1
|
Gorjão N, Borowski LS, Szczesny RJ, Graczyk D. POLR1D, a shared subunit of RNA polymerase I and III, modulates mTORC1 activity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119957. [PMID: 40222657 DOI: 10.1016/j.bbamcr.2025.119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a crucial nutrient sensor and a major regulator of cell growth and proliferation. While mTORC1 activity is frequently upregulated in cancer, the mechanisms regulating mTORC1 are not fully understood. POLR1D, a shared subunit of RNA polymerases I and III, is often upregulated in colorectal cancer (CRC) and mutated in Treacher-Collins syndrome. POLR1D, together with its binding partner POLR1C, forms a dimer that is believed to initiate the assembly of the multisubunit RNA polymerases I and III. Our data reveal an unexpected link between POLR1D and mTORC1 signalling. We found that the overproduction of POLR1D in human cells stimulates mTORC1 activity. In contrast, the downregulation of POLR1D leads to the repression of the mTORC1 pathway. Additionally, we demonstrate that a pool of POLR1D localises to the cytoplasm and interacts with the mTORC1 regulator RAGA and RAPTOR. Furthermore, POLR1D enhances the interaction between RAPTOR and RAGA and sustains mTORC1 activity under starvation conditions. We have identified a novel role for the RNA polymerase I/III subunit POLR1D in regulating mTORC1 signalling. Our findings suggest the existence of a new node in the already complex mTORC1 signalling network, where POLR1D functions to convey the cell's internal status, namely polymerase assembly, to this kinase.
Collapse
Affiliation(s)
- Neuton Gorjão
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; University of Warsaw, Faculty of Biology, Institute of Genetics and Biotechnology, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Damian Graczyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
2
|
Akasaka N, Sugimoto Y, Kajihara T, Takagi H, Watanabe D. Control of alcoholic fermentation through modulation of nitrogen metabolism in Saccharomyces cerevisiae. J Biotechnol 2025; 405:159-168. [PMID: 40403977 DOI: 10.1016/j.jbiotec.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/02/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Saccharomyces cerevisiae sake strains exhibit high alcoholic fermentation performance. Comparative transcriptomic analysis revealed that the expression of genes required for nitrogen sensing and metabolism, including amino acid biosynthesis and uptake, was markedly lower in the sake strain than in the laboratory strain. Thus, we hypothesized that changes in nitrogen metabolism affect the fermentation capability of S. cerevisiae. To evaluate the impact of altered nitrogen metabolism on alcoholic fermentation, we focused on the transcription activators Gcn4p, Gln3p, and Gat1p, and the protein kinase Npr1p, all of which are key regulators controlling expression of genes for amino acid biosynthesis and uptake responding to nitrogen availability. Fermentation tests demonstrated that laboratory strain-derived single-deletion mutants of the regulator genes exhibited higher fermentation performance than the parental strain, which was accompanied by decrease in intracellular amino acid levels in the mutants. Disruption of the genes encoding glutamate dehydrogenases, which play a central role in nitrogen assimilation, also enhanced the fermentation rate. A Greatwall family protein kinase Rim15p inhibits alcoholic fermentation by diverting carbon flux from glycolysis to the synthesis of 1,3-β-glucan, a major cell wall component. Since the content of 1,3-β-glucan was unaffected by disruption of the regulator genes, the elevated fermentation performance of the disruptants was accomplished independently of the signaling pathway governed by Rim15p. The high fermentation rate of the disruptants might be attributed to increased carbon entry into glycolysis caused by the compromised biosynthesis of amino acids, which are synthesized from intermediary metabolites of glycolysis and tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Naoki Akasaka
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yukiko Sugimoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takuma Kajihara
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8961-5, Takayama-cho, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
3
|
Xiao J, Kang X, Li N, Hu J, Wang Y, Si J, Pan Y, Zhang S. The role of the poly(A) binding protein-binding protein MoPbp1 as a regulator of the TOR signaling pathway in growth, autophagy, and pathogenicity of the rice blast fungus. Int J Biol Macromol 2025; 306:141730. [PMID: 40043978 DOI: 10.1016/j.ijbiomac.2025.141730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 05/11/2025]
Abstract
The target of the rapamycin (TOR) signaling pathway is crucial for biological function in plant pathogenic fungi, yet its regulatory mechanisms remain limited. In this study, the biological functions of MoPbp1 were identified and characterized, and the findings indicate that MoPbp1 contributes to hyphal growth, conidiation, appressoria formation, metabolism of glycogen and lipid droplets, responses to stress, and pathogenicity in Magnaporthe oryzae. Further investigation revealed that MoPBP1 acts as a negative regulator of TOR activity and influences autophagy. In addition, transcriptome data revealed that MoPBP1 mainly regulates amino acid metabolism pathways, components of membrane, and oxidation-reduction process. Our results suggest that MoPbp1 is required for autophagy and pathogenicity in M. oryzae. Overall, we first revealed the relationship between Pbp1 and TOR activity in plant pathogenic fungi.
Collapse
Affiliation(s)
- Junlian Xiao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoru Kang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Na Li
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Hu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jianyu Si
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Shulin Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Sinclair LV, Cantrell DA. Protein Synthesis and Metabolism in T Cells. Annu Rev Immunol 2025; 43:343-366. [PMID: 40279310 DOI: 10.1146/annurev-immunol-082323-035253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
T lymphocytes are essential for immune responses to pathogens and tumors. Their ability to rapidly clonally expand and differentiate to effector cells following infection, and then to curb effector function following infection clearance, is fundamental for adaptive immunity. Proteome remodeling in response to immune activation is a fundamental mechanism that allows T cells to swiftly reprogram for acquisition of effector function and is possible only because antigen receptor- and cytokine-driven signal transduction pathways can trigger massive increases in protein synthesis. Equally, the ability to repress protein synthesis supports a return to quiescence once pathogens are cleared to avoid autoimmunity and to generate memory T cell populations. This review discusses what is known about T cell proteomes and the regulatory mechanisms that control protein synthesis in T cells. The focus is on how this fundamental process is dynamically controlled to ensure immune homeostasis.
Collapse
Affiliation(s)
- Linda V Sinclair
- Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| | - Doreen A Cantrell
- Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom;
| |
Collapse
|
5
|
Xing H, Bai Y, Ding Q, Wang H, Gao G, Hu Z, Yu Y, Fan H, Meng X, Cui N. Transcriptomic analysis of regulating the growth and development of tomato seedlings by the crosstalk between JA and TOR signaling. PLANT CELL REPORTS 2025; 44:82. [PMID: 40126670 DOI: 10.1007/s00299-025-03476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
KEY MESSAGE Transcription factors MYB, WRKY, bHLH, bZIP and NAC were identified as key candidate genes for JA and TOR regulation of tomato seedling growth and development. Jasmonic acid (JA) and Target of Rapamycin (TOR) signaling pathways interact to regulate plant growth, development, and stress responses. In this study, transcriptomic and weighted gene co-expression network analysis (WGCNA) were conducted on tomato wild-type (WT) and spr2 mutant lines treated with the TOR inhibitor RAP and activator MHY1485. We identified key roles of MAPK kinase and ethylene signaling in mediating JA-TOR interaction. Core transcription factors, including MYB, WRKY, bHLH, bZIP, and NAC, were highlighted as central regulators within the interaction between JA and TOR signaling network. These findings advance our understanding of how JA and TOR signaling coordinate plant growth and stress adaptation.
Collapse
Affiliation(s)
- Hongyun Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yipeng Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qi Ding
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haoran Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Guorui Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqiang Hu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Takahashi Y, San TT, Manik MIN, Morshed S, Ushimaru T. The Greatwall kinase Rim15 promotes microautophagy and microlipophagy under the control of TORC1. Biochem Biophys Res Commun 2025; 752:151468. [PMID: 39952117 DOI: 10.1016/j.bbrc.2025.151468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Atg1/ULK1 protein kinase induces macroautophagy, but not microautophagy, after nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase. Microautophagy is also induced by TORC1 inactivation, but a TORC1-downstream protein kinase responsible for microautophagy induction remains obscure. Here, we show that the Greatwall kinase Rim15, a downstream protein kinase of TORC1, promotes bulk microautophagy induction after TORC1 inactivation. In addition, Rim15 was required for proper induction of microlipophagy (microautophagic degradation of lipid droplet). Endosomal sorting complex required for transport (ESCRT) machinery is recruited onto the vacuolar membrane after TORC1 inactivation for microautophagy. Loss of Rim15 reduced protein levels of subunits (Vps27 and Hse1) of ESCRT-0, a primary ESCRT subcomplex. Consistently, the recruitment of ESCRT-0 onto the vacuolar membrane after rapamycin was reduced in rim15Δ cells. On the other hand, Rim15 was dispensable for ESCRT function in multivesicular body formation. This study reveals that Rim15 specifically regulates function of ESCRT-0 in microautophagy under the control of TORC1 and provides a new insight into lipophagy-related human diseases.
Collapse
Affiliation(s)
- Yuka Takahashi
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Trieu Tu San
- Department of Biological Science, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Md Imran Nur Manik
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Shamsul Morshed
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Takashi Ushimaru
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Department of Biological Science, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan.
| |
Collapse
|
7
|
Zhu D, Hu J, Tan R, Lin X, Wang R, Lu J, Yu B, Xie Y, Ni X, Liang C, Dang Y, Jiang W. Advanced RPL19-TRAP KI-seq method reveals mechanism of action of bioactive compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:16. [PMID: 40042546 PMCID: PMC11882491 DOI: 10.1007/s13659-025-00500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Natural products play a crucial role in new drug development, but their druggability is often limited by uncertain molecular targets and insufficient research on mechanisms of action. In this study, we developed a new RPL19-TRAPKI-seq method, combining CRISPR/Cas9 and TRAP technologies, to investigate these mechanisms. We identified and validated seven ribosomal large subunit surface proteins suitable for TRAP, selecting RPL19 for its high enrichment. We successfully established a stable cell line expressing EGFP-RPL19 using CRISPR knock-in and verified its efficiency and specificity in enriching ribosomes and translating mRNA. Integrated with next-generation sequencing, this method allows precise detection of translating mRNA. We validated RPL19-TRAPKI-seq by investigating rapamycin, an mTOR inhibitor, yielding results consistent with previous reports. This optimized TRAP technology provides an accurate representation of translating mRNA, closely reflecting protein expression levels. Furthermore, we investigated SBF-1, a 23-oxa-analog of natural saponin OSW-1 with significant anti-tumor activity but an unclear mechanism. Using RPL19-TRAPKI-seq, we found that SBF-1 exerts its cytotoxic effects on tumor cells by disturbing cellular oxidative phosphorylation. In conclusion, our method has been proven to be a promising tool that can reveal the mechanisms of small molecules with greater accuracy, setting the stage for future exploration of small molecules and advancing the fields of pharmacology and therapeutic development.
Collapse
Affiliation(s)
- Di Zhu
- Laboratory of Tumor Immunology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Renke Tan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaofeng Lin
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ruina Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junyan Lu
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiaohua Ni
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Chunmin Liang
- Laboratory of Tumor Immunology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Zhang Z, Li Y, Yang S, Wen S, Zhu H, Zhou H. Target of Rapamycin is a crucial regulator of photosynthesis and nutrient metabolism partitioning in Nannochloropsis gaditana. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:21. [PMID: 39987130 PMCID: PMC11847340 DOI: 10.1186/s13068-025-02617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Utilizing microalgae as "photosynthetic cell factories" for compound production holds significant potential for sustainable carbon neutrality. However, the inherent inefficiency of algal photosynthesis, a limiting factor for productivity, represents a critical area for enhancement. Among the key regulatory mechanisms, the Target of Rapamycin (TOR), essential for cell growth regulation and known for its conserved structure across eukaryotes, remains underexplored in Nannochloropsis gaditana. In this study, we identified conserved component of the TOR complex in N. gaditana. Rapamycin (RAP) effectively inhibited photosynthetic growth and enhanced lipid accumulation in N. gaditana, as demonstrated by sensitivity tests. Transcriptomic analysis revealed that NgTOR modulates multiple intracellular metabolic and signaling pathways. Specifically, genes associated with photosynthesis and chlorophyll synthesis were significantly down-regulated following NgTOR inhibition. Additionally, genes involved in carbon metabolism, the TCA cycle, and amino acid biosynthesis were markedly reduced, while those related to lipid metabolism were up-regulated, resulting in stunted cell growth and increased lipid accumulation. Furthermore, blocking photosynthesis with DCMU significantly reduced the transcriptional activity of TOR-related complexes, highlighting a bidirectional regulatory interaction. These findings underscore the pivotal role of the TOR signaling pathway in regulating photosynthesis, carbon metabolism, and lipid metabolism in N. gaditana, setting the stage for further studies on photosynthetic autotrophy and lipid metabolic pathways in this species.
Collapse
Affiliation(s)
- Zhengying Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China
| | - Shu Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China
| | - Shuting Wen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361000, China.
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
9
|
Tang D, Li X, Zhang L, Xiao P, Nie Y, Qiu F, Cheng Z, Li W, Zhao Y. Reactive oxygen species-mediated signal transduction and utilization strategies in microalgae. BIORESOURCE TECHNOLOGY 2025; 418:132004. [PMID: 39710205 DOI: 10.1016/j.biortech.2024.132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Reactive oxygen species (ROS) are crucial in stress perception, the integration of environmental signals, and the activation of downstream response networks. This review emphasizes ROS-mediated signaling pathways in microalgae and presents an overview of strategies for leveraging ROS. Eight distinct signaling pathways mediated by ROS in microalgae have been summarized, including the calcium signaling pathway, the target of rapamycin signaling pathway, the mitogen-activated protein kinase signaling pathway, the cyclic adenosine monophosphate/protein kinase A signaling pathway, the ubiquitin/protease pathway, the ROS-regulated transcription factors and enzymes, the endoplasmic reticulum stress, and the retrograde ROS signaling. Moreover, this review outlines three strategies for utilizing ROS: two-stage cultivation, combined stress with phytohormones, and strain engineering. The physicochemical properties of various ROS, together with their redox reactions with downstream targets, have been elucidated to reveal the role of ROS in signal transduction processes while delineating the ROS-mediated signal transduction network within microalgae.
Collapse
Affiliation(s)
- Dexin Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xu Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Pengying Xiao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yudong Nie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Facheng Qiu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhiliang Cheng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Wensheng Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agriculture and Life Science, Kunming University, Kunming 650214, PR China.
| |
Collapse
|
10
|
Zhou M, Yu P, Hu C, Fang W, Jin C, Li S, Sun X. Suppressed Protein Translation Caused by MSP-8 Deficiency Determines Fungal Multidrug Resistance with Fitness Cost. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412514. [PMID: 39679802 PMCID: PMC11809369 DOI: 10.1002/advs.202412514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Antifungal resistance, particularly the rise of multidrug-resistance strains, poses a significant public health threat. In this study, the study identifies a novel multidrug-resistance gene, msp-8, encoding a helicase, through experimental evolution with Neurospora crassa as a model. Deletion of msp-8 conferred multidrug resistance in N. crassa, Aspergillus fumigatus, and Fusarium verticillioides. However, the transcript levels of genes encoding known drug targets or efflux pumps remain unaltered with msp-8 deletion. Interestingly, MSP-8 interacted with ribosomal proteins, and this mutant displays compromised ribosomal function, causing translational disturbance. Notably, inhibition of protein translation enhances resistance to azoles, amphotericin B, and polyoxin B. Furthermore, MSP-8 deficiency or inhibition of translation reduces intracellular ketoconazole accumulation and membrane-bound amphotericin B content, directly causing antifungal resistance. Additionaly, MSP-8 deficiency induces cell wall remodeling, and decreases intracellular ROS levels, further contributing to resistance. The findings reveal a novel multidrug resistance mechanism independent of changes in drug target or efflux pump, while MSP-8 deficiency suppresses protein translation, thereby facilitating the development of resistance with fitness cost. This study provides the first evidence that MSP-8 participates in protein translation and that translation suppression can cause multidrug resistance in fungi, offering new insights into resistance mechanisms in clinical and environmental fungal strains.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- National Institute for Radiological ProtectionChina CDCBeijing100088China
| | - Pengju Yu
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chengcheng Hu
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenxia Fang
- Institute of Biological Sciences and TechnologyGuangxi Academy of SciencesNanningGuangxi530007China
| | - Cheng Jin
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shaojie Li
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xianyun Sun
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
11
|
Tasnin MN, Takuma T, Takahashi Y, Ushimaru T. ESCRT elicits vacuolar fission in the absence of Vps4 in budding yeast. Biochem Biophys Res Commun 2025; 746:151244. [PMID: 39756210 DOI: 10.1016/j.bbrc.2024.151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
In budding yeast, endosomal sorting complex required for transport (ESCRT) mediates microautophagy by vacuolar membrane invagination into the vacuolar lumen, followed by Vps4-assisted membrane constriction and abscission. Here, we show that ESCRT elicits vacuolar fission in the absence of Vps4 after nutrient starvation, although vacuolar fusion is facilitated in wild-type cells in these conditions. ESCRT mediated vacuolar membrane invagination in vps4Δ cells, thereby causing vacuolar fission. It is known that vacuolar fission requires phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and β-propellers that bind polyphosphoinositides (PROPPINs), PI(3,5)P2-binding proteins. However, PROPPIN, but not PI(3,5)P2, was dispensable for the ESCRT-mediated vacuolar fragmentation. Finally, we showed evidence that microlipophagy triggers vacuolar fission. Thus, disruption of the coordinated sequence of ESCRT-Vps4 operations in microautophagy leads to vacuolar fragmentation. This study provides insight into the ESCRT-Vps4 axis-dependent cellular disfunctions and related diseases.
Collapse
Affiliation(s)
- Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Tsuneyuki Takuma
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Yuka Takahashi
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan.
| |
Collapse
|
12
|
Chen G, Zhang W, Wang C, Chen M, Hu Y, Wang Z. Identification of prognostic biomarkers of sepsis and construction of ceRNA regulatory networks. Sci Rep 2025; 15:2850. [PMID: 39843498 PMCID: PMC11754875 DOI: 10.1038/s41598-024-78502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/31/2024] [Indexed: 01/24/2025] Open
Abstract
Sepsis is a life-threatening severe organ dysfunction, and the pathogenesis remains uncertain. Increasing evidence suggests that circRNAs, mRNAs, and microRNAs can interact to jointly regulate the development of sepsis. Identifying the interaction between ceRNA regulatory networks and sepsis may contribute to our deeper understanding of the pathogenesis of sepsis, bring new insights into early recognition and treatment of sepsis. Blood samples from sepsis patients in the Affiliated Hospital of Southwest Medical University were collected. RNA sequencing (mRNA/circRNA) was performed on Survivor group (n = 26) and Non-survivor group (n = 6), then quality control and differential expression analysis were performed. Subsequently, GO analysis was performed on the differential expression genes; Meta-analysis was used to screen for prognostic related genes; 10 × Single-cell RNA sequencing was used to annotate the cell distribution of core genes. Finally, combined with base complementary pairing and intergroup correlation analysis, a sepsis-associated circRNA-miRNA-mRNA regulatory network was constructed. Differential expression analysis screened 28 mRNAs and 16 circRNAs. GO results showed that differential expression genes were mainly involved in membrane raft, actin cytoskeleton, regulation of immune response, negative regulation of cAMP-dependent protein kinase activity, etc. Meta-analysis screened 2 core genes, GSPT1 and NPRL3, which are associated with sepsis prognosis. 10 × Single-cell RNA sequencing showed that GSPT1 and NPRL3 were widely localized in immune cells, mainly macrophages and T cells. A ceRNA network consisting of 4 circRNA, 26 miRNA, and 2 mRNA was constructed. GSPT1 and NPRL3 were lowly expressed in the sepsis Survivor group, compared with Non-survivor group, which may become novel prognostic biomarkers for sepsis. A sepsis-related ceRNA networks, which consists of 4 circRNA, 26 miRNA, and 2 core gene, may guide mechanistic studies.
Collapse
Affiliation(s)
- Guihong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Zhang
- Department of Endocrinology and Metabolism, The Traditional Chinese Medicine Hospital of Luzhou City, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Tasnin MN, Takahashi Y, Takuma T, Ushimaru T. ESCRT mediates micronucleophagy and macronucleophagy in yeast. Biochem Biophys Res Commun 2025; 742:151102. [PMID: 39642706 DOI: 10.1016/j.bbrc.2024.151102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Endosomal sorting complex required for transport (ESCRT) is required for maintenance of nuclear functions and prevention of neurodegenerative diseases. The budding yeast Saccharomyces cerevisiae is an ideal model for studying ESCRT-dependent diseases. Nucleolar proteins are degraded by macronucleophagy and micronucleophagy after nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) kinase. Here, we show that ESCRT is critical for micronucleophagic degradation of nucleolar proteins upon TORC1 inactivation. In addition, ESCRT was also critical for rDNA condensation and nucleolar remodeling, which is necessary for proper micronucleophagic degradation of nucleolar proteins after TORC1 inactivation. On the other hand, ESCRT was dispensable for bulk macroautophagy, whereas it was also critical for macronucleophagy. Thus, ESCRT has an important role for elimination of nucleolar proteins in response to nutrient deprivation.
Collapse
Affiliation(s)
- Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Yuka Takahashi
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Tsuneyuki Takuma
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan.
| |
Collapse
|
14
|
Watanabe M, Tsugeno Y, Sato T, Higashide M, Umetsu A, Furuhashi M, Ohguro H. Inhibition of mTOR differently modulates planar and subepithelial fibrogenesis in human conjunctival fibroblasts. Graefes Arch Clin Exp Ophthalmol 2025; 263:33-46. [PMID: 39042147 DOI: 10.1007/s00417-024-06481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 07/24/2024] Open
Abstract
PURPOSE In the current investigation, the effects of the mTOR inhibitors, Rapa and Torin1 on the TGF-β2-induced conjunctival fibrogenesis were studied. STUDY DESIGN Experimental research. METHODS 2D and 3D cultures of HconF were subjected to the following analyses; (1) planar proliferation evaluated by TEER (2D), (2) Seahorse metabolic analyses (2D), (3) subepithelial proliferation evaluated by the 3D spheroids' size and hardness, and (4) the mRNA expression of ECM proteins and their regulators (2D and 3D). RESULT Rapa or Torin1 both significantly increased planar proliferation in the non-TGF-β2-treated 2D HconF cells, but in the TGF-β2-treated cells, this proliferation was inhibited by Rapa and enhanced by Torin1. Although Rapa or Torin1 did not affect cellular metabolism in the non-TGF-β2-treated HconF cells, mTOR inhibitors significantly decreased and increased the mitochondrial respiration and the glycolytic capacity, respectively, under conditions of TGF-β2-induced fibrogenesis. Subepithelial proliferation, as evidenced by the hardness of the 3D spheroids, was markedly down-regulated by both Rapa and Torin1 independent of TGF-β2. The mRNA expressions of several ECM molecules and their regulators fluctuated in the cases of 2D vs 3D and TGF-β2 untreated vs treated cultures. CONCLUSION The present findings indicate that mTOR inhibitors have the ability to increase and to reduce planar and subepithelial proliferation in HconF cells, depending on the inhibitor being used.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan.
| | - Yuri Tsugeno
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Tatsuya Sato
- Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
- Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Megumi Higashide
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Masato Furuhashi
- Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo Ika Daigaku, Hirosaki, Japan.
| |
Collapse
|
15
|
Zhang Z, Yang S, Li Y, Xie D, Chen G, Ren J, Zhu H, Zhou H. NgLst8 Coactivates TOR Signaling to Activate Photosynthetic Growth in Nannochloropsis gaditana. Microorganisms 2024; 12:2574. [PMID: 39770776 PMCID: PMC11678606 DOI: 10.3390/microorganisms12122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The target of rapamycin (TOR) serves as a central regulator of cell growth, coordinating anabolic and catabolic processes in response to nutrient availability, growth factors, and energy supply. Activation of TOR has been shown to promote photosynthesis, growth, and development in yeast, animals, and plants. In this study, the complete cDNA sequence of the Lst8 gene was obtained from Nannochloropsis gaditana. The structure of N. gaditana LST8 comprises a typical WD40 repeat sequence, exhibiting high sequence similarity to several known LST8 proteins. By overexpressing the Lst8 gene in N. gaditana, we constructed the NgLst8 transgenic algal strain and measured its photosynthetic activity and growth. We observed that an increase in LST8 abundance promotes the expression of TOR-related kinase, thereby enhancing photosynthetic growth. Transcriptome analysis further elucidated the response mechanism of elevated Lst8 abundance in relation to photosynthesis. Our findings indicate that increased Lst8 expression activates ABC transporter proteins and the MAPK signaling pathway, which regulate the transmembrane transport of sugars and other metabolites, integrate photosynthesis, sugar metabolism, and energy signaling, and modulate energy metabolism in algal cells through interactions with the TOR signaling pathway.
Collapse
Affiliation(s)
- Zhengying Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Shu Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Dian Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Guobin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Jiaxu Ren
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| |
Collapse
|
16
|
Airola C, Severino A, Spinelli I, Gasbarrini A, Cammarota G, Ianiro G, Ponziani FR. "Pleiotropic" Effects of Antibiotics: New Modulators in Human Diseases. Antibiotics (Basel) 2024; 13:1176. [PMID: 39766566 PMCID: PMC11727521 DOI: 10.3390/antibiotics13121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025] Open
Abstract
Antibiotics, widely used medications that have significantly increased life expectancy, possess a broad range of effects beyond their primary antibacterial activity. While some are recognized as adverse events, others have demonstrated unexpected benefits. These adjunctive effects, which have been defined as "pleiotropic" in the case of other pharmacological classes, include immunomodulatory properties and the modulation of the microbiota. Specifically, macrolides, tetracyclines, and fluoroquinolones have been shown to modulate the immune system in both acute and chronic conditions, including autoimmune disorders (e.g., rheumatoid arthritis, spondyloarthritis) and chronic inflammatory pulmonary diseases (e.g., asthma, chronic obstructive pulmonary disease). Azithromycin, in particular, is recommended for the long-term treatment of chronic inflammatory pulmonary diseases due to its well-established immunomodulatory effects. Furthermore, antibiotics influence the human microbiota. Rifaximin, for example, exerts a eubiotic effect that enhances the balance between the gut microbiota and the host immune cells and epithelial cells. These pleiotropic effects offer new therapeutic opportunities by interacting with human cells, signaling molecules, and bacteria involved in non-infectious diseases like spondyloarthritis and inflammatory bowel diseases. The aim of this review is to explore the pleiotropic potential of antibiotics, from molecular and cellular evidence to their clinical application, in order to optimize their use. Understanding these effects is essential to ensure careful use, particularly in consideration of the threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Irene Spinelli
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
17
|
Ghasemzadeh Rahbardar M, Fazeli Kakhki H, Hosseinzadeh H. Ziziphus jujuba (Jujube) in Metabolic Syndrome: From Traditional Medicine to Scientific Validation. Curr Nutr Rep 2024; 13:845-866. [PMID: 39354208 DOI: 10.1007/s13668-024-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.
Collapse
Affiliation(s)
| | - Homa Fazeli Kakhki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Manik MIN, Tasnin MN, Takuma T, Ushimaru T. The yeast VAPs Scs2 and Scs22 are required for NVJ integrity and micronucleophagy. Biochem Biophys Res Commun 2024; 734:150628. [PMID: 39232457 DOI: 10.1016/j.bbrc.2024.150628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Microautophagy degrades cargos in the vacuole by direct engulfment of the vacuolar membrane. Micronucleophagy selectively degrades a portion of the nucleus in budding yeast. The vacuole contacts the nucleus via the nucleus-vacuole junction (NVJ), and in micronucleophagy a portion of the nucleus containing nucleolar proteins is made to protrude into the vacuole at the NVJ, followed by abscission and degradation. Microautophagy and micronucleophagy are induced by inactivation of target of rapamycin complex 1 (TORC1) protein kinase after nutrient starvation. Here, we show that the VAMP-associated proteins (VAPs) Scs2 and its paralog Scs22 are required for NVJ integrity and micronucleophagic degradation of nucleolar proteins. On the other hand, nucleolar dynamics prerequisite for micronucleophagy were not impaired in VAP mutant cells. Finally, yeast VAPs were critical for viability during prolonged nutrient starvation. This study sheds light on the emerging role of VAP in adaptation in responses to nutrient starvation.
Collapse
Affiliation(s)
- Md Imran Nur Manik
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Most Naoshia Tasnin
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Tsuneyuki Takuma
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan.
| |
Collapse
|
19
|
Hurst V, Gerhold CB, Tarashev CVD, Challa K, Seeber A, Yamazaki S, Knapp B, Helliwell SB, Bodenmiller B, Harata M, Shimada K, Gasser SM. Loss of cytoplasmic actin filaments raises nuclear actin levels to drive INO80C-dependent chromosome fragmentation. Nat Commun 2024; 15:9910. [PMID: 39548059 PMCID: PMC11568269 DOI: 10.1038/s41467-024-54141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Loss of cytosolic actin filaments upon TORC2 inhibition triggers chromosome fragmentation in yeast, which results from altered base excision repair of Zeocin-induced lesions. To find the link between TORC2 kinase and this yeast chromosome shattering (YCS) we performed phosphoproteomics. YCS-relevant phospho-targets included plasma membrane-associated regulators of actin polymerization, such as Las17, the yeast Wiscott-Aldrich Syndrome protein. Induced degradation of Las17 was sufficient to trigger YCS in presence of Zeocin, bypassing TORC2 inhibition. In yeast, Las17 does not act directly at damage, but instead its loss, like TORC2 inhibition, raises nuclear actin levels. Nuclear actin, in complex with Arp4, forms an essential subunit of several nucleosome remodeler complexes, including INO80C, which facilitates DNA polymerase elongation. Here we show that the genetic ablation of INO80C activity leads to partial YCS resistance, suggesting that elevated levels of nuclear G-actin may stimulate INO80C to increase DNA polymerase processivity and convert single-strand lesions into double-strand breaks.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Christian B Gerhold
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Bühlmann Laboratories AG, Baselstrasse 55, 4124, Schönenbuch, Switzerland
| | - Cleo V D Tarashev
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Mechano-Genomic Group, Division of Biology and Chemistry, Paul-Scherrer Institute, Villigen, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Transition Bio Inc, 250 Arsenal St, Watertown, 02472, MA, USA
| | - Shota Yamazaki
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
| | - Stephen B Helliwell
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056, Basel, Switzerland
- Cellvie AG, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Masahiko Harata
- Lab. Molecular Biochemistry, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai, 980-8572, Japan
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Lausanne, Department of Fundamental Microbiology, and Agora Cancer Center, ISREC Foundation, rue du Bugnon 25A, 1005, Lausanne, Switzerland.
| |
Collapse
|
20
|
Watanabe M, Sato T, Yano T, Higashide M, Ogawa T, Nishikiori N, Furuhashi M, Ohguro H. mTOR Inhibitors Modulate the Biological Nature of TGF-β2-Treated or -Untreated Human Trabecular Meshwork Cells in Different Manners. Biomedicines 2024; 12:2604. [PMID: 39595170 PMCID: PMC11591778 DOI: 10.3390/biomedicines12112604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Mammalian target of rapamycin (mTOR) inhibition may have been suggested to have a beneficial effect on the glaucomatous human trabecular meshwork (HTM). To study the effects of the mTOR inhibitors rapamycin (Rapa) and Torin1 on the glaucomatous HTM, transforming growth factor-β2 (TGF-β2)-treated two-dimensionally (2D) and three-dimensionally (3D) cultured HTM cells were used. Methods: We evaluated (1) the levels of autophagy via Western blot analysis using a specific antibody against microtubule-associated protein 1 light chain 3 (LC3), (2) barrier capacity based on transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC) permeability (2D), (3) cellular metabolic functions (2D), (4) the size and stiffness of spheroids, and (5) the mRNA expression of ECM proteins. Results: TGF-β2-induced inhibition of autophagy was significantly inhibited by Rapa and Torin1. Rapa and Torin1 substantially decreased barrier capacity in both TGF-β2-untreated and TGF-β2-treated HTM cells. Cellular metabolic analysis indicated that Rapa, but not Torin1, substantially enhanced both mitochondrial and glycolytic functions of TGF-β2-untreated HTM cells. In the physical properties of spheroids, TGF-β2 resulted in the formation of down-sized and stiffened spheroids. mTOR inhibitors decreased the size but not the stiffness of TGF-β2-untreated spheroids and significantly reduced the TGF-β2-related increase in the stiffness but not the size of spheroids. The diverse effects of mTOR inhibitors on TGF-β2-untreated and TGF-β2-treated spheroids were also observed in the mRNA expression of extracellular matrix proteins. Conclusions: The results taken together suggest that mTOR inhibitors significantly influence the biological aspects of both a single layer and multiple layers of the TGF-β2-treated HTM and untreated HTM.
Collapse
Affiliation(s)
- Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan; (M.W.); (M.H.); (N.N.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (T.O.); (M.F.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan; (M.W.); (M.H.); (N.N.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan; (M.W.); (M.H.); (N.N.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Sapporo 060-8556, Japan; (M.W.); (M.H.); (N.N.)
| |
Collapse
|
21
|
Rocha G, Gómez M, Baeza C, Salinas F, Martínez C, Kessi-Pérez EI. Phenotyping of a new yeast mapping population reveals differences in the activation of the TORC1 signalling pathway between wild and domesticated yeast strains. Biol Res 2024; 57:82. [PMID: 39511644 PMCID: PMC11545388 DOI: 10.1186/s40659-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Domestication can be understood as a symbiotic relationship that benefits both domesticator and domesticated species, involving multiple genetic changes that configure the phenotype of the domesticated species. One of the most important domesticated species is the yeast Saccharomyces cerevisiae, with both domesticated strains used for different fermentations processes for thousands of years and wild strains existing only in environments without human intervention; however, little is known about the phenotypic effects associated with its domestication. In the present work, we studied the effect of domestication on yeast TORC1 activation, a pleiotropic signalling pathway conserved across the eukaryotic domain. To achieve this goal, we improved a previously generated methodology to assess TORC1 activation, which turned out to be as effective as the original one but also presents several practical advantages for its application (such as facilitating confirmation of transformants and putting the Luc reporter gene under the control of the same PRPL26A promoter for each transformed strain). We then generated a mapping population, the so-called TOMAN-G population, derived from the "1002 Yeast Genomes Project" population, the most comprehensive catalogue of the genetic variation in yeasts. Finally, strains belonging to the TOMAN-G population were phenotyped for TORC1 activation, and then we compared the results obtained between yeast strains with different ecological origins, finding differences in TORC1 activation between wild and domesticated strains, particularly wine strains. These results are indicative of the effect of domestication on TORC1 activation, specifically that the different evolutionary trajectories of wild and domesticated strains have in fact caused differences in the activation of this pathway; furthermore, the phenotypic data obtained in this work could be used to continue underlying the genetic bases of TORC1 activation, a process that is still not fully understood, using techniques such as GWAS to search for specific genetic variants underlying the observed phenotypic variability and phylogenetic tree inferences to gain insight into the evolutionary relationships between these genetic variants.
Collapse
Affiliation(s)
- Guilherme Rocha
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Melissa Gómez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Camila Baeza
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Francisco Salinas
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.
| |
Collapse
|
22
|
Cheng L, Xiang S, Yu Q, Yu T, Sun P, Ye C, Xue H. Paeoniflorin inhibits PRAS40 interaction with Raptor to activate mTORC1 to reverse excessive autophagy in airway epithelial cells for asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155946. [PMID: 39276538 DOI: 10.1016/j.phymed.2024.155946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Bronchial asthma is a chronic condition characterized by airway inflammation and remodeling, which pose complex pathophysiological challenges. Autophagy has been identified as a practical strategy to regulate inflammation and remodeling processes in chronic inflammatory diseases with pathological characteristics, such as asthma. PF (Paeoniflorin) is a potential new autophagy regulatory compound. Previous studies have reported that PF can inhibit airway inflammation to alleviate allergic asthma, but whether this is mediated through the regulation of autophagy and the molecular mechanism of action remains unclear. PURPOSE The aim of this study was to evaluate the inhibitory effect of natural small molecule PF on asthma by regulating epithelial autophagy. METHODS The rat asthma model was established through intraperitoneal injection of OVA and aluminum hydroxide suspension, followed by atomized inhalation of OVA for a period of two weeks. Following treatment with PF, histopathology was observed using Masson and H&E staining, while airway Max Rrs was evaluated using a pulmonary function apparatus. Levels of inflammatory cells in BALF were detected using a blood cell analyzer, and levels of inflammatory factors in BALF were detected through Elisa. Expressions of p-PRAS40 and p-Raptor were observed through immunohistochemistry, and levels of Beclin1 and LC3B were observed through immunofluorescence. The structure and quantity of autophagosomes and autophagolysosomal were observed through TEM. An autophagy model of 16HBE cells was established after treatment with 10ng/mL IL13 for 30 minutes. PRAS40 (AKT1S1) overexpression and mutation of PF and Raptor binding site (K207M& L302I& Q417H) were introduced in 16HBE cells. Autophagy in cells was measured by mFRP-GFP-LC3 ADV fluorescent tracer. The binding sites of PF and Raptor were analyzed using the Autodock Tool. The p-mTOR, p-Raptor, p-PRAS40, LC3II/LC3I were detected through Western blot, and interaction between PRAS40-Raptor and Raptor-mTOR was detected through Co-IP. RESULTS The results showed that PF effectively reduced airway inflammation, improved airway pathological changes and remodeling, and maintained lung function. Additionally, PF was found to reverse excessive autophagy in airway epithelial cells. Interestingly, PF activated the mTORC1 subunit PRAS40 and Raptor in airway epithelial cells by regulating their phosphorylation. PRAS40 is an endogenous mTOR inhibitor that promotes autophagy. PF competitively binds Raptor to PRAS40, promoting Raptor-mTOR interactions to activate mTORC1, an outcome that can be reversed by PRAS40 overexpression and site-specific amino acid codon mutations in Raptor. CONCLUSION These findings suggest that PF intervention and inhibition of PRAS40-Raptor interaction are effective treatments for bronchial asthma. By activating mTORC1, PF effectively reverses excessive autophagy in airway epithelial cells, leading to improved airway function and reduced inflammation.
Collapse
Affiliation(s)
- Linhui Cheng
- Jiangxi University of Chinese Medicine, Nanchang,330000, China
| | - Shuangdi Xiang
- Jiangxi University of Chinese Medicine, Nanchang,330000, China.
| | - Qiangqiang Yu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang,330000, China
| | - Tao Yu
- Jiangxi University of Chinese Medicine, Nanchang,330000, China
| | - Peng Sun
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang,330000, China
| | - Chao Ye
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang,330000, China
| | - Hanrong Xue
- Jiangxi University of Chinese Medicine, Nanchang,330000, China.
| |
Collapse
|
23
|
Aguilar-Rodríguez J, Vila J, Chen SAA, Razo-Mejia M, Ghosh O, Fraser HB, Jarosz DF, Petrov DA. Massively parallel experimental interrogation of natural variants in ancient signaling pathways reveals both purifying selection and local adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621178. [PMID: 39553990 PMCID: PMC11565963 DOI: 10.1101/2024.10.30.621178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The nature of standing genetic variation remains a central debate in population genetics, with differing perspectives on whether common variants are mostly neutral or have functional effects. We address this question by directly mapping the fitness effects of over 9,000 natural variants in the Ras/PKA and TOR/Sch9 pathways-key regulators of cell proliferation in eukaryotes-across four conditions in Saccharomyces cerevisiae. While many variants are neutral in our assay, on the order of 3,500 exhibited significant fitness effects. These non-neutral variants tend to be missense and affect conserved, more densely packed, and less solvent-exposed protein regions. They are also typically younger, occur at lower frequencies, and more often found in heterozygous states, suggesting they are subject to purifying selection. A substantial fraction of non-neutral variants showing strong fitness effects in our experiments, however, is present at high frequencies in the population. These variants show signs of local adaptation as they tend to be found specifically in domesticated strains adapted to human-made environments. Our findings support the view that while common variants are often neutral, a significant proportion have adaptive functional consequences and are driven into the population by local positive selection. This study highlights the potential to explore the functional effects of natural genetic variation on a genome scale with quantitative fitness measurements in the laboratory, bridging the gap between population genetics and functional genomics to understand evolutionary dynamics in the wild.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Vila
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shi-An A. Chen
- Department of Biology, Stanford University, Stanford, CA, USA
- Present address: Altos Labs, Bay Area Institute of Science, Redwood City, CA, USA
| | | | - Olivia Ghosh
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA
| | | | - Dan F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
24
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
25
|
Naaz A, Zhang Y, Faidzinn NA, Yogasundaram S, Dorajoo R, Alfatah M. Curcumin Inhibits TORC1 and Prolongs the Lifespan of Cells with Mitochondrial Dysfunction. Cells 2024; 13:1470. [PMID: 39273040 PMCID: PMC11394456 DOI: 10.3390/cells13171470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is an inevitable biological process that contributes to the onset of age-related diseases, often as a result of mitochondrial dysfunction. Understanding the mechanisms behind aging is crucial for developing therapeutic interventions. This study investigates the effects of curcumin on postmitotic cellular lifespan (PoMiCL) during chronological aging in yeast, a widely used model for human postmitotic cellular aging. Our findings reveal that curcumin significantly prolongs the PoMiCL of wildtype yeast cells, with the most pronounced effects observed at lower concentrations, indicating a hormetic response. Importantly, curcumin also extends the lifespan of postmitotic cells with mitochondrial deficiencies, although the hormetic effect is absent in these defective cells. Mechanistically, curcumin inhibits TORC1 activity, enhances ATP levels, and induces oxidative stress. These results suggest that curcumin has the potential to modulate aging and offer therapeutic insights into age-related diseases, highlighting the importance of context in its effects.
Collapse
Affiliation(s)
- Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore 117456, Singapore
| |
Collapse
|
26
|
No EG, Blank HM, Polymenis M. Patterns of protein synthesis in the budding yeast cell cycle: variable or constant? MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:321-327. [PMID: 39188509 PMCID: PMC11345583 DOI: 10.15698/mic2024.08.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The 'bulk' protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Eun-Gyu No
- Department of Biochemistry and Biophysics, Texas A&M UniversityTX, 77843U.S.A
| | - Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M UniversityTX, 77843U.S.A
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M UniversityTX, 77843U.S.A
| |
Collapse
|
27
|
Talavera RA, Prichard BE, Sommer RA, Leitao RM, Sarabia CJ, Hazir S, Paulo JA, Gygi SP, Kellogg DR. Cell growth and nutrient availability control the mitotic exit signaling network in budding yeast. J Cell Biol 2024; 223:e202305008. [PMID: 38722822 PMCID: PMC11082370 DOI: 10.1083/jcb.202305008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 05/13/2024] Open
Abstract
Cell growth is required for cell cycle progression. The amount of growth required for cell cycle progression is reduced in poor nutrients, which leads to a reduction in cell size. In budding yeast, nutrients can influence cell size by modulating the extent of bud growth, which occurs predominantly in mitosis. However, the mechanisms are unknown. Here, we used mass spectrometry to identify proteins that modulate bud growth in response to nutrient availability. This led to the discovery that nutrients regulate numerous components of the mitotic exit network (MEN), which controls exit from mitosis. A key component of the MEN undergoes gradual multisite phosphorylation during bud growth that is dependent upon bud growth and correlated with the extent of growth. Furthermore, activation of the MEN is sufficient to override a growth requirement for mitotic exit. The data suggest a model in which the MEN ensures that mitotic exit occurs only when an appropriate amount of bud growth has occurred.
Collapse
Affiliation(s)
- Rafael A. Talavera
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Beth E. Prichard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Robert A. Sommer
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Ricardo M. Leitao
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Christopher J. Sarabia
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Semin Hazir
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
28
|
Corsetti G, Pasini E, Scarabelli TM, Romano C, Singh A, Scarabelli CC, Dioguardi FS. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024; 16:2417. [PMID: 39125298 PMCID: PMC11313897 DOI: 10.3390/nu16152417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE This paper aims to present a unique perspective that emphasizes the intricate interplay between energy, dietary proteins, and amino acid composition, underscoring their mutual dependence for health-related considerations. Energy and protein synthesis are fundamental to biological processes, crucial for the sustenance of life and the growth of organisms. METHODS AND RESULTS We explore the intricate relationship between energy metabolism, protein synthesis, regulatory mechanisms, protein sources, amino acid availability, and autophagy in order to elucidate how these elements collectively maintain cellular homeostasis. We underscore the vital role this dynamic interplay has in preserving cell life. CONCLUSIONS A deeper understanding of the link between energy and protein synthesis is essential to comprehend fundamental cellular processes. This insight could have a wide-ranging impact in several medical fields, such as nutrition, metabolism, and disease management.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Evasio Pasini
- Italian Association of Functional Medicine, 20855 Lesmo, Italy;
- Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy
| | | | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25023 Brescia, Italy;
| | - Arashpreet Singh
- School of Osteopathic Medicine, Campbell University, Lillington, NC 27546, USA;
| | | | | |
Collapse
|
29
|
Sen MG, Sanislav O, Fisher PR, Annesley SJ. The Multifaceted Interactions of Dictyostelium Atg1 with Mitochondrial Function, Endocytosis, Growth, and Development. Cells 2024; 13:1191. [PMID: 39056773 PMCID: PMC11274416 DOI: 10.3390/cells13141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy is a degradative recycling process central to the maintenance of homeostasis in all eukaryotes. By ensuring the degradation of damaged mitochondria, it plays a key role in maintaining mitochondrial health and function. Of the highly conserved autophagy proteins, autophagy-related protein 1 (Atg1) is essential to the process. The involvement of these proteins in intracellular signalling pathways, including those involving mitochondrial function, are still being elucidated. Here the role of Atg1 was investigated in the simple model organism Dictyostelium discoideum using an atg1 null mutant and mutants overexpressing or antisense-inhibiting atg1. When evaluated against the well-characterised outcomes of mitochondrial dysfunction in this model, altered atg1 expression resulted in an unconventional set of phenotypic outcomes in growth, endocytosis, multicellular development, and mitochondrial homeostasis. The findings here show that Atg1 is involved in a tightly regulated signal transduction pathway coordinating energy-consuming processes such as cell growth and multicellular development, along with nutrient status and energy production. Furthermore, Atg1's effects on energy homeostasis indicate a peripheral ancillary role in the mitochondrial signalling network, with effects on energy balance rather than direct effects on electron transport chain function. Further research is required to tease out these complex networks. Nevertheless, this study adds further evidence to the theory that autophagy and mitochondrial signalling are not opposing but rather linked, yet strictly controlled, homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Melbourne 3086, Australia; (M.G.S.); (O.S.); (P.R.F.)
| |
Collapse
|
30
|
Li G, Cao X, Tumukunde E, Zeng Q, Wang S. The target of rapamycin signaling pathway regulates vegetative development, aflatoxin biosynthesis, and pathogenicity in Aspergillus flavus. eLife 2024; 12:RP89478. [PMID: 38990939 PMCID: PMC11239180 DOI: 10.7554/elife.89478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
The target of rapamycin (TOR) signaling pathway is highly conserved and plays a crucial role in diverse biological processes in eukaryotes. Despite its significance, the underlying mechanism of the TOR pathway in Aspergillus flavus remains elusive. In this study, we comprehensively analyzed the TOR signaling pathway in A. flavus by identifying and characterizing nine genes that encode distinct components of this pathway. The FK506-binding protein Fkbp3 and its lysine succinylation are important for aflatoxin production and rapamycin resistance. The TorA kinase plays a pivotal role in the regulation of growth, spore production, aflatoxin biosynthesis, and responses to rapamycin and cell membrane stress. As a significant downstream effector molecule of the TorA kinase, the Sch9 kinase regulates aflatoxin B1 (AFB1) synthesis, osmotic and calcium stress response in A. flavus, and this regulation is mediated through its S_TKc, S_TK_X domains, and the ATP-binding site at K340. We also showed that the Sch9 kinase may have a regulatory impact on the high osmolarity glycerol (HOG) signaling pathway. TapA and TipA, the other downstream components of the TorA kinase, play a significant role in regulating cell wall stress response in A. flavus. Moreover, the members of the TapA-phosphatase complexes, SitA and Ppg1, are important for various biological processes in A. flavus, including vegetative growth, sclerotia formation, AFB1 biosynthesis, and pathogenicity. We also demonstrated that SitA and Ppg1 are involved in regulating lipid droplets (LDs) biogenesis and cell wall integrity (CWI) signaling pathways. In addition, another phosphatase complex, Nem1/Spo7, plays critical roles in hyphal development, conidiation, aflatoxin production, and LDs biogenesis. Collectively, our study has provided important insight into the regulatory network of the TOR signaling pathway and has elucidated the underlying molecular mechanisms of aflatoxin biosynthesis in A. flavus.
Collapse
Affiliation(s)
- Guoqi Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaohong Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Elisabeth Tumukunde
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Qianhua Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
31
|
Ai X, Yu H, Cai Y, Guan Y. Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neurosci Bull 2024; 40:992-1006. [PMID: 38421513 PMCID: PMC11251008 DOI: 10.1007/s12264-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
Neuroimmune disorders, such as multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, and Guillain-Barré syndrome, are characterized by the dysfunction of both the immune system and the nervous system. Increasing evidence suggests that extracellular vesicles and autophagy are closely associated with the pathogenesis of these disorders. In this review, we summarize the current understanding of the interactions between extracellular vesicles and autophagy in neuroimmune disorders and discuss their potential diagnostic and therapeutic applications. Here we highlight the need for further research to fully understand the mechanisms underlying these disorders, and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiwen Ai
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Yu Cai
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yangtai Guan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| |
Collapse
|
32
|
Chen Q, Zhou S, Qu M, Yang Y, Chen Q, Meng X, Fan H. Cucumber (Cucumis sativus L.) translationally controlled tumor protein interacts with CsRab11A and promotes activation of target of rapamycin in response to Podosphaera xanthii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:332-347. [PMID: 38700955 DOI: 10.1111/tpj.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Mengqi Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yun Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Qinglei Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
33
|
Lucca C, Ferrari E, Shubassi G, Ajazi A, Choudhary R, Bruhn C, Matafora V, Bachi A, Foiani M. Sch9 S6K controls DNA repair and DNA damage response efficiency in aging cells. Cell Rep 2024; 43:114281. [PMID: 38805395 DOI: 10.1016/j.celrep.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.
Collapse
Affiliation(s)
- Chiara Lucca
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Elisa Ferrari
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Ghadeer Shubassi
- AtomVie Global Radiopharma Inc., 1280 Main Street W NRB-A316, Hamilton, ON L8S-4K1, Canada
| | - Arta Ajazi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ramveer Choudhary
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Christopher Bruhn
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, CNR, Pavia, Italy.
| |
Collapse
|
34
|
Leyria J, Fruttero LL, Canavoso LE. Lipids in Insect Reproduction: Where, How, and Why. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874891 DOI: 10.1007/5584_2024_809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Modern insects have inhabited the earth for hundreds of millions of years, and part of their successful adaptation lies in their many reproductive strategies. Insect reproduction is linked to a high metabolic rate that provides viable eggs in a relatively short time. In this context, an accurate interplay between the endocrine system and the nutrients synthetized and metabolized is essential to produce healthy offspring. Lipids guarantee the metabolic energy needed for egg formation and represent the main energy source consumed during embryogenesis. Lipids availability is tightly regulated by a complex network of endocrine signals primarily controlled by the central nervous system (CNS) and associated endocrine glands, the corpora allata (CA) and corpora cardiaca (CC). This endocrine axis provides hormones and neuropeptides that significatively affect tissues closely involved in successful reproduction: the fat body, which is the metabolic center supplying the lipid resources and energy demanded in egg formation, and the ovaries, where the developing oocytes recruit lipids that will be used for optimal embryogenesis. The post-genomic era and the availability of modern experimental approaches have advanced our understanding of many processes involved in lipid homeostasis; therefore, it is crucial to integrate the findings of recent years into the knowledge already acquired in the last decades. The present chapter is devoted to reviewing major recent contributions made in elucidating the impact of the CNS/CA/CC-fat body-ovary axis on lipid metabolism in the context of insect reproduction, highlighting areas of fruitful research.
Collapse
Affiliation(s)
- Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
35
|
Kim KQ, Nanjaraj Urs AN, Lasehinde V, Greenlaw AC, Hudson BH, Zaher HS. eIF4F complex dynamics are important for the activation of the integrated stress response. Mol Cell 2024; 84:2135-2151.e7. [PMID: 38848692 PMCID: PMC11189614 DOI: 10.1016/j.molcel.2024.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/08/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024]
Abstract
In response to stress, eukaryotes activate the integrated stress response (ISR) via phosphorylation of eIF2α to promote the translation of pro-survival effector genes, such as GCN4 in yeast. Complementing the ISR is the target of rapamycin (TOR) pathway, which regulates eIF4E function. Here, we probe translational control in the absence of eIF4E in Saccharomyces cerevisiae. Intriguingly, we find that loss of eIF4E leads to de-repression of GCN4 translation. In addition, we find that de-repression of GCN4 translation is accompanied by neither eIF2α phosphorylation nor reduction in initiator ternary complex (TC). Our data suggest that when eIF4E levels are depleted, GCN4 translation is de-repressed via a unique mechanism that may involve faster scanning by the small ribosome subunit due to increased local concentration of eIF4A. Overall, our findings suggest that relative levels of eIF4F components are key to ribosome dynamics and may play important roles in translational control of gene expression.
Collapse
Affiliation(s)
- Kyusik Q Kim
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Victor Lasehinde
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alison C Greenlaw
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Benjamin H Hudson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
36
|
Leclerc NR, Dunne TM, Shrestha S, Johnson CP, Kelley JB. TOR signaling regulates GPCR levels on the plasma membrane and suppresses the Saccharomyces cerevisiae mating pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593412. [PMID: 38798445 PMCID: PMC11118302 DOI: 10.1101/2024.05.09.593412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Saccharomyces cerevisiae respond to mating pheromone through the GPCRs Ste2 and Ste3, which promote growth of a mating projection in response to ligand binding. This commitment to mating is nutritionally and energetically taxing, and so we hypothesized that the cell may suppress mating signaling during starvation. We set out to investigate negative regulators of the mating pathway in nutritionally depleted environments. Here, we report that nutrient deprivation led to loss of Ste2 from the plasma membrane. Recapitulating this effect with nitrogen starvation led us to hypothesize that it was due to TORC1 signaling. Rapamycin inhibition of TORC1 impacted membrane levels of all yeast GPCRs. Inhibition of TORC1 also dampened mating pathway output. Deletion analysis revealed that TORC1 repression leads to α-arrestin-directed CME through TORC2-Ypk1 signaling. We then set out to determine whether major downstream effectors of the TOR complexes also downregulate pathway output during mating. We found that autophagy contributes to pathway downregulation through analysis of strains lacking ATG8 . We also show that Ypk1 significantly reduced pathway output. Thus, both autophagy machinery and TORC2-Ypk1 signaling serve as attenuators of pheromone signaling during mating. Altogether, we demonstrate that the stress-responsive TOR complexes coordinate GPCR endocytosis and reduce the magnitude of pheromone signaling, in ligand-independent and ligand-dependent contexts. One Sentence Summary TOR signaling regulates the localization of all Saccharomyces cerevisiae GPCRs during starvation and suppress the mating pathway in the presence and absence of ligand.
Collapse
|
37
|
Novotná K, Tenora L, Slusher BS, Rais R. Therapeutic resurgence of 6-diazo-5-oxo-l-norleucine (DON) through tissue-targeted prodrugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:157-180. [PMID: 39034051 DOI: 10.1016/bs.apha.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.
Collapse
Affiliation(s)
- Kateřina Novotná
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic; Department of Organic Chemistry, Charles University, Faculty of Science, Prague, Czech Republic
| | - Lukáš Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Organic Chemistry, Charles University, Faculty of Science, Prague, Czech Republic
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
38
|
Alfatah M, Lim JJJ, Zhang Y, Naaz A, Cheng TYN, Yogasundaram S, Faidzinn NA, Lin JJ, Eisenhaber B, Eisenhaber F. Uncharacterized yeast gene YBR238C, an effector of TORC1 signaling in a mitochondrial feedback loop, accelerates cellular aging via HAP4- and RMD9-dependent mechanisms. eLife 2024; 12:RP92178. [PMID: 38713053 PMCID: PMC11076046 DOI: 10.7554/elife.92178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jolyn Jia Jia Lim
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU)SingaporeSingapore
| |
Collapse
|
39
|
Zhao T, Fan J, Abu-Zaid A, Burley SK, Zheng XS. Nuclear mTOR Signaling Orchestrates Transcriptional Programs Underlying Cellular Growth and Metabolism. Cells 2024; 13:781. [PMID: 38727317 PMCID: PMC11083943 DOI: 10.3390/cells13090781] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
mTOR is a central regulator of cell growth and metabolism in response to mitogenic and nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This review highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate gene expression programs associated with growth and metabolic processes. Furthermore, the review underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epigenetic modifications. By integrating its functions in nutrient signaling and gene expression related to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis, malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling has the potential to lead to novel therapies against cancer and other growth-related diseases.
Collapse
Affiliation(s)
- Tinghan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jialin Fan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ahmed Abu-Zaid
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Stephen K. Burley
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - X.F. Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
40
|
Böttcher B, Kienast SD, Leufken J, Eggers C, Sharma P, Leufken CM, Morgner B, Drexler HCA, Schulz D, Allert S, Jacobsen ID, Vylkova S, Leidel SA, Brunke S. A highly conserved tRNA modification contributes to C. albicans filamentation and virulence. Microbiol Spectr 2024; 12:e0425522. [PMID: 38587411 PMCID: PMC11064501 DOI: 10.1128/spectrum.04255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2024] [Indexed: 04/09/2024] Open
Abstract
tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.
Collapse
Affiliation(s)
- Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sandra D. Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Christine M. Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bianka Morgner
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Hannes C. A. Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sebastian A. Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| |
Collapse
|
41
|
Yuan Z, Yang X, Hu Z, Gao Y, Wang M, Xie L, Zhu H, Chen C, Lu H, Bai Y. Fraxetin pretreatment alleviates cisplatin-induced kidney injury by antagonizing autophagy and apoptosis via mTORC1 activation. Phytother Res 2024; 38:2077-2093. [PMID: 38558449 DOI: 10.1002/ptr.8073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 04/04/2024]
Abstract
Cisplatin-induced kidney injury (CKI) is a common complication of chemotherapy. Fraxetin, derived from Fraxinus bungeana A. DC. bark, has antioxidant, anti-inflammatory, and anti-fibrotic effects. This study aims to investigate fraxetin's effects on CKI and its underlying mechanism in vivo and in vitro. Tubular epithelial cells (TECs) and mice were exposed to cisplatin with and without fraxetin preconditioning assess fraxetin's role in CKI. TECs autophagy was observed using transmission electron microscopy. Apoptosis levels in animal tissues were measured using TUNEL staining. The protective mechanism of fraxetin was explored through pharmacological and genetic regulation of mTORC1. Molecular docking was used to identify potential binding sites between fraxetin and mTORC1. The results indicated that fraxetin pretreatment reduced cisplatin-induced kidney injury in a time- and concentration-dependent way. Fraxetin also decreased autophagy in TECs, as observed through electron microscopy. Tissue staining confirmed that fraxetin pretreatment significantly reduced cisplatin-induced apoptosis. Inhibition of mTORC1 using rapamycin or siRNA reversed the protective effects of fraxetin on apoptosis and autophagy in cisplatin-treated TECs, while activation of mTORC1 enhanced fraxetin's protective effect. Molecular docking analysis revealed that fraxetin can bind to HEAT-repeats binding site on mTORC1 protein. In summary, fraxetin pretreatment alleviates CKI by antagonizing autophagy and apoptosis via mTORC1 activation. This provides evidence for the potential therapeutic application of fraxetin in CKI.
Collapse
Affiliation(s)
- Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengsi Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
43
|
Myburgh E, Geoghegan V, Alves-Ferreira EV, Nievas YR, Grewal JS, Brown E, McLuskey K, Mottram JC. TORC1 is an essential regulator of nutrient-controlled proliferation and differentiation in Leishmania. EMBO Rep 2024; 25:1075-1105. [PMID: 38396206 PMCID: PMC10933368 DOI: 10.1038/s44319-024-00084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Leishmania parasites undergo differentiation between various proliferating and non-dividing forms to adapt to changing host environments. The mechanisms that link environmental cues with the parasite's developmental changes remain elusive. Here, we report that Leishmania TORC1 is a key environmental sensor for parasite proliferation and differentiation in the sand fly-stage promastigotes and for replication of mammalian-stage amastigotes. We show that Leishmania RPTOR1, interacts with TOR1 and LST8, and identify new parasite-specific proteins that interact in this complex. We investigate TORC1 function by conditional deletion of RPTOR1, where under nutrient-rich conditions RPTOR1 depletion results in decreased protein synthesis and growth, G1 cell cycle arrest and premature differentiation from proliferative promastigotes to non-dividing mammalian-infective metacyclic forms. These parasites are unable to respond to nutrients to differentiate into proliferative retroleptomonads, which are required for their blood-meal induced amplification in sand flies and enhanced mammalian infectivity. We additionally show that RPTOR1-/- metacyclic promastigotes develop into amastigotes but do not proliferate in the mammalian host to cause pathology. RPTOR1-dependent TORC1 functionality represents a critical mechanism for driving parasite growth and proliferation.
Collapse
Affiliation(s)
- Elmarie Myburgh
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK.
| | - Vincent Geoghegan
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Eliza Vc Alves-Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Y Romina Nievas
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Jaspreet S Grewal
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Elaine Brown
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen McLuskey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
44
|
Davidson PL, Moczek AP. Genome evolution and divergence in cis-regulatory architecture is associated with condition-responsive development in horned dung beetles. PLoS Genet 2024; 20:e1011165. [PMID: 38442113 PMCID: PMC10942260 DOI: 10.1371/journal.pgen.1011165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/15/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Phenotypic plasticity is thought to be an important driver of diversification and adaptation to environmental variation, yet the genomic mechanisms mediating plastic trait development and evolution remain poorly understood. The Scarabaeinae, or true dung beetles, are a species-rich clade of insects recognized for their highly diversified nutrition-responsive development including that of cephalic horns-evolutionarily novel, secondary sexual weapons that exhibit remarkable intra- and interspecific variation. Here, we investigate the evolutionary basis for horns as well as other key dung beetle traits via comparative genomic and developmental assays. We begin by presenting chromosome-level genome assemblies of three dung beetle species in the tribe Onthophagini (> 2500 extant species) including Onthophagus taurus, O. sagittarius, and Digitonthophagus gazella. Comparing these assemblies to those of seven other species across the order Coleoptera identifies evolutionary changes in coding sequence associated with metabolic regulation of plasticity and metamorphosis. We then contrast chromatin accessibility in developing head horn tissues of high- and low-nutrition O. taurus males and females and identify distinct cis-regulatory architectures underlying nutrition- compared to sex-responsive development, including a large proportion of recently evolved regulatory elements sensitive to horn morph determination. Binding motifs of known and new candidate transcription factors are enriched in these nutrition-responsive open chromatin regions. Our work highlights the importance of chromatin state regulation in mediating the development and evolution of plastic traits, demonstrates gene networks are highly evolvable transducers of environmental and genetic signals, and provides new reference-quality genomes for three species that will bolster future developmental, ecological, and evolutionary studies of this insect group.
Collapse
Affiliation(s)
- Phillip L. Davidson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Armin P. Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
45
|
Andrews SS, Wiley HS, Sauro HM. Design patterns of biological cells. Bioessays 2024; 46:e2300188. [PMID: 38247191 PMCID: PMC10922931 DOI: 10.1002/bies.202300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Design patterns are generalized solutions to frequently recurring problems. They were initially developed by architects and computer scientists to create a higher level of abstraction for their designs. Here, we extend these concepts to cell biology to lend a new perspective on the evolved designs of cells' underlying reaction networks. We present a catalog of 21 design patterns divided into three categories: creational patterns describe processes that build the cell, structural patterns describe the layouts of reaction networks, and behavioral patterns describe reaction network function. Applying this pattern language to the E. coli central metabolic reaction network, the yeast pheromone response signaling network, and other examples lends new insights into these systems.
Collapse
Affiliation(s)
- Steven S. Andrews
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
Kamada Y, Umeda C, Mukai Y, Ohtsuka H, Otsubo Y, Yamashita A, Kosugi T. Structure-based engineering of Tor complexes reveals that two types of yeast TORC1 produce distinct phenotypes. J Cell Sci 2024; 137:jcs261625. [PMID: 38415789 PMCID: PMC10941655 DOI: 10.1242/jcs.261625] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
Certain proteins assemble into diverse complex states, each having a distinct and unique function in the cell. Target of rapamycin (Tor) complex 1 (TORC1) plays a central role in signalling pathways that allow cells to respond to the environment, including nutritional status signalling. TORC1 is widely recognised for its association with various diseases. The budding yeast Saccharomyces cerevisiae has two types of TORC1, Tor1-containing TORC1 and Tor2-containing TORC1, which comprise different constituent proteins but are considered to have the same function. Here, we computationally modelled the relevant complex structures and then, based on the structures, rationally engineered a Tor2 mutant that could form Tor complex 2 (TORC2) but not TORC1, resulting in a redesign of the complex states. Functional analysis of the Tor2 mutant revealed that the two types of TORC1 induce different phenotypes, with changes observed in rapamycin, caffeine and pH dependencies of cell growth, as well as in replicative and chronological lifespan. These findings uncovered by a general approach with huge potential - model structure-based engineering - are expected to provide further insights into various fields such as molecular evolution and lifespan.
Collapse
Affiliation(s)
- Yoshiaki Kamada
- Interdisciplinary Research Unit, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
- Basic Biology Program, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
| | - Chiharu Umeda
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yukio Mukai
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
| | - Takahiro Kosugi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
- Molecular Science Program, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
47
|
Wang MM, Huang YY, Liu WB, Xiao K, Wang X, Guo HX, Zhang YL, Fan JW, Li XF, Jiang GZ. Interactive effects of dietary leucine and isoleucine affect amino acid profile and metabolism through AKT/TOR signaling pathways in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:385-401. [PMID: 36525145 DOI: 10.1007/s10695-022-01161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this research is to explore the interaction between dietary leucine and isoleucine levels on whole-body composition, plasma and liver biochemical indexes, amino acids deposition in the liver, and amino acid metabolism of blunt snout bream (Megalobrama amblycephala). The test fish (average weight: 56.00 ± 0.55 g) were fed one of six diets at random containing two leucine levels (1.70% and 2.50%) and three isoleucine levels (1.00%, 1.20%, and 1.40%) for 8 weeks. The results showed that the final weight and weight gain rate were the highest in the fish fed low-level leucine and high-level isoleucine diets (P > 0.05). Furthermore, the crude lipid content was significantly adjusted by diets with diverse levels of leucine and isoleucine (P < 0.05). In addition, interactive effects of these two branched-chain amino acids (BCAAs) were found on plasma total protein, blood ammonia, and blood urea nitrogen of test fish (P < 0.05). Additionally, the liver amino acid profiles were significantly influenced by the interactive effects of the two BCAAs (P < 0.05). Moreover, interactive effects of dietary leucine and isoleucine were significantly observed in the expressions of amino acid metabolism-related genes (P < 0.05). These findings suggested that dietary leucine and isoleucine had interaction. Meanwhile, the interaction between them was more conducive to the growth and quality improvement of blunt snout bream when the dietary leucine level was 1.70% and isoleucine level was 1.40%.
Collapse
Affiliation(s)
- Mang-Mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yi-Lin Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Jing-Wei Fan
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
48
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
49
|
Zeng Q, Araki Y, Noda T. Pib2 is a cysteine sensor involved in TORC1 activation in Saccharomyces cerevisiae. Cell Rep 2024; 43:113599. [PMID: 38127619 DOI: 10.1016/j.celrep.2023.113599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator that monitors the availability of various amino acids to promote cell growth in Saccharomyces cerevisiae. It is activated via two distinct upstream pathways: the Gtr pathway, which corresponds to mammalian Rag, and the Pib2 pathway. This study shows that Ser3 was phosphorylated exclusively in a Pib2-dependent manner. Using Ser3 as an indicator of TORC1 activity, together with the established TORC1 substrate Sch9, we investigated which pathways were employed by individual amino acids. Different amino acids exhibited different dependencies on the Gtr and Pib2 pathways. Cysteine was most dependent on the Pib2 pathway and increased the interaction between TORC1 and Pib2 in vivo and in vitro. Moreover, cysteine directly bound to Pib2 via W632 and F635, two critical residues in the T(ail) motif that are necessary to activate TORC1. These results indicate that Pib2 functions as a sensor for cysteine in TORC1 regulation.
Collapse
Affiliation(s)
- Qingzhong Zeng
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yasuhiro Araki
- Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| | - Takeshi Noda
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan; Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
50
|
Anjum S, Srivastava S, Panigrahi L, Ansari UA, Trivedi AK, Ahmed S. TORC1 mediated regulation of mitochondrial integrity and calcium ion homeostasis by Wat1/mLst8 in S. pombe. Int J Biol Macromol 2023; 253:126907. [PMID: 37717872 DOI: 10.1016/j.ijbiomac.2023.126907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The mTOR complexes play a fundamental role in mitochondrial biogenesis and cellular homeostasis. Wat1, an ortholog of mammalian Lst8 is an important component of TOR complex and is essential for the regulation of downstream signaling. Earlier we reported the role of Wat1 in oxidative stress response. Here, we have shown that the abrogation of wat1 causes respiratory defects and mitochondrial depolarization that leads to a decrease in ATP production. The confocal and electron microscopy in wat1Δ cells revealed the fragmented mitochondrial morphology implying its role in mitochondrial fission. Furthermore, we also showed its role in autophagy and the maintenance of calcium ion homeostasis. Additionally, tor2-287 mutant cells also exhibit defects in mitochondrial integrity indicating the TORC1-dependent involvement of Wat1 in the maintenance of mitochondrial homeostasis. The interaction studies of Wat1 and Tor2 with Por1 and Mmm1 proteins revealed a plausible cross-talk between mitochondria and endoplasmic reticulum through the Mitochondria-associated membranes (MAM) and endoplasmic reticulum-mitochondria encounter structure (ERMES) complex, involving TORC1. Taken together, this study demonstrates the involvement of Wat1/mLst8 in harmonizing various mitochondrial functions, redox status, and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Simmi Anjum
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Lalita Panigrahi
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Uzair Ahmad Ansari
- System Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicological Research, Vishvigyan Bhawan, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|