1
|
Almeida SM, Ivantsiv S, Niibori R, Dunham WH, Green BA, Zhao L, Gingras AC, Cordes SP. An interaction between OTULIN and SCRIB uncovers roles for linear ubiquitination in planar cell polarity. Dis Model Mech 2023; 16:dmm049762. [PMID: 37589075 PMCID: PMC10445738 DOI: 10.1242/dmm.049762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
Planar cell polarity (PCP) plays critical roles in developmental and homeostatic processes. Membrane presentation of PCP complexes containing Van Gogh-like (VANGL) transmembrane proteins is central to PCP and can be directed by the scaffold protein scribble (SCRIB). The role atypical linear ubiquitin (Met1-Ub) chains might play in PCP is unknown. Here, HEK293 cell-based interactomic analyses of the Met1-Ub deubiquitinase OTULIN revealed that OTULIN can interact with SCRIB. Moreover, Met1-Ub chains associated with VANGL2 and PRICKLE1, but not SCRIB, can direct VANGL2 surface presentation. Mouse embryos lacking Otulin showed variable neural tube malformations, including rare open neural tubes, a deficit associated with PCP disruption in mice. In Madin-Darby canine kidney cells, in which the enrichment of VANGL2-GFP proteins at cell-cell contacts represents activated PCP complexes, endogenous OTULIN was recruited to these sites. In the human MDA-MB-231 breast cancer cell model, OTULIN loss caused deficits in Wnt5a-induced filopodia extension and trafficking of transfected HA-VANGL2. Taken together, these findings support a role for linear (de)ubiquitination in PCP signaling. The association of Met1-Ub chains with PCP complex components offers new opportunities for integrating PCP signaling with OTULIN-dependent immune and inflammatory pathways.
Collapse
Affiliation(s)
- Stephanie M. Almeida
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofiia Ivantsiv
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Wade H. Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brooke A. Green
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liang Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabine P. Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Brown FN, Iwasawa E, Shula C, Fugate EM, Lindquist DM, Mangano FT, Goto J. Early postnatal microglial ablation in the Ccdc39 mouse model reveals adverse effects on brain development and in neonatal hydrocephalus. Fluids Barriers CNS 2023; 20:42. [PMID: 37296418 DOI: 10.1186/s12987-023-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Neonatal hydrocephalus is a congenital abnormality resulting in an inflammatory response and microglial cell activation both clinically and in animal models. Previously, we reported a mutation in a motile cilia gene, Ccdc39 that develops neonatal progressive hydrocephalus (prh) with inflammatory microglia. We discovered significantly increased amoeboid-shaped activated microglia in periventricular white matter edema, reduced mature homeostatic microglia in grey matter, and reduced myelination in the prh model. Recently, the role of microglia in animal models of adult brain disorders was examined using cell type-specific ablation by colony-stimulating factor-1 receptor (CSF1R) inhibitor, however, little information exists regarding the role of microglia in neonatal brain disorders such as hydrocephalus. Therefore, we aim to see if ablating pro-inflammatory microglia, and thus suppressing the inflammatory response, in a neonatal hydrocephalic mouse line could have beneficial effects. METHODS In this study, Plexxikon 5622 (PLX5622), a CSF1R inhibitor, was subcutaneously administered to wild-type (WT) and prh mutant mice daily from postnatal day (P) 3 to P7. MRI-estimated brain volume was compared with untreated WT and prh mutants P7-9 and immunohistochemistry of the brain sections was performed at P8 and P18-21. RESULTS PLX5622 injections successfully ablated IBA1-positive microglia in both the WT and prh mutants at P8. Of the microglia that are resistant to PLX5622 treatment, there was a higher percentage of amoeboid-shaped microglia, identified by morphology with retracted processes. In PLX-treated prh mutants, there was increased ventriculomegaly and no change in the total brain volume was observed. Also, the PLX5622 treatment significantly reduced myelination in WT mice at P8, although this was recovered after full microglia repopulation by P20. Microglia repopulation in the mutants worsened hypomyelination at P20. CONCLUSIONS Microglia ablation in the neonatal hydrocephalic brain does not improve white matter edema, and actually worsens ventricular enlargement and hypomyelination, suggesting critical functions of homeostatic ramified microglia to better improve brain development with neonatal hydrocephalus. Future studies with detailed examination of microglial development and status may provide a clarification of the need for microglia in neonatal brain development.
Collapse
Affiliation(s)
- Farrah N Brown
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth M Fugate
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Diana M Lindquist
- Department of Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Jamet S, Ha S, Ho TH, Houghtaling S, Timms A, Yu K, Paquette A, Maga AM, Greene NDE, Beier DR. The arginine methyltransferase Carm1 is necessary for heart development. G3 GENES|GENOMES|GENETICS 2022; 12:6613934. [PMID: 35736367 PMCID: PMC9339313 DOI: 10.1093/g3journal/jkac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
To discover genes implicated in human congenital disorders, we performed ENU mutagenesis in the mouse and screened for mutations affecting embryonic development. In this work, we report defects of heart development in mice homozygous for a mutation of coactivator-associated arginine methyltransferase 1 (Carm1). While Carm1 has been extensively studied, it has never been previously associated with a role in heart development. Phenotype analysis combining histology and microcomputed tomography imaging shows a range of cardiac defects. Most notably, many affected midgestation embryos appear to have cardiac rupture and hemorrhaging in the thorax. Mice that survive to late gestation show a variety of cardiac defects, including ventricular septal defects, double outlet right ventricle, and persistent truncus arteriosus. Transcriptome analyses of the mutant embryos by mRNA-seq reveal the perturbation of several genes involved in cardiac morphogenesis and muscle development and function. In addition, we observe the mislocalization of cardiac neural crest cells at E12.5 in the outflow tract. The cardiac phenotype of Carm1 mutant embryos is similar to that of Pax3 null mutants, and PAX3 is a putative target of CARM1. However, our analysis does not support the hypothesis that developmental defects in Carm1 mutant embryos are primarily due to a functional defect of PAX3.
Collapse
Affiliation(s)
- Sophie Jamet
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Seungshin Ha
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Tzu-Hua Ho
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Kai Yu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Alison Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Ali Murat Maga
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Nicholas D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH, UK
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| |
Collapse
|
4
|
Iwasawa E, Brown FN, Shula C, Kahn F, Lee SH, Berta T, Ladle DR, Campbell K, Mangano FT, Goto J. The Anti-Inflammatory Agent Bindarit Attenuates the Impairment of Neural Development through Suppression of Microglial Activation in a Neonatal Hydrocephalus Mouse Model. J Neurosci 2022; 42:1820-1844. [PMID: 34992132 PMCID: PMC8896558 DOI: 10.1523/jneurosci.1160-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Neonatal hydrocephalus presents with various degrees of neuroinflammation and long-term neurologic deficits in surgically treated patients, provoking a need for additional medical treatment. We previously reported elevated neuroinflammation and severe periventricular white matter damage in the progressive hydrocephalus (prh) mutant which contains a point mutation in the Ccdc39 gene, causing loss of cilia-mediated unidirectional CSF flow. In this study, we identified cortical neuropil maturation defects such as impaired excitatory synapse maturation and loss of homeostatic microglia, and swimming locomotor defects in early postnatal prh mutant mice. Strikingly, systemic application of the anti-inflammatory small molecule bindarit significantly supports healthy postnatal cerebral cortical development in the prh mutant. While bindarit only mildly reduced the ventricular volume, it significantly improved the edematous appearance and myelination of the corpus callosum. Moreover, the treatment attenuated thinning in cortical Layers II-IV, excitatory synapse formation, and interneuron morphogenesis, by supporting the ramified-shaped homeostatic microglia from excessive cell death. Also, the therapeutic effect led to the alleviation of a spastic locomotor phenotype of the mutant. We found that microglia, but not peripheral monocytes, contribute to amoeboid-shaped activated myeloid cells in prh mutants' corpus callosum and the proinflammatory cytokines expression. Bindarit blocks nuclear factor (NF)-kB activation and its downstream proinflammatory cytokines, including monocyte chemoattractant protein-1, in the prh mutant. Collectively, we revealed that amelioration of neuroinflammation is crucial for white matter and neuronal maturation in neonatal hydrocephalus. Future studies of bindarit treatment combined with CSF diversion surgery may provide long-term benefits supporting neuronal development in neonatal hydrocephalus.SIGNIFICANCE STATEMENT In neonatal hydrocephalus, little is known about the signaling cascades of neuroinflammation or the impact of such inflammatory insults on neural cell development within the perinatal cerebral cortex. Here, we report that proinflammatory activation of myeloid cells, the majority of which are derived from microglia, impairs periventricular myelination and cortical neuronal maturation using the mouse prh genetic model of neonatal hydrocephalus. Administration of bindarit, an anti-inflammatory small molecule that blocks nuclear factor (NF)-kB activation, restored the cortical thinning and synaptic maturation defects in the prh mutant brain through suppression of microglial activation. These data indicate the potential therapeutic use of anti-inflammatory reagents targeting neuroinflammation in the treatment of neonatal hydrocephalus.
Collapse
Affiliation(s)
- Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
| | - Farrah N Brown
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
| | - Fatima Kahn
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, 45242
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, 45242
| | - David R Ladle
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, 45435
| | - Kenneth Campbell
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45242
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45242
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45242
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45242
| |
Collapse
|
5
|
A Novel Mutation in Cse1l Disrupts Brain and Eye Development with Specific Effects on Pax6 Expression. J Dev Biol 2021; 9:jdb9030027. [PMID: 34287339 PMCID: PMC8293161 DOI: 10.3390/jdb9030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Forward genetics in the mouse continues to be a useful and unbiased approach to identifying new genes and alleles with previously unappreciated roles in mammalian development and disease. Here, we report a new mouse allele of Cse1l that was recovered from an ENU mutagenesis screen. Embryos homozygous for the anteater allele of Cse1l display a number of variable phenotypes, with craniofacial and ocular malformations being the most obvious. We provide evidence that Cse1l is the causal gene through complementation with a novel null allele of Cse1l generated by CRISPR-Cas9 editing. While the variability in the anteater phenotype was high enough to preclude a detailed molecular analysis, we demonstrate a very penetrant reduction in Pax6 levels in the developing eye along with significant ocular developmental phenotypes. The eye gene discovery tool iSyTE shows Cse1l to be significantly expressed in the lens from early eye development stages in embryos through adulthood. Cse1l has not previously been shown to be required for organogenesis as homozygosity for a null allele results in very early lethality. Future detailed studies of Cse1l function in craniofacial and neural development will be best served with a conditional allele to circumvent the variable phenotypes we report here. We suggest that human next-generation (whole genome or exome) sequencing studies yielding variants of unknown significance in CSE1L could consider these findings as part of variant analysis.
Collapse
|
6
|
Structural basis of the human Scribble-Vangl2 association in health and disease. Biochem J 2021; 478:1321-1332. [PMID: 33684218 PMCID: PMC8038854 DOI: 10.1042/bcj20200816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023]
Abstract
Scribble is a critical cell polarity regulator that has been shown to work as either an oncogene or tumor suppressor in a context dependent manner, and also impacts cell migration, tissue architecture and immunity. Mutations in Scribble lead to neural tube defects in mice and humans, which has been attributed to a loss of interaction with the planar cell polarity regulator Vangl2. We show that the Scribble PDZ domains 1, 2 and 3 are able to interact with the C-terminal PDZ binding motif of Vangl2 and have now determined crystal structures of these Scribble PDZ domains bound to the Vangl2 peptide. Mapping of mammalian neural tube defect mutations reveal that mutations located distal to the canonical PDZ domain ligand binding groove can not only ablate binding to Vangl2 but also disrupt binding to multiple other signaling regulators. Our findings suggest that PDZ-associated neural tube defect mutations in Scribble may not simply act in a Vangl2 dependent manner but as broad-spectrum loss of function mutants by disrupting the global Scribble-mediated interaction network.
Collapse
|
7
|
In Search of Molecular Markers for Cerebellar Neurons. Int J Mol Sci 2021; 22:ijms22041850. [PMID: 33673348 PMCID: PMC7918299 DOI: 10.3390/ijms22041850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.
Collapse
|
8
|
Novel Mutations in CLPP, LARS2, CDH23, and COL4A5 Identified in Familial Cases of Prelingual Hearing Loss. Genes (Basel) 2020; 11:genes11090978. [PMID: 32842620 PMCID: PMC7564084 DOI: 10.3390/genes11090978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
We report the underlying genetic causes of prelingual hearing loss (HL) segregating in eight large consanguineous families, ascertained from the Punjab province of Pakistan. Exome sequencing followed by segregation analysis revealed seven potentially pathogenic variants, including four novel alleles c.257G>A, c.6083A>C, c.89A>G, and c.1249A>G of CLPP, CDH23, COL4A5, and LARS2, respectively. We also identified three previously reported HL-causing variants (c.4528C>T, c.35delG, and c.1219T>C) of MYO15A, GJB2, and TMPRSS3 segregating in four families. All identified variants were either absent or had very low frequencies in the control databases. Our in silico analyses and 3-dimensional (3D) molecular modeling support the deleterious impact of these variants on the encoded proteins. Variants identified in MYO15A, GJB2, TMPRSS3, and CDH23 were classified as “pathogenic” or “likely pathogenic”, while the variants in CLPP and LARS2 fall in the category of “uncertain significance” based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant pathogenicity guidelines. This paper highlights the genetic diversity of hearing disorders in the Pakistani population and reports the identification of four novel mutations in four HL families.
Collapse
|
9
|
Goulding DS, Vogel RC, Pandya CD, Shula C, Gensel JC, Mangano FT, Goto J, Miller BA. Neonatal hydrocephalus leads to white matter neuroinflammation and injury in the corpus callosum of Ccdc39 hydrocephalic mice. J Neurosurg Pediatr 2020; 25:476-483. [PMID: 32032950 PMCID: PMC7415550 DOI: 10.3171/2019.12.peds19625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to determine if hydrocephalus caused a proinflammatory state within white matter as is seen in many other forms of neonatal brain injury. Common causes of hydrocephalus (such as trauma, infection, and hemorrhage) are inflammatory insults themselves and therefore confound understanding of how hydrocephalus itself affects neuroinflammation. Recently, a novel animal model of hydrocephalus due to a genetic mutation in the Ccdc39 gene has been developed in mice. In this model, ciliary dysfunction leads to early-onset ventriculomegaly, astrogliosis, and reduced myelination. Because this model of hydrocephalus is not caused by an antecedent proinflammatory insult, it was utilized to study the effect of hydrocephalus on inflammation within the white matter of the corpus callosum. METHODS A Meso Scale Discovery assay was used to measure levels of proinflammatory cytokines in whole brain from animals with and without hydrocephalus. Immunohistochemistry was used to measure macrophage activation and NG2 expression within the white matter of the corpus callosum in animals with and without hydrocephalus. RESULTS In this model of hydrocephalus, levels of cytokines throughout the brain revealed a more robust increase in classic proinflammatory cytokines (interleukin [IL]-1β, CXCL1) than in immunomodulatory cytokines (IL-10). Increased numbers of macrophages were found within the corpus callosum. These macrophages were polarized toward a proinflammatory phenotype as assessed by higher levels of CD86, a marker of proinflammatory macrophages, compared to CD206, a marker for antiinflammatory macrophages. There was extensive structural damage to the corpus callosum of animals with hydrocephalus, and an increase in NG2-positive cells. CONCLUSIONS Hydrocephalus without an antecedent proinflammatory insult induces inflammation and tissue injury in white matter. Future studies with this model will be useful to better understand the effects of hydrocephalus on neuroinflammation and progenitor cell development. Antiinflammatory therapy for diseases that cause hydrocephalus may be a powerful strategy to reduce tissue damage.
Collapse
Affiliation(s)
- Danielle S. Goulding
- Department of Neurosurgery, University of Kentucky,
Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
| | - R. Caleb Vogel
- Department of Neurosurgery, University of Kentucky,
Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
| | - Chirayu D. Pandya
- Department of Neurosurgery, University of Kentucky,
Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
- Department of Physiology, University of Kentucky,
Lexington, Kentucky
| | - Francesco T. Mangano
- Division of Pediatric Neurosurgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Brandon A. Miller
- Department of Neurosurgery, University of Kentucky,
Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of
Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
11
|
Emmert AS, Iwasawa E, Shula C, Schultz P, Lindquist D, Dunn RS, Fugate EM, Hu YC, Mangano FT, Goto J. Impaired neural differentiation and glymphatic CSF flow in the Ccdc39 rat model of neonatal hydrocephalus: genetic interaction with L1cam. Dis Model Mech 2019; 12:12/11/dmm040972. [PMID: 31771992 PMCID: PMC6898999 DOI: 10.1242/dmm.040972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
Neonatal hydrocephalus affects about one child per 1000 births and is a major congenital brain abnormality. We previously discovered a gene mutation within the coiled-coil domain-containing 39 (Ccdc39) gene, which causes the progressive hydrocephalus (prh) phenotype in mice due to lack of ependymal-cilia-mediated cerebrospinal fluid (CSF) flow. In this study, we used CRISPR/Cas9 to introduce the Ccdc39 gene mutation into rats, which are more suitable for imaging and surgical experiments. The Ccdc39prh/prh mutants exhibited mild ventriculomegaly at postnatal day (P)5 that progressed into severe hydrocephalus by P11 (P<0.001). After P11, macrophage and neutrophil invasion along with subarachnoid hemorrhage were observed in mutant brains showing reduced neurofilament density, hypomyelination and increased cell death signals compared with wild-type brains. Significantly more macrophages entered the brain parenchyma at P5 before hemorrhaging was noted and increased expression of a pro-inflammatory factor (monocyte chemoattractant protein-1) was found in the cortical neural and endothelial cells in the mutant brains at P11. Glymphatic-mediated CSF circulation was progressively impaired along the middle cerebral artery from P11 as mutants developed severe hydrocephalus (P<0.001). In addition, Ccdc39prh/prh mutants with L1 cell adhesion molecule (L1cam) gene mutation, which causes X-linked human congenital hydrocephalus, showed an accelerated early hydrocephalus phenotype (P<0.05-0.01). Our findings in Ccdc39prh/prh mutant rats demonstrate a possible causal role of neuroinflammation in neonatal hydrocephalus development, which involves impaired cortical development and glymphatic CSF flow. Improved understanding of inflammatory responses and the glymphatic system in neonatal hydrocephalus could lead to new therapeutic strategies for this condition. This article has an associated First Person interview with the joint first authors of the paper. Summary: Glymphatic CSF circulation and development of the cerebral cortex are impaired in our new genetic rat model of neonatal hydrocephalus with the onset of parenchymal inflammation and hemorrhage.
Collapse
Affiliation(s)
- A Scott Emmert
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eri Iwasawa
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Preston Schultz
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Diana Lindquist
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - R Scott Dunn
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth M Fugate
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Suzuki A, Yoshioka H, Summakia D, Desai NG, Jun G, Jia P, Loose DS, Ogata K, Gajera MV, Zhao Z, Iwata J. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse. BMC Genomics 2019; 20:852. [PMID: 31727022 PMCID: PMC6854646 DOI: 10.1186/s12864-019-6238-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cleft lip (CL), one of the most common congenital birth defects, shows considerable geographic and ethnic variation, with contribution of both genetic and environmental factors. Mouse genetic studies have identified several CL-associated genes. However, it remains elusive how these CL-associated genes are regulated and involved in CL. Environmental factors may regulate these genes at the post-transcriptional level through the regulation of non-coding microRNAs (miRNAs). In this study, we sought to identify miRNAs associated with CL in mice. Results Through a systematic literature review and a Mouse Genome Informatics (MGI) database search, we identified 55 genes that were associated with CL in mice. Subsequent bioinformatic analysis of these genes predicted that a total of 33 miRNAs target multiple CL-associated genes, with 20 CL-associated genes being potentially regulated by multiple miRNAs. To experimentally validate miRNA function in cell proliferation, we conducted cell proliferation/viability assays for the selected five candidate miRNAs (miR-124-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7d-5p). Overexpression of miR-124-3p, but not of the others, inhibited cell proliferation through suppression of CL-associated genes in cultured mouse embryonic lip mesenchymal cells (MELM cells) isolated from the developing mouse lip region. By contrast, miR-124-3p knockdown had no effect on MELM cell proliferation. This miRNA-gene regulatory mechanism was mostly conserved in O9–1 cells, an established cranial neural crest cell line. Expression of miR-124-3p was low in the maxillary processes at E10.5, when lip mesenchymal cells proliferate, whereas it was greatly increased at later developmental stages, suggesting that miR-124-3p expression is suppressed during the proliferation phase in normal palate development. Conclusions Our findings indicate that upregulated miR-124-3p inhibits cell proliferation in cultured lip cells through suppression of CL-associated genes. These results will have a significant impact, not only on our knowledge about lip morphogenesis, but also on the development of clinical approaches for the diagnosis and prevention of CL.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dima Summakia
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA
| | - Neha G Desai
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David S Loose
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona V Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA. .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
13
|
Bittermann E, Abdelhamed Z, Liegel RP, Menke C, Timms A, Beier DR, Stottmann RW. Differential requirements of tubulin genes in mammalian forebrain development. PLoS Genet 2019; 15:e1008243. [PMID: 31386652 PMCID: PMC6697361 DOI: 10.1371/journal.pgen.1008243] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/16/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
Tubulin genes encode a series of homologous proteins used to construct microtubules which are essential for multiple cellular processes. Neural development is particularly reliant on functional microtubule structures. Tubulin genes comprise a large family of genes with very high sequence similarity between multiple family members. Human genetics has demonstrated that a large spectrum of cortical malformations are associated with de novo heterozygous mutations in tubulin genes. However, the absolute requirement for many of these genes in development and disease has not been previously tested in genetic loss of function models. Here we directly test the requirement for Tuba1a, Tubb2a and Tubb2b in the mouse by deleting each gene individually using CRISPR-Cas9 genome editing. We show that loss of Tubb2a or Tubb2b does not impair survival but does lead to relatively mild cortical malformation phenotypes. In contrast, loss of Tuba1a is perinatal lethal and leads to significant forebrain dysmorphology. We also present a novel mouse ENU allele of Tuba1a with phenotypes similar to the null allele. This demonstrates the requirements for each of the tubulin genes and levels of functional redundancy are quite different throughout the gene family. The ability of the mouse to survive in the absence of some tubulin genes known to cause disease in humans suggests future intervention strategies for these devastating tubulinopathy diseases.
Collapse
Affiliation(s)
- Elizabeth Bittermann
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Zakia Abdelhamed
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Anatomy and Embryology, Faculty of Medicine (Girl’s Section), Al-Azhar University, Cairo, Egypt
| | - Ryan P. Liegel
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Chelsea Menke
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - David R. Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington Medical School, Seattle, Washington, United States of America
| | - Rolf W. Stottmann
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
14
|
Lukacs M, Roberts T, Chatuverdi P, Stottmann RW. Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival. eLife 2019; 8:45248. [PMID: 31232685 PMCID: PMC6611694 DOI: 10.7554/elife.45248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchors attach nearly 150 proteins to the cell membrane. Patients with pathogenic variants in GPI biosynthesis genes develop diverse phenotypes including seizures, dysmorphic facial features and cleft palate through an unknown mechanism. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypo-morphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2), a component of the GPI biosynthesis pathway. The Clpex mutation decreases surface GPI expression. Surprisingly, Pgap2 showed tissue-specific expression with enrichment in the brain and face. We found the Clpex phenotype is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium. We showed folinic acid supplementation in utero can partially rescue the cleft lip phenotype. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency. These mutants developed median cleft lip and palate demonstrating a previously undocumented cell autonomous role for GPI biosynthesis in NCC development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Tia Roberts
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Praneet Chatuverdi
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
15
|
Abdelhamed Z, Vuong SM, Hill L, Shula C, Timms A, Beier D, Campbell K, Mangano FT, Stottmann RW, Goto J. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development 2018; 145:145/1/dev154500. [PMID: 29317443 DOI: 10.1242/dev.154500] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022]
Abstract
Pediatric hydrocephalus is characterized by an abnormal accumulation of cerebrospinal fluid (CSF) and is one of the most common congenital brain abnormalities. However, little is known about the molecular and cellular mechanisms regulating CSF flow in the developing brain. Through whole-genome sequencing analysis, we report that a homozygous splice site mutation in coiled-coil domain containing 39 (Ccdc39) is responsible for early postnatal hydrocephalus in the progressive hydrocephalus (prh) mouse mutant. Ccdc39 is selectively expressed in embryonic choroid plexus and ependymal cells on the medial wall of the forebrain ventricle, and the protein is localized to the axoneme of motile cilia. The Ccdc39prh/prh ependymal cells develop shorter cilia with disorganized microtubules lacking the axonemal inner arm dynein. Using high-speed video microscopy, we show that an orchestrated ependymal ciliary beating pattern controls unidirectional CSF flow on the ventricular surface, which generates bulk CSF flow in the developing brain. Collectively, our data provide the first evidence for involvement of Ccdc39 in hydrocephalus and suggest that the proper development of medial wall ependymal cilia is crucial for normal mouse brain development.
Collapse
Affiliation(s)
- Zakia Abdelhamed
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA.,Department of Anatomy and Embryology, Faculty of Medicine (Girls' Section), Al-Azhar University, Cairo 11651, Egypt
| | - Shawn M Vuong
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Lauren Hill
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Crystal Shula
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - David Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Kenneth Campbell
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| | - Rolf W Stottmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA .,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242 USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45242, USA
| |
Collapse
|
16
|
Milgrom-Hoffman M, Humbert PO. Regulation of cellular and PCP signalling by the Scribble polarity module. Semin Cell Dev Biol 2017; 81:33-45. [PMID: 29154823 DOI: 10.1016/j.semcdb.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Since the first identification of the Scribble polarity module proteins as a new class of tumour suppressors that regulate both cell polarity and proliferation, an increasing amount of evidence has uncovered a broader role for Scribble, Dlg and Lgl in the control of fundamental cellular functions and their signalling pathways. Here, we review these findings as well as discuss more specifically the role of the Scribble module in PCP signalling.
Collapse
Affiliation(s)
- Michal Milgrom-Hoffman
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
17
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
18
|
Kharfallah F, Guyot MC, El Hassan AR, Allache R, Merello E, De Marco P, Di Cristo G, Capra V, Kibar Z. Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization. Hum Mol Genet 2017; 26:2307-2320. [DOI: 10.1093/hmg/ddx122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
|
19
|
High-resolution genetic localization of a modifying locus affecting disease severity in the juvenile cystic kidneys (jck) mouse model of polycystic kidney disease. Mamm Genome 2016; 27:191-9. [PMID: 27114383 DOI: 10.1007/s00335-016-9633-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/07/2016] [Indexed: 12/31/2022]
Abstract
We have previously demonstrated that a locus on proximal Chr 4 modifies disease severity in the juvenile cystic kidney (jck) mouse, a model of polycystic kidney disease (PKD) that carries a mutation of the Nek8 serine-threonine kinase. In this study, we used QTL analysis of independently constructed B6.D2 congenic lines to confirm this and showed that this locus has a highly significant effect. We constructed sub-congenic lines to more specifically localize the modifier and have determined it resides in a 3.2 Mb interval containing 28 genes. These include Invs and Anks6, which are both excellent candidates for the modifier as mutations in these genes result in PKD and both genes are known to genetically and physically interact with Nek8. However, examination of strain-specific DNA sequence and kidney expression did not reveal clear differences that might implicate either gene as a modifier of PKD severity. The fact that our high-resolution analysis did not yield an unambiguous result highlights the challenge of establishing the causality of strain-specific variants as genetic modifiers, and suggests that alternative strategies be considered.
Collapse
|
20
|
Cionni M, Menke C, Stottmann RW. Novel genetic tools facilitate the study of cortical neuron migration. Mamm Genome 2015; 27:8-16. [PMID: 26662625 DOI: 10.1007/s00335-015-9615-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Key facets of mammalian forebrain cortical development include the radial migration of projection neurons and subsequent cellular differentiation into layer-specific subtypes. Inappropriate regulation of these processes can lead to a number of congenital brain defects in both mouse and human, including lissencephaly and intellectual disability. The genes regulating these processes are still not all identified, suggesting genetic analyses will continue to be a powerful tool in mechanistically studying the development of the cerebral cortex. Reelin is a molecule which we have understood to be critical for proper cortical development for many years. The precise mechanism of Reelin, however, is not fully understood. To address both of these unresolved issues, we report here the creation of a novel conditional allele of the Reelin gene and showcase the use of an Etv1-GFP transgenic line highlighting a subpopulation of the cortex: layer V pyramidal neurons. Together, these represent genetic tools which may facilitate the study of cortical development in a number of different ways.
Collapse
Affiliation(s)
- Megan Cionni
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 7016, Cincinnati, OH, 45229, USA
| | - Chelsea Menke
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 7016, Cincinnati, OH, 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 7016, Cincinnati, OH, 45229, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Menke C, Cionni M, Siggers T, Bulyk ML, Beier DR, Stottmann RW. Grhl2 is required in nonneural tissues for neural progenitor survival and forebrain development. Genesis 2015; 53:573-582. [PMID: 26177923 PMCID: PMC4713386 DOI: 10.1002/dvg.22875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022]
Abstract
Grainyhead-like genes are part of a highly conserved gene family that play a number of roles in ectoderm development and maintenance in mammals. Here we identify a novel allele of Grhl2, cleft-face 3 (clft3), in a mouse line recovered from an ENU mutagenesis screen for organogenesis defects. Homozygous clft3 mutants have a number of phenotypes in common with other alleles of Grhl2. We note a significant effect of genetic background on the clft3 phenotype. One of these is a reduction in size of the telencephalon where we find abnormal patterns of neural progenitor mitosis and apoptosis in mutant brains. Interestingly, Grhl2 is not expressed in the developing forebrain, suggesting this is a survival factor for neural progenitors exerting a paracrine effect on the neural tissue from the overlying ectoderm where Grhl2 is highly expressed. genesis 53:573-582, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chelsea Menke
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Megan Cionni
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Trevor Siggers
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Biology, Boston University, Boston, MA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Pathology, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - David R. Beier
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Hospital, Seattle, WA
| | - Rolf W. Stottmann
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
22
|
Boëda B, Etienne-Manneville S. Spectrin binding motifs regulate Scribble cortical dynamics and polarity function. eLife 2015; 4. [PMID: 25664942 PMCID: PMC4350421 DOI: 10.7554/elife.04726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor protein Scribble (SCRIB) plays an evolutionary conserved role in cell polarity. Despite being central for its function, the molecular basis of SCRIB recruitment and stabilization at the cell cortex is poorly understood. Here we show that SCRIB binds directly to the CH1 domain of β spectrins, a molecular scaffold that contributes to the cortical actin cytoskeleton and connects it to the plasma membrane. We have identified a short evolutionary conserved peptide motif named SADH motif (SCRIB ABLIMs DMTN Homology) which is necessary and sufficient to mediate protein interaction with β spectrins. The SADH domains contribute to SCRIB dynamics at the cell cortex and SCRIB polarity function. Furthermore, mutations in SCRIB SADH domains associated with spina bifida and cancer impact the stability of SCRIB at the plasma membrane, suggesting that SADH domain alterations may participate in human pathology. DOI:http://dx.doi.org/10.7554/eLife.04726.001 Proteins found in cells often have more than one role. Scribble is one such multi-tasking protein that is found in a diverse range of species, including fruit flies and humans. Although Scribble commonly helps to ensure that the components of a cell are in their correct locations, its exact roles vary between species. To perform its role well, Scribble itself must localize to the cell cortex—the inside surface of the cell membrane—at the regions where cells connect to one another. How this localization occurs is not fully understood; and defects in the human form of Scribble have been linked to diseases including spina bifida and cancer. Much of the Scribble protein is very similar across different species, but the fruit fly and human version of the protein have large differences in their ‘C-terminal region’ that makes up one end of each protein. Boëda and Etienne-Manneville now show that in humans and other animals with backbones—but not in fruit flies—the C-terminal region of Scribble contains three repeats of a sequence called the SADH motif. These motifs can bind to proteins called beta spectrins, which connect the cell's outer membrane to the scaffolding-like structure inside the cell that provides support. Mutations that alter the SADH motif interfere with Scribble's ability to bind to the scaffolding, and alters Scribble localization at cell–cell contacts or the cell cortex. Boëda and Etienne-Manneville also found that some mutations linked to spina bifida and cancer affect the SADH motif, suggesting that this motif has a wider role in disease. While the abnormal localization of Scribble inside cells is frequently observed in particularly difficult to survive cancers, the molecular mechanism that causes Scribble to fail to localize to the cell periphery is still poorly understood. Boëda and Etienne-Manneville's work establishes the beta spectrin family of proteins as regulators that stabilize Scribble at the cell cortex and suggests that Scribble-associated diseases might depend on the integrity of the spectrin network. DOI:http://dx.doi.org/10.7554/eLife.04726.002
Collapse
Affiliation(s)
- Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Paris, France
| | | |
Collapse
|
23
|
Cionni M, Menke C, Stottmann RW. The mouse MC13 mutant is a novel ENU mutation in collagen type II, alpha 1. PLoS One 2014; 9:e116104. [PMID: 25541700 PMCID: PMC4277458 DOI: 10.1371/journal.pone.0116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
Phenotype-driven mutagenesis experiments are a powerful approach to identifying novel alleles in a variety of contexts. The traditional disadvantage of this approach has been the subsequent task of identifying the affected locus in the mutants of interest. Recent advances in bioinformatics and sequencing have reduced the burden of cloning these ENU mutants. Here we report our experience with an ENU mutagenesis experiment and the rapid identification of a mutation in a previously known gene. A combination of mapping the mutation with a high-density SNP panel and a candidate gene approach has identified a mutation in collagen type II, alpha I (Col2a1). Col2a1 has previously been studied in the mouse and our mutant phenotype closely resembles mutations made in the Col2a1 locus.
Collapse
Affiliation(s)
- Megan Cionni
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
| | - Chelsea Menke
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
| | - Rolf W. Stottmann
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
- * E-mail:
| |
Collapse
|
24
|
Stottmann R, Beier DR. ENU Mutagenesis in the Mouse. CURRENT PROTOCOLS IN HUMAN GENETICS 2014; 82:15.4.1-15.4.10. [PMID: 25042716 PMCID: PMC4113905 DOI: 10.1002/0471142905.hg1504s82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit describes the treatment of laboratory mice with the mutagen N-ethyl-N-nitrosourea (ENU) to induce very highly increased rates of mutation throughout the genome. Further, it describes several popular mating schemes designed to produce animals displaying phenotypes associated with the induced mutations.
Collapse
Affiliation(s)
- Rolf Stottmann
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - David R. Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute
| |
Collapse
|
25
|
Abstract
This article describes the treatment of laboratory mice with the mutagen N-ethyl-N-nitrosourea (ENU) to induce very highly increased rates of mutation throughout the genome. Further, it describes several popular mating schemes designed to produce animals displaying phenotypes associated with the induced mutations.
Collapse
Affiliation(s)
- Rolf Stottmann
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
26
|
Ha S, Stottmann RW, Furley AJ, Beier DR. A forward genetic screen in mice identifies mutants with abnormal cortical patterning. ACTA ACUST UNITED AC 2013; 25:167-79. [PMID: 23968836 DOI: 10.1093/cercor/bht209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Formation of a 6-layered cortical plate and axon tract patterning are key features of cerebral cortex development. Abnormalities of these processes may be the underlying cause for a range of functional disabilities seen in human neurodevelopmental disorders. To identify mouse mutants with defects in cortical lamination or corticofugal axon guidance, N-ethyl-N-nitrosourea (ENU) mutagenesis was performed using mice expressing LacZ reporter genes in layers II/III and V of the cortex (Rgs4-lacZ) or in corticofugal axons (TAG1-tau-lacZ). Four lines with abnormal cortical lamination have been identified. One of these was a splice site mutation in reelin (Reln) that results in a premature stop codon and the truncation of the C-terminal region (CTR) domain of reelin. Interestingly, this novel allele of Reln did not display cerebellar malformation or ataxia, and this is the first report of a Reln mutant without a cerebellar defect. Four lines with abnormal cortical axon development were also identified, one of which was found by whole-genome resequencing to carry a mutation in Lrp2. These findings demonstrated that the application of ENU mutagenesis to mice carrying transgenic reporters marking cortical anatomy is a sensitive and specific method to identify mutations that disrupt patterning of the developing brain.
Collapse
Affiliation(s)
- Seungshin Ha
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Rolf W Stottmann
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA and
| | - Andrew J Furley
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
27
|
Apaf1 apoptotic function critically limits Sonic hedgehog signaling during craniofacial development. Cell Death Differ 2013; 20:1510-20. [PMID: 23892366 DOI: 10.1038/cdd.2013.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 01/18/2023] Open
Abstract
Apaf1 is an evolutionarily conserved component of the apoptosome. In mammals, the apoptosome assembles when cytochrome c is released from mitochondria, binding Apaf1 in an ATP-dependent manner and activating caspase 9 to execute apoptosis. Here we identify and characterize a novel mouse mutant, yautja, and find it results from a leucine-to-proline substitution in the winged-helix domain of Apaf1. We show that this allele of Apaf1 is unique, as the yautja mutant Apaf1 protein is stable, yet does not possess apoptotic function in cell culture or in vivo assays. Mutant embryos die perinatally with defects in craniofacial and nervous system development, as well as reduced levels of apoptosis. We further investigated the defects in craniofacial development in the yautja mutation and found altered Sonic hedgehog (Shh) signaling between the prechordal plate and the frontonasal ectoderm, leading to increased mesenchymal proliferation in the face and delayed or absent ossification of the skull base. Taken together, our data highlight the time-sensitive link between Shh signaling and the regulation of apoptosis function in craniofacial development to sculpt the face. We propose that decreased apoptosis in the developing nervous system allows Shh-producing cells to persist and direct a lateral outgrowth of the upper jaw, resulting in the craniofacial defects we see. Finally, the novel yautja Apaf1 allele offers the first in vivo understanding of a stable Apaf1 protein that lacks a function, which should make a useful tool with which to explore the regulation of programmed cell death in mammals.
Collapse
|
28
|
Stottmann RW, Donlin M, Hafner A, Bernard A, Sinclair DA, Beier DR. A mutation in Tubb2b, a human polymicrogyria gene, leads to lethality and abnormal cortical development in the mouse. Hum Mol Genet 2013; 22:4053-63. [PMID: 23727838 DOI: 10.1093/hmg/ddt255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human cortical malformations, including lissencephaly, polymicrogyria and other diseases of neurodevelopment, have been associated with mutations in microtubule subunits and microtubule-associated proteins. Here we report our cloning of the brain dimple (brdp) mouse mutation, which we recovered from an ENU screen for recessive perinatal phenotypes affecting neurodevelopment. We identify the causal mutation in the tubulin, beta-2b (Tubb2b) gene as a missense mutation at a highly conserved residue (N247S). Brdp/brdp homozygous mutants have significant thinning of the cortical epithelium, which is markedly more severe in the caudo-lateral portion of the telencephalon, and do not survive past birth. The cortical defects are largely due to a major increase in apoptosis and we note abnormal proliferation of the basal progenitors. Adult brdp/+ mice are viable and fertile but exhibit behavioral phenotypes. This allele of Tubb2b represents the most severely affected mouse tubulin phenotype reported to date and this is the first report of a tubulin mutation affecting neuronal proliferation and survival.
Collapse
Affiliation(s)
- R W Stottmann
- Present address: Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
29
|
Escamez T, Bahamonde O, Tabares-Seisdedos R, Vieta E, Martinez S, Echevarria D. Developmental dynamics of PAFAH1B subunits during mouse brain development. J Comp Neurol 2013; 520:3877-94. [PMID: 22522921 DOI: 10.1002/cne.23128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Platelet-activating factor (PAF) mediates an array of biological processes in the mammalian central nervous system as a bioactive lipid messenger in synaptic function and dysfunction (plasticity, memory, and neurodegeneration). The intracellular enzyme that deacetylates the PAF (PAFAH1B) is composed of a tetramer of two catalytic subunits, ALPHA1 (PAFAH1B3) and ALPHA2 (PAFAH1B2), and a regulatory dimer of LIS1 (PAFAH1B1). We have investigated the mouse PAFAH1B subunit genes during brain development in normal mice and in mice with a hypomorphic allele for Lis1 (Lis1/sLis1; Cahana et al. [2001] Proc Natl Acad Sci U S A 98:6429-6434). We have analyzed quantitatively (by means of real-time polymerase chain reaction) and qualitatively (by in situ hybridization techniques) the amounts and expression patterns of their transcription in developing and postnatal brain, focusing mainly on differences in two laminated encephalic regions, the forebrain (telencephalon) and hindbrain (cerebellum) separately. The results revealed significant differences in cDNA content between these two brain subdivisions but, more importantly, between the LIS1 complex subunits. In addition, we found significant spatial differences in gene expression patterns. Comparison of results obtained with Lis1/sLis1 analysis also revealed significant temporal and spatial differences in Alpha1 and Lis1 expression levels. Thus, small changes in the amount of the Lis1 gene may differentially regulate expression of Alpha1 and Alpha2, depending on the brain region, which suggests different roles for each LIS1 complex subunit during neural differentiation and neural migration.
Collapse
Affiliation(s)
- Teresa Escamez
- Unidad Mixta de Investigación UVEG-UMH-CIBERSAM, Centro de Investigación Biomédica en Red en el Area de Salud Mental, 03550 San Juan de Alicante, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Genome-wide ENU mutagenesis in combination with high density SNP analysis and exome sequencing provides rapid identification of novel mouse models of developmental disease. PLoS One 2013; 8:e55429. [PMID: 23469164 PMCID: PMC3585849 DOI: 10.1371/journal.pone.0055429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU). METHODOLOGY/PRINCIPAL FINDINGS ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1. CONCLUSIONS/SIGNIFICANCE In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.
Collapse
|
31
|
Brown FC, Scott N, Rank G, Collinge JE, Vadolas J, Vickaryous N, Whitelaw N, Whitelaw E, Kile BT, Jane SM, Curtis DJ. ENU mutagenesis identifies the first mouse mutants reproducing human β-thalassemia at the genomic level. Blood Cells Mol Dis 2012; 50:86-92. [PMID: 23040355 DOI: 10.1016/j.bcmd.2012.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 12/24/2022]
Abstract
Forward genetic screens have been performed in many species to identify phenotypes in specific organ systems. We have undertaken a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify dominant mutations that perturb erythropoiesis in mice. Mutant mice that displayed an erythrocyte mean cell volume (MCV) greater than three standard deviations from the population mean were identified. Two of these lines, RBC13 and RBC14, displayed a hypochromic, microcytic anemia, accompanied by a marked reticulocytosis, splenomegaly and diminished red cell survival. Timed pregnancies from heterozygous intercrosses revealed that a quarter of the embryos displayed severe anemia and did not survive beyond embryonic day (E) 18.5, consistent with homozygous β-thalassemia. Genetic complementation studies with a β-thalassemia mouse line reproduced the embryonic lethality in compound heterozygotes and a genomic custom capture array and massively parallel sequencing of the β-globin locus identified the causative mutations. The RBC13 line displayed a nonsense mutation at codon 40 in exon 2 of the β-major gene, invoking parallels with the common β(0)39 thalassemia mutation seen in humans. The RBC14 line exhibited a mutation at the polyadenylation signal of the β-major gene, exactly replicating a human β-thalassemia mutation. The RBC13 and RBC14 lines are the first β-thalassemia mouse models that reproduce human β-thalassemia at the genomic level, and as such highlight the power of ENU mutagenesis screens in generating mouse models of human disease.
Collapse
Affiliation(s)
- Fiona C Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, Gailus-Durner V, Greenaway S, Houghton R, Karp N, Leblanc S, Lengger C, Maier H, Mallon AM, Marschall S, Melvin D, Morgan H, Pavlovic G, Ryder E, Skarnes WC, Selloum M, Ramirez-Solis R, Sorg T, Teboul L, Vasseur L, Walling A, Weaver T, Wells S, White JK, Bradley A, Adams DJ, Steel KP, Hrabě de Angelis M, Brown SD, Herault Y. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome 2012; 23:600-10. [PMID: 22961258 PMCID: PMC3463797 DOI: 10.1007/s00335-012-9418-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022]
Abstract
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80% of the mutant lines. In addition, 57% of the lines were viable, 13% subviable, 30% embryonic lethal, and 7% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.
Collapse
Affiliation(s)
- Abdel Ayadi
- Institut Clinique de la Souris, PHENOMIN, IGBMC/ICS-MCI, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Analyses of the human genome have proven extremely successful in identifying changes that contribute to human disease. Genetically engineered mice provide a powerful tool to analyze these changes, although they are slow and costly and do not always recapitulate human biology. Recent advances in genomic technologies, rodent-modeling approaches, and the production of patient-derived reprogrammed cell lines now provide a plethora of complementary systems to study disease states and test new therapies. Continued evolution and integration of these model systems will be the key to realizing the benefits of the genomic revolution and refining our understanding and treatment of human diseases.
Collapse
|
34
|
Abstract
ENU mutagenesis is a forward genetics strategy in which random mutagenesis and phenotypic screening is used to identify genes based on the phenotype induced when they are mutated. A modifier screen is a type of screen in which mice with a pre-existing phenotype are utilized to identify mutations that can enhance or suppress this phenotype. This approach has the potential to uncover missing pathway members, reveal novel genetic interactions, and pinpoint new drug targets. Considerations when planning a suppressor screen include current knowledge, genomic footprint, penetrance, variance, robustness, latency of the starting phenotype, viability, fertility, genetic background and ENU tolerance of starting strain, screening assay, mouse numbers required, and mutation identification strategy. Practical advice on each of these is provided in this review. Curr. Protoc. Mouse Biol. 2:75-87 © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marina R Carpinelli
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia.,Hearing Co-Operative Research Centre, Melbourne, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Rachel A Burt
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia.,Hearing Co-Operative Research Centre, Melbourne, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
35
|
Multiplex Chromosomal Exome Sequencing Accelerates Identification of ENU-Induced Mutations in the Mouse. G3-GENES GENOMES GENETICS 2012; 2:143-50. [PMID: 22384391 PMCID: PMC3276189 DOI: 10.1534/g3.111.001669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/21/2011] [Indexed: 12/22/2022]
Abstract
Forward genetic screens in Mus musculus have proved powerfully informative by revealing unsuspected mechanisms governing basic biological processes. This approach uses potent chemical mutagens, such as N-ethyl-N-nitrosourea (ENU), to randomly induce mutations in mice, which are then bred and phenotypically screened to identify lines that disrupt a specific biological process of interest. Although identifying a mutation using the rich resources of mouse genetics is straightforward, it is unfortunately neither fast nor cheap. Here we show that detecting newly induced causal variants in a forward genetic screen can be accelerated dramatically using a methodology that combines multiplex chromosome-specific exome capture, next-generation sequencing, rapid mapping, sequence annotation, and variation filtering. The key innovation of our method is multiplex capture and sequence that allows the simultaneous survey of both mutant, parental, and background strains in a single experiment. By comparing variants identified in mutant offspring with those found in dbSNP, the unmutagenized background strains, and parental lines, induced causative mutations can be distinguished immediately from preexisting variation or experimental artifact. Here we demonstrate this approach to find the causative mutations induced in four novel ENU lines identified from a recent ENU screen. In all four cases, after applying our method, we found six or fewer putative mutations (and sometimes only a single one). Determining the causative variant was then easily achieved through standard segregation approaches. We have developed this process into a community resource that will speed up individual labs’ ability to identify the genetic lesion in mutant mouse lines; all of our reagents and software tools are open source and available to the broader scientific community.
Collapse
|