1
|
Grădinaru AC, Popa S. Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications. Life (Basel) 2025; 15:238. [PMID: 40003647 PMCID: PMC11856994 DOI: 10.3390/life15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin C plays an important role in collagen synthesis and subsequent scurvy prevention. It is also required in vivo as a cofactor for enzymes involved in carnitine and catecholamine norepinephrine biosynthesis, peptide amidation, and tyrosine catabolism. Moreover, as an enzymatic cofactor, vitamin C is involved in processes of gene transcription and epigenetic regulation. The absence of the synthesis of L-gulono-1,4-lactone oxidase, a key enzyme in the pathway of vitamin C synthesis, is an inborn metabolism error in some fishes and several bird and mammalian species, including humans and non-human primates; it is caused by various changes in the structure of the original GULO gene, making these affected species dependent on external sources of vitamin C. The evolutionary cause of GULO gene pseudogenization remains controversial, as either dietary supplementation or neutral selection is evoked. An evolutionary improvement in the control of redox homeostasis was also considered, as potentially toxic H2O2 is generated as a byproduct in the vitamin C biosynthesis pathway. The inactivation of the GULO gene and the subsequent reliance on dietary vitamin C may have broader implications for aging and age-related diseases, as one of the most important actions of vitamin C is as an anti-oxidant. Therefore, an important aim for medical professionals regarding human and animal health should be establishing vitamin C homeostasis in species that are unable to synthesize it themselves, preventing pathologies such as cardiovascular diseases, cognitive decline, and even cancer.
Collapse
Affiliation(s)
- Andrei Cristian Grădinaru
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania
| | - Setalia Popa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Minias P. Evolutionary variation in gene conversion at the avian MHC is explained by fluctuating selection, gene copy numbers and life history. Mol Ecol 2024; 33:e17453. [PMID: 38953291 DOI: 10.1111/mec.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Yamamoto M, Ishii T, Ogura M, Akanuma T, Zhu XY, Kitashiba H. S haplotype collection in Brassicaceae crops-an updated list of S haplotypes. BREEDING SCIENCE 2023; 73:132-145. [PMID: 37404351 PMCID: PMC10316313 DOI: 10.1270/jsbbs.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/07/2023] [Indexed: 07/06/2023]
Abstract
Self-incompatibility is the system that inhibits pollen germination and pollen tube growth by self-pollen. This trait is important for the breeding of Brassica and Raphanus species. In these species, self-incompatibility is governed by the S locus, which contains three linked genes (a set called the S haplotype), i.e., S-locus receptor kinase, S-locus cysteine-rich protein/S-locus protein 11, and S-locus glycoprotein. A large number of S haplotypes have been identified in Brassica oleracea, B. rapa, and Raphanus sativus to date, and the nucleotide sequences of their many alleles have also been registered. In this state, it is important to avoid confusion between S haplotypes, i.e., an identical S haplotype with different names and a different S haplotype with an identical S haplotype number. To mitigate this issue, we herein constructed a list of S haplotypes that are easily accessible to the latest nucleotide sequences of S-haplotype genes, together with revisions to and an update of S haplotype information. Furthermore, the histories of the S-haplotype collection in the three species are reviewed, the importance of the collection of S haplotypes as a genetic resource is discussed, and the management of information on S haplotypes is proposed.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba Aobaku, Sendai, Miyagi 980-8572, Japan
| | - Tomoko Ishii
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba Aobaku, Sendai, Miyagi 980-8572, Japan
| | - Marina Ogura
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba Aobaku, Sendai, Miyagi 980-8572, Japan
| | - Takashi Akanuma
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba Aobaku, Sendai, Miyagi 980-8572, Japan
| | - Xing-Yu Zhu
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba Aobaku, Sendai, Miyagi 980-8572, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba Aobaku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
4
|
Timouma S, Balarezo-Cisneros LN, Pinto J, De La Cerda R, Bond U, Schwartz JM, Delneri D. Transcriptional profile of the industrial hybrid Saccharomyces pastorianus reveals temperature-dependent allele expression bias and preferential orthologous protein assemblies. Mol Biol Evol 2021; 38:5437-5452. [PMID: 34550394 PMCID: PMC8662600 DOI: 10.1093/molbev/msab282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Saccharomyces pastorianus is a natural yeast evolved from different hybridization events between the mesophilic S. cerevisiae and the cold-tolerant S. eubayanus. This complex aneuploid hybrid carries multiple copies of the parental alleles alongside specific hybrid genes and encodes for multiple protein isoforms which impart novel phenotypes, such as the strong ability to ferment at low temperature. These characteristics lead to agonistic competition for substrates and a plethora of biochemical activities, resulting in a unique cellular metabolism. Here, we investigated the transcriptional signature of the different orthologous alleles in S. pastorianus during temperature shifts. We identified temperature-dependent media-independent genes and showed that 35% has their regulation dependent on extracellular leucine uptake, suggesting an interplay between leucine metabolism and temperature response. The analysis of the expression of ortholog parental alleles unveiled that the majority of the genes expresses preferentially one parental allele over the other and that S. eubayanus-like alleles are significantly over-represented among the genes involved in the cold acclimatization. The presence of functionally redundant parental alleles may impact on the nature of protein complexes established in the hybrid, where both parental alleles are competing. Our expression data indicate that the majority of the protein complexes investigated in the hybrid are likely to be either exclusively chimeric or unispecific and that the redundancy is discouraged, a scenario that fits well with the gene balance hypothesis. This study offers the first overview of the transcriptional pattern of S. pastorianus and provides a rationalization for its unique industrial traits at the expression level.
Collapse
Affiliation(s)
- Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | | | - Javier Pinto
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Roberto De La Cerda
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jean-Marc Schwartz
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Fawcett JA, Innan H. The Role of Gene Conversion between Transposable Elements in Rewiring Regulatory Networks. Genome Biol Evol 2020; 11:1723-1729. [PMID: 31209488 PMCID: PMC6598467 DOI: 10.1093/gbe/evz124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Nature has found many ways to utilize transposable elements (TEs) throughout evolution. Many molecular and cellular processes depend on DNA-binding proteins recognizing hundreds or thousands of similar DNA motifs dispersed throughout the genome that are often provided by TEs. It has been suggested that TEs play an important role in the evolution of such systems, in particular, the rewiring of gene regulatory networks. One mechanism that can further enhance the rewiring of regulatory networks is nonallelic gene conversion between copies of TEs. Here, we will first review evidence for nonallelic gene conversion in TEs. Then, we will illustrate the benefits nonallelic gene conversion provides in rewiring regulatory networks. For instance, nonallelic gene conversion between TE copies offers an alternative mechanism to spread beneficial mutations that improve the network, it allows multiple mutations to be combined and transferred together, and it allows natural selection to work efficiently in spreading beneficial mutations and removing disadvantageous mutations. Future studies examining the role of nonallelic gene conversion in the evolution of TEs should help us to better understand how TEs have contributed to evolution.
Collapse
|
6
|
Daugherty MD, Zanders SE. Gene conversion generates evolutionary novelty that fuels genetic conflicts. Curr Opin Genet Dev 2019; 58-59:49-54. [PMID: 31466040 DOI: 10.1016/j.gde.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/15/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022]
Abstract
Genetic conflicts arise when the evolutionary interests of two genetic elements are not aligned. Conflicts between genomes (e.g. pathogen versus host) or within the same genome (e.g. internal parasitic DNA sequences versus the rest of the host genome) can both foster 'molecular arms races', in which genes on both sides of the conflict rapidly evolve due to bouts of adaptation and counter-adaptation. Importantly, a source of genetic novelty is needed to fuel these arms races. In this review, we highlight gene conversion as a major force in generating the novel alleles on which selection can act. Using examples from both intergenomic and intragenomic conflicts, we feature the mechanisms by which gene conversion facilitates the rapid evolution of genes in conflict.
Collapse
Affiliation(s)
- Matthew D Daugherty
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
7
|
Takashima M, Sriswasdi S, Manabe RI, Ohkuma M, Sugita T, Iwasaki W. A Trichosporonales genome tree based on 27 haploid and three evolutionarily conserved 'natural' hybrid genomes. Yeast 2017; 35:99-111. [PMID: 29027707 DOI: 10.1002/yea.3284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023] Open
Abstract
To construct a backbone tree consisting of basidiomycetous yeasts, draft genome sequences from 25 species of Trichosporonales (Tremellomycetes, Basidiomycota) were generated. In addition to the hybrid genomes of Trichosporon coremiiforme and Trichosporon ovoides that we described previously, we identified an interspecies hybrid genome in Cutaneotrichosporon mucoides (formerly Trichosporon mucoides). This hybrid genome had a gene retention rate of ~55%, and its closest haploid relative was Cutaneotrichosporon dermatis. After constructing the C. mucoides subgenomes, we generated a phylogenetic tree using genome data from the 27 haploid species and the subgenome data from the three hybrid genome species. It was a high-quality tree with 100% bootstrap support for all of the branches. The genome-based tree provided superior resolution compared with previous multi-gene analyses. Although our backbone tree does not include all Trichosporonales genera (e.g. Cryptotrichosporon), it will be valuable for future analyses of genome data. Interest in interspecies hybrid fungal genomes has recently increased because they may provide a basis for new technologies. The three Trichosporonales hybrid genomes described in this study are different from well-characterized hybrid genomes (e.g. those of Saccharomyces pastorianus and Saccharomyces bayanus) because these hybridization events probably occurred in the distant evolutionary past. Hence, they will be useful for studying genome stability following hybridization and speciation events. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.,Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, 230-0045, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-8568, Japan.,Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
8
|
Gene Conversion Facilitates Adaptive Evolution on Rugged Fitness Landscapes. Genetics 2017; 207:1577-1589. [PMID: 28978673 DOI: 10.1534/genetics.117.300350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/30/2017] [Indexed: 01/11/2023] Open
Abstract
Gene conversion is a ubiquitous phenomenon that leads to the exchange of genetic information between homologous DNA regions and maintains coevolving multi-gene families in most prokaryotic and eukaryotic organisms. In this paper, we study its implications for the evolution of a single functional gene with a silenced duplicate, using two different models of evolution on rugged fitness landscapes. Our analytical and numerical results show that, by helping to circumvent valleys of low fitness, gene conversion with a passive duplicate gene can cause a significant speedup of adaptation, which depends nontrivially on the frequency of gene conversion and the structure of the landscape. We find that stochastic effects due to finite population sizes further increase the likelihood of exploiting this evolutionary pathway. A universal feature appearing in both deterministic and stochastic analysis of our models is the existence of an optimal gene conversion rate, which maximizes the speed of adaptation. Our results reveal the potential for duplicate genes to act as a "scratch paper" that frees evolution from being limited to strictly beneficial mutations in strongly selective environments.
Collapse
|
9
|
Hu W, Jiang ZD, Suo F, Zheng JX, He WZ, Du LL. A large gene family in fission yeast encodes spore killers that subvert Mendel's law. eLife 2017; 6:e26057. [PMID: 28631610 PMCID: PMC5478263 DOI: 10.7554/elife.26057] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/06/2017] [Indexed: 12/12/2022] Open
Abstract
Spore killers in fungi are selfish genetic elements that distort Mendelian segregation in their favor. It remains unclear how many species harbor them and how diverse their mechanisms are. Here, we discover two spore killers from a natural isolate of the fission yeast Schizosaccharomyces pombe. Both killers belong to the previously uncharacterized wtf gene family with 25 members in the reference genome. These two killers act in strain-background-independent and genome-location-independent manners to perturb the maturation of spores not inheriting them. Spores carrying one killer are protected from its killing effect but not that of the other killer. The killing and protecting activities can be uncoupled by mutation. The numbers and sequences of wtf genes vary considerably between S. pombe isolates, indicating rapid divergence. We propose that wtf genes contribute to the extensive intraspecific reproductive isolation in S. pombe, and represent ideal models for understanding how segregation-distorting elements act and evolve.
Collapse
Affiliation(s)
- Wen Hu
- National Institute of Biological Sciences, Beijing, China
| | - Zhao-Di Jiang
- National Institute of Biological Sciences, Beijing, China
- PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, China
| | - Jin-Xin Zheng
- National Institute of Biological Sciences, Beijing, China
| | - Wan-Zhong He
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
10
|
Yohe LR, Abubakar R, Giordano C, Dumont E, Sears KE, Rossiter SJ, Dávalos LM. Trpc2 pseudogenization dynamics in bats reveal ancestral vomeronasal signaling, then pervasive loss. Evolution 2017; 71:923-935. [PMID: 28128447 DOI: 10.1111/evo.13187] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/30/2016] [Indexed: 01/08/2023]
Abstract
Comparative methods are often used to infer loss or gain of complex phenotypes, but few studies take advantage of genes tightly linked with complex traits to test for shifts in the strength of selection. In mammals, vomerolfaction detects chemical cues mediating many social and reproductive behaviors and is highly conserved, but all bats exhibit degraded vomeronasal structures with the exception of two families (Phyllostomidae and Miniopteridae). These families either regained vomerolfaction after ancestral loss, or there were many independent losses after diversification from an ancestor with functional vomerolfaction. In this study, we use the Transient receptor potential cation channel 2 (Trpc2) as a molecular marker for testing the evolutionary mechanisms of loss and gain of the mammalian vomeronasal system. We sequenced Trpc2 exon 2 in over 100 bat species across 17 of 20 chiropteran families. Most families showed independent pseudogenizing mutations in Trpc2, but the reading frame was highly conserved in phyllostomids and miniopterids. Phylogeny-based simulations suggest loss of function occurred after bat families diverged, and purifying selection in two families has persisted since bats shared a common ancestor. As most bats still display pheromone-mediated behavior, they might detect pheromones through the main olfactory system without using the Trpc2 signaling mechanism.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Ramatu Abubakar
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Christina Giordano
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Elizabeth Dumont
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Karen E Sears
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, 61801.,School of Integrative Biology, Institute for Genome Biology, University of Illinois, Urbana, Illinois, 61801
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
11
|
Sriswasdi S, Takashima M, Manabe RI, Ohkuma M, Sugita T, Iwasaki W. Global deceleration of gene evolution following recent genome hybridizations in fungi. Genome Res 2016; 26:1081-90. [PMID: 27440871 PMCID: PMC4971771 DOI: 10.1101/gr.205948.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/17/2016] [Indexed: 11/27/2022]
Abstract
Polyploidization events such as whole-genome duplication and inter-species hybridization are major evolutionary forces that shape genomes. Although long-term effects of polyploidization have been well-characterized, early molecular evolutionary consequences of polyploidization remain largely unexplored. Here, we report the discovery of two recent and independent genome hybridizations within a single clade of a fungal genus, Trichosporon. Comparative genomic analyses revealed that redundant genes are experiencing decelerations, not accelerations, of evolutionary rates. We identified a relationship between gene conversion and decelerated evolution suggesting that gene conversion may improve the genome stability of young hybrids by restricting gene functional divergences. Furthermore, we detected large-scale gene losses from transcriptional and translational machineries that indicate a global compensatory mechanism against increased gene dosages. Overall, our findings illustrate counteracting mechanisms during an early phase of post-genome hybridization and fill a critical gap in existing theories on genome evolution.
Collapse
Affiliation(s)
- Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8568, Japan; Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
12
|
Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice. PLoS Genet 2016; 12:e1005891. [PMID: 26938775 PMCID: PMC4777540 DOI: 10.1371/journal.pgen.1005891] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/31/2016] [Indexed: 01/17/2023] Open
Abstract
Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones. Individual recognition via scent is critical for many aspects of behavior including parental care, competition, cooperation and mate choice. While animal scents can differ in a huge number of dimensions, recent work has shown that only some specialized semiochemicals in scent marks are behaviorally relevant for individual recognition. How is individuality in specialized semiochemical blends produced and maintained in populations? At the extremes, individuality may depend on either a plethora of semiochemical isoforms or on combinatorial variation in a small number of shared isoforms across individuals. Analyzing the major urinary protein (MUP) pheromone blends of a wild population of house mice, we find evidence in favor of a combinatorial diversity model for the production and maintenance of individuality. Balancing selection maintains MUP proteins at moderate frequencies in the population, though interactions with the pheromone receptors appear to limit the extent of pheromone diversity in the system. By contrast, differential transcription of proteins greatly increases individuality in pheromone blends with balancing selection maintaining diversity in promoter regions associated with gene expression patterns. Selection maintaining combinatorial diversity in a limited set of behaviorally important semiochemicals may be a widespread mechanism generating and maintaining individuality in scent across taxa.
Collapse
|
13
|
Dumont BL. Interlocus gene conversion explains at least 2.7% of single nucleotide variants in human segmental duplications. BMC Genomics 2015; 16:456. [PMID: 26077037 PMCID: PMC4467073 DOI: 10.1186/s12864-015-1681-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/01/2015] [Indexed: 01/24/2023] Open
Abstract
Background Interlocus gene conversion (IGC) is a recombination-based mechanism that results in the unidirectional transfer of short stretches of sequence between paralogous loci. Although IGC is a well-established mechanism of human disease, the extent to which this mutagenic process has shaped overall patterns of segregating variation in multi-copy regions of the human genome remains unknown. One expected manifestation of IGC in population genomic data is the presence of one-to-one paralogous SNPs that segregate identical alleles. Results Here, I use SNP genotype calls from the low-coverage phase 3 release of the 1000 Genomes Project to identify 15,790 parallel, shared SNPs in duplicated regions of the human genome. My approach for identifying these sites accounts for the potential redundancy of short read mapping in multi-copy genomic regions, thereby effectively eliminating false positive SNP calls arising from paralogous sequence variation. I demonstrate that independent mutation events to identical nucleotides at paralogous sites are not a significant source of shared polymorphisms in the human genome, consistent with the interpretation that these sites are the outcome of historical IGC events. These putative signals of IGC are enriched in genomic contexts previously associated with non-allelic homologous recombination, including clear signals in gene families that form tandem intra-chromosomal clusters. Conclusions Taken together, my analyses implicate IGC, not point mutation, as the mechanism generating at least 2.7 % of single nucleotide variants in duplicated regions of the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1681-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beth L Dumont
- Initiative in Biological Complexity, North Carolina State University, 112 Derieux Place, 3510 Thomas Hall, Campus Box 7614, Raleigh, NC, 27695-7614, USA.
| |
Collapse
|
14
|
Jouet A, McMullan M, van Oosterhout C. The effects of recombination, mutation and selection on the evolution of the Rp1 resistance genes in grasses. Mol Ecol 2015; 24:3077-92. [PMID: 25907026 DOI: 10.1111/mec.13213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 03/25/2015] [Accepted: 04/09/2015] [Indexed: 01/30/2023]
Abstract
Plant immune genes, or resistance genes, are involved in a co-evolutionary arms race with a diverse range of pathogens. In agronomically important grasses, such R genes have been extensively studied because of their role in pathogen resistance and in the breeding of resistant cultivars. In this study, we evaluate the importance of recombination, mutation and selection on the evolution of the R gene complex Rp1 of Sorghum, Triticum, Brachypodium, Oryza and Zea. Analyses show that recombination is widespread, and we detected 73 independent instances of sequence exchange, involving on average 1567 of 4692 nucleotides analysed (33.4%). We were able to date 24 interspecific recombination events and found that four occurred postspeciation, which suggests that genetic introgression took place between different grass species. Other interspecific events seemed to have been maintained over long evolutionary time, suggesting the presence of balancing selection. Significant positive selection (i.e. a relative excess of nonsynonymous substitutions (dN /dS >1)) was detected in 17-95 codons (0.42-2.02%). Recombination was significantly associated with areas with high levels of polymorphism but not with an elevated dN /dS ratio. Finally, phylogenetic analyses show that recombination results in a general overestimation of the divergence time (mean = 14.3%) and an alteration of the gene tree topology if the tree is not calibrated. Given that the statistical power to detect recombination is determined by the level of polymorphism of the amplicon as well as the number of sequences analysed, it is likely that many studies have underestimated the importance of recombination relative to the mutation rate.
Collapse
Affiliation(s)
- Agathe Jouet
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark McMullan
- The Genome Analysis Center, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
15
|
Andolfo G, Ruocco M, Di Donato A, Frusciante L, Lorito M, Scala F, Ercolano MR. Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC PLANT BIOLOGY 2015; 15:51. [PMID: 25850033 PMCID: PMC4358917 DOI: 10.1186/s12870-014-0323-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/06/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND ATP-binding cassette proteins have been recognized as playing a crucial role in the regulation of growth and resistance processes in all kingdoms of life. They have been deeply studied in vertebrates because of their role in drug resistance, but much less is known about ABC superfamily functions in plants. RESULTS Recently released plant genome sequences allowed us to identify 803 ABC transporters in four vascular plants (Oryza. sativa, Solanum lycopersicum, Solanum tuberosum and Vitis vinifera) and 76 transporters in the green alga Volvox carteri, by comparing them with those reannotated in Arabidopsis thaliana and the yeast Saccharomyces cerevisiae. Retrieved proteins have been phylogenetically analysed to infer orthologous relationships. Most orthologous relationships in the A, D, E and F subfamilies were found, and interesting expansions within the ABCG subfamily were observed and discussed. A high level of purifying selection is acting in the five ABC subfamilies A, B, C, D and E. However, evolutionary rates of recent duplicate genes could influence vascular plant genome diversification. The transcription profiles of ABC genes within tomato organs revealed a broad functional role for some transporters and a more specific activity for others, suggesting the presence of key ABC regulators in tomato. CONCLUSIONS The findings achieved in this work could contribute to address several biological questions concerning the evolution of the relationship between genomes of different species. Plant ABC protein inventories obtained could be a valuable tool both for basic and applied studies. Indeed, interpolation of the putative role of gene functions can accelerate the discovering of new ABC superfamily members.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Michelina Ruocco
- />CNR – Istituto per la Protezione Sostenibile delle Piante (IPSP-CNR), Portici, Italy
| | - Antimo Di Donato
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Luigi Frusciante
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Matteo Lorito
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Felice Scala
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Maria Raffaella Ercolano
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| |
Collapse
|
16
|
McGrath CL, Gout JF, Johri P, Doak TG, Lynch M. Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Res 2014; 24:1665-75. [PMID: 25085612 PMCID: PMC4199370 DOI: 10.1101/gr.173740.114] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Paramecium aurelia complex is a group of 15 species that share at least three past whole-genome duplications (WGDs). The macronuclear genome sequences of P. biaurelia and P. sexaurelia are presented and compared to the published sequence of P. tetraurelia. Levels of duplicate-gene retention from the recent WGD differ by >10% across species, with P. sexaurelia losing significantly more genes than P. biaurelia or P. tetraurelia. In addition, historically high rates of gene conversion have homogenized WGD paralogs, probably extending the paralogs’ lifetimes. The probability of duplicate retention is positively correlated with GC content and expression level; ribosomal proteins, transcription factors, and intracellular signaling proteins are overrepresented among maintained duplicates. Finally, multiple sources of evidence indicate that P. sexaurelia diverged from the two other lineages immediately following, or perhaps concurrent with, the recent WGD, with approximately half of gene losses between P. tetraurelia and P. sexaurelia representing divergent gene resolutions (i.e., silencing of alternative paralogs), as expected for random duplicate loss between these species. Additionally, though P. biaurelia and P. tetraurelia diverged from each other much later, there are still more than 100 cases of divergent resolution between these two species. Taken together, these results indicate that divergent resolution of duplicate genes between lineages acts to reinforce reproductive isolation between species in the Paramecium aurelia complex.
Collapse
Affiliation(s)
- Casey L McGrath
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Parul Johri
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA; National Center for Genome Analysis Support at Indiana University, Bloomington, Indiana 47408, USA
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA;
| |
Collapse
|
17
|
Self-incompatibility in Brassicaceae: identification and characterization of SRK-like sequences linked to the S-locus in the tribe Biscutelleae. G3-GENES GENOMES GENETICS 2014; 4:983-92. [PMID: 24939184 PMCID: PMC4065267 DOI: 10.1534/g3.114.010843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Self-incompatibility (SI) is a genetic system that prevents self-fertilization in many Angiosperms. Although plants from the Brassicaceae family present an apparently unique SI system that is ancestral to the family, investigations at the S-locus responsible for SI have been mostly limited to two distinct lineages (Brassica and Arabidopsis-Capsella, respectively). Here, we investigated SI in a third deep-branching lineage of Brassicaceae: the tribe Biscutelleae. By coupling sequencing of the SI gene responsible for pollen recognition (SRK) with phenotypic analyses based on controlled pollinations, we identified 20 SRK-like sequences functionally linked to 13 S-haplotypes in 21 individuals of Biscutella neustriaca and 220 seedlings. We found two genetic and phylogenetic features of SI in Biscutelleae that depart from patterns observed in the reference Arabidopsis clade: (1) SRK-like sequences cluster into two main phylogenetic lineages interspersed within the many SRK lineages of Arabidopsis; and (2) some SRK-like sequences are transmitted by linked pairs, suggesting local duplication within the S-locus. Strikingly, these features also were observed in the Brassica clade but probably evolved independently, as the two main SRK clusters in Biscutella are distinct from those in Brassica. In the light of our results and of what has been previously observed in other Brassicaceae, we discuss the ecological and evolutionary implications on SI plant populations of the high diversity and the complex dominance relationships we found at the S-locus in Biscutelleae.
Collapse
|
18
|
Dumont BL, Eichler EE. Signals of historical interlocus gene conversion in human segmental duplications. PLoS One 2013; 8:e75949. [PMID: 24124524 PMCID: PMC3790853 DOI: 10.1371/journal.pone.0075949] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/17/2013] [Indexed: 12/04/2022] Open
Abstract
Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC). Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i) a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii) the alignment-based method implemented in the GENECONV program. One-quarter (25.4%) of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.
Collapse
Affiliation(s)
- Beth L. Dumont
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Wang L, Si W, Yao Y, Tian D, Araki H, Yang S. Genome-wide survey of pseudogenes in 80 fully re-sequenced Arabidopsis thaliana accessions. PLoS One 2012; 7:e51769. [PMID: 23272162 PMCID: PMC3521719 DOI: 10.1371/journal.pone.0051769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Pseudogenes (Ψs), including processed and non-processed Ψs, are ubiquitous genetic elements derived from originally functional genes in all studied genomes within the three kingdoms of life. However, systematic surveys of non-processed Ψs utilizing genomic information from multiple samples within a species are still rare. Here a systematic comparative analysis was conducted of Ψs within 80 fully re-sequenced Arabidopsis thaliana accessions, and 7546 genes, representing ∼28% of the genomic annotated open reading frames (ORFs), were found with disruptive mutations in at least one accession. The distribution of these Ψs on chromosomes showed a significantly negative correlation between Ψs/ORFs and their local gene densities, suggesting a higher proportion of Ψs in gene desert regions, e.g. near centromeres. On the other hand, compared with the non-Ψ loci, even the intact coding sequences (CDSs) in the Ψ loci were found to have shorter CDS length, fewer exon number and lower GC content. In addition, a significant functional bias against the null hypothesis was detected in the Ψs mainly involved in responses to environmental stimuli and biotic stress as reported, suggesting that they are likely important for adaptive evolution to rapidly changing environments by pseudogenization to accumulate successive mutations.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Weina Si
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yongfang Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hitoshi Araki
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
- * E-mail: (SY); (HA)
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (SY); (HA)
| |
Collapse
|
20
|
Klitz W, Hedrick P, Louis EJ. New reservoirs of HLA alleles: pools of rare variants enhance immune defense. Trends Genet 2012; 28:480-6. [PMID: 22867968 DOI: 10.1016/j.tig.2012.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022]
Abstract
Highly polymorphic exons of the major histocompatibility complex (MHC, or HLA in humans) encode critical amino acids that bind foreign peptides. Recognition of the peptide-MHC complexes by T cells initiates the adaptive immune response. The particular structure of these exons facilitates gene conversion(GC) events, leading to the generation of new alleles. Estimates for allele creation and loss indicate that more than 10000 such alleles are circulating at low frequencies in human populations. Empirical sampling has affirmed this expectation. This suggests that the MHC loci have a system for moving valuable and often complex variants into adaptive service. Here, we argue that HLA loci carry many new mutant alleles prepared to assume epidemiologically meaningful roles when called on by selection provoked by exposure to new and evolving pathogens. Because new mutant alleles appear in a population at the lowest possible frequency (i.e., a single copy), they have typically been thought of as having little consequence. However, this large population of rare yet potentially valuable new alleles may contribute to pathogen defense.
Collapse
Affiliation(s)
- William Klitz
- School of Public Health, University of California, Berkeley, CA, USA.
| | | | | |
Collapse
|
21
|
Fan X, Sha LN, Zeng J, Kang HY, Zhang HQ, Wang XL, Zhang L, Yang RW, Ding CB, Zheng YL, Zhou YH. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae) and its diploid relatives. PLoS One 2012; 7:e31122. [PMID: 22363562 PMCID: PMC3282717 DOI: 10.1371/journal.pone.0031122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/03/2012] [Indexed: 01/31/2023] Open
Abstract
The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2) a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3) sweep event and population expansion might result in the difference in the dN/dS value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4) an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5) the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.
Collapse
Affiliation(s)
- Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Jian Zeng
- College of Resources and Environment, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Xiao-Li Wang
- Department of Biology and Science, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Li Zhang
- Department of Biology and Science, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Rui-Wu Yang
- Department of Biology and Science, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Chun-Bang Ding
- Department of Biology and Science, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People's Republic of China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Sichuan, People's Republic of China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, People's Republic of China
- * E-mail:
| |
Collapse
|
22
|
Llaurens V, McMullan M, van Oosterhout C. Cryptic MHC Polymorphism Revealed but Not Explained by Selection on the Class IIB Peptide-Binding Region. Mol Biol Evol 2012; 29:1631-44. [DOI: 10.1093/molbev/mss012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
23
|
Campo D, García-Vázquez E. Evolution in the block: common elements of 5S rDNA organization and evolutionary patterns in distant fish genera. Genome 2011; 55:33-44. [PMID: 22171996 DOI: 10.1139/g11-074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).
Collapse
Affiliation(s)
- Daniel Campo
- Departamento de Biologia Funcional, Universidad de Oviedo, Spain
| | | |
Collapse
|
24
|
Spurgin LG, van Oosterhout C, Illera JC, Bridgett S, Gharbi K, Emerson BC, Richardson DS. Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 2011; 20:5213-25. [PMID: 22106868 DOI: 10.1111/j.1365-294x.2011.05367.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang X, Wang L, Yuan Y, Tian D, Yang S. Rapid copy number expansion and recent recruitment of domains in S-receptor kinase-like genes contribute to the origin of self-incompatibility. FEBS J 2011; 278:4323-37. [DOI: 10.1111/j.1742-4658.2011.08349.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Paape T, Miyake T, Takebayashi N, Wolf D, Kohn JR. Evolutionary genetics of an S-like polymorphism in Papaveraceae with putative function in self-incompatibility. PLoS One 2011; 6:e23635. [PMID: 21912602 PMCID: PMC3166141 DOI: 10.1371/journal.pone.0023635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/21/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Papaver rhoeas possesses a gametophytic self-incompatibility (SI) system not homologous to any other SI mechanism characterized at the molecular level. Four previously published full length stigmatic S-alleles from the genus Papaver exhibited remarkable sequence divergence, but these studies failed to amplify additional S-alleles despite crossing evidence for more than 60 S-alleles in Papaver rhoeas alone. METHODOLOGY/PRINCIPAL FINDINGS Using RT-PCR we identified 87 unique putative stigmatic S-allele sequences from the Papaveraceae Argemone munita, Papaver mcconnellii, P. nudicuale, Platystemon californicus and Romneya coulteri. Hand pollinations among two full-sib families of both A. munita and P. californicus indicate a strong correlation between the putative S-genotype and observed incompatibility phenotype. However, we also found more than two S-like sequences in some individuals of A. munita and P. californicus, with two products co-segregating in both full-sib families of P. californicus. Pairwise sequence divergence estimates within and among taxa show Papaver stigmatic S-alleles to be the most variable with lower divergence among putative S-alleles from other Papaveraceae. Genealogical analysis indicates little shared ancestral polymorphism among S-like sequences from different genera. Lack of shared ancestral polymorphism could be due to long divergence times among genera studied, reduced levels of balancing selection if some or all S-like sequences do not function in incompatibility, population bottlenecks, or different levels of recombination among taxa. Preliminary estimates of positive selection find many sites under selective constraint with a few undergoing positive selection, suggesting that self-recognition may depend on amino acid substitutions at only a few sites. CONCLUSIONS/SIGNIFICANCE Because of the strong correlation between genotype and SI phenotype, sequences reported here represent either functional stylar S-alleles, tightly linked paralogs of the S-locus or a combination of both. The considerable complexity revealed in this study shows we have much to learn about the evolutionary dynamics of self-incompatibility systems.
Collapse
Affiliation(s)
- Timothy Paape
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota, United States of America.
| | | | | | | | | |
Collapse
|
27
|
Fischer I, Camus-Kulandaivelu L, Allal F, Stephan W. Adaptation to drought in two wild tomato species: the evolution of the Asr gene family. THE NEW PHYTOLOGIST 2011; 190:1032-1044. [PMID: 21323928 DOI: 10.1111/j.1469-8137.2011.03648.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wild tomato species are a valuable system in which to study local adaptation to drought: they grow in diverse environments ranging from mesic to extremely arid conditions. Here, we investigate the evolution of members of the Asr (ABA/water stress/ripening induced) gene family, which have been reported to be involved in the water stress response. We analysed molecular variation in the Asr gene family in populations of two closely related species, Solanum chilense and Solanum peruvianum. We concluded that Asr1 has evolved under strong purifying selection. In contrast to previous reports, we did not detect evidence for positive selection at Asr2. However, Asr4 shows patterns consistent with local adaptation in an S. chilense population that lives in an extremely dry environment. We also discovered a new member of the gene family, Asr5. Our results show that the Asr genes constitute a dynamic gene family and provide an excellent example of tandemly arrayed genes that are of importance in adaptation. Taking the potential distribution of the species into account, it appears that S. peruvianum can cope with a great variety of environmental conditions without undergoing local adaptation, whereas S. chilense undergoes local adaptation more frequently.
Collapse
Affiliation(s)
- Iris Fischer
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Létizia Camus-Kulandaivelu
- CIRAD, Biological System Department - Research Unit 39 'Genetic Diversity and Breeding of Forest Tree Species', Campus international de Baillarguet TA A-39/C, 34398 Montpellier Cedex 5, France
| | - François Allal
- CIRAD, Biological System Department - Research Unit 39 'Genetic Diversity and Breeding of Forest Tree Species', Campus international de Baillarguet TA A-39/C, 34398 Montpellier Cedex 5, France
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
28
|
The Rate and Tract Length of Gene Conversion between Duplicated Genes. Genes (Basel) 2011; 2:313-31. [PMID: 24710193 PMCID: PMC3924818 DOI: 10.3390/genes2020313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/26/2022] Open
Abstract
Interlocus gene conversion occurs such that a certain length of DNA fragment is non-reciprocally transferred (copied and pasted) between paralogous regions. To understand the rate and tract length of gene conversion, there are two major approaches. One is based on mutation-accumulation experiments, and the other uses natural DNA sequence variation. In this review, we overview the two major approaches and discuss their advantages and disadvantages. In addition, to demonstrate the importance of statistical analysis of empirical and evolutionary data for estimating tract length, we apply a maximum likelihood method to several data sets.
Collapse
|
29
|
Fawcett JA, Innan H. Neutral and non-neutral evolution of duplicated genes with gene conversion. Genes (Basel) 2011; 2:191-209. [PMID: 24710144 PMCID: PMC3924837 DOI: 10.3390/genes2010191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/20/2011] [Accepted: 02/12/2011] [Indexed: 01/11/2023] Open
Abstract
Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| | - Hideki Innan
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
30
|
Rosengarten RD, Moreno MA, Lakkis FG, Buss LW, Dellaporta SL. Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus. Mol Biol Evol 2011; 28:933-47. [PMID: 20966116 PMCID: PMC3108555 DOI: 10.1093/molbev/msq282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydractinia symbiolongicarpus, a colonial cnidarian (class Hydrozoa) epibiont on hermit crab shells, is well established as a model for genetic studies of allorecognition. Recently, two linked loci, allorecognition (alr) 1 and alr2, were identified by positional cloning and shown to be major determinants of histocompatibility. Both genes encode putative transmembrane proteins with hypervariable extracellular domains similar to immunoglobulin (Ig)-like domains. We sought to characterize the naturally occurring variation at the alr2 locus and to understand the origins of this molecular diversity. We examined full-length cDNA coding sequences derived from a sample of 21 field-collected colonies, including 18 chosen haphazardly and two laboratory reference strains. Of the 35 alleles recovered from the 18 unbiased samples, 34 encoded unique gene products. We identified two distinct structural classes of alleles that varied over a large central region of the gene but both possessed highly polymorphic extracellular domains I, similar to an Ig-like V-set domain. The discovery of structurally chimeric alleles provided evidence that interallelic recombination may contribute to alr2 variation. Comparisons of the genomic region encompassing alr2 from two field-derived haplotypes and one laboratory reference sequence revealed a history of structural variation at the haplotype level as well. Maintenance of large numbers of equally rare alleles in a natural population is a hallmark of negative frequency-dependent selection and is expected to produce high levels of heterozygosity. The observed alr2 allelic diversity is comparable with that found in immune recognition molecules such as human leukocyte antigens, B cell Igs, or natural killer cell Ig-like receptors.
Collapse
Affiliation(s)
- Rafael D Rosengarten
- Department of Molecular, Cellular and Developmental Biology, Yale University, Yale, CN, USA.
| | | | | | | | | |
Collapse
|
31
|
Genetic diversification by somatic gene conversion. Genes (Basel) 2011; 2:48-58. [PMID: 24710138 PMCID: PMC3924843 DOI: 10.3390/genes2010048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 02/06/2023] Open
Abstract
Gene conversion is a type of homologous recombination that leads to transfer of genetic information among homologous DNA sequences. It can be categorized into two classes: homogenizing and diversifying gene conversions. The former class results in neutralization and homogenization of any sequence variation among repetitive DNA sequences, and thus is important for concerted evolution. On the other hand, the latter functions to increase genetic diversity at the recombination-recipient loci. Thus, these two types of gene conversion play opposite roles in genome dynamics. Diversifying gene conversion is observed in the immunoglobulin (Ig) loci of chicken, rabbit, and other animals, and directs the diversification of Ig variable segments and acquisition of functional Ig repertoires. This type of gene conversion is initiated by the biased occurrence of recombination initiation events (e.g., DNA single- or double-strand breaks) on the recipient DNA site followed by unidirectional homologous recombination from multiple template sequences. Transcription and DNA accessibility is also important in the regulation of biased recombination initiation. In this review, we will discuss the biological significance and possible mechanisms of diversifying gene conversion in somatic cells of eukaryotes.
Collapse
|
32
|
Bosković RI, Sargent DJ, Tobutt KR. Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:755-63. [PMID: 20008462 PMCID: PMC2814107 DOI: 10.1093/jxb/erp340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The self-incompatibility mechanism that reduces inbreeding in many plants of the Rosaceae is attributed to a multi-allelic S locus which, in the Prunoideae and Maloideae subfamilies, comprises two complementary genes, a stylar-expressed S-RNase and a pollen-expressed SFB. To elucidate incompatibility in the subfamily Rosoideae, stylar-specific RNases and self-(in)compatibility status were analysed in various diploid strawberries, especially Fragaria nubicola and F. viridis, both self-incompatible, and F. vesca, self-compatible, and in various progenies derived from them. Unexpectedly, two unlinked RNase loci, S and T, were found, encoding peptides distinct from Prunoideae and Maloideae S-RNases; the presence of a single active allele at either is sufficient to confer self-incompatibility. By contrast, in diploid Maloideae and Prunoideae a single locus encodes S-RNases that share several conserved regions and two active alleles are required for self-incompatibility. Our evidence implicates the S locus in unilateral inter-specific incompatibility and shows that S and T RNases can, remarkably, confer not only allele-specific rejection of cognate pollen but also unspecific rejection of Sn Tn pollen, where n indicates a null allele, consistent with the the presence of the pollen component, SFB, activating the cognitive function of these RNases. Comparison of relevant linkage groups between Fragaria and Prunus suggests that Prunus S-RNases, unique in having two introns, may have resulted from gene conversion in an ancestor of Prunus. In addition, it is shown that there is a non-S locus that is essential for self-incompatibility in diploid Fragaria.
Collapse
Affiliation(s)
- Radovan I Bosković
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK.
| | | | | |
Collapse
|
33
|
The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 2010; 11:97-108. [PMID: 20051986 DOI: 10.1038/nrg2689] [Citation(s) in RCA: 904] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene duplications and their subsequent divergence play an important part in the evolution of novel gene functions. Several models for the emergence, maintenance and evolution of gene copies have been proposed. However, a clear consensus on how gene duplications are fixed and maintained in genomes is lacking. Here, we present a comprehensive classification of the models that are relevant to all stages of the evolution of gene duplications. Each model predicts a unique combination of evolutionary dynamics and functional properties. Setting out these predictions is an important step towards identifying the main mechanisms that are involved in the evolution of gene duplications.
Collapse
|
34
|
Generation of antigenic variants via gene conversion: Evidence for recombination fitness selection at the locus level in Anaplasma marginale. Infect Immun 2009; 77:3181-7. [PMID: 19487473 PMCID: PMC2715667 DOI: 10.1128/iai.00348-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multiple bacterial and protozoal pathogens utilize gene conversion to generate antigenically variant surface proteins to evade immune clearance and establish persistent infection. Both the donor alleles that encode the variants following recombination into an expression site and the donor loci themselves are under evolutionary selection: the alleles that encode variants that are sufficiently antigenically unique yet retain growth fitness and the loci that allow efficient recombination. We examined allelic usage in generating Anaplasma marginale variants during in vivo infection in the mammalian reservoir host and identified preferential usage of specific alleles in the absence of immune selective pressure, consistent with certain individual alleles having a fitness advantage for in vivo growth. In contrast, the loci themselves appear to have been essentially equally selected for donor function in gene conversion with no significant effect of locus position relative to the expression site or origin of replication. This pattern of preferential allelic usage but lack of locus effect was observed independently for Msp2 and Msp3 variants, both generated by gene conversion. Furthermore, there was no locus effect observed when a single locus contained both msp2 and msp3 alleles in a tail-to-tail orientation flanked by a repeat. These experimental results support the hypothesis that predominance of specific variants reflects in vivo fitness as determined by the encoding allele, independent of locus structure and chromosomal position. Identification of highly fit variants provides targets for vaccines that will prevent the high-level bacteremia associated with acute disease.
Collapse
|
35
|
Population genetic models of duplicated genes. Genetica 2009; 137:19-37. [PMID: 19266289 DOI: 10.1007/s10709-009-9355-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/28/2008] [Indexed: 01/08/2023]
Abstract
Various population genetic models of duplicated genes are introduced. The problems covered in this review include the fixation process of a duplicated copy, copy number polymorphism, the fates of duplicated genes and single nucleotide polymorphism in duplicated genes. Because of increasing evidence for concerted evolution by gene conversion, this review introduces recently developed gene conversion models. In the first half, models assuming independent evolution of duplicated genes are introduced, and then the effect of gene conversion is considered in the second half.
Collapse
|