1
|
Dumont BL, Gatti DM, Ballinger MA, Lin D, Phifer-Rixey M, Sheehan MJ, Suzuki TA, Wooldridge LK, Frempong HO, Lawal RA, Churchill GA, Lutz C, Rosenthal N, White JK, Nachman MW. Into the Wild: A novel wild-derived inbred strain resource expands the genomic and phenotypic diversity of laboratory mouse models. PLoS Genet 2024; 20:e1011228. [PMID: 38598567 PMCID: PMC11034653 DOI: 10.1371/journal.pgen.1011228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for over a century. However, laboratory mice capture only a subset of the genetic variation found in wild mouse populations, ultimately limiting the potential of classical inbred strains to uncover phenotype-associated variants and pathways. Wild mouse populations are reservoirs of genetic diversity that could facilitate the discovery of new functional and disease-associated alleles, but the scarcity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently developed, sequenced, and phenotyped a set of 11 inbred strains derived from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from one of five environmentally distinct locations across North and South America. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the GRCm39 mouse reference, with 42.5% of variants in the Nachman strain genomes absent from current classical inbred mouse strain panels. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels. These novel wild-derived inbred mouse strain resources are set to empower new discoveries in both basic and preclinical research.
Collapse
Affiliation(s)
- Beth L. Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Daniel M. Gatti
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Mallory A. Ballinger
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America
| | - Dana Lin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan Phifer-Rixey
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Taichi A. Suzuki
- College of Health Solutions and Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, United States of America
| | - Lydia K. Wooldridge
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Hilda Opoku Frempong
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Raman Akinyanju Lawal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
| | - Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, Maine, United States of America
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jacqueline K. White
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology, Museum of Vertebrate Zoology, and Center for Computational Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
2
|
Ding H, Ge K, Fan C, Liu D, Wu C, Li R, Yan FJ. Chlorogenic Acid Attenuates Hepatic Steatosis by Suppressing ZFP30. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:245-258. [PMID: 38148374 DOI: 10.1021/acs.jafc.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major global health problem with no approved pharmacological treatment for this disease. Thus, it is urgent to develop effective therapeutic targets for clinical intervention. Here, we show for the first time that ZFP30, a member of the KRAB-ZFP family, is significantly increased in NAFLD models. ZFP30 silencing ameliorates free fatty acid (FFA)-induced lipid accumulation; in contrast, the ZFP30 overexpression exacerbates the triglyceride accumulation and steatosis in hepatocytes. Further investigation revealed that the effects of ZFP30 on hepatic lipid accumulation were mainly attributed to the PPARα downregulation in the NAFLD model. Mechanistically, ZFP30 directly binded to the promoter of PPARα and recruited KAP1 to suppress its transcription. Moreover, chlorogenic acid (CGA) reversed the upregulation of ZFP30 in NAFLD, promoting the PPARα expression, resulting in enhanced fatty acid oxidation and alleviated hepatic steatosis. Collectively, our study indicates ZFP30 as a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Han Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Kunyi Ge
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Changyu Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Dandan Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chenyu Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Rongpeng Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Feng-Juan Yan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
3
|
Dumont BL, Gatti D, Ballinger MA, Lin D, Phifer-Rixey M, Sheehan MJ, Suzuki TA, Wooldridge LK, Frempong HO, Churchill G, Lutz C, Rosenthal N, White JK, Nachman MW. Into the Wild: A novel wild-derived inbred strain resource expands the genomic and phenotypic diversity of laboratory mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558738. [PMID: 37790321 PMCID: PMC10542534 DOI: 10.1101/2023.09.21.558738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for a century. However, laboratory mice capture a narrow subset of the genetic variation found in wild mouse populations. This consideration inherently restricts the scope of potential discovery in laboratory models and narrows the pool of potentially identified phenotype-associated variants and pathways. Wild mouse populations are reservoirs of predicted functional and disease-associated alleles, but the sparsity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently imported, sequenced, and phenotyped a set of 11 wild-derived inbred strains developed from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from five environmentally diverse locations across North and South America: Saratoga Springs, New York, USA; Gainesville, Florida, USA; Manaus, Brazil; Tucson, Arizona, USA; and Edmonton, Alberta, Canada. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the mouse reference assembly, with 42.5% of variants in the Nachman strain genomes absent from classical inbred mouse strains. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels alone. Taken together, our work introduces a novel wild-derived inbred mouse strain resource that will enable new discoveries in basic and preclinical research. These strains are currently available through The Jackson Laboratory Repository under laboratory code NachJ.
Collapse
Affiliation(s)
- Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA
- The University of Maine, Graduate School of Biomedical Science and Engineering, 5775 Stodder Hall, Room 46, Orono, ME, 04469, USA
| | - Daniel Gatti
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Mallory A Ballinger
- Department of Integrative Biology, Center for Computational Biology, and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dana Lin
- Department of Integrative Biology, Center for Computational Biology, and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Michael J Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Taichi A Suzuki
- College of Health Solutions and Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA 85281
| | | | - Hilda Opoku Frempong
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- The University of Maine, Graduate School of Biomedical Science and Engineering, 5775 Stodder Hall, Room 46, Orono, ME, 04469, USA
| | - Gary Churchill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA
- The University of Maine, Graduate School of Biomedical Science and Engineering, 5775 Stodder Hall, Room 46, Orono, ME, 04469, USA
| | - Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA, 02111, USA
- The University of Maine, Graduate School of Biomedical Science and Engineering, 5775 Stodder Hall, Room 46, Orono, ME, 04469, USA
| | | | - Michael W Nachman
- Department of Integrative Biology, Center for Computational Biology, and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Wei C, Wang Y, Hu C. Bioinformatic analysis and experimental validation of the potential gene in the airway inflammation of steroid-resistant asthma. Sci Rep 2023; 13:8098. [PMID: 37208441 DOI: 10.1038/s41598-023-35214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Steroid-resistant asthma is a troublesome clinical problem in public health. The pathogenesis of steroid-resistant asthma is complex and remains to be explored. In our work, the online Gene Expression Omnibus microarray dataset GSE7368 was used to explore differentially expressed genes (DEGs) between steroid-resistant asthma patients and steroid-sensitive asthma patients. Tissue-specific gene expression of DEGs was analyzed using BioGPS. The enrichment analyses were performed using GO, KEGG, and GSEA analysis. The protein-protein interaction network and key gene cluster were constructed using STRING, Cytoscape, MCODE, and Cytohubba. A steroid-resistant neutrophilic asthma mouse model was established using lipopolysaccharide (LPS) and ovalbumin (OVA). An LPS-stimulated J744A.1 macrophage model was prepared to validate the underlying mechanism of the interesting DEG gene using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 66 DEGs were identified, most of which were present in the hematologic/immune system. Enrichment analysis displayed that the enriched pathways were the IL-17 signaling pathway, MAPK signal pathway, Toll-like receptor signaling pathway, and so on. DUSP2, as one of the top upregulated DEGs, has not been clearly demonstrated in steroid-resistant asthma. In our study, we observed that the salubrinal administration (DUSP2 inhibitor) reversed neutrophilic airway inflammation and cytokine responses (IL-17A, TNF-α) in a steroid-resistant asthma mouse model. We also found that salubrinal treatment reduced inflammatory cytokines (CXCL10 and IL-1β) in LPS-stimulated J744A.1 macrophages. DUSP2 may be a candidate target for the therapy of steroid-resistant asthma.
Collapse
Affiliation(s)
- Chaochao Wei
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hainan Hospital of Hainan Medical University, Haikou, People's Republic of China
- Department of Oncology, Xiangya Hospital Central South University, Changsha, People's Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Allam VSRR, Waern I, Taha S, Akula S, Wernersson S, Pejler G. Nafamostat has anti-asthmatic effects associated with suppressed pro-inflammatory gene expression, eosinophil infiltration and airway hyperreactivity. Front Immunol 2023; 14:1136780. [PMID: 37153590 PMCID: PMC10160450 DOI: 10.3389/fimmu.2023.1136780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Asthma is characterized by an imbalance between proteases and their inhibitors. Hence, an attractive therapeutic option could be to interfere with asthma-associated proteases. Here we exploited this option by assessing the impact of nafamostat, a serine protease inhibitor known to neutralize mast cell tryptase. Methods Nafamostat was administered in a mouse model for asthma based on sensitization by house dust mite (HDM) extract, followed by the assessment of effects on airway hyperreactivity, inflammatory parameters and gene expression. Results We show that nafamostat efficiently suppressed the airway hyperreactivity in HDM-sensitized mice. This was accompanied by reduced infiltration of eosinophils and lymphocytes to the airways, and by lower levels of pro-inflammatory compounds within the airway lumen. Further, nafamostat had a dampening impact on goblet cell hyperplasia and smooth muscle layer thickening in the lungs of HDM-sensitized animals. To obtain deeper insight into the underlying mechanisms, a transcriptomic analysis was conducted. This revealed, as expected, that the HDM sensitization caused an upregulated expression of numerous pro-inflammatory genes. Further, the transcriptomic analysis showed that nafamostat suppressed the levels of multiple pro-inflammatory genes, with a particular impact on genes related to asthma. Discussion Taken together, this study provides extensive insight into the ameliorating effect of nafamostat on experimental asthma, and our findings can thereby provide a basis for the further evaluation of nafamostat as a potential therapeutic agent in human asthma.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sowsan Taha
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Sara Wernersson, ; Gunnar Pejler,
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Sara Wernersson, ; Gunnar Pejler,
| |
Collapse
|
6
|
Haines BA, Barradale F, Dumont BL. Patterns and mechanisms of sex ratio distortion in the Collaborative Cross mouse mapping population. Genetics 2021; 219:iyab136. [PMID: 34740238 PMCID: PMC8570777 DOI: 10.1093/genetics/iyab136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022] Open
Abstract
In species with single-locus, chromosome-based mechanisms of sex determination, the laws of segregation predict an equal ratio of females to males at birth. Here, we show that departures from this Mendelian expectation are commonplace in the 8-way recombinant inbred Collaborative Cross (CC) mouse population. More than one-third of CC strains exhibit significant sex ratio distortion (SRD) at wean, with twice as many male-biased than female-biased strains. We show that these pervasive sex biases persist across multiple breeding environments, are stable over time, and are not mediated by random maternal effects. SRD exhibits a heritable component, but QTL mapping analyses fail to nominate any large effect loci. These findings, combined with the reported absence of sex ratio biases in the CC founder strains, suggest that SRD manifests from multilocus combinations of alleles only uncovered in recombined CC genomes. We explore several potential complex genetic mechanisms for SRD, including allelic interactions leading to sex-biased lethality, genetic sex reversal, chromosome drive mediated by sex-linked selfish elements, and incompatibilities between specific maternal and paternal genotypes. We show that no one mechanism offers a singular explanation for this population-wide SRD. Instead, our data present preliminary evidence for the action of distinct mechanisms of SRD at play in different strains. Taken together, our work exposes the pervasiveness of SRD in the CC population and nominates the CC as a powerful resource for investigating diverse genetic causes of biased sex chromosome transmission.
Collapse
Affiliation(s)
| | | | - Beth L Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
7
|
Laudermilk LT, Tovar A, Homstad AK, Thomas JM, McFadden KM, Tune MK, Cowley DO, Mock JR, Ideraabdullah F, Kelada SNP. Baseline and innate immune response characterization of a Zfp30 knockout mouse strain. Mamm Genome 2020; 31:205-214. [PMID: 32860515 PMCID: PMC7486244 DOI: 10.1007/s00335-020-09847-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Airway neutrophilia is correlated with disease severity in a number of chronic and acute pulmonary diseases, and dysregulation of neutrophil chemotaxis can lead to host tissue damage. The gene Zfp30 was previously identified as a candidate regulator of neutrophil recruitment to the lungs and secretion of CXCL1, a potent neutrophil chemokine, in a genome-wide mapping study using the Collaborative Cross. ZFP30 is a putative transcriptional repressor with a KRAB domain capable of inducing heterochromatin formation. Using a CRISPR-mediated knockout mouse model, we investigated the role that Zfp30 plays in recruitment of neutrophils to the lung using models of allergic airway disease and acute lung injury. We found that the Zfp30 null allele did not affect CXCL1 secretion or neutrophil recruitment to the lungs in response to various innate immune stimuli. Intriguingly, despite the lack of neutrophil phenotype, we found there was a significant reduction in the proportion of live Zfp30 homozygous female mutant mice produced from heterozygous matings. This deviation from the expected Mendelian ratios implicates Zfp30 in fertility or embryonic development. Overall, our results indicate that Zfp30 is an essential gene but does not influence neutrophilic inflammation in this particular knockout model.
Collapse
Affiliation(s)
- Lucas T Laudermilk
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Adelaide Tovar
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Alison K Homstad
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph M Thomas
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Kathryn M McFadden
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Miriya K Tune
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Dale O Cowley
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Animal Models Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Jason R Mock
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Folami Ideraabdullah
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA.
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Kollmus H, Fuchs H, Lengger C, Haselimashhadi H, Bogue MA, Östereicher MA, Horsch M, Adler T, Aguilar-Pimentel JA, Amarie OV, Becker L, Beckers J, Calzada-Wack J, Garrett L, Hans W, Hölter SM, Klein-Rodewald T, Maier H, Mayer-Kuckuk P, Miller G, Moreth K, Neff F, Rathkolb B, Rácz I, Rozman J, Spielmann N, Treise I, Busch D, Graw J, Klopstock T, Wolf E, Wurst W, Yildirim AÖ, Mason J, Torres A, Balling R, Mehaan T, Gailus-Durner V, Schughart K, Hrabě de Angelis M. A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes. Mamm Genome 2020; 31:30-48. [PMID: 32060626 PMCID: PMC7060152 DOI: 10.1007/s00335-020-09827-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/31/2020] [Indexed: 01/21/2023]
Abstract
The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.
Collapse
Affiliation(s)
- Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstr.7, 38124, Braunschweig, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Christoph Lengger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Hamed Haselimashhadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Manuela A Östereicher
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Holger Maier
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Philipp Mayer-Kuckuk
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Gregor Miller
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Ildikó Rácz
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Clinic of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Dirk Busch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Klinikum Der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Chair of Developmental Genetics, Technische Universität München-Weihenstephan, C/O Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Lung Research, Marburg, Germany
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Arturo Torres
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Terry Mehaan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstr.7, 38124, Braunschweig, Germany.
- University of Veterinary Medicine Hannover, Hanover, Germany.
- University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
10
|
Genetic Diversity of Collaborative Cross Mice Controls Viral Replication, Clinical Severity, and Brain Pathology Induced by Zika Virus Infection, Independently of Oas1b. J Virol 2020; 94:JVI.01034-19. [PMID: 31694939 DOI: 10.1128/jvi.01034-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022] Open
Abstract
The explosive spread of Zika virus (ZIKV) has been associated with major variations in severe disease and congenital afflictions among infected populations, suggesting an influence of host genes. We investigated how genome-wide variants could impact susceptibility to ZIKV infection in mice. We first describe that the susceptibility of Ifnar1-knockout mice is largely influenced by their genetic background. We then show that Collaborative Cross (CC) mice, which exhibit a broad genetic diversity, in which the type I interferon receptor (IFNAR) was blocked by an anti-IFNAR antibody expressed phenotypes ranging from complete resistance to severe symptoms and death, with large variations in the peak and the rate of decrease in the plasma viral load, in the brain viral load, in brain histopathology, and in the viral replication rate in infected cells. The differences in susceptibility to ZIKV between CC strains correlated with the differences in susceptibility to dengue and West Nile viruses between the strains. We identified highly susceptible and resistant mouse strains as new models to investigate the mechanisms of human ZIKV disease and other flavivirus infections. Genetic analyses revealed that phenotypic variations are driven by multiple genes with small effects, reflecting the complexity of ZIKV disease susceptibility in the human population. Notably, our results rule out the possibility of a role of the Oas1b gene in the susceptibility to ZIKV. Altogether, the findings of this study emphasize the role of host genes in the pathogeny of ZIKV infection and lay the foundation for further genetic and mechanistic studies.IMPORTANCE In recent outbreaks, ZIKV has infected millions of people and induced rare but potentially severe complications, including Guillain-Barré syndrome and encephalitis in adults. While several viral sequence variants were proposed to enhance the pathogenicity of ZIKV, the influence of host genetic variants in mediating the clinical heterogeneity remains mostly unexplored. We addressed this question using a mouse panel which models the genetic diversity of the human population and a ZIKV strain from a recent clinical isolate. Through a combination of in vitro and in vivo approaches, we demonstrate that multiple host genetic variants determine viral replication in infected cells and the clinical severity, the kinetics of blood viral load, and brain pathology in mice. We describe new mouse models expressing high degrees of susceptibility or resistance to ZIKV and to other flaviviruses. These models will facilitate the identification and mechanistic characterization of host genes that influence ZIKV pathogenesis.
Collapse
|
11
|
Keele GR, Quach BC, Israel JW, Chappell GA, Lewis L, Safi A, Simon JM, Cotney P, Crawford GE, Valdar W, Rusyn I, Furey TS. Integrative QTL analysis of gene expression and chromatin accessibility identifies multi-tissue patterns of genetic regulation. PLoS Genet 2020; 16:e1008537. [PMID: 31961859 PMCID: PMC7010298 DOI: 10.1371/journal.pgen.1008537] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/10/2020] [Accepted: 11/23/2019] [Indexed: 01/08/2023] Open
Abstract
Gene transcription profiles across tissues are largely defined by the activity of regulatory elements, most of which correspond to regions of accessible chromatin. Regulatory element activity is in turn modulated by genetic variation, resulting in variable transcription rates across individuals. The interplay of these factors, however, is poorly understood. Here we characterize expression and chromatin state dynamics across three tissues-liver, lung, and kidney-in 47 strains of the Collaborative Cross (CC) mouse population, examining the regulation of these dynamics by expression quantitative trait loci (eQTL) and chromatin QTL (cQTL). QTL whose allelic effects were consistent across tissues were detected for 1,101 genes and 133 chromatin regions. Also detected were eQTL and cQTL whose allelic effects differed across tissues, including local-eQTL for Pik3c2g detected in all three tissues but with distinct allelic effects. Leveraging overlapping measurements of gene expression and chromatin accessibility on the same mice from multiple tissues, we used mediation analysis to identify chromatin and gene expression intermediates of eQTL effects. Based on QTL and mediation analyses over multiple tissues, we propose a causal model for the distal genetic regulation of Akr1e1, a gene involved in glycogen metabolism, through the zinc finger transcription factor Zfp985 and chromatin intermediates. This analysis demonstrates the complexity of transcriptional and chromatin dynamics and their regulation over multiple tissues, as well as the value of the CC and related genetic resource populations for identifying specific regulatory mechanisms within cells and tissues.
Collapse
Affiliation(s)
- Gregory R. Keele
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Bryan C. Quach
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Omics Discovery and Epidemiology, Research Triangle Institute (RTI) International, Research Triangle Park, North Carolina, United States of America
| | - Jennifer W. Israel
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Grace A. Chappell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Lauren Lewis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Alexias Safi
- Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Jeremy M. Simon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Paul Cotney
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gregory E. Crawford
- Department of Pediatrics, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Terrence S. Furey
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Abstract
The Collaborative Cross (CC) is a mouse genetic reference population whose range of applications includes quantitative trait loci (QTL) mapping. The design of a CC QTL mapping study involves multiple decisions, including which and how many strains to use, and how many replicates per strain to phenotype, all viewed within the context of hypothesized QTL architecture. Until now, these decisions have been informed largely by early power analyses that were based on simulated, hypothetical CC genomes. Now that more than 50 CC strains are available and more than 70 CC genomes have been observed, it is possible to characterize power based on realized CC genomes. We report power analyses from extensive simulations and examine several key considerations: 1) the number of strains and biological replicates, 2) the QTL effect size, 3) the presence of population structure, and 4) the distribution of functionally distinct alleles among the founder strains at the QTL. We also provide general power estimates to aide in the design of future experiments. All analyses were conducted with our R package, SPARCC (Simulated Power Analysis in the Realized Collaborative Cross), developed for performing either large scale power analyses or those tailored to particular CC experiments.
Collapse
|
13
|
Microarray profiling of lung long non-coding RNAs and mRNAs in lipopolysaccharide-induced acute lung injury mouse model. Biosci Rep 2019; 39:BSR20181634. [PMID: 30979832 PMCID: PMC6488857 DOI: 10.1042/bsr20181634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in various biological processes as well as many respiratory diseases, while the role of lncRNAs in acute lung injury (ALI) remains unclear. The present study aimed to profile the expression of lung lncRNAs and mRNAs in lipopolysaccharide (LPS)-induced ALI mouse model. C57BL/6 mice were exposed to LPS or phosphate-buffered saline for 24 h, and lncRNAs and mRNAs were profiled by Arraystar mouse LncRNA Array V3.0. Bioinformatics analysis gene ontology including (GO) and pathway analysis and cell study in vitro was used to investigate potential mechanisms. Based on the microarray results, 2632 lncRNAs and 2352 mRNAs were differentially expressed between ALI and control mice. The microarray results were confirmed by the quantitative real-time PCR (qRT-PCR) results of ten randomized selected lncRNAs. GO analysis showed that the altered mRNAs were mainly related to the processes of immune system, immune response and defense response. Pathway analysis suggests that tumor necrosis factor (TNF) signaling pathway, NOD-like receptor pathway, and cytokine-cytokine receptor interaction may be involved in ALI. LncRNA-mRNA co-expression network analysis indicated that one individual lncRNA may interact with several mRNAs, and one individual mRNA may also interact with several lncRNAs. Small interfering RNA (siRNA) for ENSMUST00000170214.1, - ENSMUST00000016031.13 significantly inhibited LPS-induced TNF-α and interleukin (IL)-1β production in murine RAW264.7 macrophages. Our results found significant changes of lncRNAs and mRNAs in the lungs of LPS-induced ALI mouse model, and intervention targeting lncRNAs may attenuate LPS-induced inflammation, which may help to elucidate the role of lncRNAs in the pathogenesis and treatment of ALI.
Collapse
|
14
|
Chen W, Schwalie PC, Pankevich EV, Gubelmann C, Raghav SK, Dainese R, Cassano M, Imbeault M, Jang SM, Russeil J, Delessa T, Duc J, Trono D, Wolfrum C, Deplancke B. ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer. Nat Commun 2019; 10:1809. [PMID: 31000713 PMCID: PMC6472429 DOI: 10.1038/s41467-019-09803-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Krüppel-associated box zinc finger proteins (KZFPs) constitute the largest family of mammalian transcription factors, but most remain completely uncharacterized. While initially proposed to primarily repress transposable elements, recent reports have revealed that KFZPs contribute to a wide variety of other biological processes. Using murine and human in vitro and in vivo models, we demonstrate here that one poorly studied KZFP, ZFP30, promotes adipogenesis by directly targeting and activating a retrotransposon-derived Pparg2 enhancer. Through mechanistic studies, we further show that ZFP30 recruits the co-regulator KRAB-associated protein 1 (KAP1), which, surprisingly, acts as a ZFP30 co-activator in this adipogenic context. Our findings provide an understanding of both adipogenic and KZFP-KAP1 complex-mediated gene regulation, showing that the KZFP-KAP1 axis can also function in a non-repressive manner.
Collapse
Affiliation(s)
- Wanze Chen
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Petra C Schwalie
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Eugenia V Pankevich
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russian Federation
| | - Carine Gubelmann
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Sunil K Raghav
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Immunogenomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Riccardo Dainese
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Marco Cassano
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Michael Imbeault
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Suk Min Jang
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Tenagne Delessa
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8603, Schwerzenbach, Switzerland
| | - Julien Duc
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Didier Trono
- Laboratory of Virology and Genetics, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8603, Schwerzenbach, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
15
|
Dolch A, Kunz S, Dorn B, Alessandrini F, Müller W, Jack RS, Martin SF, Roers A, Jakob T. IL-10 signaling in dendritic cells is required for tolerance induction in a murine model of allergic airway inflammation. Eur J Immunol 2019; 49:302-312. [PMID: 30566244 DOI: 10.1002/eji.201847883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Allergen specific tolerance induction efficiently ameliorates subsequent allergen induced inflammatory responses. The underlying regulatory mechanisms have been attributed mainly to interleukin (IL)-10 produced by diverse hematopoietic cells, while targets of IL-10 in allergen specific tolerance induction have not yet been well defined. Here, we investigate potential cellular targets of IL-10 in allergen specific tolerance induction using mice with a cell type specific inactivation of the IL-10 receptor gene. Allergic airway inflammation was effectively prevented by tolerance induction in mice with IL-10 receptor (IL-10R) deficiency in T or B cells. Similarly, IL-10R on monocytes/macrophages and/or neutrophils was not required for tolerance induction. In contrast, tolerance induction was impaired in mice that lack IL-10R on dendritic cells: those mice developed an allergic response characterized by a pronounced neutrophilic lung infiltration, which was not ameliorated by tolerogenic treatment. In conclusion, our results show that allergen specific tolerance can be effectively induced without a direct impact of IL-10 on cells of the adaptive immune system, and highlight dendritic cells, but not macrophages nor neutrophils, as the main target of IL-10 during tolerance induction.
Collapse
Affiliation(s)
- Anja Dolch
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefanie Kunz
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Britta Dorn
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.,Department of Dermatology and Allergology, Experimental Dermatology and Allergy Research Group, University Medical Center Gießen-Marburg, Justus Liebig University Gießen, Gießen, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technische Universität München and Helmholtz Zentrum München, Munich, Germany
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Robert S Jack
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Hospital of Greifswald, Greifswald, Germany
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Axel Roers
- Institute of Immunology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
| | - Thilo Jakob
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.,Department of Dermatology and Allergology, Experimental Dermatology and Allergy Research Group, University Medical Center Gießen-Marburg, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
16
|
Gene expression variation and parental allele inheritance in a Xiphophorus interspecies hybridization model. PLoS Genet 2018; 14:e1007875. [PMID: 30586357 PMCID: PMC6324826 DOI: 10.1371/journal.pgen.1007875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/08/2019] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Understanding the genetic mechanisms underlying segregation of phenotypic variation through successive generations is important for understanding physiological changes and disease risk. Tracing the etiology of variation in gene expression enables identification of genetic interactions, and may uncover molecular mechanisms leading to the phenotypic expression of a trait, especially when utilizing model organisms that have well-defined genetic lineages. There are a plethora of studies that describe relationships between gene expression and genotype, however, the idea that global variations in gene expression are also controlled by genotype remains novel. Despite the identification of loci that control gene expression variation, the global understanding of how genome constitution affects trait variability is unknown. To study this question, we utilized Xiphophorus fish of different, but tractable genetic backgrounds (inbred, F1 interspecies hybrids, and backcross hybrid progeny), and measured each individual’s gene expression concurrent with the degrees of inter-individual expression variation. We found, (a) F1 interspecies hybrids exhibited less variability than inbred animals, indicting gene expression variation is not affected by the fraction of heterozygous loci within an individual genome, and (b), that mixing genotypes in backcross populations led to higher levels of gene expression variability, supporting the idea that expression variability is caused by heterogeneity of genotypes of cis or trans loci. In conclusion, heterogeneity of genotype, introduced by inheritance of different alleles, accounts for the largest effects on global phenotypical variability. Phenotypical variability is a multi-factorial phenomenon. Although it has been shown that inheriting certain gene is associated with lower phenotypical variability, how genome complexity affect phenotypical variability is still unclear. To study this question, we used inbred Xiphophorus fish, backcross interspecies hybrids, and F1 interspecies hybrids between select Xiphophorus species to model genetic composition with minimum, medium, and maximum heterozygosity respectively, and measured their global gene expression variability. We found gene expression variation is not affected by the percentage of heterozygous loci in individual genome, but instead related to heterogeneity of genotype at local or remote loci.
Collapse
|
17
|
Kornej J, Büttner P, Hammer E, Engelmann B, Dinov B, Sommer P, Husser D, Hindricks G, Völker U, Bollmann A. Circulating proteomic patterns in AF related left atrial remodeling indicate involvement of coagulation and complement cascade. PLoS One 2018; 13:e0198461. [PMID: 30496173 PMCID: PMC6264811 DOI: 10.1371/journal.pone.0198461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Left atrial (LA) electro-anatomical remodeling and diameter increase in atrial fibrillation (AF) indicates disease progression and is associated with poor therapeutic success. Furthermore, AF leads to a hypercoagulable state, which in turn promotes the development of a substrate for AF and disease progression in the experimental setting. The aim of this study was to identify pathways associated with LA remodeling in AF patients using untargeted proteomics approach. METHODS Peripheral blood samples of 48 patients (62±10 years, 63% males, 59% persistent AF) undergoing AF catheter ablation were collected before ablation. 23 patients with left atrial low voltage areas (LVA), defined as <0.5 mV, and 25 patients without LVA were matched for age, gender and CHA2DS2-VASc score. Untargeted proteome analysis was performed using LC-ESI-Tandem mass spectrometry in a label free intensity based workflow. Significantly different abundant proteins were identified and used for pathway analysis and protein-protein interaction analysis. RESULTS Analysis covered 280 non-redundant circulating plasma proteins. The presence of LVA correlated with 30 differentially abundant proteins of coagulation and complement cascade (q<0.05). CONCLUSIONS This pilot proteomic study identified plasma protein candidates associated with electro-anatomical remodeling in AF and pointed towards an imbalance in coagulation and complement pathway, tissue remodeling and inflammation.
Collapse
Affiliation(s)
- Jelena Kornej
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Petra Büttner
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Beatrice Engelmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Mosedale M. Mouse Population-Based Approaches to Investigate Adverse Drug Reactions. Drug Metab Dispos 2018; 46:1787-1795. [PMID: 30045843 DOI: 10.1124/dmd.118.082834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/06/2018] [Indexed: 02/13/2025] Open
Abstract
Genetic variation is now recognized as a key factor in the toxicity of pharmaceutical agents. However, genetic diversity is not present in standard nonclinical toxicology models, and small clinical studies (phase I/II) may not include enough subjects to identify toxicity liabilities associated with less common susceptibility factors. As a result, many drugs pass through preclinical and early clinical studies before safety concerns are realized. Furthermore, when adverse drug reactions are idiosyncratic in nature, suggesting a role for rare genetic variants in the toxicity susceptibility, even large clinical studies (phase III) are often underpowered (due to low population frequency and/or small effect size of the risk factor) to identify associations that may be used for precision medicine risk mitigation strategies. Genetically diverse mouse populations can be used to help overcome the limitations of standard nonclinical and clinical studies and to model toxicity responses that require genetic susceptibility factors. Furthermore, mouse population-based approaches can be used to: 1) identify sensitive strains that can serve as a screening tool for next-in-class compounds, 2) identify genetic susceptibility factors that can be used for risk mitigation strategies, and 3) study mechanisms underlying drug toxicity. This review describes genetically diverse mouse populations and provides examples of their utility in investigating adverse drug response. It also explores recent efforts to adapt mouse population-based approaches to in vitro platforms, thereby enabling the incorporation of genetic diversity and the identification of genetic risk factors and mechanisms associated with drug toxicity susceptibility at all stages of drug development.
Collapse
Affiliation(s)
- Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics and Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Leist SR, Baric RS. Giving the Genes a Shuffle: Using Natural Variation to Understand Host Genetic Contributions to Viral Infections. Trends Genet 2018; 34:777-789. [PMID: 30131185 PMCID: PMC7114642 DOI: 10.1016/j.tig.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
Abstract
The laboratory mouse has proved an invaluable model to identify host factors that regulate the progression and outcome of virus-induced disease. The paradigm is to use single-gene knockouts in inbred mouse strains or genetic mapping studies using biparental mouse populations. However, genetic variation among these mouse strains is limited compared with the diversity seen in human populations. To address this disconnect, a multiparental mouse population has been developed to specifically dissect the multigenetic regulation of complex disease traits. The Collaborative Cross (CC) population of recombinant inbred mouse strains is a well-suited systems-genetics tool to identify susceptibility alleles that control viral and microbial infection outcomes and immune responses and to test the promise of personalized medicine.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; https://sph.unc.edu/adv_profile/ralph-s-baric-phd/
| |
Collapse
|
20
|
Kollmus H, Pilzner C, Leist SR, Heise M, Geffers R, Schughart K. Of mice and men: the host response to influenza virus infection. Mamm Genome 2018; 29:446-470. [PMID: 29947965 PMCID: PMC6132725 DOI: 10.1007/s00335-018-9750-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
Abstract
Influenza virus (IV) infections represent a very serious public health problem. At present, no established biomarkers exist to support diagnosis for respiratory viral infections and more importantly for severe IV disease. Studies in animal models are extremely important to understand the biological, genetic, and environmental factors that contribute to severe IV disease and to validate biomarker candidates from human studies. However, mouse human cross-species comparisons are often compromised by the fact that animal studies concentrate on the infected lungs, whereas in humans almost all studies use peripheral blood from patients. In addition, human studies do not consider genetic background as variable although human populations are genetically very diverse. Therefore, in this study, we performed a cross-species gene expression study of the peripheral blood from human patients and from the highly genetically diverse Collaborative Cross (CC) mouse population after IV infection. Our results demonstrate that changes of gene expression in individual genes are highly similar in mice and humans. The top-regulated genes in humans were also differentially regulated in mice. We conclude that the mouse is a highly valuable in vivo model system to validate and to discover gene candidates which can be used as biomarkers in humans. Furthermore, mouse studies allow confirmation of findings in humans in a well-controlled experimental system adding enormous value to the understanding of expression and function of human candidate genes.
Collapse
Affiliation(s)
- Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Genome Analytics Research Group, Brunswick, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany.
- University of Veterinary Medicine Hannover, Hannover, Germany.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
21
|
Abstract
Endocrine disrupting chemicals (EDCs) are compounds that alter the structure and function of the endocrine system and may be contributing to disorders of the reproductive, metabolic, neuroendocrine and other complex systems. Typically, these outcomes cannot be modeled in cell-based or other simple systems necessitating the use of animal testing. Appropriate animal model selection is required to effectively recapitulate the human experience, including relevant dosing and windows of exposure, and ensure translational utility and reproducibility. While classical toxicology heavily relies on inbred rats and mice, and focuses on apical endpoints such as tumor formation or birth defects, EDC researchers have used a greater diversity of species to effectively model more subtle but significant outcomes such as changes in pubertal timing, mammary gland development, and social behaviors. Advances in genomics, neuroimaging and other tools are making a wider range of animal models more widely available to EDC researchers.
Collapse
Affiliation(s)
- Heather B Patisaul
- Center for Human Health and the Environment, W.M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Suzanne E Fenton
- Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, 27709, USA.
| | - David Aylor
- Center for Human Health and the Environment, Bioinformatics Research Center, W.M. Keck Center for Behavioral Biology, Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
22
|
Differential Regulation of Zfp30 Expression in Murine Airway Epithelia Through Altered Binding of ZFP148 to rs51434084. G3-GENES GENOMES GENETICS 2018; 8:687-693. [PMID: 29242385 PMCID: PMC5919737 DOI: 10.1534/g3.117.300507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophil chemotaxis to the airways is a key aspect of host response to microbes and a feature of multiple pulmonary diseases including asthma. Tight regulation of this recruitment is critical to prevent unwanted host tissue damage and inflammation. Using a mouse (Mus musculus) model of asthma applied to the Collaborative Cross population, we previously identified a lung gene expression quantitative trait locus (eQTL) for Zinc finger protein 30 (Zfp30) that was also a QTL for neutrophil recruitment and the hallmark neutrophil chemokine CXCL1. The Zfp30 eQTL is defined by three functionally distinct haplotypes. In this study, we searched for causal genetic variants that underlie the Zfp30 eQTL to gain a better understanding of this candidate repressor's regulation. First, we identified a putative regulatory region spanning 500 bp upstream of Zfp30, which contains 10 SNPs that form five haplotypes. In reporter gene assays in vitro, these haplotypes recapitulated the three previously identified in vivo expression patterns. Second, using site-directed mutagenesis followed by reporter gene assays, we identified a single variant, rs51434084, which explained the majority of variation in expression between two out of three haplotype groups. Finally, using a combination of in silico predictions and electrophoretic mobility shift assays, we identified ZFP148 as a transcription factor that differentially binds to the Zfp30 promoter region harboring rs51434084. In conclusion, we provide evidence in support of rs51434084 being a causal variant for the Zfp30 eQTL, and have identified a mechanism by which this variant alters Zfp30 expression, namely differential binding of ZFP148.
Collapse
|
23
|
Mosedale M, Kim Y, Brock WJ, Roth SE, Wiltshire T, Eaddy JS, Keele GR, Corty RW, Xie Y, Valdar W, Watkins PB. Editor's Highlight: Candidate Risk Factors and Mechanisms for Tolvaptan-Induced Liver Injury Are Identified Using a Collaborative Cross Approach. Toxicol Sci 2018; 156:438-454. [PMID: 28115652 DOI: 10.1093/toxsci/kfw269] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Clinical trials of tolvaptan showed it to be a promising candidate for the treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD) but also revealed potential for idiosyncratic drug-induced liver injury (DILI) in this patient population. To identify risk factors and mechanisms underlying tolvaptan DILI, 8 mice in each of 45 strains of the genetically diverse Collaborative Cross (CC) mouse population were treated with a single oral dose of either tolvaptan or vehicle. Significant elevations in plasma alanine aminotransferase (ALT) were observed in tolvaptan-treated animals in 3 of the 45 strains. Genetic mapping coupled with transcriptomic analysis in the liver was used to identify several candidate susceptibility genes including epoxide hydrolase 2, interferon regulatory factor 3, and mitochondrial fission factor. Gene pathway analysis revealed that oxidative stress and immune response pathways were activated in response to tolvaptan treatment across all strains, but genes involved in regulation of bile acid homeostasis were most associated with tolvaptan-induced elevations in ALT. Secretory leukocyte peptidase inhibitor (Slpi) mRNA was also induced in the susceptible strains and was associated with increased plasma levels of Slpi protein, suggesting a potential serum marker for DILI susceptibility. In summary, tolvaptan induced signs of oxidative stress, mitochondrial dysfunction, and innate immune response in all strains, but variation in bile acid homeostasis was most associated with susceptibility to the liver response. This CC study has indicated potential mechanisms underlying tolvaptan DILI and biomarkers of susceptibility that may be useful in managing the risk of DILI in ADPKD patients.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Yunjung Kim
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - William J Brock
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850.,Brock Scientific Consulting, Montgomery Village, Maryland 20886
| | - Sharin E Roth
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599.,Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - J Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Gregory R Keele
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - Robert W Corty
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - Yuying Xie
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599
| | - William Valdar
- Department of Genetics, UNC School of Medicine, Chapel Hill, North Carolina 27599.,Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| |
Collapse
|
24
|
Identification of trans Protein QTL for Secreted Airway Mucins in Mice and a Causal Role for Bpifb1. Genetics 2017; 207:801-812. [PMID: 28851744 DOI: 10.1534/genetics.117.300211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Mucus hyper-secretion is a hallmark feature of asthma and other muco-obstructive airway diseases. The mucin proteins MUC5AC and MUC5B are the major glycoprotein components of mucus and have critical roles in airway defense. Despite the biomedical importance of these two proteins, the loci that regulate them in the context of natural genetic variation have not been studied. To identify genes that underlie variation in airway mucin levels, we performed genetic analyses in founder strains and incipient lines of the Collaborative Cross (CC) in a house dust mite mouse model of asthma. CC founder strains exhibited significant differences in MUC5AC and MUC5B, providing evidence of heritability. Analysis of gene and protein expression of Muc5ac and Muc5b in incipient CC lines (n = 154) suggested that post-transcriptional events were important regulators of mucin protein content in the airways. Quantitative trait locus (QTL) mapping identified distinct, trans protein QTL for MUC5AC (chromosome 13) and MUC5B (chromosome 2). These two QTL explained 18 and 20% of phenotypic variance, respectively. Examination of the MUC5B QTL allele effects and subsequent phylogenetic analysis allowed us to narrow the MUC5B QTL and identify Bpifb1 as a candidate gene. Bpifb1 mRNA and protein expression were upregulated in parallel to MUC5B after allergen challenge, and Bpifb1 knockout mice exhibited higher MUC5B expression. Thus, BPIFB1 is a novel regulator of MUC5B.
Collapse
|
25
|
Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC, Stapleton PL, Bammler TK, MacDonald JW, Altemeier WA, Hernandez M, Kleeberger SR, Chen LC, Gordon T, Kavanagh TJ. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice. FASEB J 2017; 31:4600-4611. [PMID: 28716969 DOI: 10.1096/fj.201700187r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) are employed in a variety of consumer products; however, in vivo rodent studies indicate that AgNPs can cause lung inflammation and toxicity in a strain- and particle type-dependent manner, but mechanisms of susceptibility remain unclear. The aim of this study was to assess the variation in AgNP-induced lung inflammation and toxicity across multiple inbred mouse strains and to use genome-wide association (GWA) mapping to identify potential candidate susceptibility genes. Mice received doses of 0.25 mg/kg of either 20-nm citrate-coated AgNPs or citrate buffer using oropharyngeal aspiration. Neutrophils in bronchoalveolar lavage fluid (BALF) served as markers of inflammation. We found significant strain- and treatment-dependent variation in neutrophils in BALF. GWA mapping identified 10 significant single-nucleotide polymorphisms (false discovery rate, 15%) in 4 quantitative trait loci on mouse chromosomes 1, 4, 15, and 18, and Nedd4l (neural precursor cell expressed developmentally downregulated gene 4-like; chromosome 18), Ano6 (anocatmin 6; chromosome 15), and Rnf220 (Ring finger protein 220; chromosome 4) were considered candidate genes. Quantitative RT-PCR revealed significant inverse associations between mRNA levels of these genes and neutrophil influx. Nedd4l, Ano6, and Rnf220 are candidate susceptibility genes for AgNP-induced lung inflammation that warrant additional exploration in future studies.-Scoville, D. K., Botta, D., Galdanes, K., Schmuck, S. C., White, C. C., Stapleton, P. L., Bammler, T. K., MacDonald, J. W., Altemeier, W. A., Hernandez, M., Kleeberger, S. R., Chen, L.-C., Gordon, T., Kavanagh, T. J. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Karen Galdanes
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Patricia L Stapleton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | | | - Michelle Hernandez
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
26
|
Schughart K, Williams RW. The Collaborative Cross Resource for Systems Genetics Research of Infectious Diseases. Methods Mol Biol 2017; 1488:579-596. [PMID: 27933545 PMCID: PMC7120135 DOI: 10.1007/978-1-4939-6427-7_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An increasing body of evidence highlights the role of host genetic variation in driving susceptibility to severe disease following pathogen infection. In order to fully appreciate the importance of host genetics on infection susceptibility and resulting disease, genetically variable experimental model systems should be employed. These systems allow for the identification, characterization, and mechanistic dissection of genetic variants that cause differential disease responses. Herein we discuss application of the Collaborative Cross (CC) panel of recombinant inbred strains to study viral pathogenesis, focusing on practical considerations for experimental design, assessment and analysis of disease responses within the CC, as well as some of the resources developed for the CC. Although the focus of this chapter is on viral pathogenesis, many of the methods presented within are applicable to studies of other pathogens, as well as to case-control designs in genetically diverse populations.
Collapse
Affiliation(s)
- Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research & University of Veterinary Medicine Hannover, Braunschweig, Niedersachsen Germany
| | - Robert W. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee USA
| |
Collapse
|
27
|
Altemeier WA, Hung CF, Matute-Bello G. Mouse Models of Acute Lung Injury. ACUTE LUNG INJURY AND REPAIR 2017. [DOI: 10.1007/978-3-319-46527-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge. G3-GENES GENOMES GENETICS 2016; 6:2857-65. [PMID: 27449512 PMCID: PMC5015943 DOI: 10.1534/g3.116.032912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene-environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design in which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.
Collapse
|
29
|
Steuerman Y, Gat-Viks I. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System. PLoS Comput Biol 2016; 12:e1004856. [PMID: 27035464 PMCID: PMC4818015 DOI: 10.1371/journal.pcbi.1004856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS. Quantitative trait locus (QTL) studies have identified a plethora of genetic variants that lead to inter-individual variation in the abundance of immune cell subpopulations, both in normal and disease states. Cell sorting is an effective method of monitoring immune cell type quantities; however, owing to the large number of possible immune cell subsets, it can be difficult to apply this method to each cell type over multiple individuals. Recent QTL studies dealt with this difficulty by focusing on an a priori selection of one or a few cell subsets. Here we introduce VoCAL, a deconvolution-based method that utilizes transcriptome data to infer the quantities of immune cell types, and then uses these quantitative traits to uncover the underlying DNA loci. Our results in synthetic data and lung cohorts show that the VoCAL method outperforms other alternatives in revealing the genetic basis of immune physiology.
Collapse
Affiliation(s)
- Yael Steuerman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gat-Viks
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
30
|
Leist SR, Pilzner C, van den Brand JMA, Dengler L, Geffers R, Kuiken T, Balling R, Kollmus H, Schughart K. Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice. BMC Genomics 2016; 17:143. [PMID: 26921172 PMCID: PMC4769537 DOI: 10.1186/s12864-016-2483-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Influenza A virus is a zoonotic pathogen that poses a major threat to human and animal health. The severe course of influenza infection is not only influenced by viral virulence factors but also by individual differences in the host response. To determine the extent to which the genetic background can modulate severity of an infection, we studied the host responses to influenza infections in the eight genetically highly diverse Collaborative Cross (CC) founder mouse strains. RESULTS We observed highly divergent host responses between the CC founder strains with respect to survival, body weight loss, hematological parameters in the blood, relative lung weight and viral load. Mouse strain was the main factor with highest effect size on body weight loss after infection, demonstrating that this phenotype was highly heritable. Sex represented another significant main effect, although it was less strong. Analysis of survival rates and mean time to death suggested three groups of susceptibility phenotypes: highly susceptible (A/J, CAST/EiJ, WSB/EiJ), intermediate susceptible (C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ) and highly resistant strains (NZO/HlLtJ, PWK/PhJ). These three susceptibility groups were significantly different with respect to death/survival counts. Viral load was significantly different between susceptible and resistant strains but not between intermediate and highly susceptible strains. CAST/EiJ mice showed a unique phenotype. Despite high viral loads in their lungs, CAST/EiJ mice exhibited low counts of infiltrating granulocytes and showed increased numbers of macrophages in the lung. Histological studies of infected lungs and transcriptome analyses of peripheral blood cells and lungs confirmed an abnormal response in the leukocyte recruitment in CAST/EiJ mice. CONCLUSIONS The eight CC founder strains exhibited a large diversity in their response to influenza infections. Therefore, the CC will represent an ideal mouse genetic reference population to study the influence of genetic variation on the susceptibility and resistance to influenza infections which will be important to understand individual variations of disease severity in humans. The unique phenotype combination in the CAST/EiJ strain resembles human leukocyte adhesion deficiency and may thus represent a new mouse model to understand this and related abnormal immune responses to infections in humans.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | | | - Leonie Dengler
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig and University of Veterinary Medicine Hannover, Inhoffenstr.7, D-38124, Braunschweig, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
31
|
A Random-Model Approach to QTL Mapping in Multiparent Advanced Generation Intercross (MAGIC) Populations. Genetics 2015; 202:471-86. [PMID: 26715662 DOI: 10.1534/genetics.115.179945] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Most standard QTL mapping procedures apply to populations derived from the cross of two parents. QTL detected from such biparental populations are rarely relevant to breeding programs because of the narrow genetic basis: only two alleles are involved per locus. To improve the generality and applicability of mapping results, QTL should be detected using populations initiated from multiple parents, such as the multiparent advanced generation intercross (MAGIC) populations. The greatest challenges of QTL mapping in MAGIC populations come from multiple founder alleles and control of the genetic background information. We developed a random-model methodology by treating the founder effects of each locus as random effects following a normal distribution with a locus-specific variance. We also fit a polygenic effect to the model to control the genetic background. To improve the statistical power for a scanned marker, we release the marker effect absorbed by the polygene back to the model. In contrast to the fixed-model approach, we estimate and test the variance of each locus and scan the entire genome one locus at a time using likelihood-ratio test statistics. Simulation studies showed that this method can increase statistical power and reduce type I error compared with composite interval mapping (CIM) and multiparent whole-genome average interval mapping (MPWGAIM). We demonstrated the method using a public Arabidopsis thaliana MAGIC population and a mouse MAGIC population.
Collapse
|
32
|
Scoville DK, White CC, Botta D, McConnachie LA, Zadworny ME, Schmuck SC, Hu X, Gao X, Yu J, Dills RL, Sheppard L, Delaney MA, Griffith WC, Beyer RP, Zangar RC, Pounds JG, Faustman EM, Kavanagh TJ. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains. Toxicol Appl Pharmacol 2015; 289:240-50. [PMID: 26476918 DOI: 10.1016/j.taap.2015.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Abstract
Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe-ZnS core-shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lisa A McConnachie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Megan E Zadworny
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaoge Hu
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jianbo Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Russell L Dills
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Martha A Delaney
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard C Zangar
- Systems Toxicology Group - Division of Biological Sciences, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Joel G Pounds
- Systems Toxicology Group - Division of Biological Sciences, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Rutledge H, Baran-Gale J, de Villena FPM, Chesler EJ, Churchill GA, Sethupathy P, Kelada SNP. Identification of microRNAs associated with allergic airway disease using a genetically diverse mouse population. BMC Genomics 2015; 16:633. [PMID: 26303911 PMCID: PMC4548451 DOI: 10.1186/s12864-015-1732-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
Background Allergic airway diseases (AADs) such as asthma are characterized in part by granulocytic airway inflammation. The gene regulatory networks that govern granulocyte recruitment are poorly understood, but evidence is accruing that microRNAs (miRNAs) play an important role. To identify miRNAs that may underlie AADs, we used two complementary approaches that leveraged the genotypic and phenotypic diversity of the Collaborative Cross (CC) mouse population. In the first approach, we sought to identify miRNA expression quantitative trait loci (eQTL) that overlap QTL for AAD-related phenotypes. Specifically, CC founder strains and incipient lines of the CC were sensitized and challenged with house dust mite allergen followed by measurement of granulocyte recruitment to the lung. Total lung RNA was isolated and miRNA was measured using arrays for CC founders and qRT-PCR for incipient CC lines. Results Among CC founders, 92 miRNAs were differentially expressed. We measured the expression of 40 of the most highly expressed of these 92 miRNAs in the incipient lines of the CC and identified 18 eQTL corresponding to 14 different miRNAs. Surprisingly, half of these eQTL were distal to the corresponding miRNAs, and even on different chromosomes. One of the largest-effect local miRNA eQTL was for miR-342-3p, for which we identified putative causal variants by bioinformatic analysis of the effects of single nucleotide polymorphisms on RNA structure. None of the miRNA eQTL co-localized with QTL for eosinophil or neutrophil recruitment. In the second approach, we constructed putative miRNA/mRNA regulatory networks and identified three miRNAs (miR-497, miR-351 and miR-31) as candidate master regulators of genes associated with neutrophil recruitment. Analysis of a dataset from human keratinocytes transfected with a miR-31 inhibitor revealed two target genes in common with miR-31 targets correlated with neutrophils, namely Oxsr1 and Nsf. Conclusions miRNA expression in the allergically inflamed murine lung is regulated by genetic loci that are smaller in effect size compared to mRNA eQTL and often act in trans. Thus our results indicate that the genetic architecture of miRNA expression is different from mRNA expression. We identified three miRNAs, miR-497, miR-351 and miR-31, that are candidate master regulators of genes associated with neutrophil recruitment. Because miR-31 is expressed in airway epithelia and is predicted to target genes with known links to neutrophilic inflammation, we suggest that miR-31 is a potentially novel regulator of airway inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1732-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holly Rutledge
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Jeanette Baran-Gale
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | - Praveen Sethupathy
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 2015; 25:775-91. [PMID: 25953951 PMCID: PMC4448675 DOI: 10.1101/gr.187450.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that underlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal many QTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting architectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resources, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue that variation of genetic architectures among individuals is as important as population averages. Each of these important resources has particular merits and specific applications for these individual and population perspectives. Collectively, these resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease models.
Collapse
Affiliation(s)
- David A Buchner
- Department of Genetics and Genome Sciences, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Joseph H Nadeau
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, USA
| |
Collapse
|