1
|
Hopken MW, Piaggio AJ, Abdo Z, Chipman RB, Mankowski CP, Nelson KM, Hilton MS, Thurber C, Tsuchiya MTN, Maldonado JE, Gilbert AT. Are rabid raccoons ( Procyon lotor) ready for the rapture? Determining the geographic origin of rabies virus-infected raccoons using RADcapture and microhaplotypes. Evol Appl 2023; 16:1937-1955. [PMID: 38143904 PMCID: PMC10739080 DOI: 10.1111/eva.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/06/2023] [Accepted: 10/18/2023] [Indexed: 12/26/2023] Open
Abstract
North America is recognized for the exceptional richness of rabies virus (RV) wildlife reservoir species. Management of RV is accomplished through vaccination targeting mesocarnivore reservoir populations, such as the raccoon (Procyon lotor) in Eastern North America. Raccoons are a common generalist species, and populations may reach high densities in developed areas, which can result in contact with humans and pets with potential exposures to the raccoon variant of RV throughout the eastern United States. Understanding the spatial movement of RV by raccoon populations is important for monitoring and refining strategies supporting the landscape-level control and local elimination of this lethal zoonosis. We developed a high-throughput genotyping panel for raccoons based on hundreds of microhaplotypes to identify population structure and genetic diversity relevant to rabies management programs. Throughout the eastern United States, we identified hierarchical population genetic structure with clusters that were connected through isolation-by-distance. We also illustrate that this genotyping approach can be used to support real-time management priorities by identifying the geographic origin of a rabid raccoon that was collected in an area of the United States that had been raccoon RV-free for 8 years. The results from this study and the utility of the microhaplotype panel and genotyping method will provide managers with information on raccoon ecology that can be incorporated into future management decisions.
Collapse
Affiliation(s)
- Matthew W. Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Antoinette J. Piaggio
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Richard B. Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Clara P. Mankowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Kathleen M. Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mikaela Samsel Hilton
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Christine Thurber
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mirian T. N. Tsuchiya
- Data Science Lab, Office of the Chief Information OfficerSmithsonian InstitutionWashingtonDCUSA
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| |
Collapse
|
2
|
Horne JB, Frey A, Gaos AR, Martin S, Dutton PH. Non-random mating within an Island rookery of Hawaiian hawksbill turtles: demographic discontinuity at a small coastline scale. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221547. [PMID: 37206959 PMCID: PMC10189603 DOI: 10.1098/rsos.221547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Hawksbill sea turtles (Eretmochelys imbricata) from the Hawaiian archipelago form a small and genetically isolated population, consisting of only a few tens of individuals breeding annually. Most females nest on the island of Hawai'i, but little is known about the demographics of this rookery. This study used genetic relatedness, inferred from 135 microhaplotype markers, to determine breeding sex-ratios, estimate female nesting frequency and assess relationships between individuals nesting on different beaches. Samples were collected during the 2017 nesting season and final data included 13 nesting females and 1002 unhatched embryos, salvaged from 41 nests, of which 13 had no observed mother. Results show that most females used a single nesting beach laying 1-5 nests each. From female and offspring alleles, the paternal genotypes of 12 breeding males were reconstructed and many showed high relatedness to their mates. Pairwise relatedness of offspring revealed one instance of polygyny but otherwise suggested a 1 : 1 breeding-sex ratio. Relatedness analysis and spatial-autocorrelation of genotypes indicate that turtles from different nesting areas do not regularly interbreed, suggesting that strong natal homing tendencies in both sexes result in non-random mating across the study area. Complexes of nearby nesting beaches also showed unique patterns of inbreeding across loci, further indicating that Hawaiian hawksbill turtles have demographically discontinuous nesting populations separated by only tens of km.
Collapse
Affiliation(s)
- John B. Horne
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| | - Amy Frey
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| | - Alexander R. Gaos
- Pacific Islands Fisheries Science Center, NOAA-Fisheries, Honolulu, HI, USA
| | - Summer Martin
- Pacific Islands Fisheries Science Center, NOAA-Fisheries, Honolulu, HI, USA
| | - Peter H. Dutton
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| |
Collapse
|
3
|
Zhou XY, Ding Y, Zhou JY, Sun KK, Matsukura K, Zhang H, Chen L, Hong XY, Sun JT. Genetic evidence of transoceanic migration of the small brown planthopper between China and Japan. PEST MANAGEMENT SCIENCE 2022; 78:2909-2920. [PMID: 35415865 DOI: 10.1002/ps.6915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The small brown planthopper, Laodelphax striatellus (Fallén), is an important pest of rice. It is suspected of migrating over the sea from China to Japan. However, where in China it comes from and how it affects Japanese populations remain unclear. RESULTS Here, we studied the genetic structure of 15 L. striatellus populations sampled from Japan and China using single nucleotide polymorphisms generated by the double digest restriction site-associated DNA sequencing technique. We found weak genetic differentiation between the Chinese and Japanese populations. Our data revealed migration signals of L. striatellus from China to southern and northern Japan. However, the source regions of the immigrants remain unclear due to the low genetic differentiation between populations. Our results also pointed to the possibility of backward gene flow from Japanese to Chinese populations. We suspect that the south-eastern wind associated with the East Asian summer monsoon may facilitate the reverse migration of L. striatellus from Japan to China. Interestingly, we found that the X chromosome displayed relatively higher genetic differentiation among populations and suffered more intensive selection pressure than autosomes. CONCLUSION We provide genetic evidence of transoceanic migration of L. striatellus from China to Japan and found that the X chromosome can aid the deciphering of the migration trajectories of species with low genetic differentiation. These findings have implications for forecasting the outbreak of this pest and also provide insights into how to improve the tracking of the migration routes of small insects via population genomics. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Yu Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yi Ding
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Yi Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Kang-Kang Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | | | - Hui Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Shao C, Yao Y, Pan X, Wu M, Zhang B, Xu H, Xie J, Sun K. Variants in linkage status at D5S818 detected by multiple STR kits comparison and Sanger sequencing. Mol Genet Genomic Med 2021; 9:e1765. [PMID: 34302451 PMCID: PMC8457698 DOI: 10.1002/mgg3.1765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/16/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background D5S818 discrepancies have been reported in forensic parental testing due to null alleles. However, more cases may be ignored since proportional null alleles were missed without detection of heredity discrepancy between parents and offspring. Results In this study, null allele 12 at D5S818 was detected by the PowerPlex® 21 System with a higher occurrence rate on the basis of review on 2824 samples from the 1282 routine cases in Chinese Han population. Sequencing results revealed novel variant of guanine (G) into adenine (A) in the 7th [AGAT] repeats in the core repeat region accompanied by rs1187948322 in the samples with null allele 12. Conclusions Forensic STR typing may benefit from this discovery: (1) primer design of CE profiling system could be improved for sensitive population and (2) polymorphic information could be enriched for the accuracy and precision of NGS genotyping system. Peak area of D5S818 was also analyzed through different commercial STR kits. It is suggested that more attention should be paid on observed homozygosity with reduced peak area, especially for the samples from Chinese Han population.
Collapse
Affiliation(s)
- Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yining Yao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinwei Pan
- Shanghai Hengping Judicial Expertise Center, Shanghai, 200070, China
| | - Mengde Wu
- Shanghai Hengping Judicial Expertise Center, Shanghai, 200070, China
| | - Beilei Zhang
- Fujian Zhengtai Judicial Expertise Center, Xiamen, Fujian, 361000, China
| | - Hongmei Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kuan Sun
- Shanghai Key Laboratory of Forensic Medicine (Academy of Forensic Science), Shanghai, 200063, China.,Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
5
|
Flores-Bello A, Bauduer F, Salaberria J, Oyharçabal B, Calafell F, Bertranpetit J, Quintana-Murci L, Comas D. Genetic origins, singularity, and heterogeneity of Basques. Curr Biol 2021; 31:2167-2177.e4. [DOI: 10.1016/j.cub.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 02/09/2023]
|
6
|
Coffman SM, Hufford MB, Andorf CM, Lübberstedt T. Haplotype structure in commercial maize breeding programs in relation to key founder lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:547-561. [PMID: 31749017 DOI: 10.1007/s00122-019-03486-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 11/13/2019] [Indexed: 05/05/2023]
Abstract
High-density haplotype analysis revealed significant haplotype sharing between ex-PVPs registered from 1976 to 1992 and key maize founders, and uncovered similarities and differences in haplotype sharing patterns by company and heterotic group. Proprietary inbreds developed by the private seed industry have been the major source for driving genetic gain in successful North American maize hybrids for decades. Much of the history of industry germplasm can be traced back to key founder lines, some of which were pivotal in the development of prominent heterotic groups. Previous studies have summarized pedigree-based relationships, genetic diversity and population structure among commercial inbreds with expired Plant Variety Protection (ex-PVP). However, less is known about the extent of haplotype sharing between historical founders and ex-PVPs. A better understanding of the relationships between founders and ex-PVPs provides insight into the haplotype and heterotic group structure among industry germplasm. We performed high-density haplotype analysis with 11.3 million SNPs on 212 maize inbreds, which included 157 ex-PVPs registered 1976-1992 and 55 public lines relevant to PVPs. Among these lines were 12 key founders identified in literature review: 207, A632, B14, B37, B73, LH123HT, LH82, Mo17, Oh43, OH7, PHG39 and Wf9. Our results revealed that, on average, 81.6% of an ex-PVP's genome is shared with at least 1 of these 12 founder lines and more than half when limited to B73, Mo17 and 207. Quantifiable similarities and contrasts among heterotic groups and major US seed industry companies were also observed. The results from this study provide high-resolution haplotype data on ex-PVP germplasm, confirm founder relationship trends observed in previous studies, uncover region-specific haplotype structure differences and demonstrate how haplotype sharing analysis can be used as a tool to explore germplasm diversity.
Collapse
Affiliation(s)
- Stephanie M Coffman
- Systems and Innovation for Breeding and Seed Products, Corteva Agriscience™, Agriculture Division of DowDuPont™, 8305 NW 62nd Ave., P.O. Box 7060, Johnston, IA, 50131, USA.
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| | - Matthew B Hufford
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Carson M Andorf
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | | |
Collapse
|
7
|
Taylor AR, Watson JA, Chu CS, Puaprasert K, Duanguppama J, Day NPJ, Nosten F, Neafsey DE, Buckee CO, Imwong M, White NJ. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nat Commun 2019; 10:5595. [PMID: 31811128 PMCID: PMC6898227 DOI: 10.1038/s41467-019-13412-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Relapses arising from dormant liver-stage Plasmodium vivax parasites (hypnozoites) are a major cause of vivax malaria. However, in endemic areas, a recurrent blood-stage infection following treatment can be hypnozoite-derived (relapse), a blood-stage treatment failure (recrudescence), or a newly acquired infection (reinfection). Each of these requires a different prevention strategy, but it was not previously possible to distinguish between them reliably. We show that individual vivax malaria recurrences can be characterised probabilistically by combined modelling of time-to-event and genetic data within a framework incorporating identity-by-descent. Analysis of pooled patient data on 1441 recurrent P. vivax infections in 1299 patients on the Thailand-Myanmar border observed over 1000 patient follow-up years shows that, without primaquine radical curative treatment, 3 in 4 patients relapse. In contrast, after supervised high-dose primaquine only 1 in 40 relapse. In this region of frequent relapsing P. vivax, failure rates after supervised high-dose primaquine are significantly lower (∼3%) than estimated previously.
Collapse
Affiliation(s)
- Aimee R Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - James A Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Shoklo Malaria Research Unit, Mae Sot, Tak Province, 63110, Thailand
| | - Kanokpich Puaprasert
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Jureeporn Duanguppama
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Shoklo Malaria Research Unit, Mae Sot, Tak Province, 63110, Thailand
| | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
8
|
Mehta RS, Feder AF, Boca SM, Rosenberg NA. The Relationship Between Haplotype-Based FST and Haplotype Length. Genetics 2019; 213:281-295. [PMID: 31285255 PMCID: PMC6727796 DOI: 10.1534/genetics.119.302430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
The population-genetic statistic [Formula: see text] is used widely to describe allele frequency distributions in subdivided populations. The increasing availability of DNA sequence data has recently enabled computations of [Formula: see text] from sequence-based "haplotype loci." At the same time, theoretical work has revealed that [Formula: see text] has a strong dependence on the underlying genetic diversity of a locus from which it is computed, with high diversity constraining values of [Formula: see text] to be low. In the case of haplotype loci, for which two haplotypes that are distinct over a specified length along a chromosome are treated as distinct alleles, genetic diversity is influenced by haplotype length: longer haplotype loci have the potential for greater genetic diversity. Here, we study the dependence of [Formula: see text] on haplotype length. Using a model in which a haplotype locus is sequentially incremented by one biallelic locus at a time, we show that increasing the length of the haplotype locus can either increase or decrease the value of [Formula: see text], and usually decreases it. We compute [Formula: see text] on haplotype loci in human populations, finding a close correspondence between the observed values and our theoretical predictions. We conclude that effects of haplotype length are valuable to consider when interpreting [Formula: see text] calculated on haplotypic data.
Collapse
Affiliation(s)
- Rohan S Mehta
- Department of Biology, Stanford University, Stanford, California 94305
| | - Alison F Feder
- Department of Biology, Stanford University, Stanford, California 94305
- Department of Integrative Biology, University of California, Berkeley, California 94720
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC 20007
| | - Noah A Rosenberg
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
9
|
Taylor AR, Jacob PE, Neafsey DE, Buckee CO. Estimating Relatedness Between Malaria Parasites. Genetics 2019; 212:1337-1351. [PMID: 31209105 PMCID: PMC6707449 DOI: 10.1534/genetics.119.302120] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding the relatedness of individuals within or between populations is a common goal in biology. Increasingly, relatedness features in genetic epidemiology studies of pathogens. These studies are relatively new compared to those in humans and other organisms, but are important for designing interventions and understanding pathogen transmission. Only recently have researchers begun to routinely apply relatedness to apicomplexan eukaryotic malaria parasites, and to date have used a range of different approaches on an ad hoc basis. Therefore, it remains unclear how to compare different studies and which measures to use. Here, we systematically compare measures based on identity-by-state (IBS) and identity-by-descent (IBD) using a globally diverse data set of malaria parasites, Plasmodium falciparum and P. vivax, and provide marker requirements for estimates based on IBD. We formally show that the informativeness of polyallelic markers for relatedness inference is maximized when alleles are equifrequent. Estimates based on IBS are sensitive to allele frequencies, which vary across populations and by experimental design. For portability across studies, we thus recommend estimates based on IBD. To generate estimates with errors below an arbitrary threshold of 0.1, we recommend ∼100 polyallelic or 200 biallelic markers. Marker requirements are immediately applicable to haploid malaria parasites and other haploid eukaryotes. C.I.s facilitate comparison when different marker sets are used. This is the first attempt to provide rigorous analysis of the reliability of, and requirements for, relatedness inference in malaria genetic epidemiology. We hope it will provide a basis for statistically informed prospective study design and surveillance strategies.
Collapse
Affiliation(s)
- Aimee R Taylor
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Pierre E Jacob
- Department of Statistics, Harvard University, Cambridge, Massachusetts 02138
| | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Caroline O Buckee
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Sajadpour Z, Amini-Farsani Z, Motovali-Bashi M, Yadollahi M, Yadollahi F. Investigation of RFLP Haplotypes β-Globin Gene Cluster in Beta-Thalassemia Patients in Central Iran. Int J Hematol Oncol Stem Cell Res 2019; 13:61-67. [PMID: 31372199 PMCID: PMC6660478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Introduction: Beta-thalassemia is one of the most prevalent inherited blood diseases among Iranians. The aim of this study was to elucidate the chromosomal background of beta-thalassemia mutations in Esfahan province, Iran. Materials and Methods: In this study, we investigated three frequent mutations (c.315+1G>A, c.93-21G>A and c.92+5G>C in β-globin gene, the frequency of RFLP haplotypes, and LD between markers at β-globin gene cluster) in 150 beta-thalassemia patients and 50 healthy individuals. The molecular and population genetic investigations were performed on RFLP markers HindIII in the c.315+1G>A of Gγ (HindIIIG) and Aγ (HindIIIA) genes, AvaII in the c.315+1G>A of β-globin gene and BamHI 3' to the β-globin gene. All statistical analyses were performed using Power Marker software and SISA server. Results: Fifty percent of beta-thalasemia patients were associated with these mutations. Haplotype I was the most prevalent haplotype among beta-thalassemia patients (39.33%) and normal individuals (46%). The commonest c.315+1G>A mutation in our population was tightly linked with haplotype III (43.75%) and haplotype I (31.25%). The second prevalent mutation, c.92+5G>C, was 90%, 6.66%, and 3.33% in linkage disequilibrium with haplotypes I, VII, and III, respectively. The c.93-21G>A mutation indicated a strong association with haplotype I (80%). Conclusion: Our study participants like beta-thalassemia patients from Kermanshah province was found to possess a similar haplotype background for common mutations. The emergence of most prevalent mutations on chromosomes with different haplotypes can be explained by gene conversion and recombination. High linkage of a mutation with specific haplotype is consistent with the hypothesis that chromosomes carrying beta-thalassemia mutations experienced positive selection pressure, probably because of the protection against malaria experienced by beta-thalassemia carriers.
Collapse
Affiliation(s)
- Zahra Sajadpour
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Zeinab Amini-Farsani
- Young Researchers and Elites Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Majid Motovali-Bashi
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Mitra Yadollahi
- Department of Operative Dentistry, School of Dentistry, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farrokh Yadollahi
- Department of Anesthesiology, Clinical Research Development Unit, Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Anadromy Redux? Genetic Analysis to Inform Development of an Indigenous American River Steelhead Broodstock. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2019. [DOI: 10.3996/072018-jfwm-063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
The construction of dams and water diversions has severely limited access to spawning habitat for anadromous fishes. To mitigate for these impacts, hatchery programs rear and release millions of juvenile salmonids, including steelhead, the anadromous ecotype of the species Oncorhynchus mykiss. These programs sometimes use nonindigenous broodstock sources that may have negative effects on wild populations. In California, however, only one anadromous fish hatchery program currently uses nonnative broodstock: the steelhead program at Nimbus Fish Hatchery on the American River, a tributary of the Sacramento River in the California Central Valley. The goal of this study was to determine if potentially appropriate sources to replace the broodstock for the Nimbus Hatchery steelhead program exist in the Upper American River, above Nimbus and Folsom dams. We show that all Upper American River O. mykiss sampled share ancestry with other populations in the Central Valley steelhead distinct population segment, with limited introgression from out-of-basin sources in some areas. Furthermore, some Upper American River populations retain adaptive genomic variation associated with a migratory life history, supporting the hypothesis that these populations display adfluvial migratory behavior. Together, these results provide insights into the evolution of trout populations above barrier dams. We conclude that some Upper American River O. mykiss populations represent genetically appropriate sources from which fisheries managers could potentially develop a new broodstock for the Nimbus Hatchery steelhead program to reestablish a native anadromous population in the Lower American River and contribute to recovery of the threatened Central Valley steelhead distinct population segment.
Collapse
|
12
|
Tal O, Tran TD. New perspectives on multilocus ancestry informativeness. Math Biosci 2018; 306:60-81. [PMID: 30385120 DOI: 10.1016/j.mbs.2018.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
We present an axiomatic approach for multilocus informativeness measures for determining the amount of information that a set of polymorphic genetic markers provides about individual ancestry. We then reveal several surprising properties of a decision-theoretic based measure that is consistent with the set of proposed criteria for multilocus informativeness. In particular, these properties highlight the interplay between information originating from population priors and the information extractable from the population genetic variants. This analysis then reveals a certain deficiency of mutual information based multilocus informativeness measures when such population priors are incorporated. Finally, we analyse and quantify the inevitable inherent decrease in informativeness due to learning from finite population samples.
Collapse
Affiliation(s)
- Omri Tal
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig D-04103 Germany.
| | - Tat Dat Tran
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig D-04103 Germany.
| |
Collapse
|
13
|
Moriot A, Santos C, Freire-Aradas A, Phillips C, Hall D. Inferring biogeographic ancestry with compound markers of slow and fast evolving polymorphisms. Eur J Hum Genet 2018; 26:1697-1707. [PMID: 29995845 PMCID: PMC6189140 DOI: 10.1038/s41431-018-0215-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/23/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Bio-geographic ancestry is an area of considerable interest in the medical genetics, anthropology and forensics. Although genome-wide panels are ideal as they provide dense genotyping data, small sets of ancestry informative marker provide a cost-effective way to investigate genetic ancestry and population structure. Here, we investigate the performance of a reduced marker set that combine different types of autosomal markers through haplotype analysis. In particular, recently described DIP-STR markers should offer the advantage of comprising both, low mutation rate Indels (DIPs), to study human history over longer time scale; and high mutation rate STRs, to trace relatively recent demographic events. In this study, we assessed the ability of an initial set of 23 DIP-STRs to distinguish major population groups using the HGDP-CEPH reference samples. The results obtained applying the STRUCTURE algorithm show that the discrimination capacity of the DIP-STRs is comparable to currently used small-scale ancestry informative markers by approaching seven major demographic groups. Yet, the DIP-STRs show an improved success rate in assigning individuals to populations of Europe and Middle East. These data show a remarkable ability of a preliminary set of 23 DIP-STR markers to infer major biogeographic origins. A novel set of DIP-STRs preselected to contain ancestry information should lead to further improvements.
Collapse
Affiliation(s)
- Amandine Moriot
- Unité de Génétique Forensique, Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Switzerland
| | - Carla Santos
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Diana Hall
- Unité de Génétique Forensique, Centre Universitaire Romand de Médecine Légale, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Tawe L, Motshoge T, Ramatlho P, Mutukwa N, Muthoga CW, Dongho GBD, Martinelli A, Peloewetse E, Russo G, Quaye IK, Paganotti GM. Human cytochrome P450 2B6 genetic variability in Botswana: a case of haplotype diversity and convergent phenotypes. Sci Rep 2018; 8:4912. [PMID: 29559695 PMCID: PMC5861095 DOI: 10.1038/s41598-018-23350-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/09/2018] [Indexed: 01/11/2023] Open
Abstract
Identification of inter-individual variability for drug metabolism through cytochrome P450 2B6 (CYP2B6) enzyme is important for understanding the differences in clinical responses to malaria and HIV. This study evaluates the distribution of CYP2B6 alleles, haplotypes and inferred metabolic phenotypes among subjects with different ethnicity in Botswana. A total of 570 subjects were analyzed for CYP2B6 polymorphisms at position 516 G > T (rs3745274), 785 A > G (rs2279343) and 983 T > C (rs28399499). Samples were collected in three districts of Botswana where the population belongs to Bantu (Serowe/Palapye and Chobe) and San-related (Ghanzi) ethnicity. The three districts showed different haplotype composition according to the ethnic background but similar metabolic inferred phenotypes, with 59.12%, 34.56%, 2.10% and 4.21% of the subjects having, respectively, an extensive, intermediate, slow and rapid metabolic profile. The results hint at the possibility of a convergent adaptation of detoxifying metabolic phenotypes despite a different haplotype structure due to the different genetic background. The main implication is that, while there is substantial homogeneity of metabolic inferred phenotypes among the country, the response to drugs metabolized via CYP2B6 could be individually associated to an increased risk of treatment failure and toxicity. These are important facts since Botswana is facing malaria elimination and a very high HIV prevalence.
Collapse
Affiliation(s)
- Leabaneng Tawe
- University of Botswana, Department of Medical Laboratory Sciences, Gaborone, Botswana.,Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Sub-Saharan African Network for TB/HIV Research Excellence at Botswana-Harvard Partnership, Gaborone, Botswana
| | - Thato Motshoge
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Pleasure Ramatlho
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Naledi Mutukwa
- University of Botswana, Department of Pathology, Gaborone, Botswana
| | | | - Ghyslaine Bruna Djeunang Dongho
- Sapienza University of Rome, Department of Infectious Diseases and Public Health, Rome, Italy.,Evangelical University of Cameroon, Department of Biomedical Sciences, Bandjoun, Cameroon
| | - Axel Martinelli
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Elias Peloewetse
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Gianluca Russo
- Sapienza University of Rome, Department of Infectious Diseases and Public Health, Rome, Italy
| | - Isaac Kweku Quaye
- University of Namibia, Department of Biochemistry, Windhoek, Namibia
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana. .,University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA. .,University of Botswana, Department of Biomedical Sciences, Gaborone, Botswana.
| |
Collapse
|
15
|
Microhaplotypes provide increased power from short‐read
DNA
sequences for relationship inference. Mol Ecol Resour 2017; 18:296-305. [DOI: 10.1111/1755-0998.12737] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
|
16
|
Takeuchi F, Katsuya T, Kimura R, Nabika T, Isomura M, Ohkubo T, Tabara Y, Yamamoto K, Yokota M, Liu X, Saw WY, Mamatyusupu D, Yang W, Xu S, Japanese Genome Variation Consortium, Teo YY, Kato N. The fine-scale genetic structure and evolution of the Japanese population. PLoS One 2017; 12:e0185487. [PMID: 29091727 PMCID: PMC5665431 DOI: 10.1371/journal.pone.0185487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 09/13/2017] [Indexed: 11/21/2022] Open
Abstract
The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail: (FT); (NK)
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Minoru Isomura
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Xuanyao Liu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi, China
| | - Wenjun Yang
- Key Laboratory of Reproduction and Heredity of Ningxia Region, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shuhua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | | | - Yik-Ying Teo
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail: (FT); (NK)
| |
Collapse
|
17
|
Abstract
Coupling dense genotype data with new computational methods offers unprecedented opportunities for individual-level ancestry estimation once geographically precisely defined reference data sets become available. We study such a reference data set for Finland containing 2376 such individuals from the FINRISK Study survey of 1997 both of whose parents were born close to each other. This sampling strategy focuses on the population structure present in Finland before the 1950s. By using the recent haplotype-based methods ChromoPainter (CP) and FineSTRUCTURE (FS) we reveal a highly geographically clustered genetic structure in Finland and report its connections to the settlement history as well as to the current dialectal regions of the Finnish language. The main genetic division within Finland shows striking concordance with the 1323 borderline of the treaty of Nöteborg. In general, we detect genetic substructure throughout the country, which reflects stronger regional genetic differences in Finland compared to, for example, the UK, which in a similar analysis was dominated by a single unstructured population. We expect that similar population genetic reference data sets will become available for many more populations in the near future with important applications, for example, in forensic genetics and in genetic association studies. With this in mind, we report those extensions of the CP + FS approach that we found most useful in our analyses of the Finnish data.
Collapse
|
18
|
A nearest neighbour approach by genetic distance to the assignment of individual trees to geographic origin. Forensic Sci Int Genet 2017; 27:132-141. [DOI: 10.1016/j.fsigen.2016.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 11/20/2022]
|
19
|
Novembre J, Peter BM. Recent advances in the study of fine-scale population structure in humans. Curr Opin Genet Dev 2016; 41:98-105. [PMID: 27662060 DOI: 10.1016/j.gde.2016.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/17/2023]
Abstract
Empowered by modern genotyping and large samples, population structure can be accurately described and quantified even when it only explains a fraction of a percent of total genetic variance. This is especially relevant and interesting for humans, where fine-scale population structure can both confound disease-mapping studies and reveal the history of migration and divergence that shaped our species' diversity. Here we review notable recent advances in the detection, use, and understanding of population structure. Our work addresses multiple areas where substantial progress is being made: improved statistics and models for better capturing differentiation, admixture, and the spatial distribution of variation; computational speed-ups that allow methods to scale to modern data; and advances in haplotypic modeling that have wide ranging consequences for the analysis of population structure. We conclude by outlining four important open challenges: the limitations of discrete population models, uncertainty in individual origins, the incorporation of both fine-scale structure and ancient DNA in parametric models, and the development of efficient computational tools, particularly for haplotype-based methods.
Collapse
Affiliation(s)
- John Novembre
- Department of Human Genetics, University of Chicago, IL 60636, United States; Department of Ecology and Evolutionary Biology, University of Chicago, IL 60636, United States
| | - Benjamin M Peter
- Department of Human Genetics, University of Chicago, IL 60636, United States
| |
Collapse
|
20
|
Duforet-Frebourg N, Gattepaille LM, Blum MGB, Jakobsson M. HaploPOP: a software that improves population assignment by combining markers into haplotypes. BMC Bioinformatics 2015; 16:242. [PMID: 26227424 PMCID: PMC4521458 DOI: 10.1186/s12859-015-0661-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 07/03/2015] [Indexed: 01/27/2023] Open
Abstract
Background In ecology and forensics, some population assignment techniques use molecular markers to assign individuals to known groups. However, assigning individuals to known populations can be difficult if the level of genetic differentiation among populations is small. Most assignment studies handle independent markers, often by pruning markers in Linkage Disequilibrium (LD), ignoring the information contained in the correlation among markers due to LD. Results To improve the accuracy of population assignment, we present an algorithm, implemented in the HaploPOP software, that combines markers into haplotypes, without requiring independence. The algorithm is based on the Gain of Informativeness for Assignment that provides a measure to decide if a pair of markers should be combined into haplotypes, or not, in order to improve assignment. Because complete exploration of all possible solutions for constructing haplotypes is computationally prohibitive, our approach uses a greedy algorithm based on windows of fixed sizes. We evaluate the performance of HaploPOP to assign individuals to populations using a split-validation approach. We investigate both simulated SNPs data and dense genotype data from individuals from Spain and Portugal. Conclusions Our results show that constructing haplotypes with HaploPOP can substantially reduce assignment error. The HaploPOP software is freely available as a command-line software at www.ieg.uu.se/Jakobsson/software/HaploPOP/.
Collapse
Affiliation(s)
- Nicolas Duforet-Frebourg
- Univ. Grenoble Alpes, TIMC-IMAG, Grenoble, F-38000, France. .,CNRS, TIMC-IMAG, Grenoble, F-38000, France. .,Department of Integrative Biology, University of California Berkeley, Berkeley, 94720-3140, California, USA.
| | - Lucie M Gattepaille
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Michael G B Blum
- Univ. Grenoble Alpes, TIMC-IMAG, Grenoble, F-38000, France. .,CNRS, TIMC-IMAG, Grenoble, F-38000, France.
| | - Mattias Jakobsson
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. .,Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Fang Z, Gonzales AM, Clegg MT, Smith KP, Muehlbauer GJ, Steffenson BJ, Morrell PL. Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G3 (BETHESDA, MD.) 2014; 4:1193-203. [PMID: 24760390 PMCID: PMC4455769 DOI: 10.1534/g3.114.010561] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022]
Abstract
Genetic differentiation in natural populations is driven by geographic distance and by ecological or physical features within and between natural habitats that reduce migration. The primary population structure in wild barley differentiates populations east and west of the Zagros Mountains. Genetic differentiation between eastern and western populations is uneven across the genome and is greatest on linkage groups 2H and 5H. Genetic markers in these two regions demonstrate the largest difference in frequency between the primary populations and have the highest informativeness for assignment to each population. Previous cytological and genetic studies suggest there are chromosomal structural rearrangements (inversions or translocations) in these genomic regions. Environmental association analyses identified an association with both temperature and precipitation variables on 2H and with precipitation variables on 5H.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Ana M Gonzales
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Michael T Clegg
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
22
|
Fang Z, Gonzales AM, Clegg MT, Smith KP, Muehlbauer GJ, Steffenson BJ, Morrell PL. Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G3 (BETHESDA, MD.) 2014. [PMID: 24760390 DOI: 10.1534/g3.114.010561/-/dc1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Genetic differentiation in natural populations is driven by geographic distance and by ecological or physical features within and between natural habitats that reduce migration. The primary population structure in wild barley differentiates populations east and west of the Zagros Mountains. Genetic differentiation between eastern and western populations is uneven across the genome and is greatest on linkage groups 2H and 5H. Genetic markers in these two regions demonstrate the largest difference in frequency between the primary populations and have the highest informativeness for assignment to each population. Previous cytological and genetic studies suggest there are chromosomal structural rearrangements (inversions or translocations) in these genomic regions. Environmental association analyses identified an association with both temperature and precipitation variables on 2H and with precipitation variables on 5H.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Ana M Gonzales
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Michael T Clegg
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
23
|
Duforet-Frebourg N, Blum MGB. Nonstationary patterns of isolation-by-distance: inferring measures of local genetic differentiation with Bayesian kriging. Evolution 2014; 68:1110-23. [PMID: 24372175 PMCID: PMC4285919 DOI: 10.1111/evo.12342] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 12/13/2013] [Indexed: 11/27/2022]
Abstract
Patterns of isolation-by-distance (IBD) arise when population differentiation increases with increasing geographic distances. Patterns of IBD are usually caused by local spatial dispersal, which explains why differences of allele frequencies between populations accumulate with distance. However, spatial variations of demographic parameters such as migration rate or population density can generate nonstationary patterns of IBD where the rate at which genetic differentiation accumulates varies across space. To characterize nonstationary patterns of IBD, we infer local genetic differentiation based on Bayesian kriging. Local genetic differentiation for a sampled population is defined as the average genetic differentiation between the sampled population and fictive neighboring populations. To avoid defining populations in advance, the method can also be applied at the scale of individuals making it relevant for landscape genetics. Inference of local genetic differentiation relies on a matrix of pairwise similarity or dissimilarity between populations or individuals such as matrices of FST between pairs of populations. Simulation studies show that maps of local genetic differentiation can reveal barriers to gene flow but also other patterns such as continuous variations of gene flow across habitat. The potential of the method is illustrated with two datasets: single nucleotide polymorphisms from human Swedish populations and dominant markers for alpine plant species.
Collapse
Affiliation(s)
- Nicolas Duforet-Frebourg
- Laboratoire TIMC-IMAG, Centre National de la Recherche Scientifique, Université Joseph Fourier, Grenoble, France
| | | |
Collapse
|
24
|
Morrell PL, Gonzales AM, Meyer KKT, Clegg MT. Resequencing data indicate a modest effect of domestication on diversity in barley: a cultigen with multiple origins. J Hered 2013; 105:253-64. [PMID: 24336926 DOI: 10.1093/jhered/est083] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The levels of diversity and extent of linkage disequilibrium in cultivated species are largely determined by diversity in their wild progenitors. We report a comparison of nucleotide sequence diversity in wild and cultivated barley (Hordeum vulgare ssp. spontaneum and ssp. vulgare) at 7 nuclear loci totaling 9296bp, using sequence from Hordeum bulbosum to infer the ancestral state of mutations. The sample includes 36 accessions of cultivated barley, including 23 landraces (cultivated forms not subject to modern breeding) and 13 cultivated lines and genetic stocks compared to either 25 or 45 accessions of wild barley for the same loci. Estimates of nucleotide sequence diversity indicate that landraces retain >80% of the diversity in wild barley. The primary population structure in wild barley, which divides the species into eastern and western populations, is reflected in significant differentiation at all loci in wild accessions and at 3 of 7 loci in landraces. "Oriental" landraces have slightly higher diversity than "Occidental" landraces. Genetic assignment suggests more admixture from Occidental landraces into Oriental landraces than the converse, which may explain this difference. Based on θπ for silent sites, modern western cultivars have ~73% of the diversity found in landraces and ~71% of the diversity in wild barley.
Collapse
Affiliation(s)
- Peter L Morrell
- the Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | | | | | | |
Collapse
|
25
|
Fang Z, Gonzales AM, Durbin ML, Meyer KKT, Miller BH, Volz KM, Clegg MT, Morrell PL. Tracing the geographic origins of weedy Ipomoea purpurea in the southeastern United States. ACTA ACUST UNITED AC 2013; 104:666-77. [PMID: 23894192 DOI: 10.1093/jhered/est046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ipomoea purpurea (common morning glory) is an annual vine native to Mexico that is well known for its large, showy flowers. Humans have spread morning glories worldwide, owing to the horticultural appeal of morning glory flowers. Ipomoea purpurea is an opportunistic colonizer of disturbed habitats including roadside and agricultural settings, and it is now regarded as a noxious weed in the Southeastern US. Naturalized populations in the Southeastern United States are highly polymorphic for a number of flower color morphs, unlike native Mexican populations that are typically monomorphic for the purple color morph. Although I. purpurea was introduced into the United States from Mexico, little is known about the specific geographic origins of US populations relative to the Mexican source. We use resequencing data from 11 loci and 30 I. purpurea accessions collected from the native range of the species in Central and Southern Mexico and 8 accessions from the Southeastern United States to infer likely geographic origins in Mexico. Based on genetic assignment analysis, haplotype composition, and the degree of shared polymorphism, I. purpurea samples from the Southeastern United States are genetically most similar to samples from the Valley of Mexico and Veracruz State. This supports earlier speculation that I. purpurea in the Southeastern United States was likely to have been introduced by European colonists from sources in Central Mexico.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Albaina A, Iriondo M, Velado I, Laconcha U, Zarraonaindia I, Arrizabalaga H, Pardo MA, Lutcavage M, Grant WS, Estonba A. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim Genet 2013; 44:678-92. [PMID: 23668670 DOI: 10.1111/age.12051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 10/26/2022]
Abstract
The optimal management of the commercially important, but mostly over-exploited, pelagic tunas, albacore (Thunnus alalunga Bonn., 1788) and Atlantic bluefin tuna (BFT; Thunnus thynnus L., 1758), requires a better understanding of population structure than has been provided by previous molecular methods. Despite numerous studies of both species, their population structures remain controversial. This study reports the development of single nucleotide polymorphisms (SNPs) in albacore and BFT and the application of these SNPs to survey genetic variability across the geographic ranges of these tunas. A total of 616 SNPs were discovered in 35 albacore tuna by comparing sequences of 54 nuclear DNA fragments. A panel of 53 SNPs yielded FST values ranging from 0.0 to 0.050 between samples after genotyping 460 albacore collected throughout the distribution of this species. No significant heterogeneity was detected within oceans, but between-ocean comparisons (Atlantic, Pacific and Indian oceans along with Mediterranean Sea) were significant. Additionally, a 17-SNP panel was developed in Atlantic BFT by cross-species amplification in 107 fish. This limited number of SNPs discriminated between samples from the two major spawning areas of Atlantic BFT (FST = 0.116). The SNP markers developed in this study can be used to genotype large numbers of fish without the need for standardizing alleles among laboratories.
Collapse
Affiliation(s)
- A Albaina
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 48940, Leioa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Björklund M, Alonso D, Edelaar P. The genetic structure of crossbills suggests rapid diversification with little niche conservatism. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mats Björklund
- Department of Animal Ecology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D; SE-752 36; Uppsala; Sweden
| | - Daniel Alonso
- Aranzadi Ringing Scheme; Aranzadi Sciences Society; Zorroagagaina 11; 20014; San Sebastián; Spain
| | | |
Collapse
|
28
|
Haber M, Gauguier D, Youhanna S, Patterson N, Moorjani P, Botigué LR, Platt DE, Matisoo-Smith E, Soria-Hernanz DF, Wells RS, Bertranpetit J, Tyler-Smith C, Comas D, Zalloua PA. Genome-wide diversity in the levant reveals recent structuring by culture. PLoS Genet 2013; 9:e1003316. [PMID: 23468648 PMCID: PMC3585000 DOI: 10.1371/journal.pgen.1003316] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
The Levant is a region in the Near East with an impressive record of continuous human existence and major cultural developments since the Paleolithic period. Genetic and archeological studies present solid evidence placing the Middle East and the Arabian Peninsula as the first stepping-stone outside Africa. There is, however, little understanding of demographic changes in the Middle East, particularly the Levant, after the first Out-of-Africa expansion and how the Levantine peoples relate genetically to each other and to their neighbors. In this study we analyze more than 500,000 genome-wide SNPs in 1,341 new samples from the Levant and compare them to samples from 48 populations worldwide. Our results show recent genetic stratifications in the Levant are driven by the religious affiliations of the populations within the region. Cultural changes within the last two millennia appear to have facilitated/maintained admixture between culturally similar populations from the Levant, Arabian Peninsula, and Africa. The same cultural changes seem to have resulted in genetic isolation of other groups by limiting admixture with culturally different neighboring populations. Consequently, Levant populations today fall into two main groups: one sharing more genetic characteristics with modern-day Europeans and Central Asians, and the other with closer genetic affinities to other Middle Easterners and Africans. Finally, we identify a putative Levantine ancestral component that diverged from other Middle Easterners ∼23,700–15,500 years ago during the last glacial period, and diverged from Europeans ∼15,900–9,100 years ago between the last glacial warming and the start of the Neolithic. Population stratification caused by nonrandom mating between groups of the same species is often due to geographical distances leading to physical separation followed by genetic drift of allele frequencies in each group. In humans, population structures are also often driven by geographical barriers or distances; however, humans might also be structured by abstract factors such as culture, a consequence of their reasoning and self-awareness. Religion in particular, is one of the unusual conceptual factors that can drive human population structures. This study explores the Levant, a region flanked by the Middle East and Europe, where individual and population relationships are still strongly influenced by religion. We show that religious affiliation had a strong impact on the genomes of the Levantines. In particular, conversion of the region's populations to Islam appears to have introduced major rearrangements in populations' relations through admixture with culturally similar but geographically remote populations, leading to genetic similarities between remarkably distant populations like Jordanians, Moroccans, and Yemenis. Conversely, other populations, like Christians and Druze, became genetically isolated in the new cultural environment. We reconstructed the genetic structure of the Levantines and found that a pre-Islamic expansion Levant was more genetically similar to Europeans than to Middle Easterners.
Collapse
Affiliation(s)
- Marc Haber
- Institut de Biologia Evolutiva (CSIC–UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
- The Lebanese American University, Chouran, Beirut, Lebanon
| | - Dominique Gauguier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- INSERM UMRS872, Centre de Recherche des Cordeliers, Paris, France
| | - Sonia Youhanna
- The Lebanese American University, Chouran, Beirut, Lebanon
| | - Nick Patterson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Priya Moorjani
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura R. Botigué
- Institut de Biologia Evolutiva (CSIC–UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniel E. Platt
- Bioinformatics and Pattern Discovery, IBM T. J. Watson Research Centre, Yorktown Heights, New York, United States of America
| | - Elizabeth Matisoo-Smith
- Allan Wilson Centre for Molecular Ecology and Evolution and Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David F. Soria-Hernanz
- The Genographic Project, National Geographic Society, Washington, D.C., United States of America
| | - R. Spencer Wells
- The Genographic Project, National Geographic Society, Washington, D.C., United States of America
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (CSIC–UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - David Comas
- Institut de Biologia Evolutiva (CSIC–UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pierre A. Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
- Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Schlebusch CM, Soodyall H. Extensive Population Structure in San, Khoe, and Mixed Ancestry Populations from Southern Africa Revealed by 44 Short 5-SNP Haplotypes. Hum Biol 2012; 84:695-724. [DOI: 10.3378/027.084.0603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2013] [Indexed: 11/05/2022]
|
30
|
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet 2012; 8:e1002453. [PMID: 22291602 PMCID: PMC3266881 DOI: 10.1371/journal.pgen.1002453] [Citation(s) in RCA: 761] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/21/2011] [Indexed: 12/12/2022] Open
Abstract
The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this "chromosome painting" can be summarized as a "coancestry matrix," which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/.
Collapse
Affiliation(s)
- Daniel John Lawson
- Department of Mathematics, University of Bristol, Bristol, United Kingdom
| | | | - Simon Myers
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Daniel Falush
- Environmental Research Institute, University College Cork, Cork, Ireland
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|