson CP, Perry EK, Buss ED, Bolton EW. Nutrient Distribution and Absorption in the Colonial Hydroid Podocoryna carnea Is Sequentially Diffusive and Directional. PLoS One 2015; 10:e0136814. [PMID: 26359660 PMCID: PMC4567339 DOI: 10.1371/journal.pone.0136814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022] Open
Abstract
The distribution and absorption of ingested protein was characterized within a colony of Podocoryna carnea when a single polyp was fed. Observations were conducted at multiple spatial and temporal scales at three different stages of colony ontogeny with an artificial food item containing Texas Red conjugated albumin. Food pellets were digested and all tracer absorbed by digestive cells within the first 2–3 hours post-feeding. The preponderance of the label was located in the fed polyp and in a transport-induced diffusion pattern surrounding the fed polyp. After 6 hours post-feeding particulates re-appeared in the gastrovascular system and their absorption increased the area over which the nutrients were distributed, albeit still in a pattern that was centered on the fed polyp. At later intervals, tracer became concentrated in some stolon tips, but not in others, despite the proximity of these stolons either to the fed polyp or to adjacent stolons receiving nutrients. Distribution and absorption of nutrients is sequentially diffusive and directional.
Collapse
Affiliation(s)
- Leo W. Buss
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Smithsonian Marine Station, Fort Pierce, Florida, United States of America
- * E-mail:
| | - Christopher P. Anderson
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Elena K. Perry
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Evan D. Buss
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Edward W. Bolton
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
13
|
Gilbert OM. Histocompatibility as adaptive response to discriminatory within-organism conflict: a historical model. Am Nat 2015; 185:228-42. [PMID: 25616141 DOI: 10.1086/679442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Multicellular tissue compatibility, or histocompatibility, restricts fusion to close kin. Histocompatibility depends on hypervariable cue genes, which often have more than 100 alleles in a population. To explain the evolution of histocompatibility, I here take a historical approach. I focus on the specific example of marine invertebrate histocompatibility. I use simple game-theoretical models to show that histocompatibility can evolve through five steps. These steps include the evolution of indiscriminate fusion, the evolution of discriminatory within-organism conflict, the evolution of minor histocompatibility, the evolution of major histocompatibility, and the evolution of major histocompatibility cue polymorphism. Allowing for gradual evolution reveals discriminatory within-organism conflict as a selective pressure for histocompatibility and associated cue polymorphism. Existing data from marine invertebrates and other organisms are consistent with this hypothesis.
Collapse
Affiliation(s)
- Owen M Gilbert
- Department of Integrative Biology, University of Texas, Austin, Texas 78712
| |
Collapse
|
14
|
Dionne MS. Comparative immunology: allorecognition and variable surface receptors outside the jawed vertebrates. Curr Opin Immunol 2013; 25:608-12. [PMID: 23890586 DOI: 10.1016/j.coi.2013.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 06/26/2013] [Accepted: 07/04/2013] [Indexed: 11/27/2022]
Abstract
Allograft rejection is one of several undesirable consequences of the adaptive nature of the mammalian immune response. This review examines adaptive immune responses and allorecognition in animals with very different immune responses - jawless vertebrates, arthropods, and two distinct colonial marine invertebrates - with the goal of understanding how immune adaptation and allograft rejection are linked, and conversely how a system works where allograft rejection is a desired outcome rather than an unforeseen consequence.
Collapse
Affiliation(s)
- Marc S Dionne
- Centre for the Molecular and Cellular Biology of Inflammation and Peter Gorer Department of Immunobiology, King's College London School of Medicine, London, United Kingdom.
| |
Collapse
|
15
|
Buss LW, Anderson C, Westerman E, Kritzberger C, Poudyal M, Moreno MA, Lakkis FG. Allorecognition triggers autophagy and subsequent necrosis in the cnidarian Hydractinia symbiolongicarpus. PLoS One 2012; 7:e48914. [PMID: 23145018 PMCID: PMC3493586 DOI: 10.1371/journal.pone.0048914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/03/2012] [Indexed: 11/18/2022] Open
Abstract
Transitory fusion is an allorecognition phenotype displayed by the colonial hydroid Hydractinia symbiolongicarpus when interacting colonies share some, but not all, loci within the allorecognition gene complex (ARC). The phenotype is characterized by an initial fusion followed by subsequent cell death resulting in separation of the two incompatible colonies. We here characterize this cell death process using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and continuous in vivo digital microscopy. These techniques reveal widespread autophagy and subsequent necrosis in both colony and grafted polyp assays. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays and ultrastructural observations revealed no evidence of apoptosis. Pharmacological inhibition of autophagy using 3-methyladenine (3-MA) completely suppressed transitory fusion in vivo in colony assays. Rapamycin did not have a significant effect in the same assays. These results establish the hydroid allorecognition system as a novel model for the study of cell death.
Collapse
Affiliation(s)
- Leo W Buss
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Gloria-Soria A, Moreno MA, Yund PO, Lakkis FG, Dellaporta SL, Buss LW. Evolutionary genetics of the hydroid allodeterminant alr2. Mol Biol Evol 2012; 29:3921-32. [PMID: 22855537 DOI: 10.1093/molbev/mss197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We surveyed genetic variation in alr2, an allodeterminant of the colonial hydroid Hydractinia symbiolongicarpus. We generated cDNA from a sample of 239 Hydractinia colonies collected at Lighthouse Point, Connecticut, and identified 473 alr2 alleles, 198 of which were unique. Rarefaction analysis suggested that the sample was near saturation. Most alleles were rare, with 86% occurring at frequencies of 1% or less. Alleles were highly variable, diverging on average by 18% of the amino acids in a predicted extracellular domain of the molecule. Analysis of 152 full-length alleles confirmed the existence of two structural types, defined by exons 4-8 of the gene. Several residues of the predicted immunoglobulin superfamily-like domains display signatures of positive selection. We also identified 77 unique alr2 pseudogene sequences from 85 colonies. Twenty-seven of these sequences matched expressed alr2 sequences from other colonies. This observation is consistent with pseudogenes contributing to alr2 diversification through sequence donation. A more limited collection of animals was made from a distant, relict population of H. symbiolongicarpus. Sixty percent of the unique sequences identified in this sample were found to match sequences from the Lighthouse Point population. The large number of alr2 alleles, their degree of divergence, the predominance of rare alleles in the population, their persistence over broad spatial and temporal scales, and the signatures of positive selection in multiple residues of the putative recognition domain paint a consistent picture of negative-frequency-dependent selection operating in this system. The genetic diversity observed at alr2 is comparable to that of the most highly polymorphic genetic systems known to date.
Collapse
|
17
|
Nawrocki AM, Cartwright P. A novel mode of colony formation in a hydrozoan through fusion of sexually generated individuals. Curr Biol 2012; 22:825-9. [PMID: 22521789 DOI: 10.1016/j.cub.2012.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Coloniality, as displayed by most hydrozoans, is thought to confer a size advantage in substrate-limited benthic marine environments and affects nearly every aspect of a species' ecology and evolution. Hydrozoan colonies normally develop through asexual budding of polyps that remain interconnected by continuous epithelia. The clade Aplanulata is unique in that it comprises mostly solitary species, including the model organism Hydra, with only a few colonial species. We reconstruct a multigene phylogeny to trace the evolution of coloniality in Aplanulata, revealing that the ancestor of Aplanulata was solitary and that coloniality was regained in the genus Ectopleura. Examination of Ectopleura larynx development reveals a unique type of colony formation never before described in Hydrozoa, in that colonies form through sexual reproduction followed by epithelial fusion of offspring polyps to adults. We characterize the expression of manacle, a gene involved in foot development in Hydra, to determine polyp-colony boundaries. Our results suggest that stalks beneath the neck do not have polyp identity and instead are specialized structures that interconnect polyps. Epithelial fusion, brooding behavior, and the presence of a skeleton were all key factors behind the evolution of this novel pathway to coloniality in Ectopleura.
Collapse
Affiliation(s)
- Annalise M Nawrocki
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
18
|
Genetic Background and Allorecognition Phenotype in Hydractinia symbiolongicarpus. G3-GENES GENOMES GENETICS 2011; 1:499-504. [PMID: 22384360 PMCID: PMC3276163 DOI: 10.1534/g3.111.001149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022]
Abstract
The Hydractinia allorecognition complex (ARC) was initially identified as a single chromosomal interval using inbred and congenic lines. The production of defined lines necessarily homogenizes genetic background and thus may be expected to obscure the effects of unlinked allorecognition loci should they exist. Here, we report the results of crosses in which inbred lines were out-crossed to wild-type animals in an attempt to identify dominant, codominant, or incompletely dominant modifiers of allorecognition. A claim for the existence of modifiers unlinked to ARC was rejected for three different genetic backgrounds. Estimates of the genetic map distance of ARC in two wild-type haplotypes differed markedly from one another and from that measured in congenic lines. These results suggest that additional allodeterminants exist in the Hydractinia ARC.
Collapse
|
19
|
Abstract
Nearly all colonial marine invertebrates are capable of allorecognition--the ability to distinguish between self and genetically distinct members of the same species. When two or more colonies grow into contact, they either reject each other and compete for the contested space or fuse and form a single, chimeric colony. The specificity of this response is conferred by genetic systems that restrict fusion to self and close kin. Two selective pressures, intraspecific spatial competition between whole colonies and competition between stem cells for access to the germline in fused chimeras, are thought to drive the evolution of extensive polymorphism at invertebrate allorecognition loci. After decades of study, genes controlling allorecognition have been identified in two model systems, the protochordate Botryllus schlosseri and the cnidarian Hydractinia symbiolongicarpus. In both species, allorecognition specificity is determined by highly polymorphic cell-surface molecules, encoded by the fuhc and fester genes in Botryllus, and by the alr1 and alr2 genes in Hydractinia. Here we review allorecognition phenomena in both systems, summarizing recent molecular advances, comparing and contrasting the life history traits that shape the evolution of these distinct allorecognition systems, and highlighting questions that remain open in the field.
Collapse
|
20
|
Duffy DJ, Frank U. Modulation of COUP-TF expression in a cnidarian by ectopic Wnt signalling and allorecognition. PLoS One 2011; 6:e19443. [PMID: 21552541 PMCID: PMC3084292 DOI: 10.1371/journal.pone.0019443] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/29/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND COUP transcription factors are required for the regulation of gene expression underlying development, differentiation, and homeostasis. They have an evolutionarily conserved function, being a known marker for neurogenesis from cnidarians to vertebrates. A homologue of this gene was shown previously to be a neuronal and nematocyte differentiation marker in Hydra. However, COUP-TFs had not previously been studied in a colonial cnidarian. METHODOLOGY/PRINCIPAL FINDINGS We cloned a COUP-TF homologue from the colonial marine cnidarian Hydractinia echinata. Expression of the gene was analysed during normal development, allorecognition events and ectopic Wnt activation, using in situ hybridisation and quantitative PCR. During normal Hydractinia development, the gene was first expressed in post-gastrula stages. It was undetectable in larvae, and its mRNA was present again in putative differentiating neurons and nematocytes in post-metamorphic stages. Global activation of canonical Wnt signalling in adult animals resulted in the upregulation of COUP-TF. We also monitored a strong COUP-TF upregulation in stolons undergoing allogeneic interactions. COUP-TF mRNA was most concentrated in the tissues that contacted allogeneic, non-self tissues, and decreased in a gradient away from the contact area. Interestingly, the gene was transiently upregulated during initial contact of self stolons, but dissipated rapidly following self recognition, while in non-self contacts high expression levels were maintained. CONCLUSIONS/SIGNIFICANCE We conclude that COUP-TF is likely involved in neuronal/nematocyte differentiation in a variety of contexts. This has now been shown to include allorecognition, where COUP-TF is thought to have been co-opted to mediate allorejection by recruiting stinging cells that are the effectors of cytotoxic rejection of allogeneic tissue. Our findings that Wnt activation upregulates COUP-TF expression suggests that Wnts' role in neuronal differentiation could be mediated through COUP-TF.
Collapse
Affiliation(s)
- David J. Duffy
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Uri Frank
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
21
|
Rosengarten RD, Moreno MA, Lakkis FG, Buss LW, Dellaporta SL. Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus. Mol Biol Evol 2011; 28:933-47. [PMID: 20966116 PMCID: PMC3108555 DOI: 10.1093/molbev/msq282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydractinia symbiolongicarpus, a colonial cnidarian (class Hydrozoa) epibiont on hermit crab shells, is well established as a model for genetic studies of allorecognition. Recently, two linked loci, allorecognition (alr) 1 and alr2, were identified by positional cloning and shown to be major determinants of histocompatibility. Both genes encode putative transmembrane proteins with hypervariable extracellular domains similar to immunoglobulin (Ig)-like domains. We sought to characterize the naturally occurring variation at the alr2 locus and to understand the origins of this molecular diversity. We examined full-length cDNA coding sequences derived from a sample of 21 field-collected colonies, including 18 chosen haphazardly and two laboratory reference strains. Of the 35 alleles recovered from the 18 unbiased samples, 34 encoded unique gene products. We identified two distinct structural classes of alleles that varied over a large central region of the gene but both possessed highly polymorphic extracellular domains I, similar to an Ig-like V-set domain. The discovery of structurally chimeric alleles provided evidence that interallelic recombination may contribute to alr2 variation. Comparisons of the genomic region encompassing alr2 from two field-derived haplotypes and one laboratory reference sequence revealed a history of structural variation at the haplotype level as well. Maintenance of large numbers of equally rare alleles in a natural population is a hallmark of negative frequency-dependent selection and is expected to produce high levels of heterozygosity. The observed alr2 allelic diversity is comparable with that found in immune recognition molecules such as human leukocyte antigens, B cell Igs, or natural killer cell Ig-like receptors.
Collapse
Affiliation(s)
- Rafael D Rosengarten
- Department of Molecular, Cellular and Developmental Biology, Yale University, Yale, CN, USA.
| | | | | | | | | |
Collapse
|
22
|
Rosa SFP, Powell AE, Rosengarten RD, Nicotra ML, Moreno M, Grimwood J, Lakkis FG, Dellaporta SL, Buss LW. Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr Biol 2010; 20:1122-7. [PMID: 20537535 PMCID: PMC2921677 DOI: 10.1016/j.cub.2010.04.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 04/14/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
Allorecognition, the ability to discriminate between self and nonself, is ubiquitous among colonial metazoans and widespread among aclonal taxa. Genetic models for the study of allorecognition have been developed in the jawed vertebrates, invertebrate chordate Botryllus, and cnidarian Hydractinia. In Botryllus, two genes contribute to the histocompatibility response, FuHC and fester. In the cnidarian Hydractinia, one of the two known allorecognition loci, alr2, has been isolated, and a second linked locus, alr1, has been mapped to the same chromosomal region, called the allorecognition complex (ARC). Here we isolate alr1 by positional cloning and report it to encode a transmembrane receptor protein with two hypervariable extracellular regions similar to immunoglobulin (Ig)-like domains. Variation in the extracellular domain largely predicts fusibility within and between laboratory strains and wild-type isolates. alr1 was found embedded in a family of immunoglobulin superfamily (IgSF)-like genes, thus establishing that the ARC histocompatibility complex is an invertebrate IgSF-like gene complex.
Collapse
Affiliation(s)
- Sabrina F. P. Rosa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Thomas E. Starzl Transplantation Institute, Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anahid E. Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Rafael D. Rosengarten
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maria Moreno
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Fadi G. Lakkis
- Thomas E. Starzl Transplantation Institute, Departments of Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Stephen L. Dellaporta
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Leo W. Buss
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
23
|
Augustin R, Bosch TCG. Cnidarian immunity: a tale of two barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 708:1-16. [PMID: 21528690 DOI: 10.1007/978-1-4419-8059-5_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The phylum Cnidariais one of the earliest branches in the animal tree of life providing crucial insights into the early evolution of immunity. The diversity in cnidarian life histories and habitats raises several important issues relating to immunity. First, in the absence of specific immune cells, cnidarians must have effective mechanisms to defend against microbial pathogens. Second, to maintain tissue integrity, colonial forms have to rely on their capacity of self/nonself discrimination to rapidly detect approaching allogeneic cells as foreign and to eliminate them. And third, since cnidarians are colonized by complex bacterial communities and in many cases are home to algal symbionts, successful growth means for cnidarians to be able to distinguish between beneficial symbionts and pathogenic intruders. The aim of this chapter is to review the experimental evidence for innate immune reactions in Cnidaria. We show that in these diploblastic animals consisting of only two cell layers; the epithelial cells are able to mediate all innate immune responses. The endodermal epithelium appears as a chemical barrier employing antimicrobial peptides while the ectodermal epithelium is a physicochemical barrier supported by a glycocalix. Microbial recognition is mediated by pattern recognition receptors such as Toll- and Nod-like receptors. Together, the data support the hypothesis that the establishment of epithelial barriers represents an important step in evolution of host defense in eumetazoan animals more than 600 million years ago.
Collapse
Affiliation(s)
- René Augustin
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
24
|
Miglietta MP, Schuchert P, Cunningham CW. Reconciling genealogical and morphological species in a worldwide study of the Family Hydractiniidae (Cnidaria, Hydrozoa). ZOOL SCR 2009. [DOI: 10.1111/j.1463-6409.2008.00376.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
Alloimmune specificity and histocompatibility, driven by genetic polymorphism, are ancient determinants of self-/non-self-recognition. Recent molecular genetic evidence has revealed an allodeterminant in the cnidarian Hydractinia that consistently predicts histocompatibility reactions.
Collapse
|
26
|
Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, Lakkis FG, Dellaporta SL, Buss LW. A hypervariable invertebrate allodeterminant. Curr Biol 2009; 19:583-9. [PMID: 19303297 DOI: 10.1016/j.cub.2009.02.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/08/2009] [Accepted: 02/09/2009] [Indexed: 11/25/2022]
Abstract
Colonial marine invertebrates, such as sponges, corals, bryozoans, and ascidians, often live in densely populated communities where they encounter other members of their species as they grow over their substratum. Such encounters typically lead to a natural histocompatibility response in which colonies either fuse to become a single, chimeric colony or reject and aggressively compete for space. These allorecognition phenomena mediate intraspecific competition, support allotypic diversity, control the level at which selection acts, and resemble allogeneic interactions in pregnancy and transplantation. Despite the ubiquity of allorecognition in colonial phyla, however, its molecular basis has not been identified beyond what is currently known about histocompatibility in vertebrates and protochordates. We positionally cloned an allorecognition gene by using inbred strains of the cnidarian, Hydractinia symbiolongicarpus, which is a model system for the study of invertebrate allorecognition. The gene identified encodes a putative transmembrane receptor expressed in all tissues capable of allorecognition that is highly polymorphic and predicts allorecognition responses in laboratory and field-derived strains. This study reveals that a previously undescribed hypervariable molecule bearing three extracellular domains with greatest sequence similarity to the immunoglobulin superfamily is an allodeterminant in a lower metazoan.
Collapse
Affiliation(s)
- Matthew L Nicotra
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lakkis FG, Dellaporta SL, Buss LW. Allorecognition and chimerism in an invertebrate model organism. Organogenesis 2008; 4:236-40. [PMID: 19337403 PMCID: PMC2634328 DOI: 10.4161/org.4.4.7151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 12/28/2022] Open
Abstract
The presence of highly specific histocompatibility reactions in colonial marine invertebrates that lack adaptive immune systems (such as the sponges, cnidarians, bryozoans and ascidians) provides a unique opportunity to investigate the evolutionary roots of allorecognition and to explore whether homologous innate recognition systems exist in vertebrates. Conspecific interactions among adult animals in these groups are regulated by highly specific allorecognition systems that restrict somatic fusion to self or close kin. In Hydractinia (Cnidaria:Hydrozoa), fusion/rejection responses are controlled by two linked genetic loci. Alleles at each locus are co-dominantly inherited. Colonies fuse if they share at least one haplotype, reject if they share no haplotypes, and display transitory fusion if they share only one allele in a haplotype-a pattern that echoes natural killer cell responses in mice and humans. Allorecognition in Hydractinia and other marine invertebrates serves as a safeguard against stem cell or germline parasitism thus, limiting chimerism to closely related individuals. These animals fail to become tolerant even if exposed during early development to cells from a histoincompatible individual. Detailed analysis of the structure and function of molecules responsible for allorecognition in basal marine invertebrates could provide clues to the innate mechanisms by which higher animals respond to organ and cell allografts, including embryonic tissues.
Collapse
Affiliation(s)
- Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute; Departments of Surgery and Immunology; University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania USA
| | | | | |
Collapse
|
28
|
The fetal allograft revisited: does the study of an ancient invertebrate species shed light on the role of natural killer cells at the maternal-fetal interface? Clin Dev Immunol 2008; 2008:631920. [PMID: 18615195 PMCID: PMC2443424 DOI: 10.1155/2008/631920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/12/2008] [Indexed: 12/31/2022]
Abstract
Human pregnancy poses a fundamental immunological problem because the placenta and fetus are genetically different from the host mother. Classical transplantation theory has not provided a plausible solution to this problem. Study of naturally occurring allogeneic chimeras in the colonial marine invertebrate, Botryllus schlosseri, has yielded fresh insight into the primitive development of allorecognition, especially regarding the role of natural killer (NK) cells. Uterine NK cells have a unique phenotype that appears to parallel aspects of the NK-like cells in the allorecognition system of B. schlosseri. Most notably, both cell types recognize and reject "missing self" and both are involved in the generation of a common vascular system between two individuals. Chimeric combination in B. schlosseri results in vascular fusion between two individual colonies; uterine NK cells appear essential to the establishment of adequate maternal-fetal circulation. Since human uterine NK cells appear to de-emphasize primary immunological function, it is proposed that they may share the same evolutionary roots as the B. schlosseri allorecognition system rather than a primary origin in immunity.
Collapse
|